
Vol. 89, No. 1 DUKE MATHEMATICAL JOURNAL (C) 1997

EXPLICIT SIEGEL THEORY: AN ALGEBRAIC
APPROACH

LYNNE H. WALLING

To the memory ofMartin Eichler

Let Q be a positive definite quadratic form on a .-lattice L of even rank
m > 6; for convenience, assume Q(L) 2E. To gain understanding of the repre-
sentation numbers

r(L, 2n) # (x L: Q(x) 2n},

we study the average representation numbers

r(genL 2n)=
1 1

r(L’,2n)
mass L o(L’)L’ e genL

since r(L, 2n) is asymptotic to r(gen L, 2n) as n oo. Here L’ runs over the dis-
tinct isometry classes within gen L, the genus of L; o(L’) denotes the order of the
orthogonal group of L’; and mass L L,genr.(1/o(L’)).

In the 1930s Siegel used analytic methods to show that r(gen L, 2n) is a prod-
uct of "p-adic densities’ (see [5]; cf. [2]):

r(gen L, 2n) cH Aa(L: 2n)
q qm-1

where c is an easily computed constant, the product is over all q pa with p
prime and a sufficiently large, and Aq(L,2n) is the number of solutions to
Q(x) 2n (mod q), x L/qL. (Siegel actually shows that the average number of
times a definite or indefinite quadratic form of arbitrary level and rank at least 4
represents another quadratic form is the product of p-adic densities.) One could
use Hensel’s lemma to compute the p-adic densities ((Aq(L,2n))/(qm-1), but this
gets extremely tedious when L is of arbitrary level.
We use algebraic considerations to obtain a new derivation of Siegel’s for-

mula, obtaining a more explicit formula for average representation numbers. We
first consider lattices K whose associated theta series O(K; ) have square-free,
odd-level N, and quadratic character ;t. Using local considerations, we design
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38 LYNNE H. WALLING

operators on modular forms for which 0(gen K; z) is an eigenform. We then
consider the action of these operators on Eisenstein series, constructing the
1-dimensional simultaneous eigenspace for these operators. Since 0(gen K; z) is
known to lie in the space of Eisenstein series (see [5]; cf. [7]), this allows us to
write 0(gen K; z) as an explicit linear combination of Eisenstein series, giving us
our initial formula for average representation numbers (Corollaries 2.6 and 2.7)"

r(genK, 2n) 7.(2) N/D(d)7.D(n/d)dm/2_
,tin

p prime

where 7.D, )(,N/D are the unique quadratic characters modulo D, N/D (respec-
tively) so that 7.DT.N/D 7., ao and PK,oo are explicit constants, the c(D) are given
by simple formulas in terms of the genus invariants of K, and with N’ the con-
ductor of 7.,

1 --(7.(p)pm/2-1)e+l
(1 7.(p)p-m/2)

1 Z(p)pm/2-1
pro/E-E_ 1

(Cl,:(p) + 7.p(n/pe)7.V/p(pe)pe(m/2-1)) pm/2-1_ 1

(CK(p) + 7.p(n/pe)7.N/p(pe)pe(m/2-1))p -1/2

if pXN,

if plN/N’,

if plN’

We also show that the average theta series attached to the genera within fam K
are linearly independent (Corollary 2.8).

Next, given a lattice L whose theta series has arbitrary (odd) level N’, we use
lattice constructions and combinatorial arguments to obtain a description of
0(gen L; z) in terms of partial sums of 0(gen K; z) where K has square-free level.
Using the formulas for r(gen K, 2n), we prove that r(gen L, 2n) PL,o Hq PL,q(n)
where, for each prime q with e ordq(n) and e ((n/qe)/q),

pL,q(n) re(e; L, q) + q(m/2-1)(e-’)v,(O; L, q);
O<d<e

here the quantities ve are given by simple formulas in terms of the genus invari-
ants of L at q (see Theorem 3.7).

Since it can be shown that the average theta series of a genus is also that of a
spinor genus, these formulas describe the average representation numbers of the
spinor genus of L.
The lattice techniques used herein are local; thus we can extend these results

to lattices of arbitrary rank over totally real number fields (work in progress)
and possibly to Siegel modular forms.
The author thanks Bill Duke, Andy Earnest, Kathy Merrill, Tom Shemanske,

and Jeff Stopple for helpful and encouraging conversations.
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1. Preliminaries. We review some standard notation and terminology and
state some basic results. The reader is referred to [4], [1], and [3].

Let V be an m-dimensional vector space over ; assume m is even. Let Q be a
positive definite quadratic form on V with associated symmetric bilinear form B
(so Q(x) B(x, x)). Take L to be a lattice on V (i.e., a rank-m ;E-submodule of
V); for convenience, assume L is even integral, that is, Q(L)

___
ZE. Define the

discriminant of L to be dL det(B(xi, xj)), where (Xl,... ,Xm} is a ;E-basis for
L. Let O(V) denote the orthogonal group of V (i.e., the collection of all (global)
isometrics of V) and O(L) that of L. Since Q is positive definite, O(L) is finite.
We say a lattice K is isometric to L, written K L, if there is an isometry
tre. O(V) so that trK= L. For any prime q, let .(q) denote the q-adic integers
and L(q) L Z(q). Q extends naturally to a quadratic form on L(q).
We say a lattice K is in the genus of L, gen L, if K(q) L(q) at each prime q

(i.e., there is a local isometry at each prime q taking K(q) onto L(q)). There are
a finite number of (global) isometry classes within gen L. A lattice K is in the
family of L, fam L, if K is a lattice on V for some odd Z+, and for every
prime q there is a q-adic unit u so that K(q) L% (see [7]) Here, V denotes the()
vector space V scaled by , that is, V equipped with the quadratic fo Q, and

L denotes L(q) scaled by u. As shown in Lemma 3.1 of [7], there are 2 genera
in fam L for some r Z+; in Lemma 1.3 below, we give a more precise count.

Say q is an odd prime. Then L(q) can be diagonalized. That is, there is a Z(q)-
basis {Xl,... ,Xm} for L(q) so that (B(xi, x)) diag{Q(xl),..., Q(xm)}; we write

L(q). (1,’’., m) where i Q(xi). In fact, L(q) Jo Z... Z Js where each Ji
is q’-modular; that is, Ji qi(1,...,1,i), iZq). The Ji are called Jordan
components of L(q). These are not uniquely determined by L, but their Z(q)-
isometry classes are. Note that the Z(q)-isometry class of a q-modular lattice is
determined by its rank and its discriminant (up to squares of q-adic units). Thus
we have

L(q) (1,..., 1, r/0 ) 2- q(1,..., 1,/x) 2-... 2- qS(1,. ,1, rls), and so

L - (1,..., 1,r/0) +/-q(1,..., 1,/i ) 2-... I qS(1,..., 1, qs (mod qt)

for any ;E+; that is, relative to some ;E-basis {xl,... ,Xm} for L, (B(xi, xj)) =-
(1,..., 1, r/0 ) 2_... 2_ qS(1,..., 1, r/s) (mod qt). From this we obtain the follow-
ing technical lemma.

LEMMA 1.1. Let L,L’ be even integral ;E-lattices and q an odd prime.
Write L(q)

_
(1,..., 1, r/0) 2_-.. 2_ qS(1,..., 1,r/s), Lq)

qS’(1,...,1,ris,).
(1) Suppose L

_
L’ (mod qt) where t > s, s’. Then L(q) Lq).

Then L
_

L’ (mod qt) for any(2) Suppose L (q)

_
L (q).

Assume we have scaled L so that Q(L)
_

2;E, Q(L) 2n;E for any n > 1. Then
with notation as above, L/qL is a ;E/q;E-vector space. Here we use Q and B to
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denote the quadratic and bilinear forms naturally induced on L/qL; the induced
forms take values in 7z/qE. We call a nonzero vector L/qL isotropic if
Q() 0; we call anisotropic if Q() q: 0. (Note: When it will not cause con-
fusion, we use freely to denote the image of x in various reduced lattices
L’/qL’.) A subspace of L/qL is called totally isotropic if all its nonzero vectors
are isotropic, and it is called anisotropic if it contains no (nonzero) isotropic
vectors. We define the radical to be

rad L/qL {Yc L/qL" B(, ;) 0 for all L/qL }.

If radL/qL= {0), then we say L/qL is regular, and we have L/qL=
H1 _1_ _1_ Hk _L A, where A is anisotropic of dimension 0, 1, or 2, and each Hi
is a hyperbolic plane; that is, Hi- ( )- (1,-1). Here k is called the Witt
index of L/qL. When L/qL is not regular, L/qL _1_ rad L/qL for some
regular subspace U whose isometry class is uniquely determined by L/qL. We
say the Witt index of L/qL is that of U. More generally, we say a space of type
(r;d,#) is a Z/q.-quadratic space W _Lrad W such that dim W r,
dim d, and ((-1)e d/q) #, where/’ [d/2], d the discriminant of ,
and (,/,) denotes the Legendre symbol. When r d, we simply say the space is
type (d, #). (For instance, a hyperbolic plane is type (2, 1).)
One easily verifies the next result.

