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EXPLICIT SIEGEL THEORY: AN ALGEBRAIC
APPROACH

LYNNE H. WALLING

To the memory of Martin Eichler

Let Q be a positive definite quadratic form on a Z-lattice L of even rank
m > 6; for convenience, assume Q(L) < 2Z. To gain understanding of the repre-
sentation numbers

r(L,2n) = #{x € L: Q(x) = 2n},
we study the average representation numbers

1 1

)= —
r(gen L, n) mass LL,EgenLO(L,)

r(L',2n),

since r(L, 2n) is asymptotic to r(gen L,2n) as n — co. Here L’ runs over the dis-
tinct isometry classes within gen L, the genus of L; o(L’) denotes the order of the
orthogonal group of L’; and mass L = 31, ¢ penr.(1/0(L")).

In the 1930s Siegel used analytic methods to show that r(gen L, 2n) is a prod-
uct of “p-adic densities’ (see [5]; cf. [2]):

A,(L,2n)
qm—l

bl

r(gen L,2n) = cH
q

where ¢ is an easily computed constant, the product is over all g = p® with p
prime and a sufficiently large, and A,(L,2n) is the number of solutions to
0(x) = 2n (mod q), x € L /qL. (Siegel actually shows that the average number of
times a definite or indefinite quadratic form of arbitrary level and rank at least 4
represents another quadratic form is the product of p-adic densities.) One could
use Hensel’s lemma to compute the p-adic densities ((4g(L,2n))/(g™!), but this
gets extremely tedious when L is of arbitrary level.

We use algebraic considerations to obtain a new derivation of Siegel’s for-
mula, obtaining a more explicit formula for average representation numbers. We
first consider lattices K whose associated theta series 6(K;t) have square-free,
odd-level N, and quadratic character y. Using local considerations, we design
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38 LYNNE H. WALLING

operators on modular forms for which 6(gen K;7) is an eigenform. We then
consider the action of these operators on Eisenstein series, constructing the
1-dimensional simultaneous eigenspace for these operators. Since 6(gen K; 1) is
known to lie in the space of Eisenstein series (see [5]; cf. [7]), this allows us to
write 6(gen K;7) as an explicit linear combination of Eisenstein series, giving us
our initial formula for average representation numbers (Corollaries 2.6 and 2.7):

2) —~tnp(@xp(n/d)
r(gen K, 2n) = X‘(l )Z N/D c(Dl)) am/?1 = PK,0 H PK,p("),
0 IZLN p prime

where xj, xn/p are the unique quadratic characters modulo D, N /D (respec-
tively) so that xpxn/p = X, @0 and pk ,, are explicit constants, the c(D) are given
by simple formulas in terms of the genus invariants of K, and with N’ the con-
ductor of y,

( 1— m/2—1ye+1 .
(1~ o)™ itpAN,
1

(n) = mp-y P21 '
PK.p (cx(p) + xp(n/P%)xn/p(PE)PE™ ”’)17.,/2—_1‘“_—1 if p|N/N,

| (cx(D) + x,(n/p®)xn p(P®)pE™ 2~ D) p~1/2 if p|N’.

We also show that the average theta series attached to the genera within fam K
are linearly independent (Corollary 2.8).

Next, given a lattice L whose theta series has arbitrary (odd) level N’, we use
lattice constructions and combinatorial arguments to obtain a description of
0(gen L; 1) in terms of partial sums of 6(gen K;7) where K has square-free level.
Using the formulas for r(gen K, 2n), we prove that r(gen L, 2n) = pp, , [, oL 4(n)
where, for each prime g with e = ord,(n) and ¢ = ((n/q°)/q),

prgm) =ve(s L,g)+ Y g2y (0L, q);

0</<e

here the quantities v, are given by simple formulas in terms of the genus invari-
ants of L at g (see Theorem 3.7).

Since it can be shown that the average theta series of a genus is also that of a
spinor genus, these formulas describe the average representation numbers of the
spinor genus of L.

The lattice techniques used herein are local; thus we can extend these results
to lattices of arbitrary rank over totally real number fields (work in progress)
and possibly to Siegel modular forms.

The author thanks Bill Duke, Andy Earnest, Kathy Merrill, Tom Shemanske,
and Jeff Stopple for helpful and encouraging conversations.
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§1. Preliminaries. We review some standard notation and terminology and
state some basic results. The reader is referred to [4], [1], and [3].

Let V be an m-dimensional vector space over Q); assume m is even. Let Q be a
positive definite quadratic form on V with associated symmetric bilinear form B
(so Q(x) = B(x,x)). Take L to be a lattice on V (i.e., a rank-m Z-submodule of
V); for convenience, assume L is even integral, that is, Q(L) < 2Z. Define the
discriminant of L to be dL = det(B(x;, x;)), where {x1,...,Xn} is a Z-basis for
L. Let O(V) denote the orthogonal group of V (i.e., the collection of all (global)
isometries of V) and O(L) that of L. Since Q is positive definite, O(L) is finite.
We say a lattice K is isometric to L, written K ~ L, if there is an isometry
o€ 0O(V) so that 6K = L. For any prime g, let Z,; denote the g-adic integers
and L ;) = L® Z,. Q extends naturally to a quadratic form on L.

We say a lattice K is in the genus of L, gen L, if K, ~ L, at each prime g
(i.e., there is a local isometry at each prime g taking K, onto L(,). There are
a finite number of (global) isometry classes within gen L. A lattice K is in the
family of L, fam L, if K is a lattice on V* for some odd a € Z ., and for every
prime g there is a g-adic unit u so that K ;) ~ L{, (see [7]). Here, V* denotes the
vector space V scaled by «, that is, V equipped w1th the quadratic form aQ, and

denotes L, scaled by u. As shown in Lemma 3.1 of [7], there are 2" genera

/?am L for some r € Z,; in Lemma 1.3 below, we give a more precise count.

Say g is an odd prime. Then L, can be diagonalized. That is, there is a Z ;-
basis {x1,...,Xn} for L so that (B(x;, x;)) = diag{Q(x1),...,Q(xm)}; we write
L(q) ~ {ay, ..., %,y Where a; = Q(x;). In fact, Ly = Jo L --- L J; where each J;
is g'-modular; that is, J; ~ ¢'{l,...,1,,>, n; eZ (@ The J are called Jordan
components of L. These are not umquely determined by L, but their Z(q)-
isometry classes are. Note that the Z 4 -isometry class of a g -modular lattice is
determined by its rank and its discriminant (up to squares of g-adic units). Thus
we have

L(q) <1 1)"0>-Lq<1a"',1’”1>J-"'-qu<1)"'711’1s>1 and so
Lz<1,---a1,’10>J—4<1,-~~,1,'11>J-"'lqs<1,--->1,'1s> (mOdqt)

for any t € Z; that is, relative to some Z-basis {x1,...,xm} for L, (B(xi,xj)) =
A,...,,n>L--- Lg*1,...,1,n,> (mod ¢*). From this we obtain the follow-
ing technical lemma.

