SUMS OF SQUARES OVER FUNCTION FIELDS

KAaTHY MERRILL AND LYNNE H. WALLING

Given a polynomial o with coefficients in a finite field F, how many ways can
we represent « as a sum of k squares? The answer to this question is all too often
“infinity.” Thus instead we ask: What is the value of the “restricted representation
number”

r(a,m) =#< (B1,...,0k): Zﬁ?:aand deg3; <m 7

J

Eisenstein [ref?] approached the analogous problem over Z using the arith-
metic theory of quadratic forms; this approach was developed further by Smith
and Minkowski [ref?], who were able to present formulas to solve the problem for
k < 8. Alternatively, Jacobi used the theory of elliptic functions and even powers
of the classical theta series, 6(z), solving the problem for k = 2,4,6,8. Hardy called
Jacobi’s approach “simpler” than that of Smith and Minkowski, and remarked that
“it has another very important merit, that it can be used — within the limits of
human capacity for calculation — for any even value of s” (here s = k) [ref: paper
starts on p. 340]. Then in [ref — same as above|, Hardy used the theory of elliptic
functions to treat the case where £ =5 or 7. Hardy wrote that the solution to
the problem for £ > 8 involves “other and more recondite arithmetical functions”
[ref, p. 3407]; still, in [ref #4 cited on p. 344], Hardy and Ramanujan introduced
techniques that led to asymptotic formulas for these representation numbers with
k arbitrary (k > 4).

We note here that in light of our present knowledge of holomorphic automorphic
forms, it is not surprising that Hardy and Ramanujan obtain only asymptotic for-
mulas for k£ > 8. Their approach involves the study of 6(2)*, which is a holomorphic
automorphic form of weight % for the congruence subgroup I'p(4). When k < 8
and k is even, we know there are no cusp forms for I'g(4) and thus (z)¥ must
be an Eisenstein series (whose Fourier coefficients are well understood and easily
computed). However, when k > 8, 6(2)* is a linear combination of an Eisenstein
series and a cusp form — Hardy’s “recondite” function. The order of magnitude of
the Fourier coefficients of a cusp form is small compared to that of an Eisenstein
series; thus the Fourier coefficients of #(z)* are asymptotic to those of the associ-
ated Eisenstein series. (To find the dimension of a space of integral weight cusp
forms with level and character, one can use the formula found in [Ross| which is
derived from Hijikata’s trace formula.)
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In this paper we too will use powers of a theta function to study the restricted
representation numbers (o, m) where « lies in the polynomial ring F[T] (T" an
indeterminate); the theta function 6(z) we use was recently presented in [H-R] (see
Thm?). After some preliminary remarks, we show that 6(z) transforms like an au-
tomorphic form of weight 1/2 under the “full modular group” T" (see Theorem 2.4).
Then using rather elementary techniques, we derive a formula for r(«,m). This
formula involves Kloosterman sums when dega > 4, but we are able to compute:
(1) the average value of r(«a, m); (2) the order of magnitude of r(ca, m) as m — oo
or dega — oo; and (3) an asymptotic formula for r(a,m) as k, the number of
squares, approaches co (see Theorems 3.11, 3.14, 3.15 resp.).

For a full account of the history of this problem over 7Z, the reader is refered to
[Grosswald]. To read about automorphic forms over a function field, the reader is
refered to [Weil] and [H-R].

The authors thank Jeff Hoffstein and Jeff Stopple for many helpful conversations.

§1. Preliminaries. One of the most intriguing and most studied structures
in number theory is Z, the ring of rational integers. The theory of automorphic
forms has provided us with some powerful tools to aid us in our study of Z; see, for
example, [Terras]. We review here the basic classical set-up.

To each of the valuations on Q, the field of fractions of Z, we can associate an
“upper half-plane” $§ = G/K. Here G = PSLs(completion of Q) and K is the
maximal compact subgroup of G. An automorphic form on § is a function which
transforms with a factor of “automorphy” under the action of I' = SLy(Z) on 9,

(1) Cf) ta€Z } (see [Shimura’s

and is invariant under the subgroup I's, = {(
book]| or [Koblitz)).

We want to parallel this arrangement to study the polynomial ring, A = F[T;
here F is a finite field and T is an indeterminate. For the sake of clarity, we treat
only the case where F has p elements, p an odd prime. We denote the field of
fractions of A by K = F(T). One of the valuations | - |- on K, the “infinite”

valuation, is induced by the degree map: for a, 5 € A, define
|a/5|oo — pdega—degﬁ.

We adopt the convention that deg0 = —oo, and hence |0|o, = 0. Note that unlike
the infinite valuation on Q — which is absolute value — this infinite valuation is
nonarchimedean; this in fact eases many computations. We let K., denote the
completion of K with respect to | - |; one easily sees that Ko = F((7)), formal
Laurent series in % The “unit ball” or “ring of integers” in K, is

Ono = {2 € Koo ¢ |2]ae <1} =TF[[L]]

(so Ou consists of formal Taylor series in 7). We note here that O is a discrete
valuation ring with a unique maximal ideal Poo = {7 € Ko : |2]eo <1 }.

Let pu be (additive) Haar measure on K, normalized so that u(O) = 1. By
the translation invariance of i, we have that for any a € K,

p({zx: zj=a; for j >n})=p".

(Here = = x;T79.)

Jj2—o0
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Set G = PSLy(Ky); then the maximal compact subgroup of G (with respect to
the standard? topology induced on G by | - |s) is PSL2(O). Thus we set

9 =PSLy(Koo)/PSL2(Os).

In §2 we will define an automorphic form on $.

Remark. Some authors, like Weil and Ephrat, use PGL instead of PSL in the
definition of $). While this choice is irrelevent in the construction of the complex
upper half-plane, it is not irrelevent in the function field setting.

