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It is well known that newforms of integral weight are simultaneous eigenforms for all
the Hecke operators, and that the converse is not true. In this paper, we give a char-
acterization of all simultaneous Hecke eigenforms associated to a given newform, and
provide several applications. These include determining the number of linearly indepen-
dent simultaneous eigenforms in a fixed space which correspond to a given newform, and
characterizing several situations in which the full space of cusp forms is spanned by a
basis consisting of such eigenforms. Part of our results can be seen as a generalization
of results of Choie-Kohnen who considered diagonalization of “bad” Hecke operators
on spaces with square-free level and trivial character. Of independent interest, but used
herein, is a lower bound for the dimension of the space of newforms with arbitrary
character.
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1. Introduction

For N a positive integer, ¥ a Dirichlet character defined modulo N, and k£ > 2 an
integer, we let Sk (N, ) denote the space of cusp forms of weight k for I'g(N) with
character v, and S,j(N , 1) the subspace generated by the newforms. For a prime
p, we let T}, (or T,) denote the pth Hecke operator for forms on Si(N, ). We use
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this notation for the primes which divide the level as well, so for example if ¢ | N,
our Hecke operator T(jv is the same as the operator U, in the notation of [3].

It is well known that Si(N,®) has a basis consisting of simultaneous eigen-
forms for the algebra of Hecke operators generated by {7 | (p, N) = 1}, and via
multiplicity-one that S;"(IV,1) has a basis of simultaneous eigenforms for all the
Hecke operators. Since S (N, 1) is generally a proper subspace of S (N, ), it is a
natural question to consider the extent to which the full space of cusp forms has a
basis of simultaneous eigenforms for all the Hecke operators. Choie and Kohnen [2]
considered the question of diagonalizing “bad” Hecke operators (that is, TqN where
q| N), and gave an upper bound for the number of primes ¢ for which TqN could
not be diagonalized on Si(N, 1)) where N is square-free, ¢|N and ¢ is trivial. An
alternate perspective on that question is to determine conditions under which si-
multaneous Hecke eigenforms are newforms. One result along these lines is Li’s [3]
Theorem 9: if f € Sk(N,v) is a simultaneous eigenform for all Hecke operators
TIfV , and f is also an eigenform for the operator KWy (where K is the conjugation
operator and Wy is the Fricke involution), then f is a newform.

In this paper, we address the question broadly, in particular giving a charac-
terization of all simultaneous Hecke eigenforms associated to a given newform for
arbitrary level and character. For a given newform h € Si(No, ), we first deter-
mine (Theorem 2.1 and Proposition 2.2) the exact structure and the eigenvalues
of each form f € Si(N,) which is Hecke-equivalent to h and also an eigenfunc-
tion for TqN . In Sec. 3, we address the diagonalizability of T;V on a given space of
cusp forms, characterizing several situations in which the full space of cusp forms is
spanned by a basis consisting of such eigenforms, as well as those situations when it
is not (Theorems 3.3 and 3.6). To establish the later result we derive a lower bound
(Theorem 6.1) for the dimension of the space of newforms, S, (N,1); dimension
formulas for the space of newforms with trivial character are given by Martin [4]. In
Theorem 3.4, we generalize the results of Choie-Kohnen producing an upper bound
for the number of primes ¢ for which T(jv fails to diagonalize. Section 4 considers
simultaneous Hecke eigenforms, and Sec. 5 has several examples delineating cases
in which bases of simultaneous eigenforms do or do not exist.

2. Characterizing Hecke Eigenforms at Primes
Dividing the Level

Throughout, we make the convention that all Dirichlet characters will be considered
as defined modulo their conductor, so that when considering a modular form in
Sk(N, ), ¥(d) # 0 iff d is relatively prime to the conductor. In particular, there
may well be primes ¢ | N for which 1(q) # 0. Of course for any prime g4 N, ¢(q) # 0.
The convention is necessary to allow a uniform handling of all subspaces Si(No, ©)
where cond(¢)) | Ng | N.

Let h € Sk(No,v) be a newform (always assumed nonzero), N an integer di-
visible by Ny, and f € Si(N,) a nonzero simultaneous Hecke eigenform having
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the same eigenvalues as h for all Hecke operators T/, ¢ a prime with (¢, N) = 1.
The eigenvalues of h are given by h | TEN o = X\¢h for all primes ¢, and we note that
TN = TEN ® when (¢, N) = 1. Moreover suppose that f is also a nonzero eigenform
for T(jv where ¢ is a fixed prime dividing N, and put f |7, qN = Kkqf. It is well known
([1, 3]), that f has the form

f="Y_ ash|Ba,

d

where By (also sometimes denoted Vy) is the shift operator of [3], and the oy are
complex scalars.

Theorem 2.1. Let the notation be as above. Then assuming q| N and d| N/Ngy, we
have:

(1) If ¢| No then aqg =0 if ¢* | d.

(a) If g1 N/Ny, then kg = Nq, and (vacuously) aq =0 for q|d.
(b) If q| N/No, then ag = (kg — Ag)vasq if g d. If kg # 0, then kg = A, and
Aq = 0 implies kg = 0.

(2) If g1 No, then ag = 0 if ¢* | d.
(a) If kg # 0, then ag = 0 if @ld,ag = (kg — Ag)aasq if qlld, and K, =
5\ £ /A2 —dp(q)g1) # A,

(b) If kg = 0, then ¢*| N/No,aa = ¥(q)d" ' ayqz if ¢ || d, and aa = —Agaqyq
if qlld.

