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Pure mathematics is about understanding structure:
seeing order in what initially appears to be chaos.

The Sierra Nevada Mountains, California
(where my dad would often drive us – only 8 hours each way!)

Dr Lynne Walling (University of Bristol) Beauty of Pure Mathematics 3 / 1



I spent many hours in that car looking at California orchards, and I would
wonder, why are the trees arranged so randomly?
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And then, for an instant, the car would be aligned just right so that order
became clear.

By Sarah Stierch (Flickr: Olive Trees at B.R. Cohn Winery & Vineyard)
[CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)]
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Stepping back can help us see the order and patterns within a system.

By Paolo Villa (Own work)
[CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)]

These insights, these moments of clarity,
are what get mathematicians addicted to math.
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What do we perceive as order? What do we perceive as beauty?

Symmetry is commonly perceived as ordered and beautiful.
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By Patrick Randall (Diadema savignyi (Audouin, 1829))
[CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)]
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By FWC Fish and Wildlife Research Institute (Pseudoboletia maculata)
[CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)]
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By Lamiot (Own work)
[CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)]
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By Lothar Wilhelm from Frankfurt am Main, Germany (DSC01284)
[CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)]
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By Francisco Diez from New Jersey, USA
[CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)]
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By Groume (Flickr: Dme)
[CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)]
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By Gagik G. Sargsyan (Own work)
[CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)]
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By ∗ ∗ (originally posted to Flickr as Akbar’s Tomb)
[CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)]
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By Shahnoor Habib Munmun (Own work)
[CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)]
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By Wil Taubert (Own work)
[CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)]
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J&D Oriental Rugs Co.
[CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)]
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Okay, symmetry can be beautiful, but...

Maybe it’s more interesting if we introduce a bit of dissonance?
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Too much dissonance?
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Definitely too much dissonance!

By alf.melin (Flickr)
[CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)]
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Hypothesis:
The balance between symmetry and dissonance

affects our perception of beauty.

Martyn Gorman
[CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)]
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Hypothesis:
Structure and elegance contribute to our perception of beauty.
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So these are my aesthetics when judging the
art and beauty in math formulas and proofs:

The balance of symmetry and dissonance,
as well as structure and elegance.
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As a random comment: Sometimes randomness is beautiful.

By Badics (Own work),
[CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)]
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What are some well-known beautiful theorems in mathematics?

There are some beautiful mathematical identities involving the
fundamental functions sin, cos, and exp :

y = cos(x)
y = sin(x)
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y = exp(x)
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Defining 2! = 2 · 1, 3! = 3 · 2 · 1, 4! = 4 · 3 · 2 · 1, et cetera, we have the
Taylor series:

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− x10

10!
+ · · ·

sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− x11

11!
+ · · ·

exp(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!
+

x8

8!
+

x9

9!
+ · · ·
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exp(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!
+

x8

8!
+

x9

9!
+ · · ·

Thus with i =
√
−1 (so i2 = −1, i3 = −i , i4 = 1, i5 = i etc.), we have

exp(ix) = 1+ix−x2

2!
−i x

3

3!
+
x4

4!
+i

x5

5!
−x6

6!
−i x

7

7!
+
x8

8!
+i

x9

9!
−x10

10!
−i x

11

11!
+· · ·

Hence
exp(ix) = cos(x) + i sin(x).
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Many people have cited the Pythagorean Theorem as one of the most
beautiful theorems. It states that, given a right triangle with legs of
lengths a and b, and hypotenuse of length c , we have

a2 + b2 = c2.

(Notice here I have assumed that a ≤ b.)
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There are many proofs of this theorem, but here I present one that many
find particularly elegant:

We begin with a square with sides of length c , thus its area is c2.

We inscribe in this square 4 copies of the right triangle with hypotenuse of
length c and legs of lengths a and b:

Having assumed that a ≤ b, this partitioning of the original square
includes an inner square with sides of length b − a.
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We rotate 2 of the inscribed triangles to obtain the following:

We can view this shape as 2 squares, one of side length a, and the other of
side length b. So the total area of this geometric shape is

a2 + b2.
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This last geometric shape was made from our original square with area c2,
so we must have

a2 + b2 = c2,

thus proving the theorem. �
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Positive Integers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, . . .

A triple (a, b, c) of positive integers with a2 + b2 = c2 is called a
Pythagorean triple.

Example: Take a = 3, b = 4, and c = 5. Then

a2 + b2 = 32 + 42 = 25 = 52 = c2.