PROPOSITION 1.2. Let L be an even integral lattice and q an odd prime with

L(q) Jo .1.....1_ Js and Ji - qi(1,..., 1, r/)

for some ni_ Zq).
(1) Say C is a d-dimensional totally isotropic subspace of L/qL such that

t c rad L/qL {0}. Thus L/qL ( 3 b) I _L rad L/qL, where is
hyperbolic (i.e., an ortho#onal sum of hyperbolic planes) and U (1,..., 1, /) is
an (r- d, #) space. Let M preimage in L of C rad L/qL, and M=preimage
in L of +/-, where t +/-

{2" B(2, ) 0}. Then M(q,) Mq,) L(q,) for every
prime q # q, and

M(q) q(1 1 1 1) / J1 / q2(1, ,1, ) +/- J2 1... 1 Js,

Miq (1,..., 1,r/’) _1_ q(1,-1,..., 1,-1) I J -L J2 _L -L Js

where (1,-1,...,1,-1) has rank 2d, (1,...,1,/’) has rank-2d+rankJo,
fl x(q), and (rl’/q) ((-1)a/o/q)

(2) Say Jo Co _l_Do, J1 CI 1D (so Ci, Di are necessarily qi-modular).
L for everyLet M preima#e in L of Co .1_ C

_
L/qL. Then M(q,) M(q,) (q,)

prime q’ q: q, and

M(q) Co _1_ C1 I qDo _1_ J2 _1_ qD _L J3 1... _1_ Js.
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(3) When R-preimaoe in L of rad L/qL, we have R(q) J1 +/- qJo +/- J2.1_... _1_

We define the theta series attached to L to be 0(L;z)= YxeL
where zacg= {’ e:3’ >0}. Since Q is positive definite, 0(L;z) is a
modular form of weight m/2, some level N, and character ;L, where gL(d)=
(sgn d)m/2((-1)m/2 dL/Idl), where (,/,) is the Kronecker symbol. We refer to the
level of O(L; z) as the level of L. For odd primes q, ordq N s, where s is as
above in the Jordan decomposition of L@. ;tL is a quadratic character modulo
N, and for odd primes p not dividing N, 7.L(P) 1 if and only if L/pL is hyper-
bolic. We will be assuming N level of L is odd, so (ef. [6]) we necessarily have

2al 1
+/-... _1_L (2) 1 2c 1 2Cm/2

and (- 1)m/2 dL =_ 1 (mod 4).
We say a lattice K has minimal level and diseriminant at an odd prime q if, for

some r/, /i Z- q,

<1,..., 1,t/>

< 1,..., 1, t/> _1_ qQ/’>

<1,..., 1, t/> _1_ q<l, t/’>

of"

01"

In the last case, the condition on Legendre symbols means that neither Jordan
component of K is hyperbolic modulo q (where we consider the second Jordan
component scaled by I/q). When K has minimal (odd) level and discriminant at
all odd primes, we simply say K has minimal level and discriminant.

LEMMA 1.3. Suppose K has minimal, odd level N and minimal discriminant dK;
let q1,..., qh be the primes exactly dividin9 N. If h- O, then fam K gen K; if
h > O, then there are 2h- 9enera in fam K.

Proof As the ease h 0 is trivial, we suppose h > 0; take K’ fam K, and
define ;t(d)= (sgnd)m/2((-1)m/2 dK/lal)r, where (*)r denotes the Kronecker
symbol. (So (./d)r is the Jacobi symbol (./d) when d is positive and odd.)
Note that our assumptions on K imply dK ql" "qh2 for some , and
(--1)m/2q...qh 1 (mod 4) (cf. [6]). Then as described in the proof of Lemma
3.1 of [7], K’= j1/o, where J is "connected to K by a prime-sublattice chain."
That is, o p...prp,.2+ .p,.2+s where the p are odd primes (not necessarily
distinct) with ;t(P)= 1 if j < r, and there exist lattices J0 K, J,... ,Jr+s-,
J,’+s J such that J is a p-sublattice of J-I if j < r, and J is a p]-sublattice of
J_x if j > r. (A p-sublattice J’ of J is the preimage in J of a maximal totally
isotropic subspace of the quadratic space J/pJ. A p2-sublattice J’ of J is a
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p-sublattice of a p-sublattice of J with dim jt/(jt (3 pJ) maximal; cf. [6].) Hence
Z() must equal 1. Also (cf. [6] and [7]), Kq)

_
K(q) for all primes q X ql"’qh (for

q- 2, refer to 82E and 93:16 of [4]) and K’(qi) K(q,) if and only if (o/qi) 1.

Thus we identify genK’ with the vector ((o/ql),...,(/qh)). As 1--Z()-
(tx/N)- (o/ql"" "qh), the value of (o/qh) is determined by the values of (/qj)
for j < h. Hence there can be at most 2h-1 genera within fam K.
On the other hand, choose ej _+ 1 for 1 < j < h and set e,h el "’’eh-1. Using

the Chinese Remainder theorem, we can find an odd prime p such that
(p/qj) ej for 1 < j < h; notice that quadratic reciprocity implies that Z(p) 1.
Let J be a p-sublattice of K and set K’ j1/p; then K’ fam K and gen K’ cor-
responds to (el,..., eh). Hence fam K contains 2h-i genera.

Remark. Consider the group S= {@,l,...,13h):3i=+__l,131’’’13h 1}; as in
[8], let {Vl,..., Vh-1} be a set of generators of this group. For each j, we can find
an odd prime p such that v ((P/ql),..., (Pj/qh)). Notice that we necessarily
have 1 (pj/ql ""qh)--Z(Pj). Let A pl ""Ph-1. Then each divisor of A
corresponds to ((/ql),..., (o/qh)) . Thus we may index the genera in fam K
by the divisors of A.

PROPOSITION 1.4. Let K be a lattice of level N, and let q be an odd prime such
that K has minimal level and discriminant at q. Set R =preimage in K of
rad (K/qK). Then O(R)- O(K) (where O(K) denotes the orthogonal group of
K).

Proof. Take a e O(K). Then for x e R, we have

B(K, ax) B(aK, ax) B(K, x) =- 0 (mod q).

Hence &- e rad K/qK, so axe R. Thus O(K)
_

O(R). Since qK preimage in R
of rad R/qR (where R is scaled by l/q), we also have O(R) c_c_ O(qK) O(K).

PROPOSITION 1.5. Let K, R be as in the preceding proposition. As K’ varies
over the isometry classes in gen K, the corresponding R’ varies over the classes in
gen R.

Proof. Suppose R’ gen R with qKr= preimage in R’ of rad R’/qR’ (where
R’ is scaled by l/q). Thus R’= preimage in K’ of rad K’/qK’. One easily verifies
that whenever a (local or global) isometry a carries R to R’, then a also carries
qK to qK’ and hence K to K’. [2]

Given any lattice L, the Fourier coefficients of O(L; ) are the representation
numbers of L:

O(L; z) Z r(L, 2n)e2’n*, where
n>O

r(L, 2n) # {x L: Q(x) 2n}.



EXPLICIT SIEGEL THEORY: AN ALGEBRAIC APPROACH 43

We define the average theta series to be O(genL;z)= 1/massLL, zgent. X

(1/o(L’))O(L’;z), where L’ runs over the isometry classes in genL, o(L’)=
#O(L’)=the order of the orthogonal group of L’, and massL=
-L,genL(1/o(L’)). Thus

where

0(gen L; z) ’ r(gen L, n)e2nin
n>0

1
r(L’ 2n).r(gen L n)

1
o(L’-----mass Z L gen L

In [7] we showed 0(gen L; z) lies in the space of Eisenstein series by examin-
ing the action of Hecke operators Tp, pX2N, on 0(L; z). Let ql,...,qh, A be as
in our discussion of fam L following Lemma 1.3. Given IA with corresponding
genus gen K and prime p such that it(P) 1, we have