Proof. As above, we assume that f = Zd\NL agh| Bg. We separate the argument
0

by cases.

e Case: ¢| Ny, q1 N/Ny.
Since q|No, T = TN for any d. Also note that since qf N/Np, any divisor
d| N/Ny satisfies (d,q) = 1, so that the shift and Hecke operators commute:
By ‘ TgNO = TqNO ‘Bd. Thus

kof = FIT) = aah|Ba|T{N = > aah | TN | By

i g
=g > aqh| By =\,
a
and so we have K, = A, Since qtN/Ny, it is vacuously true that ag = 0

for ¢ | d.
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e Case: q| Ny, q| N/Ny.
As in the previous case, we note that ¢ | Ny implies TqN = quN o for any d, and for
any divisor d | N/Ny satisfying (d, ¢) = 1, the shift and Hecke operators commute:
Bq | TdNo = TNo | By. Finally we note that BT = 1. With these observations
we have

kof = FITY = Y agh|By| T3
d|N/No
= " aah|TN°|Ba+ > aah| By
d,qtd d,q|d
= Z ()\qOéd + adq)h ‘ By + Z agh | Bd/q~
d,qtd d,q?|d

We now show the second summand does not appear.
Lemma. a4 =0 if ¢* | d.

Proof. If k, = 0, then the linear independence of {h|By} yields the result. If
kq 7 0, let M = maxg/n,{ordy(d) |ag # 0}. Then we have

M
Z quadh | Bd = Z Z quadh ‘ Bd

kef =
d|N/No =0 d|N/No,q’|ld
= > (Aa+aag)h|Ba+ Y aah|Byy,.
d,qtd d,q?|d

There is no issue if M < 2, so we assume M > 2. In that case for a divisor d with
ordg(d) = M, we see that a term with h | Bq occurs as a summand in k4 f, but not
ind, qg‘dozdh | Bg/q, 80 g = 0, a contradiction. O

Applying this observation, the equation above becomes:
> kgeah|Ba=rgf = fITY = > (\gaa+ cug)h|Ba. (2.1)
d|N/No,q?1d d|N/No,qtd

By the linear independence of the set {h|Bs}, we deduce from Eq. (2.1) that
kqaq = 0 when ¢ || d. If k, = 0, then Eq. (2.1) is zero, hence the coefficients of i | By
are all zero and we conclude

g = —Agq/q = (kg — Ag)agq if g d.
On the other hand, if x4 # 0, then aq = 0 when ¢ | d, so Eq. (2.1) becomes
Kof = Y kgaah|Ba= > Aagh|Bq= A,
d|N/No,qtd d|N/No,qtd

and hence kg = Aq. It follows that A\; = 0 implies £, = 0,and 0 = ag = (kq—Ag)q/q
if ¢l d.
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e Case: ¢ 1 Ny, q| N/No.
In this case TqN = TqN0 — 1 (q)¢" 1 B,, and we have

Kof = 3 Kgoah|Ba= Y agh|Bq|T)

d|N/No d|N/No

= Z adh|T(jV|Bd—|— Z adh|Bd/q
d,qtd d,q|d

= Z agh | (TqN° —(q)qd" ' By) | Ba + Z agh|Bqq
d,qtd d,q|d

=Y (Aea+aag)h | Ba+ Y (aag — ¥(q)q" " aqsq)h | Ba
d,qtd dqlld
+ Y adh| By (2.2)

d,q3|d

To simplify this expression, we show
Lemma. oy =0 if ¢ | d.

Proof. This is completely analogous to the previous lemma. Let M =
maxgn/n,{ordy(d) | ag # 0}. There is no issue if M < 3, so assume M > 3. In
that case for a divisor d with ord,(d) = M, we see that a term with h| B4 occurs
in kg f, but not Z(ngldadh | Bi/q, s0 ag = 0, a contradiction. O

To go further, we first suppose that x, # 0. If ¢| N/Ny, we have ag = 0 for
¢ | d by convention. Otherwise, let d | N/Ng with ¢? | d. The coefficient of h | By in
Kqf 1S kgaqg while it is agq in Zd7q3‘d agh|Bg/q. By the lemma, agq = 0, so we infer
g = 0.

Applying these observations to the above expression for ry f yields

kef = Z Kqagh| Bg = Z (Aqaq + aqq)h | By

dIN/No dIN/Nogfd
+ > —¢(@)d" " agh| B (2.3)
dIN/Noqfd

Comparing coefficients of h | Bq and h| By we obtain for ¢ || d:
ag = (kg — Ag)agsy, and
kqQd = —¢(Q)qk_1ad/q~

Substituting the expression for ay from the first equation into the second yields
the quadratic (k2 — Agkg + ¥(q)g" Mg/, = 0. Note that g/, = 0 for all d with
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¢ || d would imply ay = 0 for all d| N/Np, hence f = 0. Thus

(Ag £ /A7 — 4(a)g"1),

and we note that g # Ag since ¥(q) # 0.

Finally, we assume x4, = 0. Then all the coefficients of the i | B4 in Eq. (2.2) are
zero, yielding agAg + aag = 0 for ¢t d, and aqq = ¥(q)¢" ' agyy, for ¢ | d. Note that
if ¢|| N/Ny, by convention we would have oy, = 0 in the last equation, leading to
agq/q = 0 and hence ag = 0 implying f = 0. Thus x, = 0 forces q* | N/Ny, which
completes the proof. O

N =

K]q:

As above, let h € Si(No,v) be a newform, and N an integer divisible by Np.
Denote the class of h by

[h] = {f € Sk(N, ) : f, h have the same eigenvalues for all T]fv7pf N}.

By the theory of newforms, we know

h = P (h|Ba),

d|N/No

that is, f € [h] if and only if f = >/, @ah | B for scalars aq. It is clear from
the general theory of newforms that any such f is a simultaneous eigenform for
all Hecke operators TpN for primes pt N. In Theorem 2.1, we have given necessary
conditions on the coefficients ag for f to be an eigenform for TqN for a prime ¢| N
and eigenvalue . However, the necessary conditions are also sufficient.