LemMA 1.1. Let L,L' be even integral Z-lattices and q an odd prime.
erte L =~<,...;,Lne> L--- L g,...,1,n), L’(q) ~{,.. Lyl L
gL, L),

(1) Suppose L ~ L’ (mod q*) where t > s, s'. Then L4 ~ L’(q).

(2) Suppose L) ~ L'(q). Then L ~ L' (mod q*) for any te Z.

Assume we have scaled L so that Q(L) < 2Z, Q(L) & 2nZ for any n > 1. Then
with notation as above, L/qL is a Z/qZ-vector space. Here we use Q and B to
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denote the quadratic and bilinear forms naturally induced on L/qL; the induced
forms take values in Z/qZ. We call a nonzero vector X € L/qL isotropic if
Q(x) = 0; we call X anisotropic if Q(X) # 0. (Note: When it will not cause con-
fusion, we use X freely to denote the image of x in various reduced lattices
L'/qL') A subspace of L/qL is called totally isotropic if all its nonzero vectors
are isotropic, and it is called anisotropic if it contains no (nonzero) isotropic
vectors. We define the radical to be

rad L/qL = {x e L/qL: B(X,y) =0 for all je L/qL}.

If rad L/qL = {0}, then we say L/qL is regular, and we have L/qL =
H; 1l .-- LH, 1 A, where A is anisotropic of dimension 0, 1, or 2, and each H;
is a hyperbolic plane; that is, H; ~ (J ) = <1,—1). Here k is called the Witt
index of L/qL. When L/qL is not regular, L/qL = U Lrad L/qL for some
regular subspace U whose isometry class is uniquely determined by L/qL. We
say the Witt index of L/qL is that of U. More generally, we say a space of type
(r;d,u) is a Z/qZ-quadratic space W = U Lrad W such that dim W =r,
dim U = d, and ((—-1)? dU/q) = u, where ¢ = [d/2], dU = the discriminant of U,
and (x/*) denotes the Legendre symbol. When r = d, we simply say the space is
type (d, u). (For instance, a hyperbolic plane is type (2, 1).)
One easily verifies the next result.

PROPOSITION 1.2. Let L be an even integral lattice and q an odd prime with
L(q)=JOJ_-'-_LJs and J,"zqi<1,...,1,1’],->

for some n; € Z,.

(1) Say C is a d-dimensional totally isotropic subspace of L/qL such that
Cnrad L/qL = {0}. Thus L/qL= (C@® D) L U Lrad L/qL, where C@® D is
hyperbolic (i.e., an orthogonal sum of hyperbolic planes) and U ~ {1,...,1,9') is
an (r — d, p) space. Let M = preimage in L of C ® rad L/qL, and M’ = preimage
in L of C*, where C* = {%: B(%, C) = 0}. Then Mgy = M{, = L) for every
prime q' # q, and

Mg ~qdl,—1,...,1,-1> LJ L g*1,...,4,n'> LUy L+ L Jg,

My~ 0,0y Ll =1, 1,~1> LAy LUy L - LU,

where (1,—-1,...,1,-1> hads rank 2d, {1,...,1,9'> has rank —2d + rank Jy,
n' €Ly, and (n'/q) = ((-=1)"no/q).

(2) Say Jo = Co L Dy, Ji=C1 LD (so C;, D; are necessarily q'-modular).
Let M = preimage in L of Co L C; < L/qL. Then Mgy = M E )= L4 for every
prime q' # q, and

My =CoLlCyLgDoLJs 1 gDy LJsL-- LU
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(3) When R = preimage in L of rad L/qL, we have Ry =J; L qJo L Jy L--- L
Js.

We define the theta series attached to L to be O(L;t) =3, ., ™™
where te # = {t' e C: 3¢’ > 0}. Since Q is positive definite, O(L;z) is a
modular form of weight m/2, some level N, and character y;, where y;(d) =
(sgn d)™?((=1)™2 dL/|d|), where (*/*) is the Kronecker symbol. We refer to the
level of 6(L;t) as the level of L. For odd primes g, ord; N = s, where s is as
above in the Jordan decomposition of L(,). x,, is a quadratic character modulo
N, and for odd primes p not dividing N, x,;(p) = 1 if and only if L/pL is hyper-
bolic. We will be assuming N =level of L is odd, so (cf. [6]) we necessarily have

2(11 1 2a /2 1
L<2"~‘(1 2c1)l"'l( ! 2c,,.,2)

and (—1)™? dL = 1 (mod 4).
We say a lattice K has minimal level and discriminant at an odd prime g if, for
somen, n'eZ —qZ,

a,...,4Ln or

1,...,1,n> Lqln’ or
Ky ~ <, n> Laln’>

_q1ym/2-1 —n'
L., 1ny Laclin'y where (g_l)“q’_ﬂ) -Ts (‘71’1‘)

In the last case, the condition on Legendre symbols means that neither Jordan
component of K is hyperbolic modulo g (where we consider the second Jordan
component scaled by 1/q). When K has minimal (odd) level and discriminant at
all odd primes, we simply say K has minimal level and discriminant.

LemMA 1.3. Suppose K has minimal, odd level N and minimal discriminant dK;
let q1,...,qn be the primes exactly dividing N. If h =0, then fam K = gen K if
h > 0, then there are 2"! genera in fam K.

Proof. As the case h =0 is trivial, we suppose h > 0; take K’ € fam K, and
define y(d) = (sgn d)™*((—1)™? dK/|d|)x, where (%) denotes the Kronecker
symbol. (So (x/d)y is the Jacobi symbol (*/d) when d is positive and odd.)
Note that our assumptions on K imply dK = gq; - - - q¢* for some ¢ € Z, and
(——1)"'/ 2¢1---qn = 1 (mod 4) (cf. [6]). Then as described in the proof of Lemma
3.1 of [7], K’ = J'/*, where J is “connected to K by a prime-sublattice chain.”
That is, a =p; -- 'PrP,ZH = -p,2+s where the p; are odd primes (not necessarily
distinct) with y(p;) =1 if j<r, and there exist lattices Jo = K, Ji,...,Jrps-1,
Jy4s = J such that J; is a p;-sublattice of J;_; if j < r, and J; is a p?-sublattice of
Ji—1 if j>r. (A p-sublattice J' of J is the preimage in J of a maximal totally
isotropic subspace of the quadratic space J/pJ. A p?-sublattice J' of J is a
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p-sublattice of a p-sublattice of J with dim J'/(J' n pJ) maximal; cf. [6].) Hence
%(o) must equal 1. Also (cf. [6] and [7]), K’( )= K () for all primes q } g1 - - - g (for
g = 2, refer to §82E and 93:16 of [4]) and qui) ~ K, if and only if (a/q:) = 1.
Thus we identify gen K’ with the vector ((a/qi),...,(a/qn)). As 1= y(a) =
(2/N) = (2/q1- - - qn), the value of (/qs) is determined by the values of («/g;)
for j < h. Hence there can be at most 2"~! genera within fam K.

