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Abstract. We use the action of the Hecke operators T̃j(p
2) (1 ≤ j ≤ n) on the

Fourier coefficients of Siegel modular forms to bound the eigenvalues of these Hecke

operators. This extends work of Duke-Howe-Li and of Kohnen, who provided bounds
on the eigenvalues of the operator T (p).

1. Introduction.

In the theory of elliptic modular forms, the role of Hecke operators is well un-
derstood and fundamental. The role of Hecke operators in the theory of Siegel
modular forms is less well understood. For instance, an elliptic modular form that
is an eigenfunction of all the Hecke operators (and normalized so that its Fourier
coefficient c(1) = 1) is completely determined by its eigenvalues and the action of
the Hecke operators on Fourier coefficients. As exhibited in [6], the eigenvalues
and the action of the Hecke operators on Fourier coefficients of a Siegel modular
form are not enough to determine the Fourier coefficients, even when we assume
we know the coefficients attached to all maximal integral lattices (of which there
are infinitely many).

For each prime p, there are n + 1 generators of the local Hecke algebra acting
on degree n Siegel modular forms, namely T (p), Tj(p2), 1 ≤ j ≤ n (defined in the
next section). In [3], the authors used representation theory to obtain a bound on
the eigenvalues of T (p), p prime, p → ∞. In [7] Kohnen used counting arguments
to give a proof of this result, relying on Maass’ description of the action of T (p)
on Fourier coefficients [10]. Kohnen also extended the result of [3] by considering
bounds stronger than Hecke’s trivial bound on the growth of Fourier coefficients of
Siegel modular forms. As Kohnen comments in his paper, the bound he obtains is
not as strong as that conjectured by Satake [13] and Kurokawa [8] (see also [9]).

In this paper we use counting arguments and the description in [5] of the action
of “averaged” Hecke operators T̃j(p2) (1 ≤ j ≤ n) on Fourier coefficients to bound
the eigenvalues of T̃j(p2). As discussed below, the operators T̃j(p2) generate the
same algebra as the Tj(p2), 1 ≤ j ≤ n. As we also discuss below, we can associate
the Fourier coefficients of a modular form with integral lattices Λ, which allows
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2 LYNNE H. WALLING

us to more easily organize information in our counting arguments. We prove the
following theorem.

Theorem. Let F be a nonsingular Siegel modular form of degree n so that for
some j, 1 ≤ j ≤ n, F

∣∣T̃j(p2) = λj(p2) for almost all primes p. Also suppose that
the Fourier coefficients c(Λ) of F satisfy the bound |c(Λ)| �F ( discΛ)k/2−γ . Then

|λj(p2)| �F p
M (as p→∞)

where

M =
1
4

(j + n− 2γ + 1)2 +
1
6

(j − n+ 2γ − 1
2

)2 + j(k − j − 1).

When γ = 0 we can take M = 1
4 (j + n+ 1)2 + j(k − j − 1).

Remark. Our proof actually shows the following. Say the coefficients of F satisfy
the bound of the theorem, and c(Λ) is a nonzero coefficient of F . Then for any
prime p and integer j ≤ n such that p 6 | discΛ and F |T̃j(p2) = λj(p2)F ,

|λj(p2)| �F,Λ pM

where M is as in the theorem.
After proving this theorem, we sketch a proof of [3], [7] using the language of

lattices. While this is essentially Kohnen’s proof, the language of lattices allows us
to streamline computations by appealling to elementary quadradic form theory.

The reader is referred to [1] and [4] for facts about Siegel modular forms, and to
[2] and [11] for facts about quadratic forms and lattices.

The author thanks Winfried Kohnen for directing her attention to this problem
and encouraging her to pursue it, and to Chris Seaton for computer help.