Proposition 1.1. The set

{(‘g T) y=T"" meZ, mGTQmHA}

is a complete set of coset representatives for § = PSLy(Ky)/PSL2(Ox).

a b

Proof. Take z = (c d) € SLy(Ks). Then

1
c l c ] gc — g Y

(a b><g 1) if degd < d
1 (5} egc
¢ d)\-1 0 BES

where z = 2/ means z and 2’ represent the same coset of . Thus z is equivalent
to a matrix of the form

w

0 w!

with w, 2" € Ko, w # 0. Now, w = T™u for some m € Z and u € OF. So

(W ' w0 _ (T "
—\0 w! 0 u/) o T—™
for some z” € Ko. Writing 2/ as T~™(z + T?™v) where x € T?" 1A v € O,
we see that

_ ™ x 1 —v _ ™ T—™mg _ T2m g
*={o ¢+mJ\o 1/)=Vo 7™ )=V 0o 1)

2m 2m’ /
Now suppose z = (TO T) = (TO :Ii ) where m,m’ € Z, v € T*™ 1A,

N
Il

2 € T>™'+1A. Then

—1 ’ ’ ’ ’
Tm =M Tm T ! B T —m Tlm _m(:L" o x)
< 0 T—m ) < 0 T_m/ > - ( 0 Tm—m’ S SLZ(OOO)

Thus T =™, T" "™ € (O, which implies m = m/. So T-™~"(z' —z) =
T72m (2" — ) € Ou. We know z, 2’ € T?™ 1A, so

T2 (2’ — 1) € O NTA = {0} .
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Hence z = 2'. O

The group I' = SLs(A) acts on $ by left multiplication. We expect certain
functions, which we will call automorphic, should transform with some sort of
factor of automorphy; these functions should actually be invariant under the action

" re={(} %) aca).

2m

For such a function f, we fix y = T7*" and let f, be the resulting function

on T'=2mA given by f,(z) = f ((g 916)) Because of the invariance of f under
I'e, we can consider f, as a function on the finite abelian (additive) subgroup
T'=2mA /A of Ko /A. This makes Fourier series in x a useful tool for analyzing
automorphic forms. Before defining the specific automorphic form we will study,
we give a description of Fourier series in this setting.

For z € K, write x = Z?:_Oo z;T7, and let e{x} = exp{2mix,1/p}. We use this
definition on K, /A as well, by making the natural identification between K., /A
and {r € Ky : z; =0 for j > 0}.

Lemma 1.2. The character groups of Koo, Koo /A, and TT=2™A /A are isomorphic
to Koo, T?A, and T?A/T?™ LA respectively.

Proof. For f € Ky, let g be defined by ¢g(z) = e{fz}. Each 13 is clearly a
continuous homomorphism on K,; by restricting to subgroups of monomials, we
see that all characters of K., are of this form. The characters of K, /A consist
of those 15 which are trivial on A, that is {¢)3 : 8 € T?A}. The characters of

T1=2mA/A are then obtained by equating characters of K. /A which agree on
TI=2mA/A.

Elementary harmonic analysis then leads to the following;:

Theorem 1.3. Any function f on $ which is invariant under the action of I'

can be erpanded in a Fourier series f ((g f)) = > gerza ¢8(Y)X (By)e{ Bz},

where cg(T~2M) = pl=2m S eeri—2masn f ((g f)) e{—px) and x = xo., s the
characteristic function of O .

Proof. We fix y = T—2™, and use the Lemma to write

(77 1) =se= X e

BET2A/T2m+1A

where cg(T72") = p' ™2™ 37 cpi2my s fy(2)e{—B2), and where we make the nat-
ural identification between 3 € T2A/T?™ 1A and {3 € T?A : 3; = 0 for j > 2m}.
The theorem then follows by noting that 8 € T2A satisfies deg3 < 2m if and only
if By € O.

While Fourier series of the above form are most central in providing the shape of
our theta function, we will also occasionally make use of Fourier analysis on K., /A
and on all of K,,. Thus we remark here that techniques parallel to those used in the
classical setting allow us to define the Fourier transform of a function f € L'(K,)



SUMS OF SQUARES OVER FUNCTION FIELDS 5

by f(t) = Jx_ [(x)e{—tx}dz, where the inversion formula f(z) = [, f(t)e{tx}dt
(in L') holds for sufficiently nice functions. Similarly, for f € Ll( oo /A), we write

f(8) = proo/A f(z)e{—Br}dr and obtain f(x) = > o7z, f(B)e{Bz}. We will

apply these formulae in settings where convergence is easily established.

§2. The theta series. Now that we know the form of a Fourier series we
can define our theta series. In analogy with the classical theta series, we form the
simplest possible Fourier series attached to squares of the elements of a rank 1
A-lattice, or the shift of such a lattice.

Fix r € Z and set L = T"A. We define the (homogeneous) theta series attached

to L to be
= Z x(yl?)e {xl?} .
leL
For h € K, we define an inhomogeneous theta series:

O(L,h;z) = x(y(l+h)?) e{z(l+n)}.
LeL

(Here z = (?(J) 1) € $.) By L¥ we denote the dual of L:

L¥ ={zcKy: e{at}=1foralllc L} =T?""A.

Note that when L = TA, we have L¥ = L = TA. Hence we consider the lattice
TA to be fundamental, and we let

8(2) = O(TA; 2).

We will eventually show that 6(z) transforms under I'. We first need to estab-
lish some technical Lemmas, and then we need to find an inversion formula for
inhomogeneous theta series.

Lemma 2.1. Let x € KX

(o o))

/ e{xb}db:{p f deg <

0 otherwise.

and take t € Z. Then

Proof. If degz < t then e{xb} = 1 for any b € P’ and so the integral is equal

to the measure of P! . Now suppose n = degz > t. Note that e {zb} = e{xb'}
whenever b — 0 € P . Thus

[ ctat) db—ppn) > cfat)

bEPL/PL

=p " Y e{T(mnbi—n+ -+ z10eby)}
b_t,...,b1_n€F

=0

since x, # 0 and hence the sum on b;_,, is a nontrivial character sum. [
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Lemma 2.2. Takev € OF andn € Z. Then

> e{Tvc*} = p? (volp)"V/(—1[p)"
c€O0 /P,
where we take the negative real axis for our branch cut for the squareroot function.
Proof. One easily sees that

Z e{T"vc’} = Z e{T"v(c* 4+ 2cd + d*)} .

c€000 /P, €O /P L
depnt/pn,

When n > 1, e {T"vd?} =1 for d € P2'; also, d — e {2T"cdv} is a character on
P /P" which is trivial exactly when ¢ € PBo. So for n > 1,

Z e{T”vcz}:p Z e{T”vcz}

c€0o0 /L, c€Poe /P
=p Z e {Tn_QUCQ} .
Ceooo/mZCTQ
Arguing by induction on n we find that

n

p2 if n is even,

Yoo e{Tc*} = { ot

n—1 ) .
c€000 /P, p =z ZCGON/&TJOOQ{TUC} otherwise.