Proposition 2.2. Let h € Si(Ny,v) be a newform, N an integer divisible by
No, and q a prime dividing N. Set h\T(jVO = \h, and fix kg and constants ogq
for d| N/Ny according to the following scheme (any unconstrained constants are
arbitrary):

o q| Ny and g1 N/Ny : Let kg = Aq.
e q| Ny and q|N/No : Let kg = Ay or 0, and put aq = 0 if ¢*|d, and g =
(“q - )‘q)O‘d/q if q|ld.
e qf No: Setag =0 if ¢®|d.
(i) Let kg = 5(Ag=£ (/A2 — 4p(q)g"~1), and note kq # 0, Aq. For ¢*|d put ag =
0; for q| d, put aqg = (kg — Ag)ta/q-
(ii) Moreover, if ¢*| N, we can also let k, = 0, and for ¢*||d, put agq =

w(q)qk_lozd/qz and for q||d, put g = —Agagsq = (Kq — Ag)ay/q-

Then f = EdW/No agh| By is an eigenform for TqN with eigenvalue k.
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Proof. The proposition follows immediately from the computations already present
in Theorem 2.1. O

3. Comparison to Choie-Kohnen

As in the previous section, let h € Si(No,v) be a newform, and N an integer
divisible by Ny, and denote the class of h by [h]. From [1, 3|, we know that if
S,:r(No7 1) denotes the space generated by newforms of level Ny,

SN = P P (S¢(No,v) | Ba)

cond(v¥)|No|N d|N/Ng

STSL

cond(¢)|[No|N h

where the last sum is over normalized newforms h € S, (No, 1).

Lemma 3.1. Let q be a prime dividing N. Then TqN is diagonalizable on S (N, )
if and only if there is a basis of Sk(N, ) consisting of simultaneous eigenforms for
TqN as well as for all Tzfv,p a prime with pt N. Moreover, for each No| N and each
normalized newform h € Sk(No, ), TqN is diagonalizable on Sk(N,v) if and only
if it is diagonalizable on each class [h].

Proof. For both statements, only the forward direction requires proof. If TqN
is diagonalizable on Si(N,v), then Si(N,v) = @D, E; where the E; are the
eigenspaces corresponding to the distinct eigenvalues of T;V . For a prime p{N,
the Hecke operators Tzfv and T;V commute so each eigenspace is invariant under all
the TIfV,p 1 N. Since Hecke theory tells us that Sk (N, 1) admits a basis of simulta-
neous eigenforms for all the Tzfv , and each F; is invariant under this collection of
operators, each E; also admits such a basis, B;, every element of which is also (by
definition) an eigenform for 7.

Now consider the second statement. Every element of the basis B; belongs to
a unique class [h] of some newform h € Si(No,v) with No|N. We collect the
elements of the B; which belong to a given class [h]. Since Si(N,v) is the direct
sum of such classes and all the B; taken together span Sy (N, ), we see that TqN is
diagonalizable on each class [h]. O

Below we reverse the process of the lemma, starting with the class of a newform
[h], and investigate how to decompose the class [h] into subspaces, extracting the
various eigenspaces of TqN for ¢| N, and give conditions under which T;V can be
diagonalized on [h]. We then use these results to generalize those of Choie and
Kohnen [2]. We also apply these results in Sec. 4 to determine when there exist
simultaneous eigenforms for all the Hecke operators, and determine the number of
such eigenforms which are linearly independent.
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For a prime ¢|N and h € Si(Nop,?) a newform, Theorem 2.1 implies that [h]
contains at most three eigenspaces for TqN . With f] TqN = Kqf, we have

{A\¢} when ¢ 1 N/Ny,
{0, Mg} when ¢ | N/No, q|No,

ww€ {300 DR W@ED}  when gl NN, afNo and (D
{07%(Aqi./A3—4w(q)q’“)} when ¢* | N/No, g1 No.

When ¢ t N/Ng, we have observed (Proposition 2.2) that every element of [h] is an
eigenform for TV having eigenvalue )y, so T diagonalizes on [h]. Thus we restrict
our attention to the case where ¢ | N/Ny. Write N/Ny = ¢+ My, with g M. For
do | Mo, put Ug, = @"_ (| Byyqi) where (h| Bq) denotes the C-linear span of h | By.
Using that [h] = €D do| Mo Ua,, Theorem 2.1 shows that every eigenform f € [h] with
f | an = quf has the form f = ZdOUWO fa, with fg, = Z?:O O‘q’idoh | Bq'ido e Uy,
and Proposition 2.2 shows that each fq, also satisfies fq, |T;V = Kqfd,- Thus T;V
diagonalizes on [h] if and only if it diagonalizes on each Uy,. Further, Theorem 2.1
and Proposition 2.2 also show that each subspace Uy, contains precisely m linearly
independent eigenforms for TqN where m is the number of distinct eigenvalues x,
given in Eq. (3.1). Since the dimension of Uy, = p+ 1, T}V diagonalizes on [h]
if and only if n = p + 1. Note that since m < 3, T,V diagonalizes on [h] only if
i < 2. Moreover when p = 2 and ¢ | Ny, we see from above that there are at most

m = 2 < 3 = p+ 1 distinct eigenvalues, so once again TqN cannot diagonalize in
this case.