0(gen K; "c)lTp (pro + 1)0(gen K#; z),

where iliA, fl =- pa (mod ql... qh) (see Lemma 3.3 of [7]).
In this paper we make use of some other standard operators on weight m/2

modular forms. For q an odd prime dividing N, we let

()
q

( ) 1 ()(1 a/q)Bq q-m/4 0 qm/4-1 1 b Rq 0 11 Uq-- 0 q gq a=lb=l

where gq -’bmodq(b/q)e2nib/q. So for a modular form f(’c) -n>o a(t) e2nin*,
we have

f(z)lBq a(n)e2’iq’*
n>O

f(’c)lUq a(qn)e2nine,
n>O

and

n>O

Notice that for any lattice L, O(L; z)lBq2 O(qL; z).
Let G(’c; c,d;N) denote the Eisenstein series of weight m/2, odd, square-free

level N, and quadratic character it, as defined in Chapter IV of [3]. As usual, we
assume (- 1)m/2 it(_ 1). For DIN, set

eo( )
om/2-1F(m/2)
2(-2ni)m/2 amodN itN/D(b)itD(C)e-2niac/DG(’c; bD, a; N).

bmodN/D
roodD
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Then by Theorem 15 in Chapter IV of [3], we find that each En is a simul-
taneous eigenform for the Hecke operators Tp, p 2N, and {Eo" DIN} is a basis
for the space of Eisenstein series of weight m/2, level N, and character :. From
Proposition 17 in Chapter IV of [3], we see that Eo(z) ,>0 an(n) e2in, where

0

ao(O) Nm/2-1F(m/2) e2ninb/Nn_m/2
2(2ri)m/2 E..>,

roodN

ifDN,

if D=N,

and for n > 1,

aD(n) E ZI/D(n/d)’(d) dm/2-1
d>0

Standard techniques for evaluating Gauss sums show that

N,,,/2-XF(m/2)
(2ti)m/2

G(ZN,,1)#(N/N’)L(z,m/2) H 1-Zv,(q)q’-m/2

lv/, 1 ZN,(q)q-m/2
prime

where N’= eond , G(Zv,, 1) is the standard Gauss sum (modulo N’) and
L(, s) Y],,>I (n)n-s, the standard Diriehlet series for ;t (modulo N).

2. Lattices of minimal level and discriminant. Throughout this section, let
K be a lattice of odd level N and discriminant dK. We derive formulas for
the average representation numbers of gen K when K has minimal level and
discriminant.

Convention. When a lattice J has the property that the first Jordan compo-
nent of J(q) is qk-modular, we use the quadratic form q-kQ on the Z/q-space
J/qJ.

The proofs of the following two propositions illustrate the main techniques
used throughout the paper.

Pgo,osIwIO 2.1. Suppose N =/= 1, where N denotes the level of K; let q be an
odd prime dividing N. Suppose K has minimal level and discriminant at q. Thus for
any t

1,..., 1, /) .k q(r/’) (mod qt)

1, ,1, r/) I q(1, /’) (mod qt)

if qlldK,

if qEIdK;
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recall that in the latter case our hypotheses on K imply ((-1)m/2-1rl/q)---1

R preima#e in K of rad K/qK,

and let dK denote the discriminant of K. Let p be an odd prime not dividin# the
level of K such that

Zq(P) Zq((-1)m/2-1rlrl’)

for all primes q’lN, q’ v q. We refer to p as a prime associated to q. Then ;t.r(P) 1
and

0(gen R; z) 0(gen K; z)lTr/R(q)

I qm/2-14-1
BqTp0(gen K; z) [qm/2--i(/Z--1 "+ 1) qm/2-1 UqBq

Remark. When q X dK, R qK, and so 0(gen R; z)= 0(gen K; z)lBq2. Also,
this proposition extends easily to the case dK by imposing the extra condition
p q (mod 8).

Proof. Let C be a maximal totally isotropic subspace of K/qK (so
rad K/qK

_
C), and let

K’= preimage in K of .
By Proposition 1.2,

K’
q(1,..., 1, (-1)m/2-1r/’) _1_ qE((-1)m/2-1l> (mod qt)

q(1,..., 1, r/) I q2(1, r/’) (mod qt)

if qlldK,

if qEIdK

=Kfor any t e Z+. Also, for any prime q’ v q, K(q,) (q,).
Clearly these sublattices K’ are in one-to-one correspondence with these sub-

spaces C. Using the formulas from [1, p. 146] (cf. Proposition 7.2 of [6]), we find
there are

(qm/2-1 4- 1)fl / (qm/2-1 4- 1)(qm/2-2 4- 1)’." (q + 1)

(qm/2- 4- 1)(qm/2-24- 1)’’. (q24- 1)

if qlldr,

if q2ldK

ways to choose C, and exactly fl of these contain a given vector x K- R pro-
vided qlQ(x). When q Q(x), x K’ for every K’, and when x e R, we have
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x K’ for each choice of K’. Thus, we find that

1
O(K; z)lUqBq + qm/E-lO(R; z) - y.. O(Kt; z),

where K’ varies over all the sublattices constructed as above.
For J, J’ lattices on V, let f(J,J’) # {a 60(V): qJ c aJ J}. So

1 ZO(K; z)IUqBq + qm/Z-lO(R; ) -fi M’ genK’
f(K, M’) O(M’ "c)o(M’)

where K’ is any sublattice constructed above, and M’ runs over the isometry
classes in gen K’. Averaging over the isometry classes in gen K (and thus the
corresponding isometry classes in gen R; see Propositions 1.4 and 1.5), we get

0(gen K; z)lUqBq + qm/E-lO(gen R; z)

1 ( gen f(M,M’).) 1

fl.massK Z o(M)M gen K’ M K

fl-mass K ( gen f(M’,qM) 10(Mt;z).)  (M’IM e genK M K

Now, Y]Mgenr f(M’,qM)/o(qM)= (qm/2-1 + 1)fl, the number of maximal
totally isotropic subspaces of M’/qM’, so

0(gen K; "c)lUqBq + qm/2-10(gen R; "c) (qm/2-1 +1)
mass K
mass K

0(gen K’;’c).

Comparing zeroth Fourier coefficients, we find that

0(gen K; "c)lUqBq + qm/2-10(gen R; "c) (qm/2-1 -l- 1)0(gen K’; z).

Kqq - K - K ,., but if q’lcond Z, then (q9 Kfq,) onlyIf q’ , cond ;t, then K (q,) (q,) ta
if (q/q’)= 1. Thus, we do not necessarily have 0(gen K’;’c)= 0(gen K;’c)lBq.
However, we claim that

1 1
O(gen K’;’r) pm/2_l _l 10(genK;z)lBqTp--pm/2-1+ 10(genK;z)iTpBq"

To verify this claim, first note that

Z(P) (- 1)m/2 dK .(-1)m/2q
P P
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where ql,... ,qh are distinct primes and No e ,+. Since by assumption, ;t is a
character of odd level N, we must have (--1)rn/2ql...qh--= 1 (mod 4), and
cond --ql""qh. Hence our constraints on p and quadratic reciprocity imply
that ;(p) 1. Thus by Lemmas 5.2 of [6] and 3.3 of [7], we have

0(gen K; z)lTp (pro + 1) mass M 0(gen M; z) (pro + 1)0(gen M; z)
mass g

where M is a lattice on V/p, M(p) K(p), for all primes q’ v p, M(q,) Kp
(q,),

and the last equality follows from comparing zeroth Fourier coefficients. So for
ql p, our constraints on p imply that

q,) q,) q’) q,).

Also, since p X dK, Mp) - Kp) - K(p) - Kp). Hence, Mq gen K’, and

0(gen K; z)ITpBq (pro + 1)0(gen K’; z).

The proposition now follows by solving our earlier equation for 0(gen R; z).
Assume still that q is an odd prime dividing N; let p be a prime associated to q

as in Proposition 2.1. Define

TK(q)

(qm/2 .q_ qm/2-1) UqBq +
qm-2 q.. qm/2-1
pro + 1

BqTp if q2ldK

qm-2-jl-qm/2-1 ( 2-12"r/) 1Rq ifql[dK,qm/2-1UqBq + pro + 1
BqTp + (-1) qm/2-

qm-2_ qm/2 + 1
and set At(q)

qm-2 + 1

if qEIdK
if qlldK.

PROPOSITION 2.2. Suppose K has minimal level and discriminant at the odd
prime q dividing N. With notation as above, 0(gen K; z)lTr(q 2r(q)O(gen K; z).

Proof.
Case 1. Suppose q21dK. We perform lattice constructions quite similar

to those of the preceding proposition. This time, let ()@ rad K/qK be a 3-
dimensional totally isotropic subspace of K/qK, and let

K’ preimage in K of () @ rad K/qK_
q(1, 1, 1,-r/’) I q2(1,..., 1,-r/) (mod qt)

for arbitrary Z+ (see Lemma 1.1). Let ())rad K’/qK’ be an (m-3)-
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dimensional totally isotropic subspace of K’/qK’, and set

K" preimage in K’ of (y) rad K’/qK’

q2(1,..., 1, r/) I q3 (1, n’) (mod qt)

for arbitrary t 7z+. Clearly, K’ and K" are in one-to-one correspondence with
the subgroups <> rad K/qK and (y> rad K’/qK’ (respectively). Using the
formulas of [1], we see there are ((qm/2- + 1)(qm/2-2_ 1))/(q- 1) choices for

<> rad K/qK, and q2 + 1 choices for (y> rad K’/qK’ in each K’. Note
that rad K’/qK’.