2. Definitions.

First we define degree n Siegel modular forms, which generalize elliptic modular
forms. Here the group of fractional linear transformations we consider is

Spn(Z) =
{(

A B
C D

)
∈ GL2n(Z) : A tB,C tD symmetric, A tD −B tC = I

}
,

and the variable of the modular form τ lies in the Siegel upper half-space H(n) =
{X + iY : X,Y ∈ Rn,n symmetric, Y > 0 (as a quadratic form)}. Spn(Z) acts on
H(n) by fractional linear transformation:(

A B
C D

)
· τ = (Aτ +B)(Cτ +D)−1.
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A Siegel modular form of degree n (n > 1) and weight k is a holomorphic function
F : H(n) → C that transforms with weight k under Spn(Z). This means we can
write F as an absolutely convergent series

F (τ) =
∑
T

c(T )e{Tτ}

where T runs over all symmetric, even integral, positive semi-definite n×n matrices,
e{∗} = exp(πiTr(∗)), and

F (τ)
∣∣∣ (A B

C D

)
= F (τ)

for every
(
A B
C D

)
∈ Spn(Z). Here we define

F (τ)
∣∣∣ (A B

C D

)
= det(A tD −B tC)k/2 (Cτ +D)−k F

((
A B
C D

)
· τ
)
.

F is called singular if detT = 0 for all T in the support of F .

Since
(
G−1 0

0 tG

)
∈ Spn(Z) for all G ∈ GLn(Z), we have

(detG)k F (τ) =
∑
T

c(tGTG) e{Tτ}

(recall Tr(AB) = Tr(BA)). Thus c(T ) = (detG)k c(tGTG), so we can rewrite F
as a Fourier series on (oriented) integral lattices Λ:

F (τ) =
∑
clsΛ

c(Λ)e{Λ, τ}

where clsΛ varies over all isometry classes of rank n even integral (oriented) lattices,
and

e{Λ, τ} =
∑
G

e{tGTGτ}

where, relative to some basis, the quadratic form on Λ is given by the matrix T .
Here Λ does not need to be oriented when k is even, and then G varies over O(Λ)/
GLn(Z). (O(Λ) is the orthogonal group of Λ, i.e. the group of integral matrices
G that conjugate a matrix representative T of Λ into itself, meaning tGTG = T .)
When k is odd, we must impose orientations on our lattices to define F as a Fourier
series supported on them, and in this case G varies over O+(Λ)/SLn(Z), where
O+(Λ) = O(Λ) ∩ SLn(Z).

For p prime, the Hecke operator T (p) is defined by

F |T (p) = pn(k−n−1)/2
∑
γ

F |δ−1γ
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where

δ =
(
pIn

In

)
,

Γ = Spn(Z), Γ′ = δΓδ−1, and γ runs over a complete set of coset representatives
for (Γ ∩ Γ′)\Γ. Using the terminology of lattices, Maass’ result states that the Λth
coefficient of F |T (p) is ∑

pΛ⊆ΩΛ

pE(Λ,Ω) c(Ω1/p)

where E(Λ,Ω) = m(1)k + m(p)(m(p) + 1)/2 − n(n + 1)/2, m(a) = mult{Λ:Ω}(a),
and Ω1/p denotes the lattice Ω whose quadratic form has been scaled by 1/p.

The Hecke operators Tj(p2) (1 ≤ j ≤ n) are defined by

F |Tj(p2) =
∑
γ

F |δ−1γ

where

δ =


pIj

In−j
1
pIj

In−j

 ,

Γ′ = δΓδ−1, and γ runs over a complete set of coset representatives for (Γ∩Γ′)\Γ. In
[5] we obtain an explicit set of coset representatives for the above quotient group.
When then evaluating the action of Tj(p2) on Fourier coefficients, we encounter
incomplete character sums. We complete these character sums by replacing Tj(p2)
with

T̃j(p2) = pj(k−n−1)
∑

0≤t≤j

β(n− t, j − t) Tt(p2)

where β(m, `) =
∏`
i=1

(pm−`+i−1)
(pi−1) is the number of `-dimensional subspaces of a

dimension m space over Z/pZ. As shown in Theorem 4.1 of [5], the Λth coefficient
of F |T̃j(p2) is ∑

pΛ⊆Ω⊆ 1
pΛ

pEj(Λ,Ω) αj(Λ,Ω) c(Ω);

here

Ej(Λ,Ω) = k(m (1/p)−m(p)) +m(p)(m(p) +m(1) + 1)

+ (m(1)− n+ j)(m(1)− n+ j + 1)/2(mj(1) + 1) + j(k − n− 1),

and αj(Λ,Ω) denotes the number of totally isotropic, codimension n− j subspaces
of (Λ ∩ Ω)/p(Λ + Ω).