Question: Are there infinitely many Pythagorean triples?
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Pythagorean triples stratify into families, each of which is generated by a
Pythagorean triple (a, b, c) that is primitive, meaning that the highest
common factor of a and b is 1 (such as the triple (3, 4, 5)).

With (a, b, c) a primitive Pythagorean triple, its family consists of all
triples of the form

(ak, bk, ck)

where k varies over all positive integers (being 1, 2, 3, . . .).

Euclid developed an algorithm for generating infinitely many primitive
Pythagorean triples.

Dr Lynne Walling (University of Bristol) Beauty of Pure Mathematics 47 / 1



Graphs of Primitive Pythagorean Triples

By Adam Cunningham and John Ringland (Own work)
[CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)]
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As mathematicians are wont to do, let’s modify our preceding question:

How many ways can we write a positive integer n
as a sum of 2 squares of integers?

The Integers: 0, 1, −1, 2, −2, 3, −3, 4, −4, 5, −5, 6, −6, . . .

More generally: How many ways can we write a positive integer n
as a sum of k squares of integers?
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For instance, with n = 12 and k = 8, we have:

12 = 32 + 12 + 12 + 12 + 02 + 02 + 02 + 02

= 22 + 22 + 22 + 02 + 02 + 02 + 02 + 02

= 22 + 22 + 12 + 12 + 12 + 12 + 02 + 02.

The Integers: 0, 1, −1, 2, −2, 3, −3, 4, −4, 5, −5, 6, −6, . . .

Dr Lynne Walling (University of Bristol) Beauty of Pure Mathematics 50 / 1



The Integers: 0, 1, −1, 2, −2, 3, −3, 4, −4, 5, −5, 6, −6, . . .

12 = 32 + 12 + 12 + 12 + 02 + 02 + 02 + 02

When we consider changes of signs and rearrangements of the order of the
squares, the above solution gives us other solutions, such as:

12 = (−3)2 + 12 + 12 + 12 + 02 + 02 + 02 + 02

= 12 + 32 + 12 + 12 + 02 + 02 + 02 + 02.

Altogether, we find that there are 31, 808 (ordered) 8-tuples of integers so
that the sum of their squares gives us 12.
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Notation: For n a positive integer, we use r8(n) to denote the number of
ways we can realise n as the (ordered) sum of 8 squares of integers.

Formula: r8(n) = 16
∑
d |n

(−1)n−d d3

where the notation
∑
d |n

means the sum over all positive integers d that divide n.
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r8(n) = 16
∑
d |n

(−1)n−d d3

With n = 12, the positive divisors d of 12 are 1, 2, 3, 4, 6, 12, so∑
d |12

(−1)12−d d3 = −1 + 8− 27 + 64 + 216 + 1728 = 1988

thus r8(12) = 16 · 1988 = 31, 808.
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There is a similar, but slightly more complicated, formula for the number
of ways we can realise n as the (ordered) sum of 6 squares of integers:

r6(n) = 16
∑
d |n

χ(n/d) d2 − 4
∑
d |n

χ(d) d2

where

χ(d) =


1 if 4 divides d − 1,

−1 if 4 divides d − 3,

0 if d is even.
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r6(12) = 16
∑
d |12

χ(12/d) d2 − 4
∑
d |12

χ(d) d2

χ(d) =


1 if 4 divides d − 1,

−1 if 4 divides d − 3,

0 if d is even.

χ(1) = 1, χ(2) = 0, χ(3) = −1, χ(4) = 0, χ(6) = 0, χ(12) = 0.

r6(12) = 16(−42 + 122)− 4(12 − 32) = 2080.
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More formulas:

r2(n) = 4
∑
d |n

χ(d), r4(n) = 8(2 + (−1)n)
∑

d |n, d odd

d ,

r10(n) =
64

5

∑
d |n

χ(n/d)d4 +
4

5

∑
d |n

χ(d)d4 + noise

r12(n) = 8(−1)n−1
∑
d |n

(−1)d+n/dd5 + noise

and the noise gets (relatively) very small as n gets large.
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Why is it natural to consider sums of squares?

Capturing geometry: Given a point v = (x , y) in 2 dimensions, we write
→
v to denote the vector connecting the origin (0, 0) and (x , y). By the

PythagoreanTheorem, the (square of the) length of the vector
→
v is

x2 + y2.
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More generally, in m dimensions, we identify each point v with an ordered
m-tuple of numbers

(x1, x2, x3, . . . , xm),

relative to (perpendicular) coordinate axes. Then we write
→
v to refer to

the vector from the origin (0, 0, 0, . . . , 0) to v = (x1, x2, x3, . . . , xm),

and we define the dot product of
→
v with itself by

→
v · →v = x2

1 + x2
2 + x2

3 + · · ·+ x2
m.