Say x K R with q2lQ(x); then x K" if and only if <> ) rad K/qK
<> rad K/qK and <y> ) rad K’/qK’ <> rad K’/qK’.

If x R qK, then q2 , Q(x) so x is never in K". However, qR is in K" for all
pairs (K’, K").

Say x e K R; then - rad K’/qK’ if and only if e () +/- in K/qK. If -tad K’/qK’, then qx e K" for each K" constructed from K’; if - rad K’/qK’,
then qx e K" only when (y) rad K’/qK’ (--) rad K’/qK’. When qlQ(x),
(:)+/- has dimension m- 1, radical () rad K/qK, and Witt index m/2- 3.
When q X Q(x), K/qK (yc) (yc) -L, and so by Witt cancellation, ()+/- has
dimension m- 1 and radical rad K/qK. Thus, using the formulas from [1], the
number of 3-dimensional totally isotropic subspaces () rad K/qK with e
()+/- is

qm- 1
if q y Q(x)

q-1

q,,,- q,,,/2- + qm/2-2 1
if

q-1

Note that if tad K/qK, then c K" for all K constructed from K, and
otherwise n K" only when K"= preimage () tad K/qK. Hence, for x
K R, the number of pairs (K, K") with qx K" is

(q2 + 1)(qm-4- qm/2-1 + qm/2-2_ 1)
q-1

(q2 + 1) (qm-4 1) qm-4 qm/2-2
q-1 +

_1.. qm-4 if qlQ(x),

if q X Q(x).

Thus we have

O(K; I 2 2 qm/2 3 qm-2 + qm-3 qm/2-1 + qm/2-2 q2 qBEq]Jq-1

+ O(R; *)1 X-’z_, 0(/C’; ,),
(K’,K")
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where (K’, K") varies over all the pairs constructed as above. Averaging over
gen K and using Proposition 2.1, we get

2 2r(q)0(gen qr; z,) ,,q,i,:(q)O(gen K; "c)lBEq0(gen K; "c) Tr(q)Bq

Case 2. Now suppose q2 , dK. Similar to case (1), let <> rad K/qK be a
2-dimensional totally isotropic subspace of K/qK, and let

K’ preimage in K of <) rad K/qK_
q<l, 1,-rf> I q2<1,..., 1,-/> (mod qt)

for arbitrary t e Z+. Let <y> rad K’/qK’ be an (m 2)-dimensional totally
isotropic subspace of K’/qK’ (scaled by l/q), and set

K" preimage in K’ of <> rad K’/qK’_
q2<1,..., 1,r/> 2. qa<r/’> (mod qt).

Using Artin’s formulas, we see there are (qm-2_ 1)/(q- 1) choices for K’, and
q / 1 choices for K" in each K’.

If x e K R with q21Q(x), then x K" for exactly one pair (K’, K").
If x R qK, then q2 Q(x), so x is never in K" but qx K" for all K".
Now suppose x e K- R. Again, if2 e rad K’/qK’ if and only if <> +/- in

K/qK. When qlQ(x), <>+/- has dimension rn- 1, radical <> rad K/qK, and
Witt index m/2- 2; hence there are (qm-3_ 1)/(q- 1) ways to choose <>
rad K/qK with <>+/-. Say q Q(x); then <> +/- - <1,..., 1, Q(x)t/> 2. <0>
with Witt index m/2- 1 if (Q(x)/q) ((--1)m/2-1/q), and m/2- 2 otherwise.
Thus the number of 2-dimensional totally isotropic subspaces <> rad K/qK
with e <>+/- is

q-1 q q

(qm/2-1 -I- 1)(qm/2-2- 1)
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Hence the number of pairs (K’, K") with qx K" is

2qm-2 q- 1
if qIQ(x),

2qm-2 q- 1

2qm-2 q 1

d- qm/2-1

qm/2-1

Recall that the nth coefficient of O(K; ) is r(K, 2n), so

O(K; z),Rq y()r(K, 2n)e{2nz} (2Qq(X))e{Q(x)}.
n>O

Thus

q
1Rq 2qm-2 2q.l 2 qm-2 2

q 1 Bq + O(R; z)] Bq

(K’,K")

where the sum is over all pairs (K’,K"). Averaging over gen K and applying
Proposition 2.1 yields the desired formula.

For q an odd prime dividing N, the level of K, let rgK(q) denote the subspace
of Eisenstein series E of level N, weight m/2, character ;, such that EI TK(q
/q,K(q)E.

LEMMA 2.3. For any prime qllN, span{Eo: DIN/q} K(q) {0}, where the
Eo are the Eisenstein series with character X, level N, and weioht m/2 (as defined
in 1).

Proof. We simply examine the action of Tr(q) on the Fourier coefficients of
Eo, D]N/q. Let b(n) denote the nth coefficient of EolTr(q). Thus

bo(n)

2r(q)ao(n) if qln,

qm-2al(n

(qm-2q_ (.(--1)mq/2-1q) ()qm/2-1)aD(l)
if q X n, q2 idK,

if q X n, qlldK.
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Notice that qm-2 "4- qm/2-1 is never 2r(q). Thus for each nlN/q

O: oao(n2) ON/qD(II, D)m-2
OIN/q DIN/q

We represent these equations with matrices as follows. Let q1,..., qh be the
primes dividing N/q; order the divisors of N/q according to their order in the
tensor product

(1 ql)(R)(1 q2)(R)".(R)(1 qh).

Let be the vector whose entries are indexed by the divisors D of N/q and
whose D-entry is l/qO. Then the above equation implies

A O,

where

A
1 ql 1 q2 1 qh

Since each matrix in the tensor product defining A is invertible, A is invertible as
well. Hence, 0 and ,Oll/q oEo O. I-3

Set

qm/2_ 1
qm-2 qm/2

cr(q)

((_ 1)m/2_lr/)q

if q2ldK

ql-m/2 if qlldK,

and extend cr(,) multiplicatively.

PRO’OSITION 2.4. Suppose qllN. Then ctc(q) span{Eo + Xq(2)cr(q)Eoq:
DIN

Proof By looking at Fourier coefficients, one easily verifies that Eo+
;tq(2)cr(q)Eoq cr(q) for all DIN/q. The proposition now follows from the
preceding lemma. [-1

THEOREM 2.5. Suppose N is square-free and odd. Let E Y’Olr )(,D(2)CK(D)ED"
Then Cql cr(q) E.

Proof. Write N ql...qt. Using induction on r < e, we argue that

Cl<.i<.rCr(qi)=span{ dl...qX"i(2)cr’(d)E’i’DlN/ql’"q"}"r
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This is clearly true for r 0. Take r > 0 and f c1 <i<r+l CK(qi). The induction
hypothesis tells us that

DIN/ql’..qr dl

DIN/q l"’qr/
dlq ...qr

Since f cCr(qr+l), Proposition 2.4 implies that Oq,+ Zq,+(2)cK(qr+l)OD
Hence

D[N/ql""qr+ dlq...q,+

Since the zeroth Fourier coefficient of 0(gen K; z) is 1, and the zeroth coeffi-
cient of E is ;t(2)cr(N)a(O) (where as(0) is defined in 1), Proposition 2.2 and
Theorem 2.5 immediately give us the following result.

COROLLARY 2.6. Suppose K has minimal level and discriminant. Then
0(gen K; z) (1/cK(N)al(O)) E. Thus for n Z+

r(gen K, n) X’(2) CK(D)xo(d)ZN/o(2n/d)dm/2_lCK(N)aN(O) I

where ;to, ZN/O are the unique characters modulo D, N/D (respectively) so that

XOXl/O . As in 1,

as(O) Nm/2-F(m/2)
(2i)m/2 1 XN,q2-m/2qlN/N

prime

with N

Suppose K has minimal level and discriminant. Say qIN/N’; then K(q)
(1,..., 1, r/) _1_ q(1, /’), where ((-1)m/2-l/q) (-l’/q) -1. Thus

Also the first Fourier coefficient of 0(gen K; z) is nonnegative, and (from Corol-
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lary 2.6) it is equal to

,(2) H(1 + cr(q)).
CK(N)aN(O)

Since Icc(q)l < 1 for all q, we must have cr(N)aN(O) > 0. Thus

Z(2) (2rt)m/2

cr(N)aN(O) r(m/2----- II f(P)’
p,pdme

where

1 Z(p)p-m/2 if p,t’ N,

pro 1
if pIN/N’,f(P)

pm/2-1_ 1

p-/2 if piN’.