Note that the algebra generated by the T̃j(p2) is that generated by the Tj(p2).
Thus, since the space of Siegel modular forms has a basis of simultaneous eigenforms
for the operators {T (p), Tj(p2) : 1 ≤ j ≤ n, p prime }, the space has a basis
consisting of eigenforms for the T̃j(p2).
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3. Proof of theorem.

We prove our theorem by counting the Ω in the above sum describing the Λth
coefficient of F |T̃j(p2), and by using known and conjectural bounds on Fourier
coefficients.

Choose Λ such that discΛ 6= 0 and c(Λ) 6= 0. (Since F is not singular, such
Λ exists.) Let Q denote the quadratic form on Λ and B the associated symmetric
bilinear form so that Q(x) = B(x, x). Let p be any prime with p 6 | discΛ. Since
F |T̃j(p2) = λj(p2)F , Theorem 4.1 of [5] gives us

λj(p2) c(Λ) =
∑
Ω

pEj(Λ,Ω) αj(Λ,Ω) c(Ω)

where Ω varies subject to pΛ ⊆ Ω ⊆ 1
pΛ. Since c(Ω) = 0 when Ω is not integral, we

only consider integral Ω in the above sum.
First we partition this sum according to the invariant factors {Λ : Ω}; note

that the number of choices for {Λ : Ω} is completely determined by n. Next, for
prescribed {Λ : Ω}, we rewrite the sum as∑

Ω,R

pEj(Λ,Ω) c(Ω)

where Ω varies over all lattices with {Λ : Ω} as prescribed and R varies over all
totally isotropic, codimension n − j subspaces of (Λ ∩ Ω)/p(Λ + Ω) (recall that
αj(Λ,Ω) counts how many such R exist). Our assumed bound on c(Ω) can be
rewritten in terms of discΛ and {Λ : Ω}, as can Ej(Λ,Ω). Thus by counting the
pairs (Ω, R) for each choice of {Λ : Ω}, we produce a bound on λj(p2).

We now fix {Λ : Ω} and construct all pairs (Ω, R) subject to the above con-
straints. We will make use of the lemma stated and proved in the following section.

Given Ω such that pΛ ⊆ Ω ⊆ 1
pΛ, the Invariant Factor Theorem (p. 214 [11])

tells us

Λ = Λ0 ⊕ Λ1 ⊕ Λ2,

Ω = pΛ0 ⊕ Λ1 ⊕
1
p

Λ2

where rankΛ0 is the multiplicity of p in {Λ : Ω} and rankΛ2 is the multiplicity of 1
p in

{Λ : Ω}. Note that since we require Ω be integral, we must haveQ(Λ2) ≡ 0 (mod p2)
and B(Λ1,Λ2) ≡ 0 (mod p). Also,

(Λ ∩ Ω)/p(Λ + Ω) ' Λ1/pΛ1.

Since αj(Λ,Ω) counts codimension n − j totally isotropic subspaces of Λ1/pΛ1,
we must have αj(Λ,Ω) = 0 if rank(Λ0 ⊕ Λ2) > j. Now fix d0, d1, d2 such that
d0 + d2 ≤ j, d0 + d1 + d2 = n. We will construct and count all pairs (Ω, R) where
di = rankΛi and R is a totally isotropic, codimension n− j subspace of Λ1/pΛ1.
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Choose ∆2 to be a totally isotropic subspace of Λ/pΛ with dimension d2. Since
p 6 | discΛ, Λ/pΛ is a regular space over Z/pZ. So as shown in our bounding lemma
below, the number of choices for ∆2 is bounded by 4d2pd2(n−d2)−d2(d2+1)/2.