We quantify the above observations a bit further. Still assuming ¢ | N/Np, if
q| Ny, there are two distinct eigenvalues precisely when A, # 0; by [3, Theorem 3]
this occurs if and only if ¢ || No or ord,(cond(y)) = ordy(No). If ¢ Ny, there are
two independent, eigenforms for T,V (with nonzero eigenvalues k) precisely when
A2 # 4p(q)g" 1, that is when ), fails to achieve the Deligne bound. There is an
additional independent eigenform with eigenvalue x4, = 0 if and only if ;1 > 2. For
later convenience we denote by Qp,  the set of primes ¢ | N/Ny (just characterized)
yielding a maximal number of distinct eigenvalues x4, and tabulate their number.

p = ordy(N/Ny) > 1; ¢ € Qn,.» provided: || Number of distinct eigenvalues r,

q| No | ordy(cond () = ord,(No) or ¢|| Ny 2

qtNo A2 # 4Y(q)g" ! min(3, p + 1)

= ordg(N/Ny) > 1; ¢ ¢ Qn,.» provided: || Number of distinct eigenvalues x,

q|No ¢* | No and ¢ | No/cond(y)) 1

qtNo A2 = 41p(q)g" ! min(2, /1)
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With this in hand, we now generalize the first part of Choie and Kohnen’s
theorem [2] characterizing when “bad” Hecke operators can be diagonalized.

Theorem 3.2. For a prime q| N, the Hecke operator T(jv is diagonalizable on
Sk (N, ) only if Si.(N,v) contains no newform of level No with ¢ | N/Ng, or with
q> | N/Ng and q| No. Assuming this condition, T(jv 1s diagonalizable if and only if for
each Ny with cond(¢) | No | N and each newform h € Sk(No, ) with h| TN = Ah,
either ¢4 N/Ny or ¢ € Qng.h-

Proof. We know that

sy = @ P,
h

cond(v)|No|N

where the sum is over normalized newforms h € Si(Np, ). By Lemma 3.1, it
suffices to determine when T} is diagonalizable on each class [h]. Given a newform
h € Sk(No, 1), we have seen from the discussion preceding the theorem that T;V is
diagonalizable on [h] only if 1 = ord, (N/Ny) < 2 and if i = 2, g1 Ny. Thus the given
conditions are necessary. Moreover, if g1 N/Ny, every element of [h] is an eigenform
for T, so we restrict our attention to the case ¢| N/No.

Consider a newform h € S;(Ny,). As before, write N/Ny = ¢* My, with
q1 My, and recall we are assuming p = 1, or p = 2 and ¢{Ny. For dy| My, put
Udy = B g(h| Bgyqi). We have observed above since [h] = Do 11, Udo» that Y
diagonalizes on [h] if and only if it diagonalizes on each Uy, , and that TqN diagonal-
izes on Uy, if and only if dim Uy, is equal to the number of distinct eigenvalues &,.
From the tables above it is clear that the dimension (u + 1) equals the number of
distinct eigenvalues if and only if ¢ € Q.- |

We summarize the above results in a more compact formulation.

Theorem 3.3. Let q be prime, and let b be a Dirichlet character with conductor
f = q"My, with v >0 and g1 My. Let M be an integer with Mo | M and q t M. If
s <2, then T, is diagonalizable on Sk(¢" "M, ) if and only if one of the following
18 true:

(1) s=0,

(2) s=1andv>1,

(3) s> 0,v =0, and Sp(¢"*M,) contains no newform h of level Ny with q{ No,
TqNOh = A\gh, and )\(21 = 44(q)q" 1, or

(4) s = 2,v > 1, and Sp(¢"T*M,4) contains no newform of level No with
ordy(No) =v orv+1.

Proof. Set N = ¢”"*M. We first interpret Theorem 3.2 in this setting. Since s < 2,
@1 N/j, so Sg(N,) contains no newform of level Ny with ¢3| N/Ny. The only case
in which §| No | N with ¢| Ny and ¢?| N/Ny occurs when s = 2 and ord,(Ny) =
v > 1. In this case, if Si(V,) contains a newform of level Ny then T;V is not
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diagonalizable. Otherwise, T} is diagonalizable if and only if for each §| No | N and
each newform h € Sy (No, 1), either ¢ t N/Ng or ¢ € Qg n-

First suppose that one of the conditions (1)—(4) hold. If (1) holds, then ¢ t N/f, so
q 1 N/Ny for all | No | N, hence TV is diagonalizable. If (2) holds, then ord,(No) =
vor v+ 1 for each f| No | N. In the first case, ord,(Ny) = ordy(f) so ¢ € Qn,,n for
each h with such level. In the second case, g 1 N/Ny. Therefore T;V is diagonalizable.
Now suppose that (3) holds. Then ¢ € Qn,,5 for each newform h of level Ny with
g1 Ny. If ordy(No) = s then ¢t N/Ny. Finally if s = 2 and ¢|| No, then g € Qn;, 5, for
each h with such level. Hence TqN is diagonalizable. Lastly, suppose that (4) holds.
Then each newform h contained in Sk (N, ) has level Ny with ord,(Ng) = v + 2,
so that g1 N/Ny. Therefore T;V is diagonalizable.

Now suppose that none of (1) through (4) is true. Then since (1) is false, s =
lor2 If s = 1, then since (2) is false, v = 0. Then since (3) is false, Si(N, )
must contain some newform h of level Ny with ¢t Ny and T;VOh = \;h with )\3 =
41)(q)g"1. Then q & Qny.h, 50 TqN is not diagonalizable. Now suppose that s = 2.
If v = 0 then by the previous argument, T;V is not diagonalizable. If v > 1 then
since (4) is false, Si(V, ) must contain some newform h of level Ny with either
ordy(No) = v or v + 1. If ord,(Nog) = v, then ¢| Ny and ¢* | N/Ny so T, is not
diagonalizable. If ord,(No) = v + 1 then f|Ny/q and ¢*| No, so ¢ & Qn,.», and
hence T(jv is not diagonalizable. O

In the next result, we extend the work of Choie and Kohnen [2] (where they
considered square-free level and trivial character) by showing that if k is even,
s=1or 2 and v = 0, then Theorem 3.3(3) holds for all but finitely many primes g.