Now,

Z e{Tvc*} = Zemp{Qm’vocQ/p}

c€O 6 /Poo celF

= (volp)/(~1|p)p=

where the last equality follows from the evaluation of the Gauss sum ) __p exp {2m’v0 2/ p}l
(see §9.9 of [Apostol]). O

With these Lemmas in hand, we merely use Poisson summation to prove the
inversion formula (cf. [classical ref?]).

Theorem 2.3 (Inversion Formula). Let L = T"A with r > 1, and fiz h € L#.

Let —1 denote (_01 (1)) z where z = (gé :f) €N, y=T>" and x € T*"T1A

with degree n. Then
O(L,h;z) = pl_ri Z e{2sh} 0 (L, s; —1>
\/E seEL# /L z

where

[ if v =0,
\/E_{p‘%(xn!p)” (=1[p)™ ifx #0.
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Proof. We first establish the Theorem when h € L#. Choose z = (g {f) € 9.

We can assume y = 172" for some m € Z, and x € T?™HA. If x = 0 then

(g f) = (‘g ?), thus, replacing x with y if necessary, we can assume degx =

n > 2m. For b € K, let

¢(b) = x(y(b+h)*) e {a(b+ 1)} .

Then for s € K., the Fourier transform of ¢ is
o) = [ owe{=st} av
We are using additive Haar measure, so we can replace b with b — h; thus
d(s) = e{sh} /K X(T?"0%) e {xb*} e{—sb} db
=e{sh} /qs e {xb® — sb} db

where the last equality hold since

1 ifbePL,

T2mb2 _
x( ) {O otherwise.

Now, suppose ¢ € P and b € P, Then deg 2xbc < 0 and deg zb? < 2m—n < 0;
hence

/ e {xb®> — sb} db
B

m
oo

= Z e {zc® — sc} e{—sb} db

cEPrm /P Poo!

and by Lemma 2.1,

pmT" Z e {x02 — sc} if degs < n —m,
= c€EPL /P
0 otherwise.

So suppose degs < n —m. Then 5= € P, and thus

2

S efartoae) = Sefrte- g} e}
ceP /Pl -
2
:ge{xcz}e{—i_x}.
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By Lemma 2.2,
> e{xc®} =p T3 (2alp)"V/(—1p)".
So
: e{sh— 5 }pE (walp)"/(=Tlp)" if degs <n—m
0 otherwise.

Now we mimic the classical technique of Poisson summation. Define the function

¢ on Ko /L by
=> (t+b).
beL
We note that

£(s) = OO/L > s

se L#

for s € L#. Thus, by the calculation above, & has a finite Fourier series, so that
§(t) = D e &(s)e{st} pointwise. Therefore, at t = 0, we obtain

> (b) = (volKoo /L)1 (?2) > o(s)

beL seL#

and replacing s by 2s,

Pl 3 e st e {1t

x
seL#
n 1
— T, =5 " n 2 T2m—2n 2 - 2 )
Pl 3 T e e{ -2 07}

LeL

Thus

O(L,h:z) = p'~"p~ 2 (z,|p)"/(—1|p)" Z e{2sh} O(L,s; ——)

seL/L#

Now suppose h & L#. Choose a € Z, such that T2°h € L#. Letting T2z

—2a
denote (TO (1)) z, we see that O(L, h;z) = 0(T*L, T%h;T~2%2). Applying the

above formula to @(T°L, T%h; T~2%z) establishes the Theorem for all h. O

As in the classical case, it is relatively simple to derive a transformation formula
once one has an inversion formula. Thus our proof of the transformation formula
for function fields follows classical lines (see, for instance, Thm? [Eichler?]).

Theorem 2.4 (Transformation Formula). Let L = TA and 6(z) = 6(L,0; z).
For

a b aztbh a b ;L é 0
(c d)GF(deGS’),letchrd denote(c d)z. Let 2/ = ¢ d z. Then

9<az+b) _ VZz

cz+d
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where

x(d)=p= 28 > e {—252} :

teL/dL

Proof. If d = 0, then ¢ # 0 and we can replace <CCL Z) with

()= ) G)

Since 0(L; z) is invariant under the action of (1) 1 , we can assume d # 0.
Nttht“z+b—’b—1% ' where 2/ = = = (4 U Th
ote that ~=7 = 2" + 4 = 0 1 Z° where 2’ = g = cdz' us

az +b b
O(L; ——)=0(L; 2" + =
(’Cz+d) <7Z+d)
b
= Zx(yIKZ)e{xIKZ}e {852}
leL
b 2 !
= > e 566 0(dL, ly; ')
Lo€L/dL

and by the inversion formula,

1 b !
:p—degd Z 6{5634‘2560}9(1’?27__/)

z
LoEL/dL
se(dL)# /dL

_ 1 {b s 1 ¢

= p~ desd > — (2 2—£}edﬁ,-————
b € 0 + 0 ( y S5 )
V2! toeL/dL d d < d

seL# /d2L

5

_ 1 {b s c 1

_ degd 2 2 2 .

