GALOIS THEORY 2019: HW 1

For assessment: Problems 1, 2, 3 Due by noon Tuesday, week 3 of the term

Here your are to remember that with $K \subseteq L$ fields and $\alpha \in L$, α is algebraic over K if and only if $[K(\alpha):K] < \infty$.

- 1. Let $F = \mathbb{Z}/p\mathbb{Z}$ where p is prime. Recall that for $a \in F$, $a^p = a$.
 - (a) For $n \in \mathbb{Z}_+$, use induction on n to show that for $f = a_0 + a_1 t + a_2 t^2 + \cdots + a_n t^n \in F[t]$, we have

$$f^p = a_0 + a_1 t^p + a_2 t^{2p} + \dots + a_n t^{np}.$$

- (b) Suppose that E: F is a field extension with $F \subseteq E$, $[E: F] < \infty$, and $\alpha \in E \setminus F$.
 - (i) Briefly explain why α is algebraic over F.
 - (ii) Let $f = m_{\alpha}(F)$, the minimal polynomial of α over F. Show that α^p is a root of f.
 - (iii) Suppose that $|E| = p^m$. Show that every element of E is a root of $t^{p^m} t$. (Suggestion: use that E^{\times} is a field under multiplication. Also recall that $E^{\times} = E \setminus \{0\}$.)
- 2. Suppose that L: K is a field extension with $K \subseteq L$. Suppose that $\alpha, \beta \in L$ are algebraic over K. Show that $\alpha + \beta$ is algebraic over K.
- 3. Let L: K be a field extension, and suppose that $\gamma \in L$ satisfies the property that $\deg m_{\gamma}(K) = 7$. Suppose that $h \in K[t]$ is a non-zero cubic polynomial. By noting that γ is a root of the cubic polynomial $g(t) = h(t) h(\gamma) \in K(h(\gamma))[t]$, show that $[K(h(\gamma)): K] = 7$.
- 4. Let L: K be a field extension with $K \subseteq L$. Let $A \subseteq L$, and let

$$C = \{C \subseteq A : C \text{ is a finite set}\}.$$

Show that $K(A) = \bigcup_{C \in \mathcal{C}} K(C)$, and further that when $[K(C) : K] < \infty$ for all $C \in \mathcal{C}$, then K(A) : K is an algebraic extension.