Theorem 3.4. Let k be an even integer, and let i) be a Dirichlet character whose
conductor § divides M. Then T, is diagonalizable on both Sy (qM, ) and Sk(q> M, 1))
for all primes q 1 M except for a finite number r < C(M, k, ) of exceptions, where

C(M,kw):= Y dimS; (Mo, ) 1+Z[9M°’},

cond(v)| Mo | M u>1

and

grek = Y, dim S (Mo, x).

x mod My

Proof. By Theorem 3.3, the only way that a given T, can fail to diagonalize on
either Si(¢M,v) or Sk(g®>M,)) is if there is a newform h € Si(Mo,v) for some
My with | My | M which has TMh = X;h with A2 = 44(q)¢"~*. Fix an M, with
flMo| M and a newform h € Si(My,) with eigenvalues A,. Let K} be the field
obtained by adjoining all the A, to Q. It is known ([6, Proposition 2.8]) that K}, is a
number field and contains the Nth roots of unity which arise as values of . Let ¢ be
a primitive 2Nth root of unity, so that Q(¢?) C K}, and hence K (¢)/K}, is at most
a quadratic extension. Since k is even, /g € Kj(() for each prime ¢ { M such that
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)\3 = 41p(q)g"'. We call such a ¢ an exceptional prime for h. Now if p1, pa,...,ps
are different primes, the degree of Q(\/p1, /P2, - - -, /Ps)/Q is 2°. Since

Q C Q(y/q : g an exceptional prime for h) C K, (¢)

and K, is a finite extension of Q, there must be a finite number 7}, of exceptional
primes for h. In particular, 7, < ords([K} : Q]) + 1.

The group Gal(Q/Q) acts on normalized eigenforms in Si(My,v) by send-
ing f = > aln)g” € Sk(Mo,v) to f7 = > a(n)?q¢™ € Sk(Mo,y7), for each o €
Gal(Q/Q) ([6, Proposition 2.6]). Let Kz, = [[ Kn be the composite field where
the product runs over all characters xy modulo My and all newforms h € Sy (Mo, x).
Since each automorphism of the Galois closure of Ky, /Q permutes these new-
forms, it can be considered as a subgroup of Sy,, ,, the symmetric group on gz«
elements, where

gre k= dim Sy (Mo, x).
x mod My

Then [Kh : Q] ‘ [KMo,k : Q} |9M07k!’ SO

ryp, <14 orda(ga,k!) =14+ Z [

p>1

gMo,k]
2w 17

Now T, diagonalizes on neither Si(qM,) nor Si(q?>M,) if ¢ is an exceptional
prime for a single newform h € Si(My, ) for any §| My | M. Therefore we get an
upper bound for r, the number of primes ¢ for which 77, fails to diagonalize, by
summing over all such newforms. Then

r < Z dimS;(Moﬂl)) "Th
cond ()| Mo| M

< Y dmsi(Mow) 1+ [BRE] ). o

cond ()| Mo| M p>1

Remark 3.5. One could obtain a more explicit, though considerably larger, upper
bound. For example, gar,.x < dim Si(I'1(Mp)) for which one could use the known
dimension formulas.

We conclude this investigation of diagonalization with the following “negative”
result for levels divisible by a high power of ¢.

Theorem 3.6. Let q be prime, and let b be a Dirichlet character with conductor
f = q" My, with v >0 and qt My. Let M be an integer with My | M and qt M, and
let s > 3 be an integer. Except possibly for finitely many k > 2 with (—1) = (—1)*
and finitely many q, T, is not diagonalizable on Si(q" M, ).

Proof. Let N = ¢"**M and Ny = ¢""2M. For each s > 3, we have §| No| N.
Further, ¢ | N/No, ¢*| No and §| No/q. Hence if Si(N,) contains a newform h of
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level Ny, then ¢ & Qg .n, so TqN is not diagonalizable. But by Theorem 6.1 (see
Sec. 6), for all but finitely many k& > 2 with ¥(—1) = (—1)¥ and finitely many
q,dim S;"(No, 1) > 1, and hence Ty, is not diagonalizable on Sk (N, 1)). O

4. Simultaneous Hecke Eigenforms

We now turn to the question of characterizing simultaneous Hecke eigenforms in
Sk(N,v) for all Hecke operators T}V, ¢ a prime. From the previous section and
the theory of newforms, for a given simultaneous eigenform f € Si(N, ), the only
primes which need careful analysis are primes g | N/Ny where Ny is the level of the
associated newform. We make this explicit.

Theorem 4.1. Let [ € Sip(N,¥) be a nonzero simultancous eigenform for all
the Hecke operators TZN,é a prime, and put f|TqN = kqf for each prime q|N.
Associated to f is a newform h € Sy(No,¢) (with cond(v))|No|N) such that
= ZdW/NO agh | Bg. As before, put h|TqN0 = MNh. Then ay # 0, and normal-
izing with ay = 1, we have that oq = [], 4 ctqra, where pq = ordy(d). Further, we
have age =0 for e > 3, and
0 q| No,
ag = (kg —Ag) and ap =140 g1 No, Kq#0,

Y(q)g" ™t qtNo, kg =0.

Proof. This is immediate from Theorem 2.1, which also indicates the possible
eigenvalues xg. |

Remark 4.2. The converse to the above theorem is also true. Starting with a new-
form h, and choosing the x4 and aq4 as in the theorem, Proposition 2.2 guarantees
that f =3 aah | Ba is a simultaneous eigenform for all TN with ¢| N, and hence
for all TEN , ¢ a prime.

Now we wish to count the number of linearly independent simultaneous Hecke
eigenforms that are associated to a given newform.