=p g eq =g +2-4y— =s }Q(d L,s;——).
V2! LoEL/AL d d d <

seL# /d?L

Now, for s € L#, ly € L,
b s c c
e {ag(% +28€0 — a82} = 6{—8(b€0 + 8)}

since —%‘363 = b=adg2 al? € T?A, —2csly = 2229460, and asly € T?A. Also,
bly + s runs over L# /dL# as £y runs over L/dL (this is easily verified). Thus

az +b 1 c 1
0(L; J=p o= Y eq——07; 6(LF1)
cz+d \/?%L#/dL# { d } 4
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and again by the inversion formula,

,degd\/_ Z { } o(L: 2)

eeL/dL

(recall that we have chosen L so that L¥ = L). O

Keeping in mind Shimura’s work on half-integral weight automorphic forms
([ref]), we define an automorphic form to be a function f : § — C which transforms
like an appropriate power of #(z) under the action of I". More precisely, we make
the following

Definition. A function f : $§ — C is an automorphic form of weight k& € %Z+ if
for all v € I,
F(v2) = j(7,2)** f(2)

where j(v, z) = ee((f)).

Remarks. Just as in the classical case, we can define
- k
=Y i(n2)
5

where v varies over I' /T"; the series converges absolutely for k > 2 and is easily
seen to be an automorphic form of weight k. (Mention Poincare series? Petersson
inner product?) We can also define Hecke operators T}, as follows. For a € A with
deg a even, let {;} be a complete set of coset representatives for (I'NT'*)/T'* where

w (1 0 10
(o an)r o 0):

Then T, maps a wieght k& automorphic form f to the weight k& automorphic form

given by
—deg« . 1 0 1 0
p~ e E .7(%‘»(0 al) )Qkf( (O o 1)z>.

0

Note that unless deg« is even, z & $. One easily verifies that the

1
0
action of these Hecke operators on Foureir coefficients is analogous to the action of
classical Hecke operators.

§3. Main results. Let o € A and m € Z. We let ri(c, m) denote the restricted
representation number

ri(a,m) =#< (B, .. ,6k)€Ak: deg B3; < m, Zﬂ?:a
J

Clearly ri (o, m) = 0 if deg @ > 2m — 1. Note that

= Z ri(a, m)e {T?az}

a€A
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T-2m g
0 1
representation numbers we will study the automorphic form (8(2)).
since 0(z)* has weight g, we will ease our computations here by only considering
even powers of 0(z). Thus we fix k € Z, and we consider the weight k automorphic
form 6(z)?*. Also, to ease the notation, let 7(a, m) = rox (o, m).
As we mentioned earlier, we will evenually analyze the Fourier coefficents of
0(z)?* by anlayzing its behavior on a fundamental domain. To prepare for this we

have

where z = ( ) (that is, rp(a,m) = cp24(T72™)). Thus to study the

However,

Proposition 3.1.

2m
(1) The set { (TO f) :m >0, x e T?™TLA/A } is a complete set of coset rep-
resentatives for I'so\ 9.

2m
(2) The set {(TO (1)) :m >0 } is a complete set of coset representatives for

r'\$.
Proof. The proof of (1) is trivial and hence is omitted. The proof of (2) follows

easily from the observations that <[1) _01) and { ((1) 61L> ca €A } generate I,

—2m T

T
andforz—( 0 1

) €9, xeT2mA,

ifx= 0,
0 1

E U
Z_ 1 0 = <T2n—2m _%

0 1) if x #0, degx = —n.

OJ

Next we need the following technical Lemma.

Lemma 3.2. Letd € Z,, u= Z ujTj with ug # 0. Write

—d<j<0

1 )

—= > uT'+7

U -

—d<j3<0
where © € B, Then for 0 <n < d, v_, depends only on ug,u_1,...,u_,, and it
18 linear in u_,,.
Proof. We argue by induction on n. One easily sees that vy = u—lo, SO assume
0 < n < d, and suppose that v; depends only on ug, ... ,u; for —n < j < 0. Set
u = Z w;T7, and v = Z v;T7.
—n<j<0 —n<j<0

Then u = o + u_,T~" + u”, and % = v +v_, 77" +v"” where u” 0" € Pt
Thus
1=uv 4+ (uov_p +vou_n)T ™" +w
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where w € P2 So v_, = —i(vou_ + [u'v']_;,) where [u/v']_,, denotes the
coefficient of T~™ in the expansion of u’v’. By hypothesis, v' depends only on
ug, - - . ,U1_n; thus v_, depends only on ug,...,u_, and is linear in u_,,. [J

With this we get our preliminary description of the Oth Fourier coefficients, or
equivalently, the number of ways to represent 0 as a sum of 2k squares.

Proposition 3.3. Form € Z.,

r(0,m) = p** D L (p—1) > pED(=1p)"Fr(0,m —n).

1<n<2m

Proof. We show that

Co(T_2m) _ me(k—1)+1 + (p _ 1) Z pn(k:—l)(_1|p)nkCO(T2n—2m).
1<n<2m

We know from Theorem 1.3 that
p2m—lco (T—2m)

L2 ()

z€TI—2mA /A

()

"Z 2 )

1Sn<2m ue(ooo/;:p,gomfn) X

and applying the inversion formula (Theorem 2.3),

(7 )

S ety (T )

1<n<2m = (Ooo/mgomin)x

2™ 0
0 1

(7 3) e
)
p

We know that f (< )) = co(T?™) = 1; similarly, for m <n < 2m,

0
Note that (O /PB2m—" “ has (p — 1)p?™ "1 clements. Thus
p2m—1CO(T—2m) — 2kaO(T2m)

+p2m 1 Z p n(k— 1) 1|p) 0(T2n—2m)
m<n<2m

=)
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If m = 1 then we are done. So suppose m > 1, and fix n, 1 < n < m, and choose

€ (O /‘ng”_")x. From the previous Lemma we know that 1 3~ ; @;T7 where,
for n —2m < j < —1, u_; is dependent only on uy, ... ,u; and it is linear in u;.
Recalling that f is invariant under the left action of ', and the right action of
PSLy(Ox), we see that

(7 )= ()

with v = Z aj+nTj. As wu varies over (Ooo/‘ligom_”) X, the preceding
2n—2m<j5<0

Lemma implies that the corresponding v are evenly distributed over P, /P2m—2".

Thus

me—lc0 (T—Qm)

:pka +p2m 1 Z pn(k 1) Hp) O(TZn—2m)
m<n<2m
T2n—2m v
L2 - X o ((7)7)):
1<n<m vemw/m?g*?m

Now, Theorem 1.3 shows that

T2n—2m T2n—2m
R (G VR S (G )
- vETA/T1+2n—2m A

VEP oo /P T

— p2m—2n—lco (T2n—2m)

’

and the Theorem now follows. [

Our next goal is to describe the representation numbers in closed form. Once
again, we first need a Lemma.