Now we extend ∆2 to a totally isotropic space ∆2 ⊕ R, where r = dimR =
d1 − n+ j = j − d0 − d2. Since ∆2 is totally isotropic and Λ/pΛ is regular, there is
a dimension d2 subspace ∆′2 of Λ/pΛ so that

∆2 ⊕∆′2 '
(

0 Id2

Id2 ∗

)
.

Thus Λ/pΛ =
(

∆2 ⊕∆′2
)
⊥ J where J is a regular space of dimension n − 2d2.

Hence extending ∆2 to totally isotropic ∆2 ⊕R is equivalent to choosing a totally
isotropic, dimension r subspace of the regular space J ; by the lemma, this number
is bounded by 4rpr(n−2d2−r)−r(r+1)/2.

Now we extend ∆2 ⊥ R to ∆2 ⊥ Λ1 ⊆ ∆2
⊥ ⊆ Λ/pΛ. We know Λ/pΛ =

(∆2 ⊕∆2
′
) ⊥ (R ⊕ U) for some U . Extending ∆2 ⊥ R to ∆2 ⊥ Λ1 within ∆2

⊥
is

equivalent to choosing a dimension d1−r subspace of U . Since dimU = n−2d2−r
and r = j − d2 − d0, the lemma shows the number of choices for Λ1 is bounded by
2n−jp(n−j)(d0−d2). Also, we now have

Λ/pΛ =
(

∆2 ⊕∆′2
)
⊥
(
Λ1 ⊕ J ′

)
for some J ′ ⊆ Λ.

Next, let ∆ be the preimage in Λ of ∆2, and Ω′ the preimage in Λ of ∆2 ⊥ Λ1.
Thus

Λ = Λ0 ⊕ Λ1 ⊕∆2,

∆ = pΛ0 ⊕ pΛ1 ⊕∆2, and

Ω′ = pΛ0 ⊕ Λ1 ⊕∆2

where Q(∆2) ≡ 0 (mod p) and B(Λ1,∆2) ≡ 0 (mod p). (So here Λ0, for example,
denotes some rank d0 preimage in Λ of Λ0.)

Finally, we refine our choice of ∆2 as follows. In ∆/p∆ (scaled by 1
p ), extend

pΩ′ = pΛ1 to pΛ1⊕Λ2 where Λ2 is totally isotropic of dimension d2 and independent
of pΛ. To count the number of ways we can do this, first recall that

∆ = (∆2 ⊕ p∆′2)⊕ pJ = (∆2 ⊕ p∆′2)⊕ (pΛ1 ⊕ pJ ′),

and ∆2 ⊕ ∆′2 '
(

0 I
I ∗

)
(mod p). Thus in ∆/p∆ (scaled by 1

p ), ∆2 ⊕ p∆′2 is a

dimension 2d2 regular space with p∆′2 a dimension d2 totally isotropic subspace;
hence ∆2 ⊕ p∆′2 is hyperbolic. So there is a unique Λ′2 such that Λ′2 is totally
isotropic and Λ′2⊕ p∆′2 = ∆2⊕ p∆′2. Here pJ is the radical of ∆/p∆ (scaled by 1

p ),
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so isotropic vectors are of the form x+y where x is isotropic in Λ′2⊕p∆′2 and y is any

vector in pJ . Since we can choose a basis for Λ′2 such that Λ′2 ⊕ p∆′2 '
(

0 I
I 0

)
,

any isotropic vector not in pΛ must be of the form x′+y where x′ ∈ Λ′2, x 6= 0, and
y ∈ pJ . Also, a basis for any Λ2 must project onto a basis for Λ′2 (else Λ2 will not be
independent of pΛ). So to construct all our extensions, we fix a basis x′1, . . . , x

