CONSTRUCTING SIMULTANEOUS HECKE EIGENFORMS

T. SHEMANSKE* ${ }^{*}$ S. TRENEER ${ }^{\dagger}$ and L. WALLING ${ }^{\ddagger}$
*Department of Mathematics
Dartmouth College, 6188 Kemeny Hall
Hanover NH 03755, USA
thomas.r.shemanske@dartmouth.edu
http://www.math.dartmouth.edu/~trs/
${ }^{\dagger}$ Department of Mathematics
Western Washington University
Bellingham WA 98225, USA
Stephanie.Treneer@wwu.edu
${ }^{\ddagger}$ Department of Mathematics
University Walk Bristol
BS8 1TW, UK
malhw@bristol.ac.uk
Received 6 February 2009
Accepted 21 July 2009

Abstract

It is well known that newforms of integral weight are simultaneous eigenforms for all the Hecke operators, and that the converse is not true. In this paper, we give a characterization of all simultaneous Hecke eigenforms associated to a given newform, and provide several applications. These include determining the number of linearly independent simultaneous eigenforms in a fixed space which correspond to a given newform, and characterizing several situations in which the full space of cusp forms is spanned by a basis consisting of such eigenforms. Part of our results can be seen as a generalization of results of Choie-Kohnen who considered diagonalization of "bad" Hecke operators on spaces with square-free level and trivial character. Of independent interest, but used herein, is a lower bound for the dimension of the space of newforms with arbitrary character.

Keywords: Simultaneous Hecke eigenforms; newforms.
Mathematics Subject Classification 2010: 11F25, 11F11

1. Introduction

For N a positive integer, ψ a Dirichlet character defined modulo N, and $k \geq 2$ an integer, we let $S_{k}(N, \psi)$ denote the space of cusp forms of weight k for $\Gamma_{0}(N)$ with character ψ, and $S_{k}^{+}(N, \psi)$ the subspace generated by the newforms. For a prime p, we let T_{p} (or T_{p}^{N}) denote the p th Hecke operator for forms on $S_{k}(N, \psi)$. We use
this notation for the primes which divide the level as well, so for example if $q \mid N$, our Hecke operator T_{q}^{N} is the same as the operator U_{q} in the notation of [3].

It is well known that $S_{k}(N, \psi)$ has a basis consisting of simultaneous eigenforms for the algebra of Hecke operators generated by $\left\{T_{p}^{N} \mid(p, N)=1\right\}$, and via multiplicity-one that $S_{k}^{+}(N, \psi)$ has a basis of simultaneous eigenforms for all the Hecke operators. Since $S_{k}^{+}(N, \psi)$ is generally a proper subspace of $S_{k}(N, \psi)$, it is a natural question to consider the extent to which the full space of cusp forms has a basis of simultaneous eigenforms for all the Hecke operators. Choie and Kohnen [2] considered the question of diagonalizing "bad" Hecke operators (that is, T_{q}^{N} where $q \mid N)$, and gave an upper bound for the number of primes q for which T_{q}^{N} could not be diagonalized on $S_{k}(N, \psi)$ where N is square-free, $q \mid N$ and ψ is trivial. An alternate perspective on that question is to determine conditions under which simultaneous Hecke eigenforms are newforms. One result along these lines is Li's [3] Theorem 9: if $f \in S_{k}(N, \psi)$ is a simultaneous eigenform for all Hecke operators T_{p}^{N}, and f is also an eigenform for the operator $K W_{N}$ (where K is the conjugation operator and W_{N} is the Fricke involution), then f is a newform.

In this paper, we address the question broadly, in particular giving a characterization of all simultaneous Hecke eigenforms associated to a given newform for arbitrary level and character. For a given newform $h \in S_{k}\left(N_{0}, \psi\right)$, we first determine (Theorem 2.1 and Proposition 2.2) the exact structure and the eigenvalues of each form $f \in S_{k}(N, \psi)$ which is Hecke-equivalent to h and also an eigenfunction for T_{q}^{N}. In Sec. 3, we address the diagonalizability of T_{q}^{N} on a given space of cusp forms, characterizing several situations in which the full space of cusp forms is spanned by a basis consisting of such eigenforms, as well as those situations when it is not (Theorems 3.3 and 3.6). To establish the later result we derive a lower bound (Theorem 6.1) for the dimension of the space of newforms, $S_{k}^{+}(N, \psi)$; dimension formulas for the space of newforms with trivial character are given by Martin [4]. In Theorem 3.4, we generalize the results of Choie-Kohnen producing an upper bound for the number of primes q for which T_{q}^{N} fails to diagonalize. Section 4 considers simultaneous Hecke eigenforms, and Sec. 5 has several examples delineating cases in which bases of simultaneous eigenforms do or do not exist.

2. Characterizing Hecke Eigenforms at Primes Dividing the Level

Throughout, we make the convention that all Dirichlet characters will be considered as defined modulo their conductor, so that when considering a modular form in $S_{k}(N, \psi), \psi(d) \neq 0$ iff d is relatively prime to the conductor. In particular, there may well be primes $q \mid N$ for which $\psi(q) \neq 0$. Of course for any prime $q \nmid N, \psi(q) \neq 0$. The convention is necessary to allow a uniform handling of all subspaces $S_{k}\left(N_{0}, \psi\right)$ where cond $(\psi)\left|N_{0}\right| N$.

Let $h \in S_{k}\left(N_{0}, \psi\right)$ be a newform (always assumed nonzero), N an integer divisible by N_{0}, and $f \in S_{k}(N, \psi)$ a nonzero simultaneous Hecke eigenform having
the same eigenvalues as h for all Hecke operators T_{ℓ}^{N}, ℓ a prime with $(\ell, N)=1$. The eigenvalues of h are given by $h \mid T_{\ell}^{N_{0}}=\lambda_{\ell} h$ for all primes ℓ, and we note that $T_{\ell}^{N}=T_{\ell}^{N_{0}}$ when $(\ell, N)=1$. Moreover suppose that f is also a nonzero eigenform for T_{q}^{N} where q is a fixed prime dividing N, and put $f \mid T_{q}^{N}=\kappa_{q} f$. It is well known $([1,3])$, that f has the form

$$
\left.f=\sum_{d \left\lvert\, \frac{N}{N_{0}}\right.} \alpha_{d} h \right\rvert\, B_{d}
$$

where B_{d} (also sometimes denoted V_{d}) is the shift operator of [3], and the α_{d} are complex scalars.

Theorem 2.1. Let the notation be as above. Then assuming $q \mid N$ and $d \mid N / N_{0}$, we have:
(1) If $q \mid N_{0}$ then $\alpha_{d}=0$ if $q^{2} \mid d$.
(a) If $q \nmid N / N_{0}$, then $\kappa_{q}=\lambda_{q}$, and (vacuously) $\alpha_{d}=0$ for $q \mid d$.
(b) If $q \mid N / N_{0}$, then $\alpha_{d}=\left(\kappa_{q}-\lambda_{q}\right) \alpha_{d / q}$ if $q \| d$. If $\kappa_{q} \neq 0$, then $\kappa_{q}=\lambda_{q}$, and $\lambda_{q}=0$ implies $\kappa_{q}=0$.
(2) If $q \nmid N_{0}$, then $\alpha_{d}=0$ if $q^{3} \mid d$.
(a) If $\kappa_{q} \neq 0$, then $\alpha_{d}=0$ if $q^{2} \mid d, \alpha_{d}=\left(\kappa_{q}-\lambda_{q}\right) \alpha_{d / q}$ if $q \| d$, and $\kappa_{q}=$ $\frac{1}{2}\left(\lambda_{q} \pm \sqrt{\lambda_{q}^{2}-4 \psi(q) q^{k-1}}\right) \neq \lambda_{q}$.
(b) If $\kappa_{q}=0$, then $q^{2} \mid N / N_{0}, \alpha_{d}=\psi(q) q^{k-1} \alpha_{d / q^{2}}$ if $q^{2} \| d$, and $\alpha_{d}=-\lambda_{q} \alpha_{d / q}$ if $q \| d$.

Proof. As above, we assume that $\left.f=\sum_{d \left\lvert\, \frac{N}{N_{0}}\right.} \alpha_{d} h \right\rvert\, B_{d}$. We separate the argument by cases.

- Case: $q \mid N_{0}, q \nmid N / N_{0}$.

Since $q \mid N_{0}, T_{q}^{N}=T_{q}^{d N_{0}}$ for any d. Also note that since $q \nmid N / N_{0}$, any divisor $d \mid N / N_{0}$ satisfies $(d, q)=1$, so that the shift and Hecke operators commute: $B_{d}\left|T_{q}^{d N_{0}}=T_{q}^{N_{0}}\right| B_{d}$. Thus

$$
\begin{aligned}
\kappa_{q} f & \left.=f\left|T_{q}^{N}=\sum_{d \left\lvert\, \frac{N}{N_{0}}\right.} \alpha_{d} h\right| B_{d}\left|T_{q}^{d N_{0}}=\sum_{d \left\lvert\, \frac{N}{N_{0}}\right.} \alpha_{d} h\right| T_{q}^{N_{0}} \right\rvert\, B_{d} \\
& \left.=\lambda_{q} \sum_{d \left\lvert\, \frac{N}{N_{0}}\right.} \alpha_{d} h \right\rvert\, B_{d}=\lambda_{q} f,
\end{aligned}
$$

and so we have $\kappa_{q}=\lambda_{q}$. Since $q \nmid N / N_{0}$, it is vacuously true that $\alpha_{d}=0$ for $q \mid d$.

- Case: $q\left|N_{0}, q\right| N / N_{0}$.

