
Algebraic Number Theory – Lecture 9

Andrew Potter

“The difficulty lies, not in the new ideas, but in escaping from the old ones,
which ramify, for those brought up as most of us have been, into every corner of

our minds.”

– John Maynard Keynes

Recall that every ring of integers OK is a Dedekind domain, i.e. we get unique factorisation of
ideals into prime ideals. We are interested in how a prime ideal p ⊂ OK factorises in the ring of
integers OL of a finite extension field L of K. In particular, if K = Q, we will see how (p) factorises
in a larger number field.

1. Separable extensions

Let L : K be a separable extension of degree n, i.e. L = K(α) where α is a root of a separable
polynomial (a polynomial with no repeated roots in an algebraic closure of K). Let p ⊂ OK be a
prime ideal. We will write pOL to mean p considered as an ideal of OL, and just p when we are
thinking of it as an ideal of OK .

Now, pOL factorises uniquely as a product of prime ideals in OL. Write

pOL = Pe1
1 · · ·Per

r

for prime ideals Pi ⊂ OL. We say the ideals Pi lie over p, because, for each i, p = Pi ∩ OK . For
each i, ei is called the ramification index of Pi. We define fi = [OL/Pi : OK/p]. This is called
the inertia degree.

Theorem. We have the fundamental identity
r∑

i=1

eifi = n.

Proof. See Neukirch’s Algebraic Number Theory, pages 46–47. �

We say:

• p splits completely if r = n. In that case ei = fi = 1, (1 6 i 6 r).
• p is nonsplit if r = 1.
• Pi is unramified if ei = 1, (1 6 i 6 r), and (OL/Pi) : (OK/p) is a separable extension.1

• Pi is ramified if it’s not unramified, and totally ramified if fi = 1, (1 6 i 6 r).
• p is unramified if all the Pi are unramified.
• p is ramified if it’s not unramified.

Theorem. Only finitely many prime ideals in OK ramify in OL.

Those prime ideals that do ramify are given by the discriminant d of OL : OK , defined to the
ideal of OK generated by the discriminants d(ω1, . . . , ωn) of all bases ω1, . . . , ωn of L : K contained
in OL. The prime (ideal) divisors of d are exactly the primes in OK that ramify.

1The separability condition gets around some ‘pathological’ cases.
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2. Galois extensions

Assume now that L : K is a Galois extension – i.e. separable and normal. Recall that L : K is
normal if every polynomial in K[X] that has a root in L has all its roots in L. We can then define
a Galois group G = Gal(L : K) = Aut(L : K).

The Galois group acts on the prime ideals P1, . . . ,Pr above a prime ideal p, i.e. if P lies over
p then σP lies over p for any σ ∈ G. This is because

(σP) ∩ OK = σ(P ∩ OK)
= σp

= p.

Theorem. G acts transitively on the primes over p. That is, for every pair of prime ideals P1,P2

over p, there is σ ∈ G such that σP1 = P2.

Definition. Let P be a prime ideal over p. Then

GP = {σ ∈ G : σP = P}

is a subgroup of G called the decomposition group of P over K. And

ZP = {x ∈ L : σx = x for all σ ∈ GP}

is called the decomposition field of P over K.

The decomposition group encodes the number of prime ideals that p splits into. For example,

GP = {id} ⇔ ZP = L ⇔ p splits completely,

GP = G ⇔ ZP = K ⇔ p is nonsplit.

Theorem. The inertia degrees fi and the ramification indices ei are independent of i. That is,
e1 = . . . = er = e, and f1 = . . . = fr = f .

Proof. Let P = P1, then for every i, Pi = σiP for some σi ∈ G. The isomorphism σi : OL → OL

induces an isomorphism OL/P
∼→ OL/σiP given by a (mod P) 7→ σia (mod σiP). So

fi = [OL/σiP : OK/p]

= [OL/P : OK/p]

for each i.

Furthermore, since σi(pOL) = pOL,

Pe | pOL ⇔ σiP
e | σi(pOL)

⇔ σiP
e | pOL.

�

3. Example: Gaussian integers

We want to see how (p) ⊂ Z ⊂ Q factorises in Q(i). Q(i) : Q is a Galois extension with
G = {id, σ} where σ is complex conjugation. There are three cases.
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p = 2:
The ideal (2) ramifies in Z[i], indeed, (2) = (1 + i)2. So e = 2 and hence f = 1 by the
fundamental identity. Thus

[Z[i]/(1 + i) : Z[i]/(2)] = 1.

And G(1+i) = G since there is only one prime ideal over (2). This is the only prime that
ramifies, since the discriminant of Z[i] is −4.

p ≡ 1 (mod 4):
Fermat proved that any such (p) splits into two distinct primes over Z[i]. For example,
13 = (2 + 3i)(2− 3i). Then

G(2+3i) = G(2−3i) = {id}.
p ≡ 3 (mod 4):

Any prime of this form is inert in Z[i], i.e. the prime ideal (p) is still a prime ideal in Z[i].
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