Theorem 4.3. Let h € Sk(No, 1) be a newform and let N be an integer such that
No | N. For all primes q| N, put h | TqN0 = Agh. The number of linearly independent
simultaneous eigenforms f € Sk(N,v) which are eigenforms for all {TN}, € a prime
and which have the same eigenvalues as h under all T,p t N is 21413181 where A
and B are sets of primes dividing N/Ny satisfying

q € B=B(N,No,h) < q1No,q* | N/No, X2 # 41p(q)q" ",
and
q|No and N, #0, or
g€ A= A(N,No,h) & < gt No,  ql|N/No, o #49(q)g"", or
qtNo, ¢*|N/No, A2 =49(q)g" .
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Remark 4.4. By [3, Theorem 3], the first condition stated to define A (¢ | Ny and
A\, # 0) is equivalent to g || No, or ¢? | Ny and ord,(cond(z)) = ord,(No).

Proof. Theorem 4.1 indicates the shape of every simultaneous eigenform f of level
N associated to the newform h : f = Ele/NO agh | Bg, where without loss, a; = 1,
and aq is completely determined as the product of cge where e = ordy(d). We see
all such values age are uniquely determined except for the value of ay = kg — Aq
which has as many distinct values as distinct eigenvalues k4. It is now a simple
matter using Theorem 2.1 to verify that the sets A and B characterize those cases
in which k4 can have two or three distinct eigenvalues. O

5. Examples

Theorem 4.3 tells how to compute the number of simultaneous eigenforms in
Si(N, 1)) associated to a newform h € Sy (No, ) with h| TN = Ayh in terms of the
sets A and B. Knowledge of the eigenvalue )\, for ¢ 1 Ny can often be problematic,
but there are cases in which it is easy to calculate explicitly the sets A and B. We
characterize one particularly useful situation, and give some examples.

Let Ny | N with N and Ny having exactly the same prime divisors. Then B =
B(N, Ny, h) =0, and by Remark 4.4

A= A(N, Ny, h) ={q| N/Ny : ordg(Ny) =1 or ord,(cond(¢))}. (5.1)

Example 5.1. Let ¢ be a character with square-free conductor D, and let N be
an integer with D | N | D2. Then Si(N,) has a basis consisting of simultaneous
eigenforms for all Hecke operators.

Proof. Let Ny be such that D|Ny|N, and consider a newform h € Si(No, ).
To compute A, let ¢| N/Ny be a prime. Observe that ¢| N/Ny implies ¢ | D. Since
N|D? 1 < ordy(Ng) < ord,(N) < 2, and if ord,(No) = 2, then qf N/Ny. Thus
q| N/No implies ord,(Ny) = 1 and hence g € A. Thus 214l = ¢(N/Ny) (since N/Ng
is square-free), where o¢(m) is the number of positive divisors of m. Since

SN 0)= @ P SiNo,v) | Baz= €D 00(N/No)S{ (No, 1),

D|No|N d|N/No D|No|N

with the isomorphism as modules for the Hecke algebra generated by TZfV for all
primes p t N, the result is clear. In the isomorphism we use the convention that for
a space S,mS =@, S. O

As a second example, we consider a situation in which the conductor of the
character v can be large.

Example 5.2. Let ¢ be an odd prime and v a character of conductor ¢, v > 1.
Then Sk (¢"*#, 1), u > 0, has a basis of simultaneous eigenforms for all the Hecke
operators when p = 0, 1; for g > 3 it has such a basis only for finitely many & and q.
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Proof. The only issue concerns the diagonalizability of the operator TqN where
N = ¢"™*. The case of u = 0,1 is addressed by Theorem 3.3, while the case of
1 > 3 is addressed by Theorem 3.6. O

Example 5.3. Somewhat complementary to the previous example, we consider
the case of Si(¢?,1) providing instances when TqN can be diagonalized. To that
end, we consider normalized newforms h of level 1, ¢ and ¢? and whether TqN can
be diagonalized on [h]. For level ¢? the answer is affirmative from the theory of
newforms. For each newform h € Si(q,1), Eq. (5.1) yields A = {¢q} providing the
requisite two linearly independent simultaneous eigenforms, h and h—Azh | B,. Now
consider h € Sk(1,1). When k < 12 or k = 14, S;(1,1) = 0, and there are no classes
to consider. On the other hand, when Si(1,1) # 0, the situation is more subtle.
By Theorem 3.3(iii), 7V will diagonalize on [h] provided that A2 # 4¢F=1. As an
example, consider weight 12. There are three simultaneous eigenforms in Sy2(¢?,1)
equivalent to A = (27)*2 3" | 7(n)e*™"* € Si5(1, 1) with Fourier coefficients given
by the Ramanujan 7-function. Choose a prime ¢ for which A2 = 7%(¢) # 4¢''; note
that this is true for all primes g since 7(q) € Z while 2¢*'/2 is not.

Using Theorem 4.1, we produce three linearly independent simultaneous
eigenforms f = A + oA | By + a2 A| By satisfying f | ng = Kqf where kg = 0,

3(Ag £ /A2 — 4q¢'") (all distinct). Thus T, diagonalizes on Si2(q?,1).

Example 5.4. The results of Sec. 2 can also provide a multiplicity-one theorem in
the following narrow context. Let Ny > 2 be an integer, and consider any newform
h € Sk(NE,1). Let N = NZN; where any prime dividing Ny also divides Np. Let
f € Sk(N, 1) be a simultaneous eigenform for all Hecke operators T, for pt N which
is equivalent to h. Then f = h.