On the other hand, choose ¢ =+1for 1 < j < hand set e, = &1 - - - 4. Using
the Chinese Remainder theorem, we can find an odd prime p such that
(p/q;) = & for 1 < j < h; notice that quadratic reciprocity implies that x(p) = 1.
Let J be a p-sublattice of K and set K’ = J'/?; then K’ € fam K and gen K’ cor-
responds to (gi,...,&;). Hence fam K contains 2"~! genera. [J

Remark. Consider the group S = {(e1,...,en):ei==x1,81---8,=1}; as in
[8], let {vy,...,vh—1} be a set of generators of this group. For each j, we can find
an odd prime p; such that v; = ((pj/q1),-- ., (pj/qr))- Notice that we necessarily
have 1= (pj/q1---qn) = x(pj). Let A =p;1---ps—1. Then each divisor a of 4
corresponds to ((¢/q1),- -, (2/qn)) € & Thus we may index the genera in fam K
by the divisors of A.

PRrROPOSITION 1.4. Let K be a lattice of level N, and let q be an odd prime such
that K has minimal level and discriminant at q. Set R=preimage in K of
rad (K/gK). Then O(R) = O(K) (where O(K) denotes the orthogonal group of
K).

Proof. Take o € O(K). Then for x € R, we have
B(K,ox) = B(6K, 0x) = B(K,x) =0 (mod q).

Hence 6% € rad K/gK, so ox € R. Thus O(K) < O(R). Since gK = preimage in R
of rad R/qR (where R is scaled by 1/gq), we also have O(R) < 0(¢K) = O(K).
O

ProPOSITION 1.5. Let K, R be as in the preceding proposition. As K’ varies
over the isometry classes in gen K, the corresponding R’ varies over the classes in
gen R.

Proof. Suppose R’ € gen R with gK’ =preimage in R’ of rad R’/qR’ (where
R’ is scaled by 1/q). Thus R’ =preimage in K’ of rad K’/gK’'. One easily verifies
that whenever a (local or global) isometry ¢ carries R to R’, then ¢ also carries
gK to gK' and hence K to K'. []

Given any lattice L, the Fourier coefficients of 0(L;z) are the representation
numbers of L:

O(L;t) = Z r(L,2n)e*™™  where r(L,2n) = #{xe L: Q(x) = 2n}.

n>0
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We define the average theta series to be 6(gen L;7) = l/mass LY o cgenL X
(1/0(L"))8(L';7), where L’ runs over the isometry classes in gen L, o(g L) =
#O(L')=the order of the orthogonal group of L', and mass L=
ZL’egenL(l/o(Ll))' Thus

O(gen L;t) = »_r(gen L,n)e’™™,
n=0
where

1

mass L L,egenLo(L')

r(gen L,n) = —, r(L',2n).

In [7] we showed 0(gen L;7) lies in the space of Eisenstein series by examin-
ing the action of Hecke operators T, p t 2N, on 6(L;7). Let qi,...,q4, A be as
in our discussion of fam L following Lemma 1.3. Given a|A4 with corresponding
genus gen K, and prime p such that y(p) = 1, we have

0(gen K,;7)| T, = (p™*! + 1)0(gen Kg; 1),

where S|4, B = pa (mod q; - - - gn) (see Lemma 3.3 of [7]).
In this paper we make use of some other standard operators on weight m/2
modular forms. For g an odd prime dividing N, we let

_ 0 /1 b 1 Gfa\(1 a/
(s 2) wment 50 2 meiEQE
q =4 0 1 9=49 ; 0 q q g‘l; q 0 1

where gg = ¥y moaq(b/4)e*™/1. So for a modular form f(t) = 3,5 a(n)e*™™,
we have

f(‘t)IBq = Za(n)eZm'qm’ f(T)IUq — Za(qn)ehmt,

n=0 n=0

and

J@IRg = Z(g) a(n) e

n>0

Notice that for any lattice L, 0(L;t)|B2 = 6(qL; 7).

Let G(t;¢,d; N) denote the Elsenstem series of weight m/2, odd, square-free
level N, and quadratlc character y, as defined in Chapter IV of [3]. As usual, we
assume (— 1) 2 = y(—1). For D|N, set

m/2—1 2 X
DY Tm/2) 5~ e o(B)tn(c)e /PG z; bD, a; N).
2(=2mi)"* L

smodN/>

ED(T) =
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Then by Theorem 15 in Chapter IV of [3], we find that each Ep is a simul-
taneous eigenform for the Hecke operators Ty, p ¥ 2N, and {Ep: D|N} is a basis
for the space of Eisenstein series of weight m/2, level N, and character y. From
Proposition 17 in Chapter IV of [3], we see that Ep(t) = ), ap(n)e*™™, where

0 if D#N,

ap(0) = ¢ N™2-1T(m/2)

x(b)eZninb/Nn—m/Z if D= N,
2(2mi)™/? %

and forn > 1,

ap(n) = ZXN/D(n/d)XD(d) am=t,

dln
>0

Standard techniques for evaluating Gauss sums show that

-m/2
an (0) =

N™2-1T(m/2) , 1—xn(9)q
Gy Sl DIN/NOLom)2) .1_,1 T g (@)d7

qprime

where N’ =cond y, G(xy+,1) is the standard Gauss sum (modulo N’) and
L(x,s) = > 51 x(n)n~°, the standard Dirichlet series for y (modulo N).

§2. Lattices of minimal level and discriminant. Throughout this section, let
K be a lattice of odd level N and discriminant dK. We derive formulas for
the average representation numbers of gen K when K has minimal level and
discriminant.

Convention. When a lattice J has the property that the first Jordan compo-
nent of J,) is g*-modular, we use the quadratic form g~*Q on the Z/qZ-space
J/qJ.

The proofs of the following two propositions illustrate the main techniques
used throughout the paper.

ProposITION 2.1.  Suppose N # 1, where N denotes the level of K; let q be an
odd prime dividing N. Suppose K has minimal level and discriminant at q. Thus for
anyteZ,,

X {<1,-~,1,n>lq<n'>(modq‘) if q|dK,
L, Ladt, 'y (mod ¢f) if g2ldK
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recall that in the latter case our hypotheses on K imply ((—1)’"/ 2'ln/q) =-1=
(—=n'/q). Let

R = preimage in K of rad K/qK,

and let dK denote the discriminant of K. Let p be an odd prime not dividing the
level of K such that

1) =11y, (2) = (2)

for all primes q'|N,q’ # q. We refer to p as a prime associated to q. Then yx(p) = 1
and

6(gen R; t) = 0(gen K;7)| Tx/r(q)

gt 4+ 1 1
qm/2—1(pm/2—1 + 1) B,T, - qm/z_l U,By| -

— 6(gen K; 1) [

Remark. When g ¥ dK, R = gK, and so 6(gen R;t) = 0(gen K; 1:)|B§. Also,
this proposition extends easily to the case dK by imposing the extra condition
p = q (mod 8).