As in the previous case, we note that $q \mid N_{0}$ implies $T_{q}^{N}=T_{q}^{d N_{0}}$ for any d, and for any divisor $d \mid N / N_{0}$ satisfying $(d, q)=1$, the shift and Hecke operators commute: $B_{d}\left|T_{q}^{d N_{0}}=T_{q}^{N_{0}}\right| B_{d}$. Finally we note that $B_{q} T_{q}^{N}=1$. With these observations we have

$$
\begin{aligned}
\kappa_{q} f=f \mid T_{q}^{N} & =\sum_{d \mid N / N_{0}} \alpha_{d} h\left|B_{d}\right| T_{q}^{d N_{0}} \\
& =\sum_{d, q \nmid d} \alpha_{d} h\left|T_{q}^{N_{0}}\right| B_{d}+\sum_{d, q \mid d} \alpha_{d} h \mid B_{d / q} \\
& =\sum_{d, q \nmid d}\left(\lambda_{q} \alpha_{d}+\alpha_{d q}\right) h\left|B_{d}+\sum_{d, q^{2} \mid d} \alpha_{d} h\right| B_{d / q} .
\end{aligned}
$$

We now show the second summand does not appear.
Lemma. $\alpha_{d}=0$ if $q^{2} \mid d$.
Proof. If $\kappa_{q}=0$, then the linear independence of $\left\{h \mid B_{d}\right\}$ yields the result. If $\kappa_{q} \neq 0$, let $M=\max _{d \mid N / N_{0}}\left\{\operatorname{ord}_{q}(d) \mid \alpha_{d} \neq 0\right\}$. Then we have

$$
\begin{aligned}
\kappa_{q} f & =\sum_{d \mid N / N_{0}} \kappa_{q} \alpha_{d} h\left|B_{d}=\sum_{i=0}^{M} \sum_{d\left|N / N_{0}, q^{i}\right| \mid d} \kappa_{q} \alpha_{d} h\right| B_{d} \\
& =\sum_{d, q \nmid d}\left(\lambda_{q} \alpha_{d}+\alpha_{d q}\right) h\left|B_{d}+\sum_{d, q^{2} \mid d} \alpha_{d} h\right| B_{d / q}
\end{aligned}
$$

There is no issue if $M<2$, so we assume $M \geq 2$. In that case for a divisor d with $\operatorname{ord}_{q}(d)=M$, we see that a term with $h \mid B_{d}$ occurs as a summand in $\kappa_{q} f$, but not in $\sum_{d, q^{2} \mid d} \alpha_{d} h \mid B_{d / q}$, so $\alpha_{d}=0$, a contradiction.

Applying this observation, the equation above becomes:

$$
\begin{equation*}
\sum_{d \mid N / N_{0}, q^{2} \nmid d} \kappa_{q} \alpha_{d} h\left|B_{d}=\kappa_{q} f=f\right| T_{q}^{N}=\sum_{d \mid N / N_{0}, q \nmid d}\left(\lambda_{q} \alpha_{d}+\alpha_{d q}\right) h \mid B_{d} . \tag{2.1}
\end{equation*}
$$

By the linear independence of the set $\left\{h \mid B_{d}\right\}$, we deduce from Eq. (2.1) that $\kappa_{q} \alpha_{d}=0$ when $q \| d$. If $\kappa_{q}=0$, then Eq. (2.1) is zero, hence the coefficients of $h \mid B_{d}$ are all zero and we conclude

$$
\alpha_{d}=-\lambda_{q} \alpha_{d / q}=\left(\kappa_{q}-\lambda_{q}\right) \alpha_{d / q} \quad \text { if } q \| d
$$

On the other hand, if $\kappa_{q} \neq 0$, then $\alpha_{d}=0$ when $q \| d$, so Eq. (2.1) becomes

$$
\kappa_{q} f=\sum_{d \mid N / N_{0}, q \nmid d} \kappa_{q} \alpha_{d} h\left|B_{d}=\sum_{d \mid N / N_{0}, q \nmid d} \lambda_{q} \alpha_{d} h\right| B_{d}=\lambda_{q} f,
$$

and hence $\kappa_{q}=\lambda_{q}$. It follows that $\lambda_{q}=0$ implies $\kappa_{q}=0$, and $0=\alpha_{d}=\left(\kappa_{q}-\lambda_{q}\right) \alpha_{d / q}$ if $q \| d$.

- Case: $q \nmid N_{0}, q \mid N / N_{0}$.

In this case $T_{q}^{N}=T_{q}^{N_{0}}-\psi(q) q^{k-1} B_{q}$, and we have

$$
\begin{align*}
\kappa_{q} f= & \sum_{d \mid N / N_{0}} \kappa_{q} \alpha_{d} h\left|B_{d}=\sum_{d \mid N / N_{0}} \alpha_{d} h\right| B_{d} \mid T_{q}^{N} \\
= & \sum_{d, q \nmid d} \alpha_{d} h\left|T_{q}^{N}\right| B_{d}+\sum_{d, q \mid d} \alpha_{d} h \mid B_{d / q} \\
= & \sum_{d, q \nmid d} \alpha_{d} h\left|\left(T_{q}^{N_{0}}-\psi(q) q^{k-1} B_{q}\right)\right| B_{d}+\sum_{d, q \mid d} \alpha_{d} h \mid B_{d / q} \\
= & \sum_{d, q \nmid d}\left(\lambda_{q} \alpha_{d}+\alpha_{d q}\right) h\left|B_{d}+\sum_{d, q \| d}\left(\alpha_{d q}-\psi(q) q^{k-1} \alpha_{d / q}\right) h\right| B_{d} \\
& +\sum_{d, q^{3} \mid d} \alpha_{d} h \mid B_{d / q} . \tag{2.2}
\end{align*}
$$

To simplify this expression, we show
Lemma. $\alpha_{d}=0$ if $q^{3} \mid d$.
Proof. This is completely analogous to the previous lemma. Let $M=$ $\max _{d \mid N / N_{0}}\left\{\operatorname{ord}_{q}(d) \mid \alpha_{d} \neq 0\right\}$. There is no issue if $M<3$, so assume $M \geq 3$. In that case for a divisor d with $\operatorname{ord}_{q}(d)=M$, we see that a term with $h \mid B_{d}$ occurs in $\kappa_{q} f$, but not $\sum_{d, q^{3} \mid d} \alpha_{d} h \mid B_{d / q}$, so $\alpha_{d}=0$, a contradiction.

To go further, we first suppose that $\kappa_{q} \neq 0$. If $q \| N / N_{0}$, we have $\alpha_{d}=0$ for $q^{2} \mid d$ by convention. Otherwise, let $d \mid N / N_{0}$ with $q^{2} \mid d$. The coefficient of $h \mid B_{d}$ in $\kappa_{q} f$ is $\kappa_{q} \alpha_{d}$ while it is $\alpha_{d q}$ in $\sum_{d, q^{3} \mid d} \alpha_{d} h \mid B_{d / q}$. By the lemma, $\alpha_{q d}=0$, so we infer $\alpha_{d}=0$.

Applying these observations to the above expression for $\kappa_{q} f$ yields

$$
\begin{align*}
\kappa_{q} f= & \sum_{d \mid N / N_{0}} \kappa_{q} \alpha_{d} h\left|B_{d}=\sum_{d \mid N / N_{0}, q \nmid d}\left(\lambda_{q} \alpha_{d}+\alpha_{d q}\right) h\right| B_{d} \\
& +\sum_{d \mid N / N_{0}, q \nmid d}-\psi(q) q^{k-1} \alpha_{d} h \mid B_{d q} . \tag{2.3}
\end{align*}
$$

Comparing coefficients of $h \mid B_{d}$ and $h \mid B_{d q}$ we obtain for $q \| d$:

$$
\begin{aligned}
\alpha_{d} & =\left(\kappa_{q}-\lambda_{q}\right) \alpha_{d / q}, \quad \text { and } \\
\kappa_{q} \alpha_{d} & =-\psi(q) q^{k-1} \alpha_{d / q} .
\end{aligned}
$$

Substituting the expression for α_{d} from the first equation into the second yields the quadratic $\left(\kappa_{q}^{2}-\lambda_{q} \kappa_{q}+\psi(q) q^{k-1}\right) \alpha_{d / q}=0$. Note that $\alpha_{d / q}=0$ for all d with
$q \| d$ would imply $\alpha_{d}=0$ for all $d \mid N / N_{0}$, hence $f=0$. Thus

$$
\kappa_{q}=\frac{1}{2}\left(\lambda_{q} \pm \sqrt{\lambda_{q}^{2}-4 \psi(q) q^{k-1}}\right),
$$

and we note that $\kappa_{q} \neq \lambda_{q}$ since $\psi(q) \neq 0$.
Finally, we assume $\kappa_{q}=0$. Then all the coefficients of the $h \mid B_{d}$ in Eq. (2.2) are zero, yielding $\alpha_{d} \lambda_{q}+\alpha_{d q}=0$ for $q \nmid d$, and $\alpha_{d q}=\psi(q) q^{k-1} \alpha_{d / q}$ for $q \| d$. Note that if $q \| N / N_{0}$, by convention we would have $\alpha_{d q}=0$ in the last equation, leading to $\alpha_{d / q}=0$ and hence $\alpha_{d}=0$ implying $f=0$. Thus $\kappa_{q}=0$ forces $q^{2} \mid N / N_{0}$, which completes the proof.

As above, let $h \in S_{k}\left(N_{0}, \psi\right)$ be a newform, and N an integer divisible by N_{0}. Denote the class of h by

$$
[h]=\left\{f \in S_{k}(N, \psi): f, h \text { have the same eigenvalues for all } T_{p}^{N}, p \nmid N\right\} .
$$

By the theory of newforms, we know

$$
[h]=\bigoplus_{d \mid N / N_{0}}\left\langle h \mid B_{d}\right\rangle,
$$

that is, $f \in[h]$ if and only if $f=\sum_{d \mid N / N_{0}} \alpha_{d} h \mid B_{d}$ for scalars α_{d}. It is clear from the general theory of newforms that any such f is a simultaneous eigenform for all Hecke operators T_{p}^{N} for primes $p \nmid N$. In Theorem 2.1, we have given necessary conditions on the coefficients α_{d} for f to be an eigenform for T_{q}^{N} for a prime $q \mid N$ and eigenvalue κ_{q}. However, the necessary conditions are also sufficient.

Proposition 2.2. Let $h \in S_{k}\left(N_{0}, \psi\right)$ be a newform, N an integer divisible by N_{0}, and q a prime dividing N. Set $h \mid T_{q}^{N_{0}}=\lambda_{q} h$, and fix κ_{q} and constants α_{d} for $d \mid N / N_{0}$ according to the following scheme (any unconstrained constants are arbitrary):

- $q \mid N_{0}$ and $q \nmid N / N_{0}$: Let $\kappa_{q}=\lambda_{q}$.
- $q \mid N_{0}$ and $q \mid N / N_{0}$: Let $\kappa_{q}=\lambda_{q}$ or 0 , and put $\alpha_{d}=0$ if $q^{2} \mid d$, and $\alpha_{d}=$ $\left(\kappa_{q}-\lambda_{q}\right) \alpha_{d / q}$ if $q \| d$.
- $q \nmid N_{0}:$ Set $\alpha_{d}=0$ if $q^{3} \mid d$.
(i) Let $\kappa_{q}=\frac{1}{2}\left(\lambda_{q} \pm \sqrt{\lambda_{q}^{2}-4 \psi(q) q^{k-1}}\right)$, and note $\kappa_{q} \neq 0, \lambda_{q}$. For $q^{2} \mid d$ put $\alpha_{d}=$ $0 ;$ for $q \| d$, put $\alpha_{d}=\left(\kappa_{q}-\lambda_{q}\right) \alpha_{d / q}$.
(ii) Moreover, if $q^{2} \mid N$, we can also let $\kappa_{q}=0$, and for $q^{2} \| d$, put $\alpha_{d}=$ $\psi(q) q^{k-1} \alpha_{d / q^{2}}$ and for $q \| d$, put $\alpha_{d}=-\lambda_{q} \alpha_{d / q}=\left(\kappa_{q}-\lambda_{q}\right) \alpha_{d / q}$.