Proof. This is immediate from Proposition 2.2, since for each ¢ | N, the gth eigen-
value of h(\;) is zero forcing f = >~ aqh|Bg = h. 0

Remark 5.5. Another point worth noting concerns the interpretation when the
sets A and B are empty. In such a case, Theorem 4.3 implies there is a unique
simultaneous eigenform f in Sy (N, ) associated to a newform h € Si(No,v). It
is not necessarily the case that the simultaneous eigenform is the newform h. For
example, choose a prime ¢|| N/Ny with gt Ny. Then B = () and ¢ ¢ A means
that )\3 = 4(q)g" ' # 0 and hence by Theorem 4.1, f = Zd‘N/NO agh | By with
g =—MAg/2#0.

6. Dimensions of Spaces of Newforms

To justify the last part of Theorem 3.3, we compute a lower bound for the dimension
of the space of newforms S,j(q”*r, 1) where ¢ is a prime, r > 2, and ¢ a character
with conductor ¢”,v > 0. We make implicit use of the trace formula for Hecke
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operators as given in [5], in particular Ross’s formula for the dimension of the space
of cusp forms. For trivial character, one can find a formula for the dimension of the
space of newforms in [4].

Theorem 6.1. Let q be a prime, and i be a Dirichlet character of conductor
f = q¢"Moy,qt Mo,v > 0. Let © be an integer, r > 2, and let M be any integer
divisible by My (¢ 1 M); we further require that ords(M/My) # 1. Then except for
finitely many values of k > 2 with ¢(—1) = (=1)* and finitely many values of q, we
have the dimension of the space of newforms S,j(q”‘”M, V) is positive.

Proof. We consider the Hecke algebra generated by all operators T}, with p { ¢,
and recall our shorthand of writing mS for @~ S in any isomorphism of modules
for the Hecke algebra. Let N = ¢“*"M. Then

= P P SiNo,v)|Ba

I No| N d] N/No

= P oo(N/No)S;f (No, )

fINo|N

= P oo (N/df)S;f (df, ¥).

dIN/f

We adapt the notation of Martin [4], who gives a formula for the dimension of the
space of newforms with trivial character, and put

g90(d) = dim Si(df,v), g (d) = dim S} (df, ¥).

The above decomposition yields the following relations of dimensions:

9o(N/f) = g (d)oo(N/df) = (g3 * 00)(N/f), (6.1)

dIN/f

where x is the standard Dirichlet convolution of arithmetic functions. While g7 (n)
is not a multiplicative function, o¢(n) is, and in complete analogy with [4], we let
A be the Dirichlet inverse of og : A = p* p (p the Mébius function). Thus A is
a multiplicative function with values (for p a prime) A(p) = —2,\(p?) = 1, and
A(p?) = 0 for j > 3. Taking the Dirichlet convolution of both sides of Eq. (6.1)
yields

dim S (N, 9) = g (N/§) = Y go(d) MN/df) = (g0 * A)(N/). (6.2)
dIN/§

The goal is to use the above expression to produce a formula for the dimen-
sion of the space of newforms as a function of the prime ¢ and weight k. Using a
parametrized version of the notation from [5], we obtain a formula for the dimension
of the space of cusp forms with arbitrary character:

go(d) = —so(df) — s1(df) + 6 + m(df) — p(df), (6.3)
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where letting w(n) be the number of prime divisors of an integer n, we have
[so(df)| < 204072,
1
sa(af) < 2,

5_{1 ifk=2 and ¢ =1,

0 otherwise,

m(df) = (k= 1>al]‘1—[(l +1/¢) (¢ aprime), and
¢|df
pldf) = 5 [[pax(0) (¢ a prime),

£|df

where par(¢) are the parabolic terms as computed in [5, Theorem 1].
Now we distribute the convolution of A through the summands defining gy and
obtain

G (N/F) =) go(d)AN/df)

dIN/§
==Y so(d)AN/df) = > si(dP)AN/df) +6 > A(N/df)
dIN/f AN/ AN/}
+ D7 m(df) AN/df) — > p(df) M(N/d). (6.4)
dIN/§ dIN/§

If we put N/f = ¢" M, with ¢ { My, then since r > 2,

> MNV/df) = Z)\ > AM/dy) =

dIN/f dy | My

SO

g (N/F) = go(d)A(N/df)

N/
== > (soldf) + s1(df))MN/df) + > (m(df) — p(df))MN/df), (6.5)
dIN/§ dIN/f
hence
g9g (N/§) = lgg (N/7)]

Y

> (m(df) — p(df))MN/df)| = | D (so(df) + s1(df))MN/df)| . (6.6)
dIN/§ dIN/f

We shall show that the second term is bounded and the first goes to infinity as ¢
or k do which will establish our result.
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We consider the second term:

> (so(df) + s1(d))AWN/d)| < D (Iso(df)] + |s1(df))MN/dF)]
dIN/f dIN/§

< Y 22U IN(V/df), (6.7)
dIN/f

since from above we have that
1
[so(dP)] + [s1(df)| < 220D 72 4 2200 < 220D, (6.8)

Writing N/f = ¢" My with ¢4 M; and recalling that f = ¢” My, we have

S 2NN/ = ST S 246 T M|\ /)|

dIN/f Jj=0 di| My

<D MG D 2D IN(My /dy)|
7=0 dy | M1

< 2NN (M /dy),
d1|M1

which is a constant depending only on M and independent from k and ¢. Thus it
remains only to show that

> (m(df) — p(df))MN/df)| — oo,
dIN/f

as ¢ or k go to infinity. What we show is that

S (m(d) — p(af)ANN/df) = "L aM(q) - BP(a),
AN/

with constants A, B depending only on M, A > 0, and M, P functions of ¢ with the
expression having the desired limits as ¢ or k£ go to infinity.
We first consider the “Mass” term: }_;y /; m(df)A(N/df). For an integer n, let

mo(n) = n[],, (1 4+ 1/¢) where the product is over all primes ¢ dividing n. Then

m(n) = E=Lmg(n), and my is a multiplicative function. Thus once again writing

N/f = q"M; with g1 M; and recalling that {f = ¢ My,

S m(@) AN/ = B S mo(a NG Y mold Mo)AM: /)
d|N/f j=0 dy| My
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k—1 _ by
= T(WO(QWT) —2mo(q" ") + mo(¢" T ?))