Lemma 3.4. Form > 1,

T(O,m) = (—1|p)kpkr(07 m — 1) +p2m(k71)+1 _ (_1|p)k‘p(2m71)(k71).

Proof. We use induction on m to show that
Co(T_2m) _ (_1|p)kkaO(T—2(m—1)) +p2m(k—1)+1 o (_1|p)kp(2m—1)(k—1).
Recall that by Proposition 3.3,

Co(T_2m) _ me(k—1)+1 + (p _ 1) Z pn(k:—l)(_1|p)nkCO(T2n—2m)'
1<n<2m

Case m = 1 of the Lemma follows by noting that p?* =D+ 4 (p—1)p—1(—-1|p)k =
(—=1|p)epP + p?*k=D+1 _ (—1|p)*p*—1D Now assume the statement of the Lemma
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is true for m < M, and write

CO(T—QM) :p2M(k—1)+1 + (p _ 1) Z pn(k_l)(—1’p)nkCO(T2n_2M)

1<n<M
Fo-1 3
M<n<2M
:pQM(k—l)Jrl
+(p—1)( Z p =Dk () (nF Dk o (p=2(M —n—1))
1<n<M
+ Z (p(n+l)(k—l)+l(_1‘p)(n—|—l)k . (_1|p)nkpn(k_l))
M<n<2M—1
+ Z pn(k—l)(_l‘p)nk)
M<n<2M

:p2M(k:—1)+1 + (_1|p)l~ckaO(T—2(M—1)) . (_1|p)kp2(M—1)(k—1)+1+k

+ (p . 1)(p(2M_1)(k_1)+1(—1]p)k +p(2M—1)(k—1)(_1|p)k)
:p2M(k‘71)+1 + (_1|p)kpch(T72(M71)) . (_1|p)k‘p(2M71)(k71)'

Now we have

Theorem 3.5. For k=2, m >0,

2m—+1 +p2m . 2m—1

r(0,m) = mp mp ;

for k#2, m >0,
7(0,m) = p*™* =D L () — D) (pPy + (= 1) Y1)

k—3 1_p(7n—1)(k:—2) . .
(p+1)p™ (W if m is odd
where Y, = R

(p 4 1)ptm+Dk=5 (W) + pm=Dk=1 " ifm is even.
Proof. We again use induction on m; again recall that r(0,m) = co(T~2™). Ap-
plying Proposition 3.3, we see that the case m = 1, k # 2 is simply the statement
that p*~1(—1|p)* = p*y; + (—1|p)*ys. For m = 1,k = 2, again use Proposition 3.3
to see that co(T2™) = p® + (p — 1)p as required.

Now suppose the statement of the Theorem is established for m < M. For
k = 2, applying the induction hypothesis and Lemma 3.4, we see that co(T—2M) =
p2eo(T—2M=1) 4 2M=1 _ p2M+1 — \rp2M+1 4 2M _ \p2M =1,

For k # 2, we use Lemma 3.4 to write

Co(T_2M) :p2M(k—1)+1 _ (_1‘p)kp(2M—1)(k—1) + (_llp)kpch(T—2(M—1))
MU=+ (_1|p)k( _ pM=1)(k=1) 4 (2M—1)(k—1)+2

+p*(p — Dyar—1) + 00 — Dymr
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The Theorem follows by checking that our definitions for y; satisfy ypyr41 =

Next, we want to describe the restricted representation number r(a, m) where
a € A is nonzero. As when a = 0, we first find a recursive formula. Unfortunately,
when deg a > 3, this formula involves Kloosterman sums (which we define shortly).
Still, this formula leads to a simple description of the average number of ways to
represent a polynomial of fixed degree, and we are able to describe the behavior of
r(a,m) as k — oo, as m — oo, or as deg a« — oo (see Theorems 3.11, 3.14, 3.15).
We now need two simple Lemmas.

Lemma 3.6. Let o € K, d € Z; such that D = dega < d. Then
(p—Dp* ' ifae O,
Z e{au} = ¢ —pi-1 if D=1,
UE(Ooo /PL) ™ 0 if D> 1.

Proof. First suppose a € O. Then e{au} =1 for all u € Ou, so >, e{au} is

equal to the cardinality of (O /PBL) *
Next, suppose D =1. So a = oy T + o, o’ € O, and

Z e{au} = Z e{a T"}
= Z e{ajuoT}
= pi-! Z e{aiuoT'}

wp EFX
—_—y
Finally, suppose D > 1. So a = apT? +-- -+ a1 T + o/, o € On. Thus
Z e{au} = Z e{a(u +u")}
u w'e(0oe/BRT1)"

u//EgpoDo—l/pd

:Ze{au'}pd_D Z e{apu;_pT}

u;_p€F
=0
since the sum on uj_p is a nontrivial character sum. [

Let d € Z,, o, € Ky such that dega,deg 8 < d. Then we define the Kloost-
erman sum K (o, 3; 8% ) by

p
K(a, 3;8%) = =
(o B BL) >, e {au+ .
u€(Ooo /P )™
Since dega,deg 3 < d, the sum on w is well-defined. Notice that u +— % is an
automorphism of (Ooo/‘l?glo)x, so K(a, 3;PL) = K(3,a;8%). Also note that if
a—a' € Oy then K(o/, 3;BL) = K(a, 8;B%), and if d > D = max {deg o, deg 5}
then
K(a, B;BL) = p* P K(a, 8;BL)

(since e {aw + g} =1 for w € P2).
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Lemma 3.7. Let o, € K and d € Zy such that deg 8 < dega < d. Then

(p - 1)pd_1 Zf O!,ﬁ € Ooo;
K(a, B;BL) =4 —p?! if B € Os, dega =1,
0 if dega > 1, deg o # deg 5.