To write r(gen K, 2n) as a product, we set

(2)m/2

Or,o F(m/2)

and for n e Z+ with e ordp(n),

p(m/2-1)(e+l) z(pe+l)

PK,p(n pm/2-1 Z(P) f(P)

(p(m/E-1)e + Zp(En/pe);tN/p(pe)cr(p))f(p)

if pXN,

if pIN.

Then one easily verifies the next result.

COROLLARY 2.7.
as above,

Suppose K has minimal level and discriminant. With PK,p(n)

r(genK, 2n)=pi,:,oo H pt,:,p(n).
p prime

COROLLARY 2.8. The average theta series attached to the genera within fam K
are linearly independent.

Proof. Let {K: elA} be a set of representatives for the genera in fam K
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where A is as in the remark following Lemma 1.3. First notice that for 14, DIN,
cK,(D) (o/D)cK(D). Take diN; then

alv(O)cK(N) (-D-’d) cK(D)Eo

2h 1
av(O)cK(N) (ct,:(d)Ea + cK(N/d)Ew,

Note that {Ed: diN, 0 < d < N} is a linearly independent set.

3. Lattices of descent. Now we fix an integral -lattice L of even rank m
and odd level N’. For convenience, assume L is scaled so that Q(L)_ 2Z,
Q(L) fi[;: 2nTZ for any n > 1. We show that L descends from a lattice of minimal
level and discriminant, then we construct chains of lattices from the minimal lat-
tice to lattices K0 in gen L; by counting how often an element of the minimal
lattice lies in these lattices K0, we obtain formulas for r(gen L, 2n).

Notation. Fix a prime qlN’ and set s s(L, q) [ordq N’/2]. Fix t > 2s + 1;
then by Lemma 1.2,

L Lo L2s+l (1,..., 1, co) _l_ lq2S+l(1,..., 1, e.2s+l) (mod qt),

where the ei E- qE, and the ith component, Li -qi(1,...,1,ei), has rank
mi > 0. Let H2i q-iL2i, H2i+l q-iL2i+l. Thus

L Ho HI qH2 qH3 ... qSH2s qSH2s+,

where the H2i are unimodular (mod qt), and the H2i+l are q-modular (mod qt).
Let

(R)
o<e<i He,

’--i (rood2)
ri ri(L, q) rank

qr"+lrl2i+ qr2’+Irl2i+ (L, q) disc 2i+,

t/2i /’/2i (L, q) disc ,J’2i,

lzi=#i(L’q)=(’(-1)e’rli)’q

where i [ri/2]. (When ri 0, set #i 1.) Note that s, ri, #i are invariants of
gen L, and when ri is even, #i 1 exactly when ’i is hyperbolic modulo q.
(Here o(’i is scaled by 1/q when is odd.)

LEMMA 3.1. Fix a prime q dividin# the level of L and let #j, rj be as above.
(a) If r2s is odd or lars -1, then there is a lattice K on V with qS+lK L

_
K, K(p)

_
L(p) for all primes p v q, and K has minimal level and discriminant at q.
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(b) If r2s is even and #2s 1, then there is a lattice Kq on V so that qS+lKq
_

L
_
Kq, K(v

_
Lv) for all primes p q, and K has minimal level and discrim-

inant at q.
Furthermore, if r2s is even, bt2s -1 and #Zs+ 1, then

K(q) (1,..., 1,

If r2s is even,/2s -1 #2s+l, then

K(q) - (1,..., 1,,r) 2.

If r2s is even and l2s 1, then

Kq) (1,..., 1,eK),

Note that gen K is determined by gen L.

Remark. Since dL, dK, and dKq differ by squares, their theta series are asso-
ciated with the same character (although the modulus may differ between the
theta series).

Proof. Set L0 L. For 0 < < s, set

L2i+l preimage in L2i of rad L2i/qL2i, and

qL2i+2 preimage in L2i of rad L2i+l/qL2i+l.

One easily verifies that Li is a g-lattice with qSL2s
_
L and that

2s+1-2i

k=2

q[k/2lH2i+k

L2i+1 ta2i+1 ) q32i+2 )
2s+1-2i

E q[k/2]H2i+k.
k=3

Notice that L2s F2s @ JCta2s+l (1,..., 1, r/2s) _1_ q(1,..., 1, r/2s+l) (mod qt).
Constructing the lattice K is a bit more complicated.
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Case (a). Say r2s is odd or li2s --1. So

L2s+l a2s+l qd2s,

where 2s is unimodular (but not hyperbolic) modulo qt, and ,JCgO2s+l is q-modular
modulo qt. Let C be a maximal totally isotropic subspace of the space L2s+l/
qL2s+l, and set

qK preimage in L2s+l of C.

Then K is as described in the lemma.
Case (b). Say r2s is odd and #2 1. So

L2s 2s ) 2s+l,

where O2s is unimodular and hyperbolic modulo qt, and o1/2s+1 is q-modular
modulo qt. Let C be a maximal totally isotropic subspace of L2/qL2s, and
set

qK preimage in L2s+l of C.

Then Kq is as described in the lemma.

We construct descending chains of lattices K, K2s,...,Ko such that Ki
gen Li. We count how many K0 contain a given vector x K, thereby obtaining
formulas for r(gen L, 2n).

More notation. For q fixed and ri, #i as above, set # li2s, lit li2s+l,

r2s/2 if 21r2s, # 1,

rEs+l/2 if 2IrEs liEs -1, li’= 1,
d=

(rEs+l 1)/2 if 2rEs,

rEs/2- 1 if 2IrEs # -1 #’;

O OL q

(qa_ 1)/[(qm/2_ 1 + 1)(qm/2-2- 1)]

(qa_ 1)/(qm-2_ 1)

(qa 1)/[(qm/2 ##,)(qm/2-1 + lift)]

if 2lr2s li -1

if 2 X r2s,

otherwise;
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qd(qm/2-d-1 + 1)(qm/2-d-2_ 1)/[(qm/2-I + 1)(qm/2-2_ 1)]
if 2IrEs ,/z 1 #’,

qd(qm-Ed-2_ 1)/(qm-2_ 1) if 2XrEs,

qd(qm/E-d ila,) (qm/2-1 + ltla,)/[(qm/2 #la,) (qm/E-d-1 + ##,)]
otherwise;

and for o9 1,

if 2lr2s,/z- -1

if 2 A/ r2s,

otherwise.

LEMMA 3.2. Let the notation be as above, and let ;t denote the (primitive)
character associated to O(K; z) and to O(L; z). We can construct sublattices K2s of
K such that qK

_
K2s - K, and for all t +,

K2s (1,..., 1, r/2s) _i_ q(1,..., 1, /2s+1) (mod qt),

where the first component has rank r2s and the second component has rank r2s+l.
(So KEs gen LEs.) Set R =preimaoe in K of rad K/qK, REs=preimaoe in KEs
of rad K2s/qKEs. (Here we scale REs by 1/q in the case 21r2s, l2s 1.) Take
xK-R.

(a) Say r2s is odd or 2s --1. If q , Q(x), then x REs, and the proportion of
K2s such that x KEs- gEs is y(o9), where o9 ;tq(Q(x)). If qlQ(x), then
the proportion of KEs such that x R2s is , and the proportion of KEs such
that x KEs REs is ft.

(b) Say rEs is even and 2s l. If q X Q(x), then x is in none of the lattices KEs,
and the proportion of KEs such that qx REs- qKEs is (+_ 1). If qIQ(x),
then the proportion of KEs such that x K2s REs is 0.

Notice that when x KEs, we necessarily have qx R2s.

Proof Set # 2s,/’ #2s+1.
(a) Say r2s is odd or # -1. Let r dim (rad K/qK); so

0 if r2s is even, #’= 1,

1 if r2s is odd,

2 if r2s is even, #’ -1,
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and d (1/2)(r2s+l -r). To construct K2s, we take a totally isotropic subspace
C of K/qK such that dim C d + r and rad K/qK

_
C. Set

K’= preimage in K of ,
qK2s preimage in K’ of rad K’/qK’.

Thus (using formulas from [1]), the number of choices we have for K2s is

d

II(qm/2-i+1 + 1)(qm/2-i- 1)/(qd-i+1 1) if r2s is even, #’= 1,
i--1

d

H(qm-2i- 1)/(qd-i+1 1) if r2s is odd,
i=1

d

I-[(qm/2-i+ 1)(qm/2-i-1- 1)/(qd-i+1- 1) if r2s is even, #’= --1.
i--1

Take x 6 K- R. We have x e REs.if and only if 2 6 C, and x KEs REs if and
only if 2 (’ ,2 (. -"When 2 C we have qx Ks Rs. Also, R

_
R. Thus

the number of Ks such that x e Rs is

d

H(q/2-+1 + 1)(q/2-- 1)/(q’-+ 1) if rs is even, #’= 1,
=2

d

II(qm-2i- 1)/(qa-i+l 1) if rEs is odd,
i=2

d

II(qm/2-i -I" 1)(qm/2-i-1 1)/(qd-i+l 1) if r2s is even,/z’= -1.
i=2

Now 2 if and only if ’
_

(2) +/- where (2) denotes the space spanned by 2.

