
Algebraic Number Theory – Lecture 6

Andrew Potter

“It was mentioned on CNN that the new prime number discovered
recently is four times bigger then the previous record.”

– John Blasik

1. Setting

Throughout, let k be a number field of degree n. Recall that Ok is a Dedekind
domain, in particular it has unique factorisation of ideals. That is, each ideal
a ⊂ Ok factorises uniquely as a product of prime ideals. So, in some sense, “ideals
take the place of rational integers”.

Definition. Let a, b ⊂ Ok be ideals. Their greatest common divisor, gcd(a, b), is
the ideal g with the properties

(1) g | a and g | b;
(2) if g′ satisfies (1) then g′ | g.

Similarly, their least common multiple, lcm(a, b), is the ideal l satisfying

(1) a | l and b | l;
(2) if l′ satisfies (1) then l | l′.

We have the useful properties

• gcd(a, b) = a + b
• lcm(a, b) = a ∩ b.

Let a ⊂ Ok be an ideal and b ∈ Ok. We write a | b to mean a | (b), the principal
ideal generated by b. Then

a | b ⇔ b ∈ a.

This notation is useful because if p is a prime ideal then

p | ab ⇒ p | a or p | b.

What about non-principal ideals?

Theorem 1. Let a 6= 0 be an ideal of Ok and let β be an element of a. Then there
exists α ∈ Ok such that a = (α, β).
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2. Norms

Recall that if α ∈ k and σi are the n embeddings k ↪→ C then we define

N(α) =
n∏

i=1

σi(α).

Definition. The norm of an ideal a ⊂ Ok is

N(a) = |Ok/a| .
This is always a finite number, as seen in Dan’s lecture.

What’s the connexion between the norm of an ideal and that of an element?

Theorem 2. (1) Every ideal a ⊂ Ok, a 6= 0, has a Z-basis {α1, . . . , αn}.

(2) N(a) =
∣∣∣∣∆[α1, . . . , αn]

∆

∣∣∣∣1/2

where ∆ is the discriminant of k.

Corollary. If a = (a) then N(a) = |N(a)|.

The main, useful property of norms is their multiplicativity:

N(ab) = N(a)N(b).

But other interesting properties include:

(1) if N(a) is prime then a is a prime ideal;
(2) N(a) ∈ a, i.e. a | N(a);
(3) if a is a prime ideal then N(a) = pm for some m 6 n. Moreover, a divides

exactly one p, so exactly one prime p ∈ Z is in a.

Thus norms are very handy for finding ideal factorisations. They also have several
useful finiteness properties:

(1) Every nonzero ideal of Ok has finitely many divisors.
(2) A nonzero rational integer belongs to only a finite number of ideals of Ok.
(3) Only finitely many ideals of Ok have a given norm.

3. Unique factorisation

Let R be a ring. A principal ideal domain is always a unique factorisation
domain: PID ⇒ UFD. But, in general, UFD ; PID. However:

Theorem 3. Ok is a UFD if and only if it is a PID.

Proof. (⇐) This implication is always true for rings.

(⇒) Because of unique factorisation of ideals we only need to show that every
prime ideal is principal. Let p be a prime ideal. There exists N = N(p) such that
p | N . Ok is a UFD by assumption so N = π1 · · ·πs for πi irreducible in Ok. But
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p | N so p | π1 · · ·πs, hence p | πi for some i, after relabeling we may assume i = 1.
Now, π1 is irreducible and Ok is a UFD so π1 is a prime element of Ok. Thus (π1)
is a prime ideal, so p = (π1), so every prime ideal is principal. �

4. The class group: a preview

Recall that the fractional ideals form an abelian group F . The principal frac-
tional ideals form a subgroup P that is normal since F is abelian. Let H = F/P,
and call H the class group. Let h = |H|, then h is called the class number. If h = 1
then every ideal is principal and hence Ok is a UFD, and by the previous theorem, if
Ok is a UFD then every ideal is principal and h = 1. So the class number somehow
measures by how much unique factorisation fails.
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