Proof. If 8 € Oy then K (a, 3;B%) = > e (0. pd yx € {au}, so the Lemma follows
from the preceding Lemma. So suppose (§ ¢ Oooooand D = dega > deg . Then
a=apTP+-- -+ T+vand B=Fp 1 TP 1+ + 3T+ w where v, w € Ou
and ap # 0. So

K(o,3:9%)= Y e{T(apui_p+ -+ arug + Bp_1iia—p + -+ + Briio)} ;
UQyeen s Ul —d
here ug, ... ,u1_q vary over F, ug # 0, and % = Zj @;T7. We know that g, . . . ,ﬂg_DI

are independent of u;_p. Hence we can isolate the sum on u;_p; since ap # 0,
we have a nontrivial character sum. So K (a, 8;B%) = 0 in this case. [J

Now we obtain our preliminary description of r(a, m) for a # 0.

Proposition 3.8. Take a € A, a # 0; let D = dega and fit m € Z, such that
D <2m —1. Then

r(a, m)
=p- > p"*I(=1p)™r0,m—n)
D+1<n<2m
= Y p"*I(=1p)™r(0,m — n)
D+1<n<2m
+ > p™=p)™ > r(Bm—n)p PTEK (a1, BT PR,
1§n§% deg,BB:egf2n I

Proof. We prove the analogous formula for cp2,(T72™). Take a € T2A, a # 0; let
—2m
D = dega. Fix m € Z, such that D < 2m. Recall that with z = (T 95)7

0 1
we have
T2m 0 .
) ( 0 1) if x =0,
_; = T2n—2m 1
< 0 1””) if x #0, —n = degz > —2m.

Also note that T~"u + A runs over the nonzero elements of T?™T1A/A as n and

uvary, 1 <n < 2m, u € ((’)oo/‘Bgom_”)x. Thus the Fourier transform and the
inversion formula give us

p2m—1ca (T—Zm)

(7 )

+ Y PRt Y Xf(<T2n0_2m Tﬁ))e{aT"U}

1<n<2m UE(Ooo/mgom_n)
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] T2n 2m —_—
and since f 0 1 = co(T*"~*™) =1 when n > m,

ka + Z Hp <T2n—2m) . Z e {aT—nu}

m<n<2m ue(om/miomfn)x
+ Z (—1|p)™* Z cg(T?" e {aT "u+ BT" Ju} .
1<n<m u€(Ooo/‘J3§Qm7”)X
BET2A I

Now by Lemma 3.7 and Proposition 3.8, this is equal to

ka + Z 1|p ( 1)p2m—n—lco(T2n—2m)
D<n<2m

- p(D—l)k(_1’p)(D—l)kp2m—Dco(T2n—2m)
Y P (UR) ep(TT TP K (ol ", BT P

1<n<m
deg B=D —2n

Finally, we recall that since deg aT~" = deg 3T™ = D—n, K(aT ™", 3T™; B2 ) =}
p?"PK(aT—, T BL).0
Next we remove some of the recursion for our formula for r(«,m) by analyzing

what we consider the main term.

Theorem 3.9. Suppose a € A is nonzero with dega = D < 2m — 1. Write

r(a,m) =gpmt Y p(=1p)" (B men)pT P K (a1, BT LA,
1<n< L
deg B=D—2n

If k=1, we have

9p.m = ( {#1 p- {?} ) + (=1Ip)( {?} p- {?} ).

If k # 1, then

2m(k—1)+1

9Dm =D +spm + (=1p)* " tsprim

( )
i (p — 1)pCm=D =) Al T if D is even
where Sp m =

(p— DpEm=DFD0D) AmpL ) pem=D=D(=D 4f D is odd.

Proof. Again, we prove the analogous formula for c, (T ~2™) where a € T?A,a # 0,
and D = deg . From Proposition 3.8, we know that

gpm =p TV Y pt T (= 1p)™ (p = Deg (T2
D<n<2m

pP=D=1) (1 |p)(D=Dk  (p2(D=1)=2m)
=co(T*™) = Y p"* D (=1p)™* (p — 1)eo(T?">™)
1<n<D

pP=Dk=1) (1)) (P=Dk (p2(D=1)=2m)

1|p
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We will use induction on D and Lemma 3.4 to show that g(2m) has the required
form. If D = 2, we see that

g(2m) — CO(Tme) _pkz(_1|p)kCO(T72m+2) _ me(k71)+1 _ (_1|p)kp(2m71)(k—1).

If kK =1, this reduces to p — (—1[p).

Now we assume that the statement of the Theorem is true for D < d, and note
that if gp ., is associated with an a of degree d-1 while g4 ,, is associated with an
o’ of degree d, then

9d,m =9D,m + p(d_Q)(k_l)(—1|p)(d_2)k00 (T_Q(m_d+2))
_ p(d—l)(k—l)—H(_1|p)(d—1)k60 (T—2(m—d+1)
—gp.m + pl?DE=D (q|p)d-2)k (p(2m72d+4)(k71)+1

o (_1 ‘p)kp(2m—2d+3)(k—1))

In the case k = 1, the induction hypothesis then shows that

ain =[5 o= |52 + (|52 o= |55 D)+ U - -

- [ + i[5 2]o- [2] :

If k #1,
g'(2m)

{ Sd—1.m _|_p(2m—d+2)(k—l)+l + (_1|p)k(pk—1sd7m _ p(Zm—d+1)(k—1)) if d is even,
= Sd—tm +p(2m—d+1)(k—1) + (—1|p)k(pk_13d,m +p(2m—d+2)(k:—1)+1) if dis odd. I

It will suffice to show that our formulas for sq ., satisfy

{ Sd—1.m +pPmTH2DE=if d s even,
Sd =
" Sd—1.m — pPMTHDE=Dif g s odd.
This is easily verified. [J

We consider here a few special cases.

Corollary 3.10. For a € A, let R, denote the number of distinct nonzero roots
of a which lie in F; let g(2m) be as in the preceding Theorem.
(1) Suppose a € A with dega =0 or 1. Then for m € Z, with D = dega < 2m—1,
r(a,m) = g(2m).
(2) Suppose o € A has degree 2. Then for m € Z with m > 2,

r(a,m) = g2.m + (=1[p)*go,mp" > (pPRa —p +1).
(3) Suppose o € A has degree 3. Then for m € Z with m > 3,

r(a,m) = gsm + (=1|p)*g1,mp" *(PRa — p + 1).
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CHECK THESE FOR SMALL M?