When q X Q(x), (2) +/- _1_ , where is a regular space of dimension m r 1
and discriminant Q(x) (- 1)dq2s- When qlQ(x), <> +/- <> _1_ _1_/, where is a
regular space of dimension m- r- 2 and discriminant (-1)a-r/2s Hence given
our assumption that # =-1 when r2s is even, U is never hyperbolic. So when
qXQ(x) and o X.q(Q(x)), the number of C

_
<2> +/- is

d

H(qm-2i- 1)/(qd-/+ 1)
i=1

d

H(qm/2-i CO#)(qm/2-i-1 + co#)/(qd-i+l 11
i=1

d

1-I(qm-2i-2- 1)/(qd-i+x- 1)
i=1

if r2s is even,/z’= 1,

if r2s is odd, # #,

if r2s is even, # -1 #’.
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When q[Q(x), the number of
_
()+/- such that ’+/- is

d

Hq(qm/2-f + 1)(qm/2-f-1- 1)/(qd-i+1- 1)
i=1

d

Hq(qm-2i-2- 1)/(qd-i+1- 1)
i=1

d

IIq(qm/2-i-l + 1)(qm/2-i-2- 1)/(qd-i+l- 1)
i=1

if r2s is even, #’ 1,

if r2s is odd,

if r2s is even, #’ -1.

(b) Say r2s is even, # 1 So Kq (1 ., 1, e), and Kq/qKq is hyperbolic ifq)-- ""
and only if # 1. To construct 2s from K, we take a totally isotropic subspace
C of Kq/qKq of dimension d where d r2s/2, and set

Kqs preimage in Kq of .
Thus the number of choices we have for K2s is

d

H(qm/2-/+l ,)(qm/2-f + #,)(qd-i+l 1).
/=1

Take x K R. We have x K2s R2s .if and only if e C, and qx R2s qK2s
if and only if t +/-, . When +/-, we have x q K2s, qx

_
KEs REs. Thus

the number of K2s such that x K2s R2s is

d

H(qm/2-i+l #,)(qm/2-f+ .u,) (qd-,+l 1)

0

if qlQ(x),

if q X Q(x).

The number of K2s such that qx . R2s qK2s is

d

Hq(qm/2-i #,)(qm/2-i-l + #,)/(qd-i+l 1) if q[Q(x),
i=1

d

I(qm-2’- 1)/(qd-’+l- 1) if q X Q(x).
i=1

The lemma now follows.
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LEMMA 3.3. Let K2s be as in Lemma 3.2. We can construct descending chains
of lattices KEs,..., Ko so that Ko gen L, and qSKEs

_
Ko. Fix such a chain and let

R2i preimage in K2i of rad K2i/qK2i,

qR2i+l preimage in K2i+1 of rad K2i+l/qK2i+l.

Take x K2s qK2s and fix ve, 0 < < s. The chain of lattices has the following
properties.

(a) First suppose x REs. Then qx Ko if and only if x gEi-1 for all i,
< < s. Also, when x REi KEi-1, we necessarily have x R2i-2

K2i-2.
(b) Suppose now x REs. Then qx Ko if and only if x K2i-2 for all i,

v ( < s. Also, when x KEi but x q REi, we necessarily have x REi-1.

Proof. With KEs as above and s > 0, we inductively define lattices Kj, Rj,
0 < j < 2s, as follows. Suppose that for < s,

K2i ,2i () ff2i+l () J’

(1, ,1,r/2i) _1_ q(1, 1, r/2i+l) _]_ q2(Xl, 2, ) (modqt)

with /2i, ]2i+1 7Z q7Z, j 7Z. Set

R2i preimage in K2i of rad (K2i/qK2i) ,2i+1 q2i )

Let M be an (r2i-1, #2i_l)-Subspace of REi/qREi, and let

KEi-1 preimage in REi of ] + qKEi ff2i-1 ) q2i O) qJ2i+l qJ’,

where ,2i-1 9 JEi+ J-2i+l, and 2i-1 - (1,..., 1,r/2i_) (mod q). Since we
know that (rlEi+l/q)--(rlEi_leEi+l/q), J2i+1 (1,...,1, e2i+)(modq). So by
Lemma 1.1, we have

KEi-1 ff2i-1 ( qff2i qJ2i+l ])

_l_ q3 (1,..., 1, e2i+1 ) -1- q4(0 1,0t2, ) (mod qt)

(where t > 2s + 1). Now set

qR2i-1 preimage in K2i-1 of rad (K2i-1/qK2i-1)

qJ"2i ]) q2.2i-1 ) q2J2i+l t q2j,.
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Let M’ be an (r2i-2, #2i_2)-subspaee of R2i-1/qR2i-1, and let

K2i-2 preimage in R2i-1 of M--’7 + g2i-1 ,2i-2 t ,2f-1 () qJ2f J2/+1 (
where

2i-2 J2, Y2,, J-2,-2 - <1,..., 1, /2i-2> (rood q),

J2i - (1,..., 1, 82i) (mod q).

Thus, by Lemma 1.1,

K2i-2 (1,..., 1, r/2i_2) _L q(1,..., 1, r/2i_1) _l_ q2(1,..., 1, e2i)

-]- q3(1,..., 1, e2i+1) _l_ q4(tZl, 02,... ) (mod

One easily verifies that the choices of K2i-1 and K2i-2 are uniquely determined
by the subspaees + qK2 R2i/qR2 and M---7 + K2i-1 - R2-l/qR2-1. In fact,
given a Jordan decomposition of (K2i)(q) (and hence of (R2i)(q)) as above, K2i-1
is uniquely determined by the subspaee of 2+l/qY2+1; similarly, K2-2 is
uniquely determined by the subspaee ’ of 2/q2.
To summarize, we have

s-i

K2i 2 ]) J-2i+ ) Eq(J2’+2e ) J2f+2e+ ),
=1

s-i

q (J2i+2 ) J2i+2+1),R2i ,2i+1 @) q2i ( E d

e=l

s-i

K2f-1 2f-1 ) qY2 ) q.J2+l ) E qd+l (J2f+2d ) J2f+2+l),
d=l

s-i

R2i-1 J2i ) .2i-1 ) J2i+1 ) Eq(J2i+2e ) J2,+2+1),
=1

s-i+1

K2i-2 Y2i-2 ) Y2i-1 ) E q(J2i+2-2 ]) J2i+2e-1).
=1

Notice that qCK2s Ko qdK2 and K2
_

K2’+2 - - K2s. Hence qex
K0 if and only if KEi for all i, d <i< s. Also REiKEi-2 KEi-1 R2i-2
(proving (a)). When x q REi, we necessarily have x 6 KEi-1, but x REi-1 and
rEi-1 REi K2i-2. []
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To help us more easily count how many choices of gj-1 contain a given
vector x Kj- qKj, we introduce an auxiliary counting function and establish
some basic identities.

Definition. Let / be a regular Z/qZ-quadratic space of type (c,e). An
ordered basis (1,..., c) for M is an alternating basis if

(i) 2i is isotropic for 1 < < c/2 and, if 21c and e 1, for c/2,
(ii) 2i-1 is anisotropic (1 < < c/2), and

(iii) relative to this basis,

where A is anisotropic and diagonal of dimension 0, 1, or 2.
Let W[(c,e)" (d,#)] be the number of ways to choose 1,...,c such that

(1,... ,c) is an alternating basis for some (c,e) subspace of a fixed (d,#) space.
Let W[(c,e)" (d,#)] be the number of such subspace bases (1,... ,c) with
1 if is anisotropic, and 2 if is isotropic. Note that if is a basis
vector for a (c, e) subspace of an (d, #) space W, we have rad W.

LEMMA 3.4. Suppose W is a (d, #)-space, d > 1. Given 09 v O, the number of
solutions to Q() 09 with W is

q(d-1)/2 q(d-1)/2 d- # otherwise.

