
Solutions to exercise sheet 4: Sequences and limits

1. (a) We have that for all n ∈ N,∣∣∣∣n+ 3

n

∣∣∣∣ = 1 +
3

n
≤ 1 + 3 = 4.

So this sequence is bounded.

(b) We have that for all n ∈ N,∣∣∣∣ n

n+ 2

∣∣∣∣ =
n

n+ 2
≤ n

n
= 1.

So this sequence is bounded.

(c) For n ∈ N we can write

n2 + 1

n+ 3
=

1 + n−2

n−1 + 3n−2
≥ 1

4n−1
=
n

4
.

Thus if we let x ∈ R by the Archimedean principle we can find
n ∈ N with n > 4x. Then

an =
n2 + 1

n+ 3
≥ n

4
> x.

Thus the sequence is unbounded.

(d) If we let x ∈ R by the Archimedean principle we can choose n ∈ N
such that n > x. Thus |an| = | − n| = n > x. So the sequence is
unbounded.

2. Let ε > 0. By the Archimedean principle we can choose N ∈ N with
N > ε−1 (You may need to do some rough work before you
figure this out). Thus for n ∈ N with n ≥ N we have that

|an − 0| = 1

n+ 4
≤ 1

n
≤ 1

N
≤ 1

ε−1
= ε.

3. Let ε > 0. By the Archimedean principle we can choose N ∈ N with
N > 2ε−1 (You may need to do some rough work before you
figure this out). Thus for n ∈ N with n ≥ N

|an − 1| =
∣∣∣∣ n

n+ 2
− 1

∣∣∣∣ =

∣∣∣∣n− (n+ 2)

n+ 2

∣∣∣∣ =
2

n+ 2
≤ 2

n
≤ 2

N
≤ ε.

4. (a) Let α ∈ R. We take ε = 1 and let N ∈ N. We will use that
|aN − aN+1| = |2(−1)N − 2(−1)N+1| = 4. Therefore by the
triangle inequality

4 = |aN − aN+1| ≤ |aN − α|+ |aN+1 − α|.
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Thus we must have that either |aN−α| > 1 = ε or |aN+1−α| > 1.
Therefore we have found ε > 0 such that for all N ∈ N there exists
n ≥ N (in this case either N or N+1) with |an−α| > ε. Therefore
we cannot have limn→∞ an = α. Since this holds for all α ∈ R
we must have that (an) is a divergent sequence.

(b) Let α ∈ R. We take ε = 1 and let N ∈ N. We will use that
|aN − aN+1| = |6(N)− 6(N + 1)| = 6. Therefore by the triangle
inequality

6 = |aN − aN+1| ≤ |aN − α|+ |aN+1 − α|.

Thus we must have that either |aN−α| > 1 = ε or |aN+1−α| > 1.
Therefore we have found ε > 0 such that for all N ∈ N there exists
n ≥ N (in this case either N or N+1) with |an−α| > ε. Therefore
we cannot have limn→∞ an = α. Since this holds for all α ∈ R
we must have that (an) is a divergent sequence.

(c) Let α ∈ R. We take ε = 1/4 and let N ∈ N. If n ≥ 8 and odd then
an < 0 and if n is even then an = n+8

n ≥ 1. Thus we can choose
n ≥ N (just take n = max{N, 8}) such that |an+1 − an| ≥ 1.
Therefore by the triangle inequality

1 ≤ |an − α|+ |an+1 − α|

and so one of |an − α| or |an+1 − α| must be greater than 1/4.
Therefore (an) is divergent.

5. Let ε > 0. Since limn→∞ xn = x we can find N1 ∈ N such that if
n ≥ N1 then |xn − x| ≤ ε. We choose N = N1. If n ≥ N then since
n+ k ≥ N we will have |xn+k − x| ≤ ε and so,

|yn − x| = |xn+k − x| ≤ ε.

6. We will show that for all ε > 0 we have that a − b ≤ ε which implies
a ≤ b. So we let ε > 0 and use that limn→∞ an = a and limn→∞ bn = b.
This means we can chooseN ∈ N such that for all n ≥ N , |an−a| ≤ ε/2
and |bn − b| ≤ ε/2. Therefore

a−b = a−aN+aN−bN+bN−b ≤ |a−aN |+aN−bN+|bN−b| ≤ ε+aN−bN .

So a− b ≤ ε+ aN − bN and since for all n ∈ N we have that an ≤ bn
we can conclude that a− b ≤ ε.
Alternatively: Since limn→∞ an = a and limn→∞ bn = b, we know
from the Rules of Limits that limn→∞(bn−an) = b−a. We claim that
b− a ≥ 0. For the sake of contradiction, suppose that b− a < 0. Take
ε = (a− b)/2; so ε > 0. Also, since limn→∞(bn − an) = b− a, there is

2



some N ∈ N so that for all n ≥ N we have |bn− an− b+ a| ≤ ε. Since
bn − an ≥ 0 and a− b > 0, we have

0 < bn − an − b+ a = |bn − an − b+ a| ≤ ε =
a− b

2
.

Hence 0 ≤ bn − an < a−b
2 + b− a = b−a

2 < 0, a contradiction since we
do not have 0 < 0. Thus we must have b− a ≥ 0.