Then $f=\sum_{d \mid N / N_{0}} \alpha_{d} h \mid B_{d}$ is an eigenform for T_{q}^{N} with eigenvalue κ_{q}.

Proof. The proposition follows immediately from the computations already present in Theorem 2.1.

3. Comparison to Choie-Kohnen

As in the previous section, let $h \in S_{k}\left(N_{0}, \psi\right)$ be a newform, and N an integer divisible by N_{0}, and denote the class of h by [h]. From [1, 3], we know that if $S_{k}^{+}\left(N_{0}, \psi\right)$ denotes the space generated by newforms of level N_{0},

$$
\begin{aligned}
S_{k}(N, \psi) & =\bigoplus_{\operatorname{cond}(\psi)\left|N_{0}\right| N} \bigoplus_{d \mid N / N_{0}}\left(S_{k}^{+}\left(N_{0}, \psi\right) \mid B_{d}\right) \\
& =\bigoplus_{\operatorname{cond}(\psi)\left|N_{0}\right| N} \bigoplus_{h}[h]
\end{aligned}
$$

where the last sum is over normalized newforms $h \in S_{k}^{+}\left(N_{0}, \psi\right)$.
Lemma 3.1. Let q be a prime dividing N. Then T_{q}^{N} is diagonalizable on $S_{k}(N, \psi)$ if and only if there is a basis of $S_{k}(N, \psi)$ consisting of simultaneous eigenforms for T_{q}^{N} as well as for all T_{p}^{N}, p a prime with $p \nmid N$. Moreover, for each $N_{0} \mid N$ and each normalized newform $h \in S_{k}\left(N_{0}, \psi\right), T_{q}^{N}$ is diagonalizable on $S_{k}(N, \psi)$ if and only if it is diagonalizable on each class [h].

Proof. For both statements, only the forward direction requires proof. If T_{q}^{N} is diagonalizable on $S_{k}(N, \psi)$, then $S_{k}(N, \psi)=\bigoplus_{i} E_{i}$ where the E_{i} are the eigenspaces corresponding to the distinct eigenvalues of T_{q}^{N}. For a prime $p \nmid N$, the Hecke operators T_{p}^{N} and T_{q}^{N} commute so each eigenspace is invariant under all the $T_{p}^{N}, p \nmid N$. Since Hecke theory tells us that $S_{k}(N, \psi)$ admits a basis of simultaneous eigenforms for all the T_{p}^{N}, and each E_{i} is invariant under this collection of operators, each E_{i} also admits such a basis, \mathcal{B}_{i}, every element of which is also (by definition) an eigenform for T_{q}^{N}.

Now consider the second statement. Every element of the basis \mathcal{B}_{i} belongs to a unique class $[h]$ of some newform $h \in S_{k}\left(N_{0}, \psi\right)$ with $N_{0} \mid N$. We collect the elements of the \mathcal{B}_{i} which belong to a given class [h]. Since $S_{k}(N, \psi)$ is the direct sum of such classes and all the \mathcal{B}_{i} taken together span $S_{k}(N, \psi)$, we see that T_{q}^{N} is diagonalizable on each class $[h]$.

Below we reverse the process of the lemma, starting with the class of a newform [h], and investigate how to decompose the class [h] into subspaces, extracting the various eigenspaces of T_{q}^{N} for $q \mid N$, and give conditions under which T_{q}^{N} can be diagonalized on $[h]$. We then use these results to generalize those of Choie and Kohnen [2]. We also apply these results in Sec. 4 to determine when there exist simultaneous eigenforms for all the Hecke operators, and determine the number of such eigenforms which are linearly independent.

For a prime $q \mid N$ and $h \in S_{k}\left(N_{0}, \psi\right)$ a newform, Theorem 2.1 implies that $[h]$ contains at most three eigenspaces for T_{q}^{N}. With $f \mid T_{q}^{N}=\kappa_{q} f$, we have

$$
\kappa_{q} \in \begin{cases}\left\{\lambda_{q}\right\} & \text { when } q \nmid N / N_{0}, \tag{3.1}\\ \left\{0, \lambda_{q}\right\} & \text { when } q\left|N / N_{0}, \quad q\right| N_{0}, \\ \left\{\frac{1}{2}\left(\lambda_{q} \pm \sqrt{\lambda_{q}^{2}-4 \psi(q) q^{k-1}}\right)\right\} & \text { when } q \| N / N_{0}, \\ q \nmid N_{0}, \quad \text { and } \\ \left\{0, \frac{1}{2}\left(\lambda_{q} \pm \sqrt{\lambda_{q}^{2}-4 \psi(q) q^{k-1}}\right)\right\} & \text { when } q^{2} \mid N / N_{0}, \\ q \nmid N_{0} .\end{cases}
$$

When $q \nmid N / N_{0}$, we have observed (Proposition 2.2) that every element of $[h]$ is an eigenform for T_{q}^{N} having eigenvalue λ_{q}, so T_{q}^{N} diagonalizes on $[h]$. Thus we restrict our attention to the case where $q \mid N / N_{0}$. Write $N / N_{0}=q^{\mu} M_{0}$, with $q \nmid M_{0}$. For $d_{0} \mid M_{0}$, put $U_{d_{0}}=\bigoplus_{i=0}^{\mu}\left\langle h \mid B_{d_{0} q^{i}}\right\rangle$ where $\left\langle h \mid B_{d}\right\rangle$ denotes the \mathbb{C}-linear span of $h \mid B_{d}$. Using that $[h]=\bigoplus_{d_{0} \mid M_{0}} U_{d_{0}}$, Theorem 2.1 shows that every eigenform $f \in[h]$ with $f \mid T_{q}^{n}=\kappa_{q} f$ has the form $f=\sum_{d_{0} \mid M_{0}} f_{d_{0}}$ with $f_{d_{0}}=\sum_{i=0}^{\mu} \alpha_{q^{i} d_{0}} h \mid B_{q^{i} d_{0}} \in U_{d_{0}}$, and Proposition 2.2 shows that each $f_{d_{0}}$ also satisfies $f_{d_{0}} \mid T_{q}^{N}=\kappa_{q} f_{d_{0}}$. Thus T_{q}^{N} diagonalizes on $[h]$ if and only if it diagonalizes on each $U_{d_{0}}$. Further, Theorem 2.1 and Proposition 2.2 also show that each subspace $U_{d_{0}}$ contains precisely m linearly independent eigenforms for T_{q}^{N} where m is the number of distinct eigenvalues κ_{q} given in Eq. (3.1). Since the dimension of $U_{d_{0}}=\mu+1, T_{q}^{N}$ diagonalizes on [h] if and only if $m=\mu+1$. Note that since $m \leq 3, T_{q}^{N}$ diagonalizes on [h] only if $\mu \leq 2$. Moreover when $\mu=2$ and $q \mid N_{0}$, we see from above that there are at most $m=2<3=\mu+1$ distinct eigenvalues, so once again T_{q}^{N} cannot diagonalize in this case.

We quantify the above observations a bit further. Still assuming $q \mid N / N_{0}$, if $q \mid N_{0}$, there are two distinct eigenvalues precisely when $\lambda_{q} \neq 0$; by [3, Theorem 3] this occurs if and only if $q \| N_{0}$ or $\operatorname{ord}_{q}(\operatorname{cond}(\psi))=\operatorname{ord}_{q}\left(N_{0}\right)$. If $q \nmid N_{0}$, there are two independent eigenforms for T_{q}^{N} (with nonzero eigenvalues κ_{q}) precisely when $\lambda_{q}^{2} \neq 4 \psi(q) q^{k-1}$, that is when λ_{q} fails to achieve the Deligne bound. There is an additional independent eigenform with eigenvalue $\kappa_{q}=0$ if and only if $\mu \geq 2$. For later convenience we denote by $\mathfrak{Q}_{N_{0}, h}$ the set of primes $q \mid N / N_{0}$ (just characterized) yielding a maximal number of distinct eigenvalues κ_{q}, and tabulate their number.

$\mu=\operatorname{ord}_{q}\left(N / N_{0}\right) \geq 1 ; q \in \mathfrak{Q}_{N_{0}, h}$ provided:		Number of distinct eigenvalues κ_{q}	
$q \mid N_{0}$	$\operatorname{ord}_{q}(\operatorname{cond}(\psi))=\operatorname{ord}_{q}\left(N_{0}\right)$ or $q \\| N_{0}$	2	
$q \nmid N_{0}$	$\lambda_{q}^{2} \neq 4 \psi(q) q^{k-1}$	$\min (3, \mu+1)$	

$\mu=\operatorname{ord}_{q}\left(N / N_{0}\right) \geq 1 ; q \notin \mathfrak{Q}_{N_{0}, h}$ provided:		Number of distinct eigenvalues κ_{q}
$q \mid N_{0}$	$q^{2} \mid N_{0}$ and $q \mid N_{0} / \operatorname{cond}(\psi)$	1
$q \nmid N_{0}$	$\lambda_{q}^{2}=4 \psi(q) q^{k-1}$	$\min (2, \mu)$

With this in hand, we now generalize the first part of Choie and Kohnen's theorem [2] characterizing when "bad" Hecke operators can be diagonalized.

Theorem 3.2. For a prime $q \mid N$, the Hecke operator T_{q}^{N} is diagonalizable on $S_{k}(N, \psi)$ only if $S_{k}(N, \psi)$ contains no newform of level N_{0} with $q^{3} \mid N / N_{0}$, or with $q^{2} \mid N / N_{0}$ and $q \mid N_{0}$. Assuming this condition, T_{q}^{N} is diagonalizable if and only if for each N_{0} with $\operatorname{cond}(\psi)\left|N_{0}\right| N$ and each newform $h \in S_{k}\left(N_{0}, \psi\right)$ with $h \mid T_{q}^{N_{0}}=\lambda_{q} h$, either $q \nmid N / N_{0}$ or $q \in \mathfrak{Q}_{N_{0}, h}$.