X Z mo(di Mo)A(My/dy)
di[ M,

- E/\/l(q) Z mo(di Mo)A(M1/dy),

12
d1 ‘Ml
where

(1”+T2<1—|—l>((1—1)2 ifv+r—2>0,
M(q) = q

P—-q—1=(q—-1)2+q-2 ifv=0,7r=2.

We now wish to show that >, |, mo(diMo)A(Mi/dy) is positive. Since both mg
and \ are multiplicative, it suffices to show this when M; = p°, My = pf are prime
powers (e + f > 1).

Z mo(dy Mo)AN(My /dy)

d1|]\41

> mo(p)APT)
=0

mo(p') ife=0
= —2mo(p?) +mo(p’*") ife=1
mo(p¢~>H) = 2mo(p ) +mo(pety) ife>2
pl+pft ife=0
pf Tt —pf —2pf1 ife=1
N2opo1 ife=2f=0

P B3p+1)(p—1)? ife+ f >3,

where we understand p~! = 0, and this sum is trivially checked to be positive for all

primes p > 2. Note the case with e = 1 (when p = 2) is precluded by the theorem’s
hypothesis ords(M/My) = ords(M;) # 1.

Finally we turn to the parabolic terms: 3, ; p(df)A(N/df). For an integer n,
let po(n) =], par(¢) where the product is over all primes ¢ dividing n, and par(¢)
is defined as in [5, Theorem 1]. Then p(n) = (1/2)po(n), and pg is a multiplicative
function, po(1) = 1. Once again writing N/f = ¢" M with ¢ { M; and recalling that
f = q" Mo,

> pldHA(N/df) = Zpo YNG) D poldy Mo)A(My /dy)

d|N/f dy | My
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1

§(p0(qy+r) —2po(q"" ) + po(g”T 7))

X Z po(di Mo)A(My/dy)
dy| M,

= %’P(q) Z po(dlMo)A(Ml/Ch);
di| M

where P(q) = (po(q"*") = 2po(¢”*"~") + po(g" "))
Thus it remains only to show that

%AM() BP(q)'—>oo, as korq — oo

with constants A, B depending only on M = MyM;, A > 0. The case for k — oo is
clear, so we focus on this expression as a function of gq.

To compute po(q”*7), we set a bit of notation. Let p; = |“2]. From [5,
Theorem 1], we have

2¢) if v > pj+1,
po(¢”7) =par(q) = (¢" + ¢~ 1) ifv<pj, v+ jeven,
2qHi if v <pj, v+jodd.

Since we need to compute P(q) = (po(¢"*") — 2po(¢"T"~1) +po(¢¥+7~2)) as part of
|55E AM(q) — BP(q)|, we need to break the argument into cases.

Case 0. Special case v = 0,r = 2.

—1
Ao - )| = LA - a1 - Bla-2)] -0 g

Henceforth we can assume v+ > 3, so M(q) = ¢" 7" 2(1 + %) (¢ —1)%

Casel.v > pu,. + 1. Then v > pp +1 > pp—1+1 > pir_2 + 1. Note that this case
cannot occur unless v > 3. Then P(q) = 2¢"%(q — 1)?, so

‘—AM BP(q)‘

‘—Aq”“ 2 (1 + (11) (¢—1)% = B(2¢" ?(¢—1)?)

1

k—
=q¢"2%(g—1 A — | —B| - 5 ¢ — 00.
7" “(q ) 12 <+q) ' as q
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Case 2. v < pip—2. Then v < pip—o < ptp—1 < iy
When v + r is even, p, = (v +17)/2 > 2, and we have
P(q) — (qur + quwl) — gttt 4 gtz 4 qﬂr7271
— (ql"r + qﬂf*l) _ 4q/14r*1 + q/lfrfl + qNT*Q

= ¢ (g —1)%,
SO
‘—AM BP(q)‘
k’_ v+r—2 1 2 -2 2
=|—5-4q 1+=)(¢—1)"=B(¢" (¢ —1)7)
12 q
k—1 1
=g 2(q—1)?|—A¢" (14+-) —B| - 00 asq— oc.
12 q
When v +ris odd, pp = ptr—1 = ptr—2+ 1, so
P(g) = 2¢"" = 2(¢" + ¢ 71 +2¢M2 = 0,
and

‘—AM BP(q)‘
k—1 1
A (14 1) (g—1)?
' oA ( . (¢-1)
Case 3. pr_2 < v < .

If v + r is even, the condition translates to “2- —1 < v < YF%, so that p, =
Y — vy =7, and pp_1 = pir—2 = ptr — L. If v 47 is odd, it translates to “H=1 —
1<V§%M,sothat,urz,ur_l:%Mzuzr—l,and,ur_gzur—l.

If v 4 r is even, we have

Pla) = (¢" +q" ") —4q" ! +2¢"°
_ (qu +qu—1) _4qu—1 +2ql/—2
=¢"2(¢" = 3¢+2) = ¢"*(q—1)(g — 2),

SO

k-1
12

E=1 M) qu)‘

k—

= [Egtar2 (1 D v - et -

— -0 [P Ao (143) - Bu-9) ~ % i
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If v + 7 is odd, we have
Plg) = 2¢"" —2(¢" " +¢" %) +2¢"?
=2¢" —2(¢" +¢"7 ) +2¢"1 =0,

SO
k—1
—5—AM(q) — BP(q)
12
k—1 1
= |— A2 1+ =) (¢g—1)? -0 asq— oco. O
12 q
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