Proof. Recall that r(a,m) = cp2o(T72™); thus we analyze co(T2™) where o €
T?A has degree 4 or 5.

(1) This follows immediately from the preceding Theorem.

(2) First suppose «, 8 € T?A with dega = 4 and deg3 = 2. Then for u =
> u;T9 € O, we have

1 1 U_q uz_l—uou,g _
=T 1+—3T “tw

where w € 3. Thus

K(aT™, BT;B2,)

2
U, — UgU_

Uo,U—1,U—2 0

Isolating the sum on u_5, we have a character sum which yields 0 except when
B2 = uday. So K(aT™1 BT;P3.) = 0 unless (B2|p) = (au|p). Suppose we have
(B21p) = (cualp); then B = v3as = (—vo)?ay for some vy € FX, and

2
K(aT™', BT;93,) = p Z e {T(cm 1y azu_1 + 0421)0)}
Vo

u_1€F

u?
+p Z 6{T(—Of4—1 + asu_q —Oégl)o)}

v
u_1€F 0

and replacing u_; by vpu_1 in the first sum and by —vpu_; in the second sum,

= pz e {Tvo(a4u2_1 +agu—_1 + 042)}

u_q

+ pz e {—Tvo(a4u2,1 + asu—_1 + O!Q)} .

U_1

Now we sum over 3 € T?A, deg = 2. (Note that r(3,m — 1) = gom—1 since
deg 3 = 1.) So this means we vary v3 over F*. Thus we have

Y K(aT™',pT; %)

BET2A
deg =2

=p Z e {Tvo(a4u2_1 +agu_1 + OQ)} .
e

The sum on vy is equal to p — 1 if u_; is a root of ag + asT + ouT?, and —1
otherwise. Thus

> K(aT™',BT;%%) = p(pRa —p+ 1)
5
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The result now follows from the preceding Theorem.
(3) Now let a = asT® + ayT* + a3T? + axT? and B = (312 + B3.T?. For
U=y, u;T7 € O, we have

1 1wy, ui; —wou_o ., 2uou_ju_o—ud; —udu_o _
A T . T tw

where w € PL.. So
K(aT™", BT3B,
= Z e {T(a5u_3 + qu_o + azu_1 + OéQUO}

UQ,y.-- U3
2UpU_1U_9 — uil — ugu_g u2_1 — UpU_2
e q O3 1 + 52—3) .
U )

The sum on u_g is 0 if B3 # u%a5, and p otherwise. So suppose (33 = v8a5 =
(—vg)2as for some vy € F*. Then

K(aT™", fT"; 95)

3 2
asuZy  PauZy
— T 3 _
pug e{ (azu_1 + g 2 +— )}
—1

0 Yo
205U —
.ZB{TUQ(OC4+ . —B—g)}

U_2

and since the sum on u_» is a character sum,

2 3
a4u” asU” ¢
+ )

2
=p e T'(avg + azu—_1 +
uz_l { ( V0 v}

2 3
aUuU” asUuU_
+p? E e T(—agvo + azu_1 — L+ L)
” vo v}
1

and replacing u_; by vou_1 in the first sum and by —vgu_; in the second sum,

— p2 Z (& {TU()(OQ + as3u_1 —|— O(4U2_1 —|— Oé5u?i1)}

U_1

+ p? Z e {—Tvo(a2 + azu_q + agu® | + a5uil)} )

u_1

Now we sum over 3, so we need to vary v3. (Note that r(3,m — 1) = g1 ;5,1 since
deg 5 = 1.) Thus we have

K(aT™",pT™;P2) = Z e {T’Uo(az + agu_i + aqu® | + 0451&1)} .
u_1€F
vOEI]FX
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The sum on vg yields p — 1 if u_; is a root of T~2a, and —1 otherwise. So we get

> K(aT™' BT;P5) = p*(pPRa+p — 1)
5

The result now follows from the preceding Theorem. []

This corollary suggests that the values of the sums of Kloosterman sums which
appear in the formula in Theorem 2.9 vary wildly(?), depending on the factorization
of o over F. At present we are unable to analyze these sums of Kloosterman sums
except in the cases treated above. However, we are able to determine the average
value of these sums as we vary a as described in the next Theorem. We thank
David Grant for suggesting this result.

Theorem 3.11. Fiz D,m € Z, such that D < 2m—1. For a € A with dega = D,
write « = ag + - - - + apTP. Choose t € Z such that [%} <t < D. Then, varying
the coefficients av, . .. ,ap over IF, the average value of r(a, m) is

7(G,WU =4dD,m-

Proof. We know r(a, m) = cp24(T72™); thus by Theorem 3.9 it suffices to show
that for any n, 1 < n < % +1 and 3 € T?A such that deg 3 = D + 2 — 2n,

Y K(QI* " prmgltr) =o.

A1y... 00t

Note that the preceding corollary imples the Theorem holds for D = 0 or 1, so we
may assume here that D > 1. Since [%} <t <D, a,_ varies over [F; hence

> K(aT® ", BT R

[ RN«

— Z e {ﬁzn + (o — an_lT"_l)Tz_”u} Z e{an_1uoT}

J
j#n—1

Qp—1

where u =}, u;T9 € (O /PBE™™) * a; € F (and ap # 0). Since ug # 0, the sum
on o,,_1 is a nontrivial character sum. O

Despite our poor understanding of sums of Kloosterman sums, Theorem 3.9
does allow us to determine the order of magnitude of r(a,m) as m — oo or as
deg v — o0, as well as an asymptotic formula for r(a, m) as k — oo. To obtain the
first of these results, we need to find a bound for each sum of Kloosterman sums.
Thus we have

Lemma 3.12. Fiz o € T?A such that dega = D >4, and fixn, 1 <n < % —1.
Then

> K(aT T, BT PR M| < pP

BET2A
deg B=D—2n
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Proof. By definition,