Proof. Let C be a maximal totally isotropic subspace of K/qK (so
rad K/gK < C), and let

K’ = preimage in K of C.
By Proposition 1.2,

I KR (=)™ 'y L g2{(=1)"* ') (mod ¢") if q|ldK,
a<1,...,1,n> L g*C1,n'> (mod g°) if g*|dK
for any t € Z . Also, for any prime ¢’ # g, K’( ) = K@)
Clearly these sublattices K’ are in one-to-one correspondence with these sub-
spaces C. Using the formulas from [1, p. 146] (cf. Proposition 7.2 of [6]), we find
there are

(qm/2—-1 + 1)(qm/2*2 + 1) T (q + 1) if q”dK’

(qm/2—1 + l)ﬂ —
(qm/2—1 + 1)(qm/2—2 + 1) e (q2 + 1) if q2|dK

ways to choose C, and exactly f of these contain a given vector x € K — R pro-
vided ¢|Q(x). When g} Q(x), x ¢ K’ for every K’, and when x € R, we have
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x € K' for each choice of K'. Thus, we find that
0(K;7)|UsBy + 4"/~ 0(R; 7) = %z 0(K';7),
KI

where K’ varies over all the sublattices constructed as above.
For J, J' lattices on V, let f(J,J') = #{o€O(V): qJ c0J' = J}. So

0(K;7)|UyB, + ¢™*7'0(R; %) = ﬁ o)
M'egenK’

where K’ is any sublattice constructed above, and M’ runs over the isometry
classes in gen K’'. Averaging over the isometry classes in gen K (and thus the
corresponding isometry classes in gen R; see Propositions 1.4 and 1.5), we get

0(gen K;7)|U,B, + ¢™>~'6(gen R;7)

s\ 1o
o(M) ) ooy (M)

fM e 1
o(aM) ) ooy M50

1
" B-mass K

M'egenK'’ (MegenK
_ 1
B - mass K

M'egenK' (MegenK

Now, ZMegenK f(M',qM)/o(gM) = (¢™*! +1)B, the number of maximal
totally isotropic subspaces of M'/gM’, so

mass K’

0(gen K;1)|U,B, + g™*"'0(gen R;7) = ("> + ) O(gen K';1).

Comparing zeroth Fourier coefficients, we find that
6(gen K;7)|UyBy + ¢™>'6(gen R; 1) = (¢! + 1)6(gen K'; 7).

If ¢’ ¥ cond , then K¢ @) =K@y = K @y but if ¢’|cond y, then K g only
if (¢/q') = 1. Thus, we do not necessarlly have 6(gen K';7) = (}(gen }( ;T)| By
However, we claim that

O(gen K';1) =

6(gen K; 7)|B, T, = 0(gen K;1)|T,B,.

1
pm/2—1 +1 pm/2—1 +1

To verify this claim, first note that

(=)™ dK\ _ ((=1)"?q1---quN}
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where qy,...,q, are distinct primes and Noe Z,. Smce by assumption, y is a
character of odd level N, we must have (—1)"2g;---q; =1 (mod 4), and
cond x = q; - - - q». Hence our constraints on p and quadratic reciprocity imply
that y(p) = 1. Thus by Lemmas 5.2 of [6] and 3.3 of [7], we have

mass M

6(gen K;7)|T, = (p™*7' + 1) O(gen M;1) = (p™*7! +1)0(gen M;7),

where M is a lattice on V'/?, M,y ~ K;), for all primes g’ # p, M) ~ K{»
and the last equality follows from comparing zeroth Fourier coefficients. So for
q' # p, our constraints on p imply that

My =~ K @) = K@) = Kigy-
Also, since p t dK, M ) = K o =K = K{,- Hence, M? € gen K’, and
0(gen K; )| T,B, = (p™*~! +1)0(gen K'; 7).

The proposition now follows by solving our earlier equation for 8(gen R; 7). [J

Assume still that g is an odd prime dividing N; let p be a prime associated to g
as in Proposition 2.1. Define

Tk(q)

-2, mj2-1
2 2-1 " +4q
— (qm/ + qm/ )Uqu + pm/2—-l i 1

B,T, + (CE=2) gm2-1R, i g|ldK,

B,T, if q?|dK,

m—2 m/2—1
2 _ gm/2-1 4 "+a7
R =y

"2 —q"*+1 if ¢*|dK,

and set 4 =
«(@ { "+ 1 if q|ldK .

PROPOSITION 2.2. Suppose K has minimal level and discriminant at the odd
prime q dividing N. With notation as above, 6(gen K; 7)| Tx(q) = Ax(q)0(gen K;; 7).

Proof.

Case 1. Suppose g?|dK. We perform lattice constructions quite similar
to those of the preceding proposition. This time, let (W) @ rad K/qK be a 3-
dimensional totally isotropic subspace of K/gK, and let

K’ = preimage in K of {<w) @ rad K/qK

= ‘Kl, 1) 1’ _‘7’/> 1 q2<1) (RS 17 —’1> (mOd qt)
for arbitrary te Z, (see Lemma 1.1). Let (y) @ rad K'/gK’ be an (m — 3)-
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dimensional totally isotropic subspace of K’/gK’, and set

K" = preimage in K’ of {(j> ® rad K'/gK’

~ ¢*1,...,1,n> L ¢*¢1,1"> (mod ¢°)

for arbitrary t € Z . Clearly, K’ and K” are in one-to-one correspondence with
the subgroups (W) @ rad K/qK and {y) @ rad K’/qK’ (respectively). Using the
formulas of [1], we see there are ((¢™/2~! +1)(¢"/?>~2 —1))/(g — 1) choices for
(W) ®rad K/qK, and g2+ 1 choices for (j» @ rad K'/gK' in each K'. Note
that w ¢ rad K'/gK'.

Say x € K — R with ¢%|Q(x); then x € K” if and only if (W) @ rad K/gK =
(%) ®rad K/qK and {j) @ rad K'/gK' = {x) @ rad K'/qK'.

If x € R — qK, then g% y Q(x) so x is never in K”. However, gR is in K" for all
pairs (K’,K").

Say x € K — R; then g% € rad K’/qK’ if and only if W € (X)* in K/qK.If gx €
rad K'/gK’, then gx € K” for each K” constructed from K’; if gx ¢ rad K'/qK’,
then gx € K” only when {(7) @ rad K'/qK' = {gx) @ rad K'/qK'. When ¢|Q(x),
¢%>* has dimension m — 1, radical (X) @ rad K/qK, and Witt index m/2 — 3.
When g4 Q(x), K/qgK ~ (X) ® (X)>*, and so by Witt cancellation, (X)* has
dimension m — 1 and radical rad K/gK. Thus, using the formulas from [1], the
numPer of 3-dimensional totally isotropic subspaces (W) @ rad K/gK with w €
{Xy~is

m—4 _ 1
qq——l_ if g4 Q(x),
m—4 _ m/2—1 + mf2-2 __ 1 .
1 if 9l0(x).

Note that if § € rad K'/qK’, then v e K” for all K” constructed from K’, and
otherwise v € K” only when K" =preimage {9) @ rad K'/qK’. Hence, for x e
K — R, the number of pairs (K’, K") with gx € K" is
(q2 + 1)(qm—4 _ qm/2—1 + qm/2—2 _ 1)
q-1
(q2 + 1;(3"'1_4 — 1) + qm-—4 _ qm/2-—2

+qm* if q|Q(x),

if ¢4 Q(x).