Proof. First suppose W is a (2, #)-space. As described in [1], there are q-
symmetries of W. Given anisotropic W, one easily verifies that only the triv-
ial symmetry fixes , and the action of a symmetry on determines its action on
W. Thus, if Q() o has any solutions, it has exactly q- # solutions. We know
there are (q- #)(1 + #) (nonzero) isotropic vectors in W; consequently, there
must be q # solutions to Q() o for any 09 - 0.
Next suppose d > 2; set/’ [(d 1)/2]. Write _1_ A, where is a (2ve, 1)-

space and ,4 is a (d- 2ve, #)-space. Using induction on ve, we count the number of
solutions to a(fi) + Q() o with

LEMMA 3.5. (1) Suppose that d > c > 2, or that d > c 2 and # e. Letting
denote or , we have

V,[(c, e)" (d, #)] V,[(2, 1)" (d, #)]. V[(c 2, e)" (d 2, #)].



EXPLICIT SIEGEL THEORY: AN ALGEBRAIC APPROACH 63

(2) With e +_- 1,

qd/2-1 (q 1)(qa/2 #)
W[( 1, (a, #)]

q(d-1)/E(q_ 1)(q(d-1)/2 + el.t otherwise;

0 otherwise.

(3) Suppose d > 2, or d- 2, # 1. Then

qd-2 q 1 2 qd/2 11) qd/2-1 + 11)
V[(2, 1)" (d,#)]

)2qd-E(q_ 1 (qd-l_ 1)

if 21d,

otherwise"

qd/2-1 (q 1) (qd/2-1 _1_ tl

W[(2, 1)" (d, 11)] q(d-3)/2(q_ 1)(q(d-1)/2_
qd-E(q_ 1)2

/f 21d, Q() 0,

/f 2’d, Q() : O,

if Q(,) O.

(4) Suppose d > 2, or d 2, 11- -1. Then assuming Q() v O,

V[(2,-1)" (d, 11)] { 1/2qd-l(q_ 1)2(qd/2_ 11)(qd/2-1

1/2qd-l(q_ 1)2(qd-I 1)

if 21d,

otherwise"

1/2qd/2(q_ 1)(qd/2-1 11)

W[(2,-1)" (d, 11)]
1/2q(a-O/2(q 1)(q(a_l)/2 (Q(x))#)q

/f 21d,

otherwise.

Proof The proof of (1) follows from the observation that U+/-
is a (d- 2,11)-

space whenever U is a (2, 1)-subspace of a (d, #)-space.
(2) follows immediately from the preceding lemma.
(3) Choosing an alternating basis {:, y} for a (2, 1)-subspace, we have

V[(1, 1)" (d, 11)] + V[(1, 1)" (d, 11)]
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choices for . Set #’ (-l/q)# if 2[d, and #’ # otherwise. Then () +/- is a

space, so we can use the formulas of [1] to count isotropic y ()+/-. Given iso-
tropic y (not in the radical), (y) +/- is a (d- 1; d- 2, #)-space, so we can count
anisotropic ()+/-.

(4) Choosing an orthogonal basis {, y} for a (2,-1)-subspace, we have

V[(1, 1)" (d, #)] + F[(1, 1)" (d, #)]

choices for . We choose y <>+/- such that (-Q(x)Q(y)/q) -1; thus we have

choices for y (where/z’ is as in (3)). [-]

LEMMA 3.6. For 0 < j < 2s + 1, 09 O, +_ 1, set

f rn + r2s if j is even,

rn + r2s+l if j is odd,

and set

vj vj(co; L, q)

q(r-r)/2(qr/2 #j)

q(rl-rj+l)/2(q(r-l)/2 + co#j)

ql-r/2(qrj/2 lj) (qr/2-1 + l.tj

ql-rj/E(qry-l_ 1)

if 2[rj, co : O,

/f 2yr, co O,

if 21ry, 09--O,

/f 2gr, co O.

For j > s, let v2y(co)= V2s(co), v2j+l(co)-- V2s+l(co). Choose x K2s qK2s; fix
>0.

(a) Say x R2s; set co ;tq(Q(x)/q). The proportion of chains K2s,..., Ko such
that qex Ko is (v2e+l (co))/(V2s+l (co)).

(b) Say x R2s; set co zq(Q(x)). The proportion of chains K2s,... ,Ko such
that qex Ko is v2’(co)/V2s(co).

Proof First notice that if r2s+l 1, or if rEs+l--2 and #2s+ =-1, then
q2 , Q(x) for x e REs qKEs; similarly, if rEs 1, or if rE 2 and #2s --1, then
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q X Q(x) for x K2s R2s. Thus 1)2s+l (60), V2s(O)) are never zero, where

f zq(Q(x)/q)

x(Q())

if x R2s qK2s,

if x K2s r2s.

As argued in the proof of Lemma 3.3, Kj is determined by the choice of the
(rj, laj)-subspace M of the (rj+2,1aj+2)-space Rj+I/qRj+I. Now the number of
alternative bases for an (r,/)-space is W[(r,/)" (r,/)]. Hence, having chosen Ki
for j < < 2s, the number of choices for Kj is

v[(, ). (,>2, +:)]
V[(r,,)" (,,)]

and the number of choices of Kj containing a given vector x is

By Lemma 3.5,

v[(, ). (+:, +2)]v[(, ). (, )1
v+(o)

Thus, for x K2s, the proportion of chains with qex Ko is

1-I

.,<., v2,()

if x R2s qK2s,

if x e K2s R2s.

Thus, by Lemma 3.3, if x R2s- qK2s, then the proportion of chains with
qex Ko is

H 12i+1 (09) 12d+1 (60)
t,<i<sV2i+3(O0 V2s+I (09)

Similarly, if x K2s R2s, then the proportion of chains with qex Ko is

II v,, o,____L)
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THEOREM 3.7. Suppose m rank L is even, m > 6, and (-1)m/2 dL =- 1
(mod 4). For n Z, the average representation number is

r(gen L, 2n)= PL,oo H PL,q(n),
q

where Pt.,oo (2n)m/2/F(m/2), and for fixed q, PL,q(n) is defined as follows.
Write dL NN, where N is square-free; define 7. by

7.(d) sgn (d)m/2(,(-1)m/2 dL)d

where (,) denotes the Kronecker symbol. Thus Z is a character with conductor N.
Let vj(e)= vj(e;L,q) be as defined in Lemma 3.6. Then for e= ordq(n),
e ((n/qe)/q),

PL,q(n) re(/3; L, q) + q(m/2-1)(e-)v(O; L, q).

Proof If L has minimal level and discriminant, then the theorem follows
immediately from Corollary 2.7. Thus, we argue by induction on the number of
primes q at which L does not have minimal level and discriminant at q.
The induction hypothesis is that the theorem holds for all lattices which have

fewer than h primes at which the lattice does not have minimal level and dis-
criminant. Let L be a lattice with h such primes. Fix such a prime q, and let K be
as in Lemma 3.1. If r2s is odd or #2s =-1, then K has minimal level and dis-
criminant at q, and the induction hypothesis (and the fact that the local struc-
tures of K and L agree for primes p q) implies that

r(gen K, 2n) Pr,q(n)PL,oo" H PL,p(n),

where Pr,q(n) is as in Corollary 2.7, and PL,p(n) is as in the statement of the
theorem to be proved. If r2s is even and/Z2s 1, then Kq has minimal level and
discriminant at q, and the induction hypothesis again implies that

r(gen Kq, 2n) pr.q,q(n)PL,o H PL,P(qn) 7.1v(q)Pq,q (n)" H PL,P (n)’
pq pq

where pr,,q(n) is as in Corollary 2.7, and PL,p(n) is as in the theorem to be
proved.
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Case 1. First consider the ease that either 2 ’ r2s or #2s --1; so K, L lie in
the same quadratic space. Assume s > 1. For e _+ 1, o 0,

___
1, set

Be(e) V(e) v2e(e) + (1 ),(e)) v2e-l(0)V2s(/3) V2s+l(0)

(Here the notation is as in Lemmas 3.2 and 3.6; we take V_l(,) 0.) Fix Y > 0,
and let R =preimage in K of rad K/qK. Then from Lemmas 3.2 and 3.6, we
have the following.

(a) For x K- R and cllQ(x), the proportion of K0 in K containing qex is
Ae(co), where 09 ((Q(x)/q)/q).

(b) For x K R and q X Q(x), the proportion of K0 in K containing qex is
Be(e,), where e (Q(x)/q).

(c) For x R- qK and qlQ(x), the proportion of K0 in K containing qex is
v2e+l(e,)/v2s+l(e), where e ((Q(x)/q)/q).

If q, N, R qK. So suppose qlN. Let q’ be a prime associated to q as in
Proposition 2.1. Then, as discussed in the proof of Proposition 2.1, we know that

0(gen K;
(qt)m/2-1 + 1

Tq, 0(gen M; z),

where M.
_
K,q’, for all primes p q’, and M(q,) K(q,). Thus, the nth Fourier

ej

coefficient of O(gen M; z) is r(gen M, 2n) P,oo I-Ip p,(n), where our conditions
on q give us

PM,p(n) ( PK,p(n forp’N ( PK,p(qn) for p v q,

PK,p(q’n) for piN PK,q(q’n) for p q.