> K(aT ", BT B
B

=2 X e{aTu_n +6T”u}
ﬁ X

uE(Ooe /PRT)

= Z e{T(aptisn—p+ 4+ a14nlo + Bp—2nUisn—D + -+ Poti_n_1)};

B2, sBp_2on
UQ s UL fy— D

here Bp_o, # 0, ug # 0, and % = Zj a;T7. As (3 varies over F, 2 < j < D — 2n,
we get a character sum on 3;. So whenever u; # 0, 2 < j < D — 2n, the sum on
the 3; becomes 0. Thus we are left with a sum on wg,...,u—_, and on uj4,—p;
this sum has (p — 1)p' ™ terms. Hence

> K(aT ", BT B < pP
Ié]

O
Lemma 3.13. Let gp . be as in Theorem 3.9. Then

9dD.m = p2m(k_1)+1 + tD,m

where [tpm| < op(2m02)(k=1)+1(1 4 pk—1),

Proof. We know from Theorem 3.9 that

2m(k—1)+1

9dD,m = P + SD,m + (_1|p)kpk_13D+1,m-

Now,

SD+1,m

( (p—1)pCm=DPADk=1) (p(D=3)(k=1) 4 p(D=5)(k=1) 4 ... 4 1)

if D is odd,
=<{ (p— 1)p(2m—D+2)(k—1)(p(D—4)(k—1) + p(P=6)(k=1) ... 4 1)
—pEm=D)(k=1)

\ if D is even,

B if D is odd,
(p — 1)p@m=2)(E=1)(1 4 p=2(k=1) 4 j=4(k=1) ... 4 5~ (D=2)(k=1))
[ —pm—D)(k—1) if D is even. ]
So [p" L spi1,m| < 2pEmTDETLHL and [sp | < 2pEmm DL O
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Theorem 3.14. For a € A, k > 1, r(a,m) = O@*™*~1) as m — oo or as
D =dega — oo (with 2m = D +t, t fized).

Proof. We show that for a € T2A, co(T2™) = O(P*™* 1) as m — oo or as
D = dega — oo. So take @ € T?A. To ease the notation, let K, (a,3) =
p"PK(aT™, BT";PL"") where dega = D and deg3 = D — 2n. Then using
Theorem 3.9 repeatedly, we find that

Co (T—2m>
=gm)+ 30 D) e (TP (o, 50)

1<ny <81
deg ﬁ(l):D72n1

= g(2m)
+ > pm*(=1p) g (2m — 2m) > Ky, (a, B1)
1<n <21 deg B(1)=D—2n;
+ Z p(n1—|—n2)(k—1)(_1|p)(n1—|—n2)k Z 66(2) (T2(n1—|—n2)—2m)
1§n1§%—1 degﬁ(Q):D—Qng
1<ng<njy
: Z Kn1 (057 ﬁ(l))Kng (05; ﬁ(2))
3(1)
=g(2m) +>_pm* D (=1p)mFg2m — 2m) Y Ky, (o, BV)
1 B
+ Y pimtr B (—qjp) (kg (9m — 2(ny + ny))
Z Knl(aa5(1))Kn2(5(1),5(2))
3(1) 32
4t
+ Y B () g (2m — 2y 4 4+ )
Nn1,... ,Ng
Z K, (o, BV K, (897D, @)
BA),... 5D

where d = [% — 1}. The previous Lemma shows that the sums on the 3 are
bounded by 1. Hence

ea(T2™M < lg@m)| + Y Y prm )G g 2m = 2(ng + -+ +ny))|
1<r<d ni,... ,ny

where 1 < nj < %—1and1§nj < %—nj,l—---—nl—lforj>1. Now, fix n,
1<n< % — 1. Note that if ny 4 --- +n, = n for any positive integers n; then we
necessarily satisfy the above inequalities on the n;. Thus, letting p be Ramanujan’s

partition function, we have

lea (T2 < lg@2m)[+ Y p(n)p™*Vig(2m — 2n)|

1<n<f -1
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and by the two preceding Lemmas,

< Bp2m(k71) 1+ Z p(n)pfn(kfl)

S Bp2m(k71) 1 + Zp(n)pfn(k‘fl)

Now, Ramanujan showed (formula 8.3.3, p. 114, [Hardy]) that there is a nonzero
constant B such that p(n) < eZV™. Thus the series

> p(n)p~*=Y

1<n

converges, and the Theorem is proved. [

Theorem 3.15. Tuke a € A, o # 0; choose m € Z, such that dega < 2m — 1.
Then as k — oo,

r(a, m) — p2m(k—1)+1 + O(p(Zm—l)k)‘

Proof. Take o € T?A; we show ¢, (T~2™) = p?™(k=D+1 L O(pPm=DF) a5 k — oo.
For deg ae < 2, the Theorem follows from Corollary 3.10 and Lemma 3.13. We argue
now by induction on D. Suppose D > 2, and suppose for all 3 € T?A, deg 3 < D,
we have cg(T~2™) = p?m(=D+1 L O(pm=1F) We know

CQ(T_Qm) _ p2m(k—1)+1 +p Z pn(k—l)(_1|p)nkCO(T2n—2m)

D<n<2m
. Z pn(k‘fl)(_1|p)nk‘CO(T2n72m>
D—-1<n<2m
Y PO e (TP P K (o BT BTN,
1<n< L1
deg B=D—2n I

We know ¢ (T2n—2m) — O<p(2m—2n)k), SO pn(k—l)(_1|p)nkCO(T2n—2m) — O<p(2m—n)k)'l
Similarly, p(* =D (—1|p)™*cs(T?"—2™) = O(p?m~—™)k) for § € T?A of degree D—2n.
Now, every Kloosterman sum has p”~" summands, each of modulus 1. Hence we
certainly have

p" P K (T, BT B < 1.
Also, the number of terms in each sum depends only on D and m; in particular,
the number of terms in the above sums is independent of k. Thus

Ca(T—Qm) _ me(k—1)+1 + Z O(p(Qm—n)k)

D—1<n<2m
+ Z O(p(Qm—n)k)
1<n<f -1

_ me(k—1)+1 + O(p(2m—1)k:)
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