Proof. We know that

$$
S_{k}(N, \psi)=\bigoplus_{\operatorname{cond}(\psi)\left|N_{0}\right| N} \bigoplus_{h}[h]
$$

where the sum is over normalized newforms $h \in S_{k}\left(N_{0}, \psi\right)$. By Lemma 3.1, it suffices to determine when T_{q}^{N} is diagonalizable on each class [h]. Given a newform $h \in S_{k}\left(N_{0}, \psi\right)$, we have seen from the discussion preceding the theorem that T_{q}^{N} is diagonalizable on [h] only if $\mu=\operatorname{ord}_{q}\left(N / N_{0}\right) \leq 2$ and if $\mu=2, q \nmid N_{0}$. Thus the given conditions are necessary. Moreover, if $q \nmid N / N_{0}$, every element of $[h]$ is an eigenform for T_{q}^{N}, so we restrict our attention to the case $q \mid N / N_{0}$.

Consider a newform $h \in S_{k}\left(N_{0}, \psi\right)$. As before, write $N / N_{0}=q^{\mu} M_{0}$, with $q \nmid M_{0}$, and recall we are assuming $\mu=1$, or $\mu=2$ and $q \nmid N_{0}$. For $d_{0} \mid M_{0}$, put $U_{d_{0}}=\bigoplus_{i=0}^{\mu}\left\langle h \mid B_{d_{0} q^{i}}\right\rangle$. We have observed above since $[h]=\bigoplus_{d_{0} \mid M_{0}} U_{d_{0}}$, that T_{q}^{N} diagonalizes on $[h]$ if and only if it diagonalizes on each $U_{d_{0}}$, and that T_{q}^{N} diagonalizes on $U_{d_{0}}$ if and only if $\operatorname{dim} U_{d_{0}}$ is equal to the number of distinct eigenvalues κ_{q}. From the tables above it is clear that the dimension $(\mu+1)$ equals the number of distinct eigenvalues if and only if $q \in \mathfrak{Q}_{N_{0}, h}$.

We summarize the above results in a more compact formulation.
Theorem 3.3. Let q be prime, and let ψ be a Dirichlet character with conductor $\mathfrak{f}=q^{\nu} M_{0}$, with $\nu \geq 0$ and $q \nmid M_{0}$. Let M be an integer with $M_{0} \mid M$ and $q \nmid M$. If $s \leq 2$, then T_{q} is diagonalizable on $S_{k}\left(q^{\nu+s} M, \psi\right)$ if and only if one of the following is true:
(1) $s=0$,
(2) $s=1$ and $\nu \geq 1$,
(3) $s>0, \nu=0$, and $S_{k}\left(q^{\nu+s} M, \psi\right)$ contains no newform h of level N_{0} with $q \nmid N_{0}$, $T_{q}^{N_{0}} h=\lambda_{q} h$, and $\lambda_{q}^{2}=4 \psi(q) q^{k-1}$, or
(4) $s=2, \nu \geq 1$, and $S_{k}\left(q^{\nu+s} M, \psi\right)$ contains no newform of level N_{0} with $\operatorname{ord}_{q}\left(N_{0}\right)=\nu$ or $\nu+1$.

Proof. Set $N=q^{\nu+s} M$. We first interpret Theorem 3.2 in this setting. Since $s \leq 2$, $q^{3} \nmid N / \mathfrak{f}$, so $S_{k}(N, \psi)$ contains no newform of level N_{0} with $q^{3} \mid N / N_{0}$. The only case in which $\mathfrak{f}\left|N_{0}\right| N$ with $q \mid N_{0}$ and $q^{2} \mid N / N_{0}$ occurs when $s=2$ and $\operatorname{ord}_{q}\left(N_{0}\right)=$ $\nu \geq 1$. In this case, if $S_{k}(N, \psi)$ contains a newform of level N_{0} then T_{q}^{N} is not
diagonalizable. Otherwise, T_{q}^{N} is diagonalizable if and only if for each $\mathfrak{f}\left|N_{0}\right| N$ and each newform $h \in S_{k}\left(N_{0}, \psi\right)$, either $q \nmid N / N_{0}$ or $q \in \mathfrak{Q}_{N_{0}, h}$.

First suppose that one of the conditions (1)-(4) hold. If (1) holds, then $q \nmid N / \mathfrak{f}$, so $q \nmid N / N_{0}$ for all $\mathfrak{f}\left|N_{0}\right| N$, hence T_{q}^{N} is diagonalizable. If (2) holds, then $\operatorname{ord}_{q}\left(N_{0}\right)=$ ν or $\nu+1$ for each $\mathfrak{f}\left|N_{0}\right| N$. In the first case, $\operatorname{ord}_{q}\left(N_{0}\right)=\operatorname{ord}_{q}(\mathfrak{f})$ so $q \in \mathfrak{Q}_{N_{0}, h}$ for each h with such level. In the second case, $q \nmid N / N_{0}$. Therefore T_{q}^{N} is diagonalizable. Now suppose that (3) holds. Then $q \in \mathfrak{Q}_{N_{0}, h}$ for each newform h of level N_{0} with $q \nmid N_{0}$. If $\operatorname{ord}_{q}\left(N_{0}\right)=s$ then $q \nmid N / N_{0}$. Finally if $s=2$ and $q \| N_{0}$, then $q \in \mathfrak{Q}_{N_{0}, h}$ for each h with such level. Hence T_{q}^{N} is diagonalizable. Lastly, suppose that (4) holds. Then each newform h contained in $S_{k}(N, \psi)$ has level N_{0} with $\operatorname{ord}_{q}\left(N_{0}\right)=\nu+2$, so that $q \nmid N / N_{0}$. Therefore T_{q}^{N} is diagonalizable.

Now suppose that none of (1) through (4) is true. Then since (1) is false, $s=$ 1 or 2 . If $s=1$, then since (2) is false, $\nu=0$. Then since (3) is false, $S_{k}(N, \psi)$ must contain some newform h of level N_{0} with $q \nmid N_{0}$ and $T_{q}^{N_{0}} h=\lambda_{q} h$ with $\lambda_{q}^{2}=$ $4 \psi(q) q^{k-1}$. Then $q \notin \mathfrak{Q}_{N_{0}, h}$, so T_{q}^{N} is not diagonalizable. Now suppose that $s=2$. If $\nu=0$ then by the previous argument, T_{q}^{N} is not diagonalizable. If $\nu \geq 1$ then since (4) is false, $S_{k}(N, \psi)$ must contain some newform h of level N_{0} with either $\operatorname{ord}_{q}\left(N_{0}\right)=\nu$ or $\nu+1$. If $\operatorname{ord}_{q}\left(N_{0}\right)=\nu$, then $q \mid N_{0}$ and $q^{2} \mid N / N_{0}$ so T_{q}^{N} is not diagonalizable. If $\operatorname{ord}_{q}\left(N_{0}\right)=\nu+1$ then $\mathfrak{f} \mid N_{0} / q$ and $q^{2} \mid N_{0}$, so $q \notin \mathfrak{Q}_{N_{0}, h}$, and hence T_{q}^{N} is not diagonalizable.

In the next result, we extend the work of Choie and Kohnen [2] (where they considered square-free level and trivial character) by showing that if k is even, $s=1$ or 2 and $\nu=0$, then Theorem $3.3(3)$ holds for all but finitely many primes q.

Theorem 3.4. Let k be an even integer, and let ψ be a Dirichlet character whose conductor \mathfrak{f} divides M. Then T_{q} is diagonalizable on both $S_{k}(q M, \psi)$ and $S_{k}\left(q^{2} M, \psi\right)$ for all primes $q \nmid M$ except for a finite number $r \leq C(M, k, \psi)$ of exceptions, where

$$
C(M, k, \psi):=\sum_{\operatorname{cond}(\psi)\left|M_{0}\right| M} \operatorname{dim} S_{k}^{+}\left(M_{0}, \psi\right)\left(1+\sum_{\mu \geq 1}\left[\frac{g_{M_{0}, k}}{2^{\mu}}\right]\right)
$$

and

$$
g_{M_{0}, k}=\sum_{\chi \bmod M_{0}} \operatorname{dim} S_{k}^{+}\left(M_{0}, \chi\right)
$$

Proof. By Theorem 3.3, the only way that a given T_{q} can fail to diagonalize on either $S_{k}(q M, \psi)$ or $S_{k}\left(q^{2} M, \psi\right)$ is if there is a newform $h \in S_{k}\left(M_{0}, \psi\right)$ for some M_{0} with $\mathfrak{f}\left|M_{0}\right| M$ which has $T_{q}^{M_{0}} h=\lambda_{q} h$ with $\lambda_{q}^{2}=4 \psi(q) q^{k-1}$. Fix an M_{0} with $\mathfrak{f}\left|M_{0}\right| M$ and a newform $h \in S_{k}\left(M_{0}, \psi\right)$ with eigenvalues λ_{n}. Let K_{h} be the field obtained by adjoining all the λ_{n} to \mathbb{Q}. It is known ([6, Proposition 2.8]) that K_{h} is a number field and contains the N th roots of unity which arise as values of ψ. Let ζ be a primitive $2 N$ th root of unity, so that $\mathbb{Q}\left(\zeta^{2}\right) \subset K_{h}$ and hence $K_{h}(\zeta) / K_{h}$ is at most a quadratic extension. Since k is even, $\sqrt{q} \in K_{h}(\zeta)$ for each prime $q \nmid M$ such that
$\lambda_{q}^{2}=4 \psi(q) q^{k-1}$. We call such a q an exceptional prime for h. Now if $p_{1}, p_{2}, \ldots, p_{s}$ are different primes, the degree of $\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots, \sqrt{p_{s}}\right) / \mathbb{Q}$ is 2^{s}. Since

$$
\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{q}: q \text { an exceptional prime for } h) \subseteq K_{h}(\zeta)
$$

and K_{h} is a finite extension of \mathbb{Q}, there must be a finite number r_{h} of exceptional primes for h. In particular, $r_{h} \leq \operatorname{ord}_{2}\left(\left[K_{h}: \mathbb{Q}\right]\right)+1$.