Then, Proposition 2.1 implies that the nth Fourier coefficient of 0(gen R; z) is

0

r(gen R, 2n)= qm/2-1 + 1
qm/2-1

if qXn,

1
r(gen M, 2n/q) qm/2-1 r(gen K, 2n) if qln,

so

r(gen R, 2n)
r(gen K, 2n)
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where PR,q(n) 0 if q n, and for e ordq(n) > 1,

(qm/2-1 + 1
PR’q(n)/f(q)- k; Tm’’-’’ p,q(q’n/q)

1 )qm/2-1 PK,q (n) If(q)

CK(q) +
qm/2-1 .+. 1
qm/2-1 )q 2qtn/qe))N/q qe-1)q(m/2-1)(e-1)

1
qm/2-1 )(,q(2n/qe))(’N/q (qe)q(m/2-1)e

CK(q) + Zq(2n/qe)zwq(qe)q(m/2-1)(e-1)

Now, by our conditions on q’, we have

)q(q’);tN/q(q) ;tq(q’))v/q(q’) ;t(q’) 1;

so for e > 1,

PR,q(n) (cK(q) + Zq(2n/qe)zN/q(qe)q(m/2-1)(e-2))f(q).

Notice that for e > 2, pR,q(n) pr,q(n/q2) pqr,q(n).
Let di denote the number of K0 in K; we have

1 Z O(K;’c)=O(q’/’K;’c)+,,., Ae((Q(Xq)/q)) e{Q(qex)z}
t K

_
K O< <ql(x)

+ Z Bt((Q))) e{Q(qtx)z}
xr O<<s

xr- O<’<t-1
Ae((Q(X)q/q))e(Q(qex)z)
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xzr 0<’<t-1
qg2(x)

o<:<t_lV2s+1((O(Xq)/q))e{Q(q:x)z}
for any > s. So with e- ordq(n) and e ((2n/qe)/q), the nth coefficient of
1/6 -]Ko___r 0(Ko; z) is

if e 2t / 1,

if e 2t.

Note that a(qK, n/q2:) a(K, n/q2:+2); so a(qK, n/q2t) 0 when q2t+l lln.
Now

11
O(Ko;z) Z o(L’)K0 ___K L’ egenL

#{ e O(V)" {K" o’L’} {K" L}} O(L; z),

where {K" L} denotes the invariant factors of L in K (see [4]), and o(L’) denotes
the order of the orthogonal group of L’; thus

1

oIM)McgenK
Ko _M

O(Ko;z)

Z Z #{ e O(V)" {L" aqS+lM} {L" qS+’K}} 10(L’;’r).
L’ genL MegenK (qs+lM) o(L’)
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Since the invariant factors {L" qS+lK} are all powers of q,

M e genK

# {tr O(V)" {L’" trqS+lM)-- {L" qS+IK))
o(qs+lM)

is determined by the structure of L(q); hence 5’ is independent of the choice of
L gen L. So

mass L
0(gen L;z)

1 u,, 1
mass K mass K K o(M)

Ko_M

0(K0;z),

and for n#0, the nth Fourier coefficient of 1/(6 mass K) Y’u8o,K(1/o(M))O(Ko; "r)
is

At(e) (r(gen K, 2n/q2t) r(gen R, 2n/qEt))

Y2t+l (3) r(gen R, 2n/q2t)Y2s+I(/3)

+ Ae(0)(r(gen K, 2n/q2) r(gen R, 2n/q2e))
0<d<t-1

+ v2e+ (0) (r(gen R, 2n/q2e) r(gen K, 2n/q2e+2)) if e 2t + 1
o<<- Vs+(O)

Bt(e)r(gen K, 2n/q2t)

+ Ae(0) (r(gen K, 2n/q2) r(gen R, 2n/q2e))
0<<t-1

+ y] v2’+1(0) (r(gen R 2n/q2e) r(gen K, 2n/q2e+2)) if e 2t.
O<d<t-1Y2s+l (0)

Note that the zeroth coefficients of0(gen L; z) and 1/(6 mass K),8OHK(1/o(M)) x
K _M

0(Ko; z) are both 1, so di mass L1(5 mass K)= 1. Note also that when q2ln,
PR,q(n’) PK,q(n’/q2). Our induction hypothesis now gives us

r(gen L, 2.) p, HPK,p(n),
p
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pL,q(n)

At(e)(PK,q(n/q2t) PR,q(n/q2t))

V2s+I (/3) PR’q(n/qEt)

+ Ae(O)(PK,q(n/q2e)--PK,q(n/q2e+2))
0<d<t-1

Bt(e)PK,q(n/q2t)

+ Y A(O)(PK,q(n/q2)--PK,q(n/q2+2))
O<d<t-1

if e-2t+ 1,

if e-- 2t.

For q2+2]n,

(z(q)qm/2_l)e-l-2’ (1 + z(q)qm/2-1)f(q)
if qXdK,

pr,q(n/q2) pr,q(n/q2+2)
Zq(2n/qe)7.N/q(qe)q(m/2-1)(e-2-2) (qm-21)f(q)

if qldK.

Also if q X dK, then R qK; so for e 2t or 2t + 1,

( f(q)
PK,q(n/q2t) PR,q(n/q2t) PK,q(n/q2t)

(1 + z(q)qm/E-1)f(q)

if e 2t,

if e=2t+ 1.

Next, for e 2t + 1 and qldK,

apr,q(n/q2t) + (1 a)pn,q(n/q2t)

(lt2sql-m/2 -+- qd+l-m/2e(2s#2s+l)e)f(q)
if qlldg,

q-m/2(qd+l + 1)(qm/2-1_ 1)
qm/2-2_ 1

f(q)

if q2ldK.

Note that when q X dK, we must have r2s even, #2s-- -1, #2s+l 1, and q 1;
hence ;t(q) =/-/2s/I2s+1 =-1. When qlldK, we have Zq(2n/qe) ((2n/qe)/q) and

ZV/q(q) o/q q q #2s#2s+1,
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where N NoN with No square-free (recall that (-1)m/2N 1 (mod 4)). Sim-
ilarly, when qldK, ) 1 and

q #2s#2s+l 1.

Then straightforward computations show that PL,q(n) is as claimed.

Case 2. Now, suppose r2s is even and #2s 1; so Kq is an integral lattice on
vq. Set

and

A,(60) o
v2(60) 12,-1 (0)
v(o) +/ +(0)

12’-2 (0)+(1--fl) V2s(0)

Bt’(8) y(8) v2’-1(8)
v2+,()+(1- ?(e)) v2(o)

As in the preceding case, for ’ > 0, Lemmas 3.2 and 3.6 give us the following.
(a) For x K qK, qlqQ(x), the proportion of K0 in K containing qex ( > O)

is Ae(o), where 09 (Q(x)/q).
(b) For x K- qK, q X qQ(x), the proportion of K0 in K containing qex

( > 1) is Be(e), where e (qQ(x)/q). Thus

t Ko - K xer,q/qrq O<g<s

+ E E Be((qQx))) e{qQ(qex)z}’
xerq <<s

where 6 is the number of K0 in K. We have L gen K0, so an argument similar
to that when r2s is odd or #2s -1 gives us

r(gen L, n)
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where e ordq(n) and e- ((n/qe)/q). By hypothesis,

r(gen Kq, 2n) 7.v(q)pK.q,q(n)PL,o H PL,P (n/q)"

So, as in Case 1,

r(gen Lq, 2qn) r(gen K, 2qn) PL,oo" H PLq,P (qn)’
p

where

pt,,q(qn)

At(e)PK,q(qn/q2t)

+ A(O)(PK,q(qn/q2) pK,q(qn/q2+2))
o<<t

if e 2t,

Bt(e)PKq,q(qn/q2t)

+ A(O)(PK,q(qn/q2) pK,q(qn/q2+2))
O<d<t

if e 2t- 1, t > 1,
0 otherwise.

We know that

pKa,q(n)
1 -(7,(q)q’n/2-1)e+l

1 z(q)q’n/2-1 (1 x(q)q-’n/2)

and

pKa,q(n/q2) pKq,q(n/q2+2)

z(q)eq(m/2-1)(e-l-2)(qm/2-1 + z(q)) (1 z(q)q-m/2),

where z(q)=/-/2s#2s+l--/2s+1" Also, one easily verifies that r(gen Lq,2qn)=
r(gen L, 2n). Thus

r(gen L, 2n) r(gen Lq, 2qn) PLa,q(qn) PL, H PL,P(qn)
p#q

z(q)PL,q(qn)’PL, H PL,P (n) PL,oo H PL,P(n)’
p#q p

where PL,q(n) is as claimed in the theorem.
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