′
d2

for Λ′2 and let xi = x′i + yi where yi ∈ pJ ′. Then we let Λ2 be the subspace
spanned by x1, . . . , xd2 . Note that

〈
x1, . . . , xd2

〉
⊥ pΛ1 =

〈
x′′1 , . . . , x

′′
d2

〉
⊥ pΛ1

where x′′i = xi+y′i, y
′
i ∈ pΛ1. Thus to construct distinct extensions of pΛ1, we take

the yi ∈ pJ ′. Thus the number of ways to extend pΛ1 to pΛ1 ⊕ Λ2 is the number
of ways to choose y1, . . . , yd2 ∈ pJ ′, which is

pd2(n−2d2−d1) = pd2(d0−d2).

We let pΩ be the preimage in ∆ of pΛ1 ⊕ Λ2. So

Ω = pΛ0 ⊕ Λ1 ⊕
1
p

Λ2

with R ⊆ Λ1/pΛ1. Also, since Q(Λ2) ≡ 0 (mod p2) and B(Λ1,Λ2) ≡ 0 (mod p), Ω
is integral.

Note that we can construct any pair (Ω, R) through this process. So for fixed
d0, d1, d2, we have

Ej(Λ,Ω) = k(d2 − d0) + d0(n− d2 + 1) + r(r + 1)/2 + j(k − n− 1),

and

#(Ω, R)� pd2(n−d2)−d2(d2+1)/2+r(n−2d2−r)−r(r+1)/2+(n−j)(d0−d2)+d2(d0−d2)

(where r = j − d2 − d0, and we can take the implied constant to depend only on
n). Also, for fixed invariant factors d0, d1, d2,

|c(Ω)| �F ( discΩ)k/2−γ = p2(d0−d2)(k/2−γ) · ( discΛ)k/2−γ

and so (with the di still fixed),∣∣∣∣∣∣
∑
Ω,R

pEj(Λ,Ω)c(Ω)

∣∣∣∣∣∣�F p
E(d0,d2)( discΛ)k/2−γ

where E(d0, d2) = −d2
0 +d0(j+n+1−2γ)− 3

2d
2
2 +d2(j−n− 1

2 +2γ)+ j(k− j−1).
(Note that specifying F implicitly specifies n, and the number of terms in the sum
is controlled by n.) Thus∣∣λj(p2)c(Λ)

∣∣�F ( discΛ)k/2−γ
∑

d0+d2≤j

pE(d0,d2).
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This implies ∣∣λj(p2)
∣∣�F,Λ pM

where M bounds E(d0, d2). By calculus (or by completing squares) we find that
E(d0, d2) is bounded by M = E

(
1
2 (j + n− 2γ + 1), 1

3 (j − n+ 2γ − 1
2 )
)
, and keep-

ing in mind we are only concerned with d0, d2 ≥ 0, when γ = 0 we can bound
E(d0, d2) by M = E

(
1
2 (j + n+ 1), 0

)
since we really want d0, d2 nonnegative and

integral. This completes the proof of the theorem. �

Remark. Here we use the language of lattices to present a proof of the result
of [3], [7]; this can be interpretted as essentially being the proof given in [7]. Let
p,Λ be as above. For pΛ ⊆ Ω ⊆ Λ, we have Λ = Λ0 ⊕ Λ1, Ω = pΛ0 ⊕ Λ1. Let
d1 = rankΛ1. Since c(Ω1/p) = 0 if Ω1/p is not integral, we only consider those Ω
such that Ω1/p is integral. Thus the Ω we consider are preimages of dim d1 totally
isotropic subspaces of Λ/pΛ. (Since Λ/pΛ is regular, we have 0 ≤ d1 ≤ n/2.) For
fixed d1,

#Ω = ϕd1(Λ/pΛ)� pd1(n−d1)−d1(d1+1)/2,

E(Λ,Ω) = d1k − d1n+ d1(d1 − 1)/2,

and ∣∣c(Ω1/p)
∣∣� p(k/2−γ)(n−2d1)

∣∣ discΛ
∣∣k/2−γ .