The group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on normalized eigenforms in $S_{k}\left(M_{0}, \psi\right)$ by sending $f=\sum a(n) q^{n} \in S_{k}\left(M_{0}, \psi\right)$ to $f^{\sigma}=\sum a(n)^{\sigma} q^{n} \in S_{k}\left(M_{0}, \psi^{\sigma}\right)$, for each $\sigma \in$ $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})\left([6\right.$, Proposition 2.6] $)$. Let $K_{M_{0}, k}=\prod K_{h}$ be the composite field where the product runs over all characters χ modulo M_{0} and all newforms $h \in S_{k}\left(M_{0}, \chi\right)$. Since each automorphism of the Galois closure of $K_{M_{0}, k} / \mathbb{Q}$ permutes these newforms, it can be considered as a subgroup of $S_{g_{M_{0}, k}}$, the symmetric group on $g_{M_{0}, k}$ elements, where

$$
g_{M_{0}, k}=\sum_{\chi \bmod M_{0}} \operatorname{dim} S_{k}^{+}\left(M_{0}, \chi\right) .
$$

Then $\left[K_{h}: \mathbb{Q}\right]\left|\left[K_{M_{0}, k}: \mathbb{Q}\right]\right| g_{M_{0}, k}!$, so

$$
r_{h} \leq 1+\operatorname{ord}_{2}\left(g_{M_{0}, k}!\right)=1+\sum_{\mu \geq 1}\left[\frac{g_{M_{0}, k}}{2^{\mu}}\right] .
$$

Now T_{q} diagonalizes on neither $S_{k}(q M, \psi)$ nor $S_{k}\left(q^{2} M, \psi\right)$ if q is an exceptional prime for a single newform $h \in S_{k}\left(M_{0}, \psi\right)$ for any $\mathfrak{f}\left|M_{0}\right| M$. Therefore we get an upper bound for r, the number of primes q for which T_{q} fails to diagonalize, by summing over all such newforms. Then

$$
\begin{aligned}
r & \leq \sum_{\operatorname{cond}(\psi)\left|M_{0}\right| M} \operatorname{dim} S_{k}^{+}\left(M_{0}, \psi\right) \cdot r_{h} \\
& \leq \sum_{\operatorname{cond}(\psi)\left|M_{0}\right| M} \operatorname{dim} S_{k}^{+}\left(M_{0}, \psi\right)\left(1+\sum_{\mu \geq 1}\left[\frac{g_{M_{0}, k}}{2^{\mu}}\right]\right) .
\end{aligned}
$$

Remark 3.5. One could obtain a more explicit, though considerably larger, upper bound. For example, $g_{M_{0}, k} \leq \operatorname{dim} S_{k}\left(\Gamma_{1}\left(M_{0}\right)\right)$ for which one could use the known dimension formulas.

We conclude this investigation of diagonalization with the following "negative" result for levels divisible by a high power of q.

Theorem 3.6. Let q be prime, and let ψ be a Dirichlet character with conductor $\mathfrak{f}=q^{\nu} M_{0}$, with $\nu \geq 0$ and $q \nmid M_{0}$. Let M be an integer with $M_{0} \mid M$ and $q \nmid M$, and let $s \geq 3$ be an integer. Except possibly for finitely many $k \geq 2$ with $\psi(-1)=(-1)^{k}$ and finitely many q, T_{q} is not diagonalizable on $S_{k}\left(q^{\nu+s} M, \psi\right)$.

Proof. Let $N=q^{\nu+s} M$ and $N_{0}=q^{\nu+2} M$. For each $s \geq 3$, we have $\mathfrak{f}\left|N_{0}\right| N$. Further, $q\left|N / N_{0}, q^{2}\right| N_{0}$ and $\mathfrak{f} \mid N_{0} / q$. Hence if $S_{k}(N, \psi)$ contains a newform h of
level N_{0}, then $q \notin \mathfrak{Q}_{N_{0}, h}$, so T_{q}^{N} is not diagonalizable. But by Theorem 6.1 (see Sec. 6), for all but finitely many $k \geq 2$ with $\psi(-1)=(-1)^{k}$ and finitely many $q, \operatorname{dim} S_{k}^{+}\left(N_{0}, \psi\right) \geq 1$, and hence T_{q} is not diagonalizable on $S_{k}(N, \psi)$.

4. Simultaneous Hecke Eigenforms

We now turn to the question of characterizing simultaneous Hecke eigenforms in $S_{k}(N, \psi)$ for all Hecke operators T_{ℓ}^{N}, ℓ a prime. From the previous section and the theory of newforms, for a given simultaneous eigenform $f \in S_{k}(N, \psi)$, the only primes which need careful analysis are primes $q \mid N / N_{0}$ where N_{0} is the level of the associated newform. We make this explicit.

Theorem 4.1. Let $f \in S_{k}(N, \psi)$ be a nonzero simultaneous eigenform for all the Hecke operators T_{ℓ}^{N}, ℓ a prime, and put $f \mid T_{q}^{N}=\kappa_{q} f$ for each prime $q \mid N$. Associated to f is a newform $h \in S_{k}\left(N_{0}, \psi\right)$ (with $\left.\operatorname{cond}(\psi)\left|N_{0}\right| N\right)$ such that $f=\sum_{d \mid N / N_{0}} \alpha_{d} h \mid B_{d}$. As before, put $h \mid T_{q}^{N_{0}}=\lambda_{q} h$. Then $\alpha_{1} \neq 0$, and normalizing with $\alpha_{1}=1$, we have that $\alpha_{d}=\prod_{q \mid d} \alpha_{q^{\mu_{q}}}$, where $\mu_{q}=\operatorname{ord}_{q}(d)$. Further, we have $\alpha_{q^{e}}=0$ for $e \geq 3$, and

$$
\alpha_{q}=\left(\kappa_{q}-\lambda_{q}\right) \quad \text { and } \quad \alpha_{q^{2}}= \begin{cases}0 & q \mid N_{0}, \\ 0 & q \nmid N_{0}, \quad \kappa_{q} \neq 0, \\ \psi(q) q^{k-1} & q \nmid N_{0}, \quad \kappa_{q}=0 .\end{cases}
$$

Proof. This is immediate from Theorem 2.1, which also indicates the possible eigenvalues κ_{q}.

Remark 4.2. The converse to the above theorem is also true. Starting with a newform h, and choosing the κ_{q} and α_{d} as in the theorem, Proposition 2.2 guarantees that $f=\sum_{d \mid M} \alpha_{d} h \mid B_{d}$ is a simultaneous eigenform for all T_{q}^{N} with $q \mid N$, and hence for all T_{ℓ}^{N}, ℓ a prime.

Now we wish to count the number of linearly independent simultaneous Hecke eigenforms that are associated to a given newform.

Theorem 4.3. Let $h \in S_{k}\left(N_{0}, \psi\right)$ be a newform and let N be an integer such that $N_{0} \mid N$. For all primes $q \mid N$, put $h \mid T_{q}^{N_{0}}=\lambda_{q} h$. The number of linearly independent simultaneous eigenforms $f \in S_{k}(N, \psi)$ which are eigenforms for all $\left\{T_{\ell}^{N}\right\}, \ell$ a prime and which have the same eigenvalues as h under all $T_{p}, p \nmid N$ is $2^{|A|} 3^{|B|}$, where A and B are sets of primes dividing N / N_{0} satisfying

$$
q \in B=B\left(N, N_{0}, h\right) \Leftrightarrow q \nmid N_{0}, q^{2} \mid N / N_{0}, \lambda_{q}^{2} \neq 4 \psi(q) q^{k-1}
$$

and

$$
q \in A=A\left(N, N_{0}, h\right) \Leftrightarrow \begin{cases}q \mid N_{0} \quad \text { and } \quad \lambda_{q} \neq 0, \quad \text { or } \\ q \nmid N_{0}, & q \| N / N_{0}, \quad \lambda_{q}^{2} \neq 4 \psi(q) q^{k-1}, \quad \text { or } \\ q \nmid N_{0}, \quad q^{2} \mid N / N_{0}, \quad \lambda_{q}^{2}=4 \psi(q) q^{k-1} .\end{cases}
$$

Remark 4.4. By [3, Theorem 3], the first condition stated to define $A\left(q \mid N_{0}\right.$ and $\left.\lambda_{q} \neq 0\right)$ is equivalent to $q \| N_{0}$, or $q^{2} \mid N_{0}$ and $\operatorname{ord}_{q}(\operatorname{cond}(\psi))=\operatorname{ord}_{q}\left(N_{0}\right)$.

Proof. Theorem 4.1 indicates the shape of every simultaneous eigenform f of level N associated to the newform $h: f=\sum_{d \mid N / N_{0}} \alpha_{d} h \mid B_{d}$, where without loss, $\alpha_{1}=1$, and α_{d} is completely determined as the product of $\alpha_{q^{e}}$ where $e=\operatorname{ord}_{q}(d)$. We see all such values $\alpha_{q^{e}}$ are uniquely determined except for the value of $\alpha_{q}=\kappa_{q}-\lambda_{q}$ which has as many distinct values as distinct eigenvalues κ_{q}. It is now a simple matter using Theorem 2.1 to verify that the sets A and B characterize those cases in which κ_{q} can have two or three distinct eigenvalues.

5. Examples

Theorem 4.3 tells how to compute the number of simultaneous eigenforms in $S_{k}(N, \psi)$ associated to a newform $h \in S_{k}\left(N_{0}, \psi\right)$ with $h \mid T_{q}^{N_{0}}=\lambda_{q} h$ in terms of the sets A and B. Knowledge of the eigenvalue λ_{q} for $q \nmid N_{0}$ can often be problematic, but there are cases in which it is easy to calculate explicitly the sets A and B. We characterize one particularly useful situation, and give some examples.

Let $N_{0} \mid N$ with N and N_{0} having exactly the same prime divisors. Then $B=$ $B\left(N, N_{0}, h\right)=\emptyset$, and by Remark 4.4

$$
\begin{equation*}
A=A\left(N, N_{0}, h\right)=\left\{q \mid N / N_{0}: \operatorname{ord}_{q}\left(N_{0}\right)=1 \text { or } \operatorname{ord}_{q}(\operatorname{cond}(\psi))\right\} . \tag{5.1}
\end{equation*}
$$

Example 5.1. Let ψ be a character with square-free conductor D, and let N be an integer with $D|N| D^{2}$. Then $S_{k}(N, \psi)$ has a basis consisting of simultaneous eigenforms for all Hecke operators.