By the generalised Pythagorean Theorem, this is the square of the length

of
→
v .
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Further, with v = (x1, x2, x3, . . . , xm) and w = (y1, y2, y3, . . . , ym), we
extend the definition of the dot product to give us

→
v · →w = x1y1 + x2y2 + x3y3 + · · ·+ xmym,

and we find that
→
v and

→
w are perpendicular exactly when

→
v · →w = 0.
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The integers: 0, 1, −1, 2, −2, 3, −3, 4, −4, 5, −5, 6, −6, . . .

Why is it natural to only consider sums of squares of integers?

Many systems are discrete, as in the digital world, so these systems can be
modeled using lattices, in which the vectors join the origin to points
(x1, x2, . . . , xm) where the coordinates x1, x2, x3 . . . , xm are integers.

Dr Lynne Walling (University of Bristol) Beauty of Pure Mathematics 60 / 1



From whence come these formulas for rk(n)?

For sums of 6, 8, 10, or 12 squares, these formulas come from the
theory of modular forms and theta series.
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With z a (complex) variable, k a positive integer, we set

θk(z) =
∑
n≥0

rk(n) zn.

Using the geometry captured by the dot product, we can prove that θk(z)
is a particular sort of function called a modular form of “weight” k/2.

How does this help?
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When k = 8, because θ8(z) is a modular form of weight 4, we have

θ8(z) =
∑
n≥0

r8(n) zn = aE1(z) + bE2(z) + cE3(z)

for some numbers a, b, c , where

E1(z) = (constant) +
∑
n>0

 ∑
d |n, d odd

d3

 zn,

E2(z) = (constant) +
∑
n>0

 ∑
d |n, n/d odd

d3

 zn,

E3(z) = (constant) +
∑
n>0

 ∑
d |n, d ,n/d odd

d3

 zn.
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By brute force, we can compute that

r8(1) = 16, r8(2) = 16 · 7, r8(4) = 16 · 71.

So, matching coefficients, the only way we can have

θ8(z) =
∑
n≥0

r8(n) zn = aE1(z) + bE2(z) + cE3(z)

is with

a = −240

7
, b =

128

7
, c = 32.
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From this we derive the formula

r8(n) = 16
∑
d |n

(−1)n−d d3

The process for finding the formula for r6(n) is similar, but finding the
formulas for r10(n) and r12(n) is a bit more sneaky...
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For sums of 10 squares: We perform a rather subtle averaging to get

θ̃10(z) = θ10(z) + noise =
∑
n≥0

r10(n)zn + noise

and because we can show that θ̃10(z) is a particularly nice modular form
(of weight 5), we have that

θ̃10(z) = aE1(z) + bE2(z)

for some numbers a and b where

E1(z) = (constant) +
∑
n>0

∑
d |n

χ(n/d) d4

 zn,

E2(z) = (constant) +
∑
n>0

∑
d |n

χ(d) d4

 zn.
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Then we use information about the behaviour of θ̃10(z), E1(z), E2(z) at
infinity to find the values of a and b, giving us

θ̃10(z) =
64

5
E1(z) +

4

5
E2(z)

and hence

θ10(z) =
64

5
E1(z) +

4

5
E2(z) + noise.
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My Research:

By changing how we define the dot product we change the geometry on
our mother lattice.

I consider all geometries (in which nonzero vectors have positive lengths).
Then I ask, how many vectors in the mother lattice have a given length?

More generally I ask, how many sublattices Λ of the mother lattice have a
given geometry?

Dr Lynne Walling (University of Bristol) Beauty of Pure Mathematics 68 / 1



Sometimes I can’t get formulas for these counts, but I can get relations
among these counts, such as:

(pk−1 + 1)(pk−2 + 1) · · · (pk−t + 1) r̃(Λ) =
∑

pΛ⊂Ω⊆ 1
p

Λ

p∗ r̃(Ω).

Here p is a prime (such as 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, . . .),
2k is the dimension of the mother lattice,
Λ is a lattice in t dimensions with a given geometry, r(Λ) is the number of
sublattices contained in the mother lattice with the geometry of Λ, and
r̃(Λ) is an average count so that r(Λ) = r̃(Λ) + noise.
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Sometimes being a mathematical researcher feels like being an
archaeologist, uncovering structure and patterns that are hidden below the
surface. It’s exciting and rewarding, and to me, these structures look like
art.

Thank you!
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