7. Let α ∈ R and choose ε = a/4. Let N ∈ N (we need to find n ∈ N
with |an − α| > a/4.) We can find K ∈ N such that for all k ≥ K
|(xk+1 − xk) − a| ≤ a/8 and in particular |xk − xk+1| ≥ 7a/8. Now
let N ∈ N and choose k = maxN,K. In this case n ≥ N and by the
triangle inequality we have that

7a/8 ≤ |xn+1 − xn| ≤ |xn+1 − α|+ |xn − α|.

Thus either |xn − α| > a/4 = ε or |xn+1 − α| > a/4 = ε. either way
we can find n ∈ N with n ≥ N and |xn − α| > ε.

8. First of all we need to show that x ≥ 0. To do this we will show that
x ≥ −ε for any ε > 0. So let ε > 0 and choose N such that for all
n ≥ N we have that |xn − x| ≤ ε (since limn→∞ xn = x). We have
that x− xN ≥ −ε and xN ≥ 0 which means that

x = x− xN + xN ≥ −ε+ 0 = −ε.

Thus x ≥ 0.

Now suppose that x = 0. In this case let ε > 0 and choose N ∈ N
to be such that for all n ≥ N , |xn| ≤ ε2 (which we can do since
limn→∞ xn = x). Thus for n ≥ N we have that

|
√
xn − 0| =

√
xn ≤

√
ε2 = ε.

Thus limn→∞
√
xn =

√
x.

Now suppose that x > 0. In this case let ε > 0 and choose N ∈ N to be
such that for all n ≥ N , |xn−x| ≤ ε

√
x (which we can do since

√
x > 0

and limn→∞ xn = x. Note you will need to do some calculations first
before figuring out how to choose N .) Thus for n ≥ N we have that

|
√
xn −

√
x| =

∣∣∣∣(√xn −√x)(
√
xn +

√
x)

√
xn +

√
x

∣∣∣∣
=

|xn − x|√
xn +

√
x
≤ |xn − x|√

x
≤ ε.

Thus limn→∞
√
xn =

√
x.
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9. (a) We know that for all n ∈ N, 0 ≤ 1
n3+5

≤ 1
n3 . Since we know that

limn→∞ 0 = 0 and limn→∞ n
−3 = 0 (lecture notes) it follows by

the sandwich rule that limn→∞
1

n3+5
= 0.

(b) We have that for all n ∈ N, n2+3
4n2+7n

= 1+3n−2

4+7n−1 . By the sum and

scalar product rules it follows that limn→∞ 1 + 3n−2 = 1 and
limn→∞ 4 + 7n−1 = 4. It then follows by the quotient rule that
limn→∞

n2+3
4n2+7n

= 1
4 .

(c) We have that for all n ∈ N, (using that 1 = (
√
n+ 1−

√
n)(
√
n+ 1+√

n))

0 ≤
√
n+ 1−

√
n =

1√
n+ 1 +

√
n
≤ 1√

n
.

It follows by question 8 that limn→∞
1√
n

= 0 (covered in the

problems class) and so by the sandwich rule limn→∞
√
n+ 1 −√

n = 0.

(d) We have that for all n ∈ N

sinn+ 5n

n2
= n−2(sinn) + 5n−1.

We know that since −1 ≤ sinn ≤ 1, −n−2 ≤ n−2 sinn ≤ n−2.
Thus by the sandwich rule and the scalar product rule limn→∞ n

−2 sinn =
0 and so by the sum rule and the scalar product rule limn→∞

sinn+5n
n2 =

0.

10. Since x < 0 and limn→∞ xn = x we can choose N such that for all
n ≥ N |xn − x| ≤ −x/2. Thus xn − x ≤ −x/2 and so xn ≤ x/2 < 0.
Thus there are at most N − 1 (finite) values of n where xn ≥ 0.

11. Since (bn)n∈N is bounded there exists K > 0 such that for all n ≥ N
|bn| ≤ K. Thus for all n ∈ N 0 ≤ |anbn| ≤ K|bn|. So if we let ε > 0 and
choose n ∈ N where for all n ≥ N |an| ≤ ε/K then |anbn| ≤ K|bn| ≤ ε
and thus limn→∞ anbn = 0.

12. Since |a| > 0 and limn→∞ an = a we can find N ∈ N such that
for all n ≥ N |an − a| ≤ |a|/2 and thus for n ≥ N , an 6= 0. So
by question 5 from sheet 4 limn→∞ an+N = a and an+N 6= 0 for all
n ∈ N. Now in order to obtain a contradiction suppose that (bnan) is
convergent then there exists c ∈ R where limn→∞ anbn = c and thus
limn→∞ an+Nbn+N = c. So by the quotient rule limn→∞ bn+N = c/a
and thus limn→∞ bn = c/a (let ε > 0, choose N1 such that for all
n ≥ N +N1 |bn+N − c/a| ≤ ε and thus if we take N2 = N1 +N for all
n ≥ N we have that |bn−c/a| ≤ ε and so limn→∞ bn = c/a). Thus (bn)
is convergent which is a contradiction. So (anbn) must be divergent.
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