Thus we have

m—2 m-3 _ m/2-1 m/2-2 _ 2 __
+ +
0(K; )| [Ung —qu B+ T4 1 4 4 "Bg]

qg—1

+06(R;7)lg" B2 = Y 6(K";7),
(K/’K”)
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where (K’, K") varies over all the pairs constructed as above. Averaging over
gen K and using Proposition 2.1, we get

0(gen K;1)|Tx(q) B2 = Ax(q)6(gen gK; 1) = Ax(q)0(gen K; )| B2.

Case 2. Now suppose g2 ¥ dK. Similar to case (1), let (W) @ rad K/qK be a
2-dimensional totally isotropic subspace of K/gK, and let

K' = preimage in K of {w) @ rad K/qK
= ¢1<1, 1, —7]') 1 q2<1, KRS} 1, —"1> (mOd qt)

for arbitrary te Z,. Let {(j) @ rad K'/qK’ be an (m — 2)-dimensional totally
isotropic subspace of K’'/gK’ (scaled by 1/g), and set

K" = preimage in K’ of {(j) @ rad K'/qK'
~ g% 1,...,1,1> L ¢*¢n’> (mod q').

Using Artin’s formulas, we see there are (¢"~2 — 1)/(q — 1) choices for K’, and
g + 1 choices for K” in each K’.

If x € K — R with ¢%|Q(x), then x € K” for exactly one pair (K’,K").

If x € R — gK, then g2 ¥ Q(x), so x is never in K” but gx € K” for all K”.

Now suppose x € K — R. Again, g% € rad K’/qK’ if and only if #w € (X)* in
K/qK. When ¢|Q(x), <x>* has dimension m — 1, radical <) @ rad K/qK, and
Witt index m/2 — 2; hence there are (9" — 1)/(g — 1) ways to choose (W) @
rad K/gK with we (X)*. Say gt Q(x); then (%) ~<1,...,1,Q(x)n> L<0)
with Witt index m/2 — 1 if (Q(x)/q) = ((—l)m/z'ln/q), and m/2 — 2 otherwise.
Thus the number of 2-dimensional totally isotropic subspaces {Ww) @ rad K/qK
with w e ¢x)* is

qg-—1 q

=)™y
=—=—1).

(@7 - D@41 (Q(x)) _ ((—1)'"/2—‘:1),
q

*

(@' +1)(g"* 1 -1) . (Qx)
\ q-1 1f< q )
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Hence the number of pairs (K’, K”) with gx € K" is

( zqm—2 —q- 1 .
T g1 if 4|Q(x),
2q"t—q-1 L2t (Q(x)) (=)™ Ny
q 1 - >
q-1 q q
20" g -1 api g (Q(X)) (=)™ y
———— — (] 1 # .
[ g-1 q q

Recall that the nth coefficient of 0(K; ) is (K, 2n), so

0(K;1)|Rg = Z(g) r(K,2n)e{2n1} = Z (ZQ_(x)) e{Q(x)7}.

n=0 xeK q

Thus

_1 m/2—12 2 m—2 _ 2
6(K; )] [qu + ((———)—q—" q"*7'R, +%—q B2 + 6(R; 7)|q" B2

= ) 6(K";1),
(KI,KII)

where the sum is over all pairs (K’,K”). Averaging over gen K and applying
Proposition 2.1 yields the desired formula. [

For g an odd prime dividing N, the level of K, let ¥x(g) denote the subspace
of Eisenstein series E of level N, weight m/2, character y, such that E|Tk(q) =
Ak (q)E.

LemMA 2.3. For any prime q||N, span{Ep: D|N/q} N 6x(q) = {0}, where the
Ep are the Eisenstein series with character y, level N, and weight m/2 (as defined

in §1).

Proof. We simply examine the action of Tx(q) on the Fourier coefficients of
Ep, D|N/g. Let bp(n) denote the nth coefficient of Ep|Tx(q). Thus

Ak(q)ap(n) if g|n,

g™ 2ap(n) if g ¥n,q?|dK,

_1\ym/2-1
e o e

bD(n) =



EXPLICIT SIEGEL THEORY: AN ALGEBRAIC APPROACH 51

Notice that g™~2 + g™/>~1 is never Ak(q). Thus for each n|N/q,
0= Y apap(n®)= > an/p(n,D)" .
D|N/q D|N/q

We represent these equations with matrices as follows. Let gq;,...,q, be the
primes dividing N/gq; order the divisors of N/q according to their order in the
tensor product

1 q)®(1 @)@~ ®(1 qn)-

Let & be the vector whose entries are indexed by the divisors D of N/q and
whose D-entry is ay/,p- Then the above equation implies

a4 =0,

1 1 1 1 1 1
A= . ‘
(1 ql)®(1 qz)® (1 qh)
Since each matrix in the tensor product defining A is invertible, 4 is invertible as
well. Hence, & = 0 and }"py/,0pEp =0. [0

where

Set
q? -1 T
qm-—2 _ qm/2 if q |dK’
ck(q) = (_l)m/Z—ln
— g'~™? if g|ldK,

and extend ck(*) multiplicatively.

PROPOSITION 2.4. Suppose q||N. Then %x(q) = span{Ep + x,(2)ck(q)Epg:
D|N/q}-

Proof. By looking at Fourier coefficients, one easily verifies that Ep+
X4(2)ck(9)Epg € 6k(q) for all D|N/q. The proposition now follows from the
preceding lemma. []

THEOREM 2.5.  Suppose N is square-free and odd. Let E = 3~y xp(2)ck (D)Ep.
Then NN ¥x(q) = CE.

Proof. Write N = g - - - q¢. Using induction on r < /, we argue that

msis,fgx(qi)=span{ > Xd(2)CK(d)EDdiDlN/th'“qr}.

dg1-q;
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This is clearly true for r = 0. Take r > 0 and f € Ny<i<r+1 ¥k(q:). The induction
hypothesis tells us that

f= > ab( > Xa(2)CK(d)EDd)
D|N/q1--qr d

|q1--g»
= Z Xd(Z)CK(d) ((XDEDd + aD‘Ir+lEDd‘1r+1) .

DIN/qyqp41
dlgyqr

Since f € %k(gr+1), Proposition 2.4 implies that ap,,,, = ¥,.,,(2)ck(gr+1)ep-
Hence

f= O!D( > Xd(z)CK(d)EDd)- O
DIN/g1gr1

dig1-gres

Since the zeroth Fourier coefficient of 6(gen K;1) is 1, and the zeroth coeffi-
cient of E is x(2)ck(N)an(0) (where an(0) is defined in §1), Proposition 2.2 and
Theorem 2.5 immediately give us the following result.

COROLLARY 2.6. Suppose K has minimal level and discriminant. Then
0(gen K;1) = (1/cx(N)an(0)) - E. Thus forne Z

2 m/2—
_c?(—lz\tl—%a)N_(Oj;cK(D)XD(d)xN/D(Zn/d)d /-1
din

r(gen K,n) =

where yp, xn/p are the unique characters modulo D, N/D (respectively) so that
XpXN/p = X- Asin §1,

N™2-1T(m/2)

an(0) = )" 2

m 1—xn(g)g >
Gln, DUN/NL(1,5) |l =— 7>
( 2) alN/N' 1—xwg*m?
qprnme

with N’ = cond y.