Proof. Let N_{0} be such that $D\left|N_{0}\right| N$, and consider a newform $h \in S_{k}\left(N_{0}, \psi\right)$. To compute A, let $q \mid N / N_{0}$ be a prime. Observe that $q \mid N / N_{0}$ implies $q \mid D$. Since $N \mid D^{2}, 1 \leq \operatorname{ord}_{q}\left(N_{0}\right) \leq \operatorname{ord}_{q}(N) \leq 2$, and if $\operatorname{ord}_{q}\left(N_{0}\right)=2$, then $q \nmid N / N_{0}$. Thus $q \mid N / N_{0}$ implies $\operatorname{ord}_{q}\left(N_{0}\right)=1$ and hence $q \in A$. Thus $2^{|A|}=\sigma_{0}\left(N / N_{0}\right)$ (since N / N_{0} is square-free), where $\sigma_{0}(m)$ is the number of positive divisors of m. Since

$$
S_{k}(N, \psi)=\bigoplus_{D\left|N_{0}\right| N} \bigoplus_{d \mid N / N_{0}} S_{k}^{+}\left(N_{0}, \psi\right) \mid B_{d} \cong \bigoplus_{D\left|N_{0}\right| N} \sigma_{0}\left(N / N_{0}\right) S_{k}^{+}\left(N_{0}, \psi\right)
$$

with the isomorphism as modules for the Hecke algebra generated by T_{p}^{N} for all primes $p \nmid N$, the result is clear. In the isomorphism we use the convention that for a space $S, m S=\bigoplus_{i=1}^{m} S$.

As a second example, we consider a situation in which the conductor of the character ψ can be large.

Example 5.2. Let q be an odd prime and ψ a character of conductor $q^{\nu}, \nu \geq 1$. Then $S_{k}\left(q^{\nu+\mu}, \psi\right), \mu \geq 0$, has a basis of simultaneous eigenforms for all the Hecke operators when $\mu=0,1$; for $\mu \geq 3$ it has such a basis only for finitely many k and q.

Proof. The only issue concerns the diagonalizability of the operator T_{q}^{N} where $N=q^{\nu+\mu}$. The case of $\mu=0,1$ is addressed by Theorem 3.3, while the case of $\mu \geq 3$ is addressed by Theorem 3.6.

Example 5.3. Somewhat complementary to the previous example, we consider the case of $S_{k}\left(q^{2}, 1\right)$ providing instances when T_{q}^{N} can be diagonalized. To that end, we consider normalized newforms h of level $1, q$ and q^{2} and whether T_{q}^{N} can be diagonalized on $[h]$. For level q^{2} the answer is affirmative from the theory of newforms. For each newform $h \in S_{k}(q, 1)$, Eq. (5.1) yields $A=\{q\}$ providing the requisite two linearly independent simultaneous eigenforms, h and $h-\lambda_{q} h \mid B_{q}$. Now consider $h \in S_{k}(1,1)$. When $k<12$ or $k=14, S_{k}(1,1)=0$, and there are no classes to consider. On the other hand, when $S_{k}(1,1) \neq 0$, the situation is more subtle. By Theorem 3.3(iii), T_{q}^{N} will diagonalize on $[h]$ provided that $\lambda_{q}^{2} \neq 4 q^{k-1}$. As an example, consider weight 12 . There are three simultaneous eigenforms in $S_{12}\left(q^{2}, 1\right)$ equivalent to $\Delta=(2 \pi)^{12} \sum_{n=1}^{\infty} \tau(n) e^{2 \pi i n z} \in S_{12}(1,1)$ with Fourier coefficients given by the Ramanujan τ-function. Choose a prime q for which $\lambda_{q}^{2}=\tau^{2}(q) \neq 4 q^{11}$; note that this is true for all primes q since $\tau(q) \in \mathbb{Z}$ while $2 q^{11 / 2}$ is not.

Using Theorem 4.1, we produce three linearly independent simultaneous eigenforms $f=\Delta+\alpha_{q} \Delta\left|B_{q}+\alpha_{q^{2}} \Delta\right| B_{q^{2}}$ satisfying $f \mid T_{q}^{q^{2}}=\kappa_{q} f$ where $\kappa_{q}=0$, $\frac{1}{2}\left(\lambda_{q} \pm \sqrt{\lambda_{q}^{2}-4 q^{11}}\right)$ (all distinct). Thus T_{q} diagonalizes on $S_{12}\left(q^{2}, 1\right)$.

Example 5.4. The results of Sec. 2 can also provide a multiplicity-one theorem in the following narrow context. Let $N_{0} \geq 2$ be an integer, and consider any newform $h \in S_{k}\left(N_{0}^{2}, 1\right)$. Let $N=N_{0}^{2} N_{1}$ where any prime dividing N_{1} also divides N_{0}. Let $f \in S_{k}(N, 1)$ be a simultaneous eigenform for all Hecke operators T_{p} for $p \nmid N$ which is equivalent to h. Then $f=h$.

Proof. This is immediate from Proposition 2.2, since for each $q \mid N$, the q th eigenvalue of $h\left(\lambda_{q}\right)$ is zero forcing $f=\sum \alpha_{d} h \mid B_{d}=h$.

Remark 5.5. Another point worth noting concerns the interpretation when the sets A and B are empty. In such a case, Theorem 4.3 implies there is a unique simultaneous eigenform f in $S_{k}(N, \psi)$ associated to a newform $h \in S_{k}\left(N_{0}, \psi\right)$. It is not necessarily the case that the simultaneous eigenform is the newform h. For example, choose a prime $q \| N / N_{0}$ with $q \nmid N_{0}$. Then $B=\emptyset$ and $q \notin A$ means that $\lambda_{q}^{2}=4 \psi(q) q^{k-1} \neq 0$ and hence by Theorem 4.1, $f=\sum_{d \mid N / N_{0}} \alpha_{d} h \mid B_{d}$ with $\alpha_{q}=-\lambda_{q} / 2 \neq 0$.

6. Dimensions of Spaces of Newforms

To justify the last part of Theorem 3.3, we compute a lower bound for the dimension of the space of newforms $S_{k}^{+}\left(q^{\nu+r}, \psi\right)$ where q is a prime, $r \geq 2$, and ψ a character with conductor $q^{\nu}, \nu \geq 0$. We make implicit use of the trace formula for Hecke
operators as given in [5], in particular Ross's formula for the dimension of the space of cusp forms. For trivial character, one can find a formula for the dimension of the space of newforms in [4].

Theorem 6.1. Let q be a prime, and ψ be a Dirichlet character of conductor $\mathfrak{f}=q^{\nu} M_{0}, q \nmid M_{0}, \nu \geq 0$. Let r be an integer, $r \geq 2$, and let M be any integer divisible by $M_{0}(q \nmid M)$; we further require that $\operatorname{ord}_{2}\left(M / M_{0}\right) \neq 1$. Then except for finitely many values of $k \geq 2$ with $\psi(-1)=(-1)^{k}$ and finitely many values of q, we have the dimension of the space of newforms $S_{k}^{+}\left(q^{\nu+r} M, \psi\right)$ is positive.

Proof. We consider the Hecke algebra generated by all operators T_{p} with $p \nmid q M$, and recall our shorthand of writing $m S$ for $\bigoplus_{i=1}^{m} S$ in any isomorphism of modules for the Hecke algebra. Let $N=q^{\nu+r} M$. Then

$$
\begin{aligned}
S_{k}(N, \psi) & =\bigoplus_{\mathfrak{f}\left|N_{0}\right| N} \bigoplus_{d \mid N / N_{0}} S_{k}^{+}\left(N_{0}, \psi\right) \mid B_{d} \\
& \cong \bigoplus_{\mathfrak{f}\left|N_{0}\right| N} \sigma_{0}\left(N / N_{0}\right) S_{k}^{+}\left(N_{0}, \psi\right) \\
& =\bigoplus_{d \mid N / \mathfrak{f}} \sigma_{0}(N / d \mathfrak{f}) S_{k}^{+}(d \mathfrak{f}, \psi) .
\end{aligned}
$$

We adapt the notation of Martin [4], who gives a formula for the dimension of the space of newforms with trivial character, and put

$$
g_{0}(d)=\operatorname{dim} S_{k}(d \mathfrak{f}, \psi), \quad g_{0}^{+}(d)=\operatorname{dim} S_{k}^{+}(d \mathfrak{f}, \psi)
$$

The above decomposition yields the following relations of dimensions:

$$
\begin{equation*}
g_{0}(N / \mathfrak{f})=\sum_{d \mid N / \mathfrak{f}} g_{0}^{+}(d) \sigma_{0}(N / d \mathfrak{f})=\left(g_{0}^{+} * \sigma_{0}\right)(N / \mathfrak{f}) \tag{6.1}
\end{equation*}
$$

where $*$ is the standard Dirichlet convolution of arithmetic functions. While $g_{0}^{+}(n)$ is not a multiplicative function, $\sigma_{0}(n)$ is, and in complete analogy with [4], we let λ be the Dirichlet inverse of $\sigma_{0}: \lambda=\mu * \mu$ (μ the Möbius function). Thus λ is a multiplicative function with values (for p a prime) $\lambda(p)=-2, \lambda\left(p^{2}\right)=1$, and $\lambda\left(p^{j}\right)=0$ for $j \geq 3$. Taking the Dirichlet convolution of both sides of Eq. (6.1) yields

$$
\begin{equation*}
\operatorname{dim} S_{k}^{+}(N, \psi)=g_{0}^{+}(N / \mathfrak{f})=\sum_{d \mid N / \mathfrak{f}} g_{0}(d) \lambda(N / d \mathfrak{f})=\left(g_{0} * \lambda\right)(N / \mathfrak{f}) \tag{6.2}
\end{equation*}
$$