Consequently |λ(p)| � pM , where M is the maximum value of

E(d1) = n(k/2− γ)− d2
1 + d1(2γ − 1).

So M = E(γ − 1/2) = n(k/2 − γ) + (γ − 1/2)2. (Note: When γ < 1, we can take
d1 = 0 since this is the nonnegative integer value of d1 closest to where E attains
a maximum.)

4. A Bounding Lemma.

Throughout, let p be a fixed prime.

Lemma. Let V be a regular space over Z/pZ with dimension m. Then the number
of dimension d subspaces of V is

β(m, d) ≤ 2dpd(m−d).

The number of totally isotropic, dimension d subspaces of V is

ϕd(V ) ≤ 4dpd(m−d)−d(d+1)/2.

Proof. We first bound ϕd(V ) by constructing all bases for dimension d, totally
isotropic subspaces W of V (and then we divide by the number of bases each W
has).
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First, choose an isotropic (and thus nonzero) vector x1 in V ; as shown in [2], p.
143-146, the number of choices for x1 is

ϕ1(V ) =


pm−1 − 1 if m is odd,
(pm/2 − 1)(pm/2−1 + 1) if m is even and V is hyperbolic,

(pm/2 + 1)(pm/2−1 − 1) otherwise.

(Note that in Artin’s terminology, 0 is considered an isotropic vector.)
Now choose y1 6∈ x⊥1 . So the subspace generated by x1, y1 is a hyperbolic plane

and thus splits V :
V =

〈
x1, y1

〉
⊥ V ′

where V ′ is regular of dimension m− 2, and V ′ is hyperbolic if and only if V is.
Next we choose an isotropic vector x2 that is orthogonal to x1 but not in the

span of x1. Thus x2 = ax1 +x′2 where a is some scalar and x′2 is an isotropic vector
in V ′; so we have pϕ1(V ′) choices for x2. Now we choose y2 ∈ V ′ so that y2 6∈ x⊥2 .
Thus the subspace

〈
x2, y2

〉
is a hyperbolic plane and orthogonal to

〈
x1, y1

〉
. So〈

x1, y1

〉
⊥
〈
x2, y2

〉
splits V .

Continuing in this fashion, we find that the number of (ordered) bases x1, . . . , xd
we can construct for a totally isotropic subspace of V is

∏d−1
i=0 p

i(pm−2i−1 − 1) if m is odd∏d−1
i=0 p

i(pm/2−i − 1)(pm/2−i−1 + 1) if m is even and V is hyperbolic,∏d−1
i=0 p

i(pm/2−i + 1)(pm/2−i−1 − 1) otherwise.

Note that in this way we can construct any dimension d, totally isotropic sub-
space of V : Say W =

〈
x1, . . . , xd

〉
is such a subspace. Then since V is regular,

there are y1, . . . , yd ∈ V so that
〈
x1, . . . , xd, y1, . . . , yd

〉
'
(

0 I
I 0

)
. By choosing

these vectors for x1, . . . , xd and for y1, . . . , yd, the preceeding algorithm produces
W .

The number of (ordered) bases for a given dimension d subspace is

d−1∏
i=0

pi(pd−i − 1).

Thus

ϕd(V ) ≤
d−1∏
i=0

2pm−i−1−d/(1− 1/p)

≤ 4dpd(m−d)
d∏
i=1

p−i = 4dpd(m−d)−d(d+1)/2).
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Similarly (but more simply), we construct all bases for dimension d subspaces of
V by choosing x1 6= 0, and for 1 ≤ i < d, xi+1 6∈

〈
x1, . . . , xi

〉
. Thus

β(m, d) =
d−1∏
i=0

pi(pm−i − 1)
pi(pd−i − 1)

≤
(
pm−d/(1− 1/p)

)d
= 2dpd(m−d). �
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