Suppose K has minimal level and discriminant. Say g|N/N’; then K, ~
<L, 1,m> L g1, 0>, where ((~1)"*"'n/q) = (—n'/q) = —1. Thus

i AN I AT (G AT
XN'(Q)—(——q )—(———-—q )-(————q =1.

Also the first Fourier coefficient of 6(gen K; ) is nonnegative, and (from Corol-
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lary 2.6) it is equal to

x(2)
mn(l +ck(9))-

qlN

Since |ck(g)| < 1 for all g, we must have cx(N)ay(0) > 0. Thus

@ enm?
X (Nan0) ~ T2 )pgmf(p),

where

1—x(p)p™? if p¥N,
pm/2—2 _

f(p) pm—ﬂ—t—f

if p|N/N’,
p~1/? if p|N'.
To write r(gen K, 2n) as a product, we set

3 (2n)m/2
pK,oo - F(m/2) )

and for n € Z, with e = ord,(n),

p(m/2—1)(e+1) _ X(pe+1)
pp(n) = p*~1 = x(p)

(P27 + 5, (2n/p®)xnyp(P)ek (P))f(P) if PIN.

f(p) if pYN,

Then one easily verifies the next result.

COROLLARY 2.7. Suppose K has minimal level and discriminant. With pg ,(n)
as above,

r(gen K, 2n) = pg H P p(n)-

pprime

COROLLARY 2.8. The average theta series attached to the genera within fam K
are linearly independent.

Proof. Let {K,: a|A} be a set of representatives for the genera in fam K
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where A is as in the remark following Lemma 1.3. First notice that for «|4, D|N,
¢k, (D) = (a/D)ck (D). Take d|N; then

3 2(3) teen Ko = aN(O)cK(N)Z(Z( ))CK(D)ED

o|A DIN

1
=2 ey K @Ea + cx(N/d)Exya).

Note that {E;: d|N,0 < d < N} is a linearly independent set. []

§3. Lattices of descent. Now we fix an integral Z-lattice L of even rank m
and odd level N’. For convenience, assume L is scaled so that Q(L) < 2Z,
Q(L) & 2nZ for any n > 1. We show that L descends from a lattice of minimal
level and discriminant, then we construct chains of lattices from the minimal lat-
tice to lattices K¢ in gen L; by counting how often an element of the minimal
lattice lies in these lattices Ko, we obtain formulas for r(gen L, 2n).

Notation. Fix a prime g|N’ and set s = s(L,q) = [ord, N'/2]. Fix t > 2s + 1;
then by Lemma 1.2,

L=L0@"-@L23+1 2<1,~''v1780>J-"'J-qzs-'-l<11-"’17"32s+1> (modq‘),

where the ¢ € Z — gqZ, and the ith component, L; ~ ¢'(l,...,1,¢), has rank
m; > 0. Let Hy = q 'L, Ha41 = ¢ 'Laiy1. Thus

L=Ho®@H ®qH; ®qH3 D --- ® ¢°Hos ® q°H211,

where the H; are unimodular (mod ¢'), and the H;;; are g-modular (mod gq).
Let

';fiz OSIB@ Hl’ ri=ri(L’q)=rank‘#i: "2i="2i(Laq)=disc'#2i7
¢=i(mod?2)

. -1 {'11.
g M1 = 4" N41(L, q) = disc #i41, wi=m(L,q) = ((—%-1) )

where ¢; = [r;/2]. (When r; =0, set u; = 1.) Note that s, r;, u; are invariants of
gen L, and when r; is even, y; = 1 exactly when s#; is hyperbolic modulo q.
(Here .#i is scaled by 1/g when i is odd.)

LemMA 3.1.  Fix a prime q dividing the level of L and let p;, r; be as above.
(@) If ry is odd or u,, = —1, then there is a lattice K on V with ¢"''K € L <
K, K(p) =~ L) for all primes p # q, and K has minimal level and discriminant at q.
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(b) If 1y is even and py, = 1, then there is a lattice K9 on V so that ¢**1K9 <
LcKi, Ky ~ L‘z ») for all primes p # q, and K? has minimal level and discrim-
inant at q.

Furthermore, if ry is even, py, = —1 and pyg, y = 1, then
K ~<1,...,1,ex), ((——l)—:/zi>=—l.
If rys is even, py = —1 = pyg, y, then
K =<1,...,1,ex> L q<1,€%>, <(—_12":;2—-18K—> =—1= (——ZIK-)

If 1y is even and u,; = 1, then

_1 m/28
K{y =<1,...,1,e), ((——‘)"'I—E = Host1-

Note that gen K is determined by gen L.

Remark. Since dL, dK, and dK? differ by squares, their theta series are asso-
ciated with the same character y (although the modulus may differ between the
theta series).

Proof. Set Lo=L.For0<i<s,set
L1 = preimage in Ly; of rad Ly;/qLy;,and
qL ;2 = preimage in Ly; of rad Laiy1/qL2iy1-

One easily verifies that L; is a Z-lattice with ¢°Lo; & L and that

2541-2i
Ly=#y®#u1 @ Y, q"Hyp,
k=2
2541-2i
Loyt = #2i1 @ q#2i2® Y, ¢ HHypa.
k=3

Notice that Ly = #2s @ #Hasi1 = {1,..., 1,15 L g<1,..., 1,95, (mod g*).
Constructing the lattice K is a bit more complicated.
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Case (a). Say ry, is odd or pu,, = —1. So
L1 = #2511 © g5,

where #>; is unimodular (but not hyperbolic) modulo q', and S5, is g-modular
modulo ¢. Let C be a maximal totally isotropic subspace of the space Lys,1/
qLs+1, and set

gK = preimage in Ly of C.

Then K is as described in the lemma.
Case (b). Say ry is odd and u,, = 1. So

Ly = A0 @ Hos41,

where ), is unimodular and hyperbolic modulo q', and #yy is g-modular
modulo g¢'. Let C be a maximal totally isotropic subspace of Ly;/qLj;, and
set

gK = preimage in Ly, of C.

Then K1 is as described in the lemma. []

We construct descending chains of lattices K, Ky, ...,Ko such that K; e
gen L;. We count how many K contain a given vector x € K, thereby obtaining
formulas for r(gen L, 2n).

More notation. For q fixed and r;, u; as above, set p = py, 4’ = pye,q,

r23/2 if 2|r28, n= 1)
r2s+l/2 if 2'7‘23, Hos = —'1’ Hl = 1’
(ras+1—1)/2 if 2472,

rasf/2 —1 if 2rp, u=—-1=y';

(@* = 1)/[(g* -1+ 1)(@"*2=1)] if 2ry u=—-1=4,
a=0arg=1 (¢°-1)/(g"*-1) if 2 41,

(@ = 1)/[(g™* — wp') (g™/*' + )] otherwise;
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(g (g4 + 1) (@242 = 1) /(g7 + 1) (¢ - 1)
if 2Jrp, u=—-1=4’,

B=BrL,=1 q*(g" 2 -1)/(g"*-1) if 2.7y,
g4 (g™ — ') (g2 + ) /[(@™* — ') (@274 + )
3 otherwise;

and forow =+1,

(@ + 1) /(@ +1) i 2rp=—1=4,
Y(@) =y g(@) = (@ + op)/(q"* + op) i 241,

( gm/2—d — ') /(qm/2 — u) otherwise.