The goal is to use the above expression to produce a formula for the dimension of the space of newforms as a function of the prime q and weight k. Using a parametrized version of the notation from [5], we obtain a formula for the dimension of the space of cusp forms with arbitrary character:

$$
\begin{equation*}
g_{0}(d)=-s_{0}(d \mathfrak{f})-s_{1}(d \mathfrak{f})+\delta+m(d \mathfrak{f})-p(d \mathfrak{f}), \tag{6.3}
\end{equation*}
$$

where letting $\omega(n)$ be the number of prime divisors of an integer n, we have

$$
\begin{aligned}
\left|s_{0}(d \mathfrak{f})\right| & \leq 2^{\omega(d \mathfrak{f})-2}, \\
\left|s_{1}(d \mathfrak{f})\right| & \leq \frac{1}{3} 2^{\omega(d \mathfrak{f})}, \\
\delta & = \begin{cases}1 & \text { if } k=2 \quad \text { and } \quad \psi=1, \\
0 & \text { otherwise },\end{cases} \\
m(d \mathfrak{f}) & =\frac{(k-1)}{12} d \mathfrak{f} \prod_{\ell \mid d \mathfrak{f}}(1+1 / \ell) \quad(\ell \text { a prime }), \quad \text { and } \\
p(d \mathfrak{f}) & =\frac{1}{2} \prod_{\ell \mid d \mathfrak{f}} \operatorname{par}(\ell) \quad(\ell \text { a prime }),
\end{aligned}
$$

where $\operatorname{par}(\ell)$ are the parabolic terms as computed in [5, Theorem 1].
Now we distribute the convolution of λ through the summands defining g_{0} and obtain

$$
\begin{align*}
g_{0}^{+}(N / \mathfrak{f})= & \sum_{d \mid N / \mathfrak{f}} g_{0}(d) \lambda(N / d \mathfrak{f}) \\
= & -\sum_{d \mid N / \mathfrak{f}} s_{0}(d \mathfrak{f}) \lambda(N / d \mathfrak{f})-\sum_{d \mid N / \mathfrak{f}} s_{1}(d \mathfrak{f}) \lambda(N / d \mathfrak{f})+\delta \sum_{d \mid N / \mathfrak{f}} \lambda(N / d \mathfrak{f}) \\
& +\sum_{d \mid N / \mathfrak{f}} m(d \mathfrak{f}) \lambda(N / d \mathfrak{f})-\sum_{d \mid N / \mathfrak{f}} p(d \mathfrak{f}) \lambda(N / d \mathfrak{f}) . \tag{6.4}
\end{align*}
$$

If we put $N / \mathfrak{f}=q^{r} M_{1}$ with $q \nmid M_{1}$, then since $r \geq 2$,

$$
\sum_{d \mid N / \mathfrak{f}} \lambda(N / d \mathfrak{f})=\sum_{j=0}^{r} \lambda\left(q^{j}\right) \sum_{d_{1} \mid M_{1}} \lambda\left(M_{1} / d_{1}\right)=0
$$

so

$$
\begin{align*}
g_{0}^{+}(N / \mathfrak{f}) & =\sum_{d \mid N / \mathfrak{f}} g_{0}(d) \lambda(N / d \mathfrak{f}) \\
& =-\sum_{d \mid N / \mathfrak{f}}\left(s_{0}(d \mathfrak{f})+s_{1}(d \mathfrak{f})\right) \lambda(N / d \mathfrak{f})+\sum_{d \mid N / \mathfrak{f}}(m(d \mathfrak{f})-p(d \mathfrak{f})) \lambda(N / d \mathfrak{f}), \tag{6.5}
\end{align*}
$$

hence

$$
\begin{align*}
g_{0}^{+}(N / \mathfrak{f}) & =\left|g_{0}^{+}(N / \mathfrak{f})\right| \\
& \geq\left|\sum_{d \mid N / \mathfrak{f}}(m(d \mathfrak{f})-p(d \mathfrak{f})) \lambda(N / d \mathfrak{f})\right|-\left|\sum_{d \mid N / \mathfrak{f}}\left(s_{0}(d \mathfrak{f})+s_{1}(d \mathfrak{f})\right) \lambda(N / d \mathfrak{f})\right| . \tag{6.6}
\end{align*}
$$

We shall show that the second term is bounded and the first goes to infinity as q or k do which will establish our result.

We consider the second term:

$$
\begin{align*}
\left|\sum_{d \mid N / \mathfrak{f}}\left(s_{0}(d \mathfrak{f})+s_{1}(d \mathfrak{f})\right) \lambda(N / d \mathfrak{f})\right| & \leq \sum_{d \mid N / \mathfrak{f}}\left(\left|s_{0}(d \mathfrak{f})\right|+\left|s_{1}(d \mathfrak{f})\right|\right)|\lambda(N / d \mathfrak{f})| \\
& \leq \sum_{d \mid N / \mathfrak{f}} 2^{\omega(d \mathfrak{f})}|\lambda(N / d \mathfrak{f})| \tag{6.7}
\end{align*}
$$

since from above we have that

$$
\begin{equation*}
\left|s_{0}(d \mathfrak{f})\right|+\left|s_{1}(d \mathfrak{f})\right| \leq 2^{\omega(d \mathfrak{f})-2}+\frac{1}{3} 2^{\omega(d \mathfrak{f})}<2^{\omega(d \mathfrak{f})} \tag{6.8}
\end{equation*}
$$

Writing $N / \mathfrak{f}=q^{r} M_{1}$ with $q \nmid M_{1}$ and recalling that $\mathfrak{f}=q^{\nu} M_{0}$, we have

$$
\begin{aligned}
\sum_{d \mid N / \mathfrak{f}} 2^{\omega(d \mathfrak{f})}|\lambda(N / d \mathfrak{f})| & =\sum_{j=0}^{r}\left|\lambda\left(q^{r-j}\right)\right| \sum_{d_{1} \mid M_{1}} 2^{\omega\left(q^{j+\nu} d_{1} M_{0}\right)}\left|\lambda\left(M_{1} / d_{1}\right)\right| \\
& \leq \sum_{j=0}^{r}\left|\lambda\left(q^{r-j}\right)\right| \sum_{d_{1} \mid M_{1}} 2^{1+\omega(M)}\left|\lambda\left(M_{1} / d_{1}\right)\right| \\
& \leq 2^{3+\omega(M)} \sum_{d_{1} \mid M_{1}}\left|\lambda\left(M_{1} / d_{1}\right)\right|,
\end{aligned}
$$

which is a constant depending only on M and independent from k and q. Thus it remains only to show that

$$
\left|\sum_{d \mid N / \mathfrak{f}}(m(d \mathfrak{f})-p(d \mathfrak{f})) \lambda(N / d \mathfrak{f})\right| \rightarrow \infty
$$

as q or k go to infinity. What we show is that

$$
\sum_{d \mid N / \mathfrak{f}}(m(d \mathfrak{f})-p(d \mathfrak{f})) \lambda(N / d \mathfrak{f})=\frac{k-1}{12} A \mathcal{M}(q)-B \mathcal{P}(q),
$$

with constants A, B depending only on $M, A>0$, and \mathcal{M}, \mathcal{P} functions of q with the expression having the desired limits as q or k go to infinity.

We first consider the "Mass" term: $\sum_{d \mid N / \mathfrak{f}} m(d \mathfrak{f}) \lambda(N / d \mathfrak{f})$. For an integer n, let $m_{0}(n)=n \prod_{\ell \mid n}(1+1 / \ell)$ where the product is over all primes ℓ dividing n. Then $m(n)=\frac{k-1}{12} m_{0}(n)$, and m_{0} is a multiplicative function. Thus once again writing $N / \mathfrak{f}=q^{r} M_{1}$ with $q \nmid M_{1}$ and recalling that $\mathfrak{f}=q^{\nu} M_{0}$,

$$
\sum_{d \mid N / \mathfrak{f}} m(d \mathfrak{f}) \lambda(N / d \mathfrak{f})=\frac{k-1}{12} \sum_{j=0}^{r} m_{0}\left(q^{\nu+j}\right) \lambda\left(q^{r-j}\right) \sum_{d_{1} \mid M_{1}} m_{0}\left(d_{1} M_{0}\right) \lambda\left(M_{1} / d_{1}\right)
$$

$$
\begin{aligned}
= & \frac{k-1}{12}\left(m_{0}\left(q^{\nu+r}\right)-2 m_{0}\left(q^{\nu+r-1}\right)+m_{0}\left(q^{\nu+r-2}\right)\right) \\
& \times \sum_{d_{1} \mid M_{1}} m_{0}\left(d_{1} M_{0}\right) \lambda\left(M_{1} / d_{1}\right) \\
= & \frac{k-1}{12} \mathcal{M}(q) \sum_{d_{1} \mid M_{1}} m_{0}\left(d_{1} M_{0}\right) \lambda\left(M_{1} / d_{1}\right)
\end{aligned}
$$

where

$$
\mathcal{M}(q)= \begin{cases}q^{\nu+r-2}\left(1+\frac{1}{q}\right)(q-1)^{2} & \text { if } \nu+r-2>0 \\ q^{2}-q-1=(q-1)^{2}+q-2 & \text { if } \nu=0, r=2\end{cases}
$$

We now wish to show that $\sum_{d_{1} \mid M_{1}} m_{0}\left(d_{1} M_{0}\right) \lambda\left(M_{1} / d_{1}\right)$ is positive. Since both m_{0} and λ are multiplicative, it suffices to show this when $M_{1}=p^{e}, M_{0}=p^{f}$ are prime powers $(e+f \geq 1)$.

$$
\begin{aligned}
& \sum_{d_{1} \mid M_{1}} m_{0}\left(d_{1} M_{0}\right) \lambda\left(M_{1} / d_{1}\right) \\
&=\sum_{j=0}^{e} m_{0}\left(p^{f+j}\right) \lambda\left(p^{e-j}\right) \\
&= \begin{cases}m_{0}\left(p^{f}\right) & \text { if } e=0 \\
-2 m_{0}\left(p^{f}\right)+m_{0}\left(p^{f+1}\right) & \text { if } e=1 \\
m_{0}\left(p^{e-2+f}\right)-2 m_{0}\left(p^{e-1+f}\right)+m_{0}\left(p^{e+f}\right) & \text { if } e \geq 2\end{cases} \\
& \quad= \begin{cases}p^{f}+p^{f-1} & \text { if } e=0 \\
p^{f+1}-p^{f}-2 p^{f-1} & \text { if } e=1 \\
p^{2}-p-1 & \text { if } e=2, f=0 \\
p^{e+f-3}(p+1)(p-1)^{2} & \text { if } e+f \geq 3,\end{cases}
\end{aligned}
$$

where we understand $p^{-1}=0$, and this sum is trivially checked to be positive for all primes $p \geq 2$. Note the case with $e=1$ (when $p=2$) is precluded by the theorem's hypothesis $\operatorname{ord}_{2}\left(M / M_{0}\right)=\operatorname{ord}_{2}\left(M_{1}\right) \neq 1$.

Finally we turn to the parabolic terms: $\sum_{d \mid N / \mathfrak{f}} p(d \mathfrak{f}) \lambda(N / d \mathfrak{f})$. For an integer n, let $p_{0}(n)=\prod_{\ell \mid n} \operatorname{par}(\ell)$ where the product is over all primes ℓ dividing n, and $\operatorname{par}(\ell)$ is defined as in [5, Theorem 1]. Then $p(n)=(1 / 2) p_{0}(n)$, and p_{0} is a multiplicative function, $p_{0}(1)=1$. Once again writing $N / \mathfrak{f}=q^{r} M_{1}$ with $q \nmid M_{1}$ and recalling that $\mathfrak{f}=q^{\nu} M_{0}$,

$$
\sum_{d \mid N / \mathfrak{f}} p(d \mathfrak{f}) \lambda(N / d \mathfrak{f})=\frac{1}{2} \sum_{j=0}^{r} p_{0}\left(q^{\nu+j}\right) \lambda\left(q^{r-j}\right) \sum_{d_{1} \mid M_{1}} p_{0}\left(d_{1} M_{0}\right) \lambda\left(M_{1} / d_{1}\right)
$$

$$
\begin{aligned}
= & \frac{1}{2}\left(p_{0}\left(q^{\nu+r}\right)-2 p_{0}\left(q^{\nu+r-1}\right)+p_{0}\left(q^{\nu+r-2}\right)\right) \\
& \times \sum_{d_{1} \mid M_{1}} p_{0}\left(d_{1} M_{0}\right) \lambda\left(M_{1} / d_{1}\right) \\
= & \frac{1}{2} \mathcal{P}(q) \sum_{d_{1} \mid M_{1}} p_{0}\left(d_{1} M_{0}\right) \lambda\left(M_{1} / d_{1}\right)
\end{aligned}
$$

where $\mathcal{P}(q)=\left(p_{0}\left(q^{\nu+r}\right)-2 p_{0}\left(q^{\nu+r-1}\right)+p_{0}\left(q^{\nu+r-2}\right)\right)$.
Thus it remains only to show that

$$
\left|\frac{k-1}{12} A \mathcal{M}(q)-B \mathcal{P}(q)\right| \rightarrow \infty, \quad \text { as } k \text { or } q \rightarrow \infty
$$

with constants A, B depending only on $M=M_{0} M_{1}, A>0$. The case for $k \rightarrow \infty$ is clear, so we focus on this expression as a function of q.

To compute $p_{0}\left(q^{\nu+j}\right)$, we set a bit of notation. Let $\mu_{j}=\left\lfloor\frac{\nu+j}{2}\right\rfloor$. From [5, Theorem 1], we have

$$
p_{0}\left(q^{\nu+j}\right)=\operatorname{par}(q)= \begin{cases}2 q^{j} & \text { if } \nu \geq \mu_{j}+1 \\ \left(q^{\mu_{j}}+q^{\mu_{j}-1}\right) & \text { if } \nu \leq \mu_{j}, \quad \nu+j \text { even } \\ 2 q^{\mu_{j}} & \text { if } \nu \leq \mu_{j}, \quad \nu+j \text { odd }\end{cases}
$$

Since we need to compute $\mathcal{P}(q)=\left(p_{0}\left(q^{\nu+r}\right)-2 p_{0}\left(q^{\nu+r-1}\right)+p_{0}\left(q^{\nu+r-2}\right)\right)$ as part of $\left|\frac{k-1}{12} A \mathcal{M}(q)-B \mathcal{P}(q)\right|$, we need to break the argument into cases.

Case 0. Special case $\nu=0, r=2$.

$$
\left|\frac{k-1}{12} A \mathcal{M}(q)-B \mathcal{P}(q)\right|=\left|\frac{k-1}{12} A\left(q^{2}-q-1\right)-B(q-2)\right| \rightarrow \infty \quad \text { as } q \rightarrow \infty
$$

Henceforth we can assume $\nu+r \geq 3$, so $\mathcal{M}(q)=q^{\nu+r-2}\left(1+\frac{1}{q}\right)(q-1)^{2}$.

Case 1. $\boldsymbol{\nu} \geq \boldsymbol{\mu}_{\boldsymbol{r}}+\mathbf{1}$. Then $\nu \geq \mu_{r}+1 \geq \mu_{r-1}+1 \geq \mu_{r-2}+1$. Note that this case cannot occur unless $\nu \geq 3$. Then $\mathcal{P}(q)=2 q^{r-2}(q-1)^{2}$, so

$$
\begin{aligned}
& \left|\frac{k-1}{12} A \mathcal{M}(q)-B \mathcal{P}(q)\right| \\
& \quad=\left|\frac{k-1}{12} A q^{\nu+r-2}\left(1+\frac{1}{q}\right)(q-1)^{2}-B\left(2 q^{r-2}(q-1)^{2}\right)\right| \\
& \quad=q^{r-2}(q-1)^{2}\left|\frac{k-1}{12} A q^{\nu}\left(1+\frac{1}{q}\right)-B\right| \rightarrow \infty \quad \text { as } q \rightarrow \infty .
\end{aligned}
$$

Case 2. $\boldsymbol{\nu} \leq \boldsymbol{\mu}_{\boldsymbol{r - 2}}$. Then $\nu \leq \mu_{r-2} \leq \mu_{r-1} \leq \mu_{r}$.
When $\nu+r$ is even, $\mu_{r}=(\nu+r) / 2 \geq 2$, and we have

$$
\begin{aligned}
\mathcal{P}(q) & =\left(q^{\mu_{r}}+q^{\mu_{r}-1}\right)-4 q^{\mu_{r-1}}+q^{\mu_{r-2}}+q^{\mu_{r-2}-1} \\
& =\left(q^{\mu_{r}}+q^{\mu_{r}-1}\right)-4 q^{\mu_{r}-1}+q^{\mu_{r}-1}+q^{\mu_{r}-2} \\
& =q^{\mu_{r}-2}(q-1)^{2},
\end{aligned}
$$

so

$$
\begin{aligned}
& \left|\frac{k-1}{12} A \mathcal{M}(q)-B \mathcal{P}(q)\right| \\
& \quad=\left|\frac{k-1}{12} A q^{\nu+r-2}\left(1+\frac{1}{q}\right)(q-1)^{2}-B\left(q^{\mu_{r}-2}(q-1)^{2}\right)\right| \\
& \quad=q^{\mu_{r}-2}(q-1)^{2}\left|\frac{k-1}{12} A q^{\mu_{r}}\left(1+\frac{1}{q}\right)-B\right| \rightarrow \infty \quad \text { as } q \rightarrow \infty .
\end{aligned}
$$

When $\nu+r$ is odd, $\mu_{r}=\mu_{r-1}=\mu_{r-2}+1$, so

$$
\mathcal{P}(q)=2 q^{\mu_{r}}-2\left(q^{\mu_{r-1}}+q^{\mu_{r-1}-1}\right)+2 q^{\mu_{r-2}}=0
$$

and

$$
\begin{aligned}
& \left|\frac{k-1}{12} A \mathcal{M}(q)-B \mathcal{P}(q)\right| \\
& \quad=\left|\frac{k-1}{12} A q^{\nu+r-2}\left(1+\frac{1}{q}\right)(q-1)^{2}\right| \rightarrow \infty \quad \text { as } q \rightarrow \infty .
\end{aligned}
$$

Case 3. $\mu_{r-2}<\boldsymbol{\nu} \leq \mu_{r}$.
If $\nu+r$ is even, the condition translates to $\frac{\nu+r}{2}-1<\nu \leq \frac{\nu+r}{2}$, so that $\mu_{r}=$ $\frac{\nu+r}{2}=\nu=r$, and $\mu_{r-1}=\mu_{r-2}=\mu_{r}-1$. If $\nu+r$ is odd, it translates to $\frac{\nu+r-1}{2}-$ $1<\nu \leq \frac{\nu+r-1}{2}$, so that $\mu_{r}=\mu_{r-1}=\frac{\nu+r-1}{2}=\nu=r-1$, and $\mu_{r-2}=\mu_{r}-1$.

If $\nu+r$ is even, we have

$$
\begin{aligned}
\mathcal{P}(q) & =\left(q^{\mu_{r}}+q^{\mu_{r}-1}\right)-4 q^{r-1}+2 q^{r-2} \\
& =\left(q^{\nu}+q^{\nu-1}\right)-4 q^{\nu-1}+2 q^{\nu-2} \\
& =q^{\nu-2}\left(q^{2}-3 q+2\right)=q^{\nu-2}(q-1)(q-2),
\end{aligned}
$$

so

$$
\begin{aligned}
& \left|\frac{k-1}{12} A \mathcal{M}(q)-B \mathcal{P}(q)\right| \\
& \quad=\left|\frac{k-1}{12} A q^{\nu+r-2}\left(1+\frac{1}{q}\right)(q-1)^{2}-B\left(q^{\nu-2}(q-1)(q-2)\right)\right| \\
& \quad=q^{\nu-2}(q-1)\left|\frac{k-1}{12} A q^{r}(q-1)\left(1+\frac{1}{q}\right)-B(q-2)\right| \rightarrow \infty \quad \text { as } q \rightarrow \infty .
\end{aligned}
$$

If $\nu+r$ is odd, we have

$$
\begin{aligned}
\mathcal{P}(q) & =2 q^{\mu_{r}}-2\left(q^{\mu_{r-1}}+q^{\mu_{r-2}}\right)+2 q^{r-2} \\
& =2 q^{\nu}-2\left(q^{\nu}+q^{\nu-1}\right)+2 q^{\nu-1}=0
\end{aligned}
$$

so

$$
\begin{aligned}
& \left|\frac{k-1}{12} A \mathcal{M}(q)-B \mathcal{P}(q)\right| \\
& \quad=\left|\frac{k-1}{12} A q^{\nu+r-2}\left(1+\frac{1}{q}\right)(q-1)^{2}\right| \rightarrow \infty \quad \text { as } q \rightarrow \infty
\end{aligned}
$$

References

[1] A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma_{0}(m)$, Math. Ann. 185 (1970) 134-160; MR 42 \#3022.
[2] Y. J. Choie and W. Kohnen, Diagonalizing "bad" Hecke operators on spaces of cusp forms, in Number Theory, Dev. Math., Vol. 15 (Springer, New York, 2006), pp. 23-26; MR MR2213826 (2006m:11056).
[3] W. C. W. Li, Newforms and functional equations, Math. Ann. 212 (1975) 285-315; MR 51 \#5498.
[4] G. Martin, Dimensions of the spaces of cusp forms and newforms on $\Gamma_{0}(N)$ and $\Gamma_{1}(N)$, J. Number Theory $112(2)$ (2005) 298-331; MR MR2141534 (2005m:11069).
[5] S. L. Ross, II, A simplified trace formula for Hecke operators for $\Gamma_{0}(N)$, Trans. Amer. Math. Soc. 331(1) (1992) 425-447; MR MR1053115 (92g:11043).
[6] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45(3) (1978) 637-679; MR MR507462 (80a:10043); Errata, ibid., 48(3) (1981) 697; MR MR630592 (82j:10051).