LEMMA 3.2. Let the notation be as above, and let y denote the (primitive)
character associated to 0(K; ) and to O(L;t). We can construct sublattices K5 of
K such that gK = Kos € K, and forallte Z,,

KZS ~ <1a reey 1»’12;) -Lq<1’ ey 17 n2s+1> (mOd qt)a

where the first component has rank rys and the second component has rank rygyq.
(So K»s € gen Ly;.) Set R=preimage in K of rad K/qK, Ry;=preimage in K
of rad K»;/qK,;. (Here we scale Rys by 1/q in the case 2|ry;, u,s =1.) Take
xe K —R.

(@) Say ry is odd or u,s = —1. If q 4 Q(x), then x ¢ Ry, and the proportion of
K such that x € Kas — Ry is y(w), where o = x,(Q(x)). If q|Q(x), then
the proportion of Ko such that x € Ry is o, and the proportion of K such
that x € K55 — Ry is p.

(b) Say rys is even and u,, = 1. If q ) Q(x), then x is in none of the lattices K,
and the proportion of Ky such that gx € Rys — qKos is y(£1). If q|Q(x),
then the proportion of Ko such that x € K»; — Ry is a. ‘

Notice that when x € K y5, we necessarily have gx € Ra;.

Proof. Set p= pyg, p' = pogyy-
(a) Say rys is odd or u = —1. Let r = dim (rad K/gK); so

0 ifryiseven, u' =1,
r=< 1 if ryis odd,

2 if riseven, ' = —1,
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and d = (1/2)(r2s41 —r). To construct K, we take a totally isotropic subspace
C of K/gK such that dim C =d + r and rad K/gK < C. Set

K' = preimage in K of C,
qK s = preimage in K’ of rad K'/gK’.

Thus (using formulas from [1]), the number of choices we have for K; is

¢ d
1@ + 1)@ = 1)/(g** = 1) if vy is even, p’ = 1,
i=1

d
4 H(qm—Zi _ 1)/(qd—i+1 — 1) if 755 is odd,
i=1

d
[T@>7 + 1)(g">7 =" = 1)/(g**! = 1) if ra is even, p' = —1.

\ i=1

Take xe K — R We have x e st if and only if X € C, and x € Ky — Ry if and

onlyif X e C %¢ C. When X ¢ C™* we have gx € Ks — Ry;. Also, R < Ry,. Thus
the number of K such that x € Ry, is

d
(H(q"‘/z"'““1 + ("7 = 1)/(¢" ~ 1) if rasiseven, 4 =1,
i=2

d
j H(qm—2i _ 1)/(qd—i+1 —1) if 75 is odd,
i=2

d
L [I@ +1)(@*7 = 1)/(g** = 1) if rp5 is even, u' = —1.
i=2

Now % € C™ if and only if € < (%>* where (%) denotes the space spanned by X.
When g ¥ Q(x), GYt=0U _L R, where U is a regular space of dimensionm — r — 1

and discriminant Q(x)(— 1) N2s- When g|Q(x), <E)L =<(x> LT J_ R,where Uis a
regular space of dimension m — r — 2 and discriminant (— 1)” 1,5 Hence given
our assumption that u = —1 when ry is even, U is never hyperbolic. So when
a4 Q(x) and w = 2,(Q(x)), the number of C < (x> is

( d
H(qm_Zi -1)/(g* " - 1) if 7y is even, /' =1,

¢ H(qm/z i wu)(qm/Z i— 1+co/,¢)/(qd —i+1 ___1) if 7y is 0dd, g = p,

ll

au

@22 -1/ - 1) if 1y is even, p=—1=p'.

\ i=

—
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When ¢|Q(x), the number of C < ¢x)* such that X ¢ C" is

( d . . .
[Tat@>~ + )(g™>7 =1/ = 1) if rais even, w' =1,
i=1

d
Hq(qm—Zi—Z _ 1)/(qd—i+l - 1) if 755 is odd,
i=1

A

d
l—[q(q”'/z""1 +1)(@"* 72— 1) /(g% — 1) if ry is even, ' = —1.

\ i=1
(b) Say ry is even, u = 1. So Iiéq ~{1,...,1,&), and K?/qK1? is hyperbolic if

and only if 4’ = 1. To construct K, from K we take a totally isotropic subspace
C of K%/qK1 of dimension d where d = ry;/2, and set

K3 = preimage in K? of C.

Thus the number of choices we have for Ky is

d
H(qm/Z—i+l _ ”I)(qm/Z—i +”I)(qd~i+1 _ 1).
i=1
Take xe K — R. WehavexeKzs—stlfandonlylfxec and gx € Rys — gK 2

if and only if X € ct ,%¢ C. When x ¢ ct , we have x ¢ K, gx € Kos — Ry;. Thus
the number of Ky such that x € Ky5 — st is

d

[L@™> ' = W) (@ + W) (@ = 1) if glQ(x),
i=2

0 if .4 Q(x).

The number of K, such that gx € Ry; — gKo; is

d
[Tat@™ = ) (@*7" +u)/(g* "+ = 1) if qlQ(x),
i=1

d
[I@ -1/ -1) if g4 Q(x).

i=1

The lemma now follows. [
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LemMA 3.3. Let Ko be as in Lemma 3.2. We can construct descending chains
of lattices Ky, . .., Ko sothat Ky € gen L, and g°K »; < K. Fix such a chain and let

R,; = preimage in Ky; of rad K»;/qK»;,
qR3i+1 = preimage in Ky of rad Kp;i1/qK2i41.-

Take x € Kos — qK s and fix £, 0 < ¢ < s. The chain of lattices has the following
properties.

(a) First suppose x € Ros. Then q°x e Ko if and only if xe Kyi_y for all i,
£ <i<s. Also, when x € Ry nKjyi—1, we necessarily have x € Ry, <
Kji_.

(b) Suppose now x ¢ Ry;. Then q’x e Ko if and only if xe Ky_s for all i,
¢ < i< s. Also, when x € Ko; but x ¢ Ry;, we necessarily have x € Ry;_y.

Proof. With K as above and s > 0, we inductively define lattices Kj, Rj,
0 < j < 2s, as follows. Suppose that for i < s,

Ky=li® i ®J
~ Ly Ladl, o gy > L g0, 02, .. ) (mod q7),
with 75, 15,1 € Z — qZ, 0 € Z. Set
Ry; = preimage in Ky of rad (K2/qK2) = Joi1 ® ¢Ju @ J'.
Let M be an (ry_1, #y;_1)-subspace of Ry;/qRy;, and let
Kji—1 = preimage in Ry of M + gKzi = Joi_1 @ qJ2 @ 211 ® g7,
where Joi_1 @ Jaiy1 = Jaiy1, and Jog =~ {1,...,1,75_;> (mod g). Since we

know that (m5,1/q) = (2_182i+1/9), Jair1 ~<1,...,1,&41) (mod g). So by
Lemma 1.1, we have

Koy =Ju1 @) ® qloip1 ® qJ
>q<l,. > L g*{1,...,1, n2i)
L, .., 1 en) L g*¢an, 00,... ) (mod g)
(where t > 25 + 1). Now set
qRj;_1 = preimage in Kj;_y of rad (K3i_1/qK2i—1)

=qJ2 ® q*J2i—1 ® ¢*Joi1 ® ¢*J'.
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Let M’ be an (r2;_2, uy;_,)-subspace of Rji_;/qR2_1, and let

K2, = preimage in Ryi_y of M + Kpi_1 = Joi 2 @ Joi—1 @ qJ2 ® Juis1 ® g7,
where

Jr2 @ T =Joi, Jaica =<1,...,1,ny_2) (mod g),

Jy =~ (1,...,1,¢5) (mod q).
Thus, by Lemma 1.1,
Ky =<1, Lngo> Lagll, o Ly > Lg%, e
Lg3, .., 1, e041) L g*oy, 2,... ) (mod gt).

One easily verifies that the choices of Kj;_; and K5 are uniquely determined
by the subspaces M + gK5; < R2;/qRy and M + K51 < Rai_1/qR2i—1. In fact,
given a Jordan decomposition of (K2,~)(q) (and hence of ~(R;;,)(q)) as above, Ky;_;
is uniquely determined by the subspace M of Jysi1/qJ2s+1; similarly, Kji—» is
uniquely determined by the subspace M’ of Jo/qJ.

To summarize, we have

S—1
Ky =Jy @ Joip1 @ Z q’(JzH.z; ® Jait2e+1),
¢=1

s—i
Roi=Joi1 @ 02 ® ) ¢’ (Jaivae @ Jnivacs1),
=1
- . S—1i
K1 =Ju 1 ®a)u@a)u1 ® D " (Jaivze @ Jaisars1),
=1

S—1
Rou1 =T @ Joi 1 ® i1 @ ) 4° (Jaivae ® Jaivaes1),
/=1
s—i+1

Kyu=Ju2@Ju1® Y ¢’ (Jairor2 ® Jaivze1).
=1

Notice that ¢°Kys " Ko = q°Ky, and Ky = Kpz42 © -+ = Ko, Hence g°x €
Ky if and only if Ky for all i, £/ <i<s. Also RynKj_3 =Ky 1 =Ry
(proving (a)). When x ¢ R,;, we necessarily have x ¢ Ky, but x € Ry_; and
mi-1 =Ry 2Kj_5. O
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To help us more easily count how many choices of K;_; contain a given
vector x € Kj — gK;, we introduce an auxiliary counting function and establish
some basic identities.

Definition. Let M be a regular Z/qZ-quadratic space of type (c,£). An
ordered basis (X1, ...,X.) for M is an alternating basis if
(i) Xy is isotropic for 1 < i< c¢/2 and, if 2|cand ¢ = 1, for i = ¢/2,
(i) X2;—1 is anisotropic (1 <i < c¢/2), and
(iii) relative to this basis,

— * % * % -
M:(* 0>_L~~-.L(* O)J_A

where A is anisotropic and diagonal of dimension 0, 1, or 2.

Let ¥[(c,¢): (d,n)] be the number of ways to choose Xi,...,X. such that
(%X1,...,Xc) is an alternating basis for some (c, &) subspace of a fixed (d, u) space.
Let W;[(c,¢): (d,u)] be the number of such subspace bases (Xi,...,%;) with
X1 = X if X is anisotropic, and X, = X if X is isotropic. Note that if x is a basis
vector for a (c, &) subspace of an (d, 1) space W, we have X ¢ rad W.

LemMMa 3.4. Suppose W is a 1 (d, p)-space, d > 1. Given w # 0, the number of
solutions to Q(W) = w with we W is

q**1(q%* - p) if 2d,

g@-n/2 (q(d—l)/2 + (c_;_) y) otherwise.

Proof. First suppose W is a (2, u)-space. As described in [1], there are g — u
symmetries of W. Given anisotropic X € W, one easily verifies that only the triv-
ial symmetry fixes X, and the action of a symmetry on X determines its action on
W. Thus, if Q(#) =  has any solutions, it has exactly g — u solutions. We know
there are (q — u)(1 + p) (nonzero) isotropic vectors in W; consequently, there
must be g — p solutions to Q(w) = w for any w # 0.

Next suppose d > 2; set £ = [(d — 1)/2]. Write W = U L 4, where Uisa (2¢,1)-
space and 4 is a (d — 27, u)-space. Using induction on #, we count the number of
solutions to Q(i1) + Q(@) = w withiie U,ae A. O

Lemma 3.5. (1) Suppose that d > ¢ > 2, or that d > ¢ = 2 and p = &. Letting
Y, denote ¥ or ¥y, we have

Y.l(c,e): (d,w)] = ¥s[(2,1): (d, )] - ¥[(c — 2,€): (d — 2, )]
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(2) With e = +1,
q¥* (g - 1)(q¢* - ) if 2|d,

¥((1,2): (d,p)] = {
g @ V72(q—1)(q9 V2 4 eu) otherwise;

; (29 _,
wil(t0): @)= ’f< q) ’

0 otherwise.

(3) Suppose d > 2, ord =2, u= 1. Then

a*2(q - 1)%(q¥? — p)(@* ' + ) if 2ld,
P[(2,1): (d,p)] =

9 q - 1)*(¢* " - 1) otherwise;

4> g - 1)@ + ) if 2ld, Q(%) #0,
:[(2,1): (d,p)] = § ¢“=2(g - 1)((1("‘”/2 - (@)u) if 244d, Q(%) #0,

9% 2(q - 1)’ if O(%) = 0.

(4) Suppose d > 2, or d = 2, u = —1. Then assuming Q(X) # 0,

Lg% Y(q—1)%(q¥? — ) (q* ' — ) if 2/d,
Y[(2,-1): (d,p)] = {

%qd_l(q - 1)2(61"’"1 -1) otherwise;

2a% (g - )@ - ) if 2|d,
Ti[(za _1): (da /‘)] =

1qW-D2(g—1) (q(d‘l)/z - (—ng))u) otherwise.

Proof. The proof of (1) follows from the observation that U'isa (d-2,p)-
space whenever U is a (2, 1)-subspace of a (d, u)-space.

(2) follows immediately from the preceding lemma.

(3) Choosing an alternating basis {X, y} for a (2, 1)-subspace, we have

\P[(19 1): (d) ”)] + \P[(la _1): (da ﬂ)]
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choices for %. Set y’ = (—1/q)u if 2|d, and ' = p otherwise. Then (%> is a

(-(22)

space, so we can use the formulas of [1] to count isotropic y ¢ <X>*. Given iso-
tropic 7 (not in the radical), (§>* is a (d — 1;d — 2, u)-space, so we can count
anisotropic % ¢ (j)>*.

(4) Choosing an orthogonal basis {X, j} for a (2, —1)-subspace, we have

\P[(l’ 1) (d7 ﬂ)] + T[(lv —1): (d) ﬂ)]

choices for X. We choose 7 € {(x)* such that (—Q(x)Q(y)/q) = —1; thus we have

w0, -0: @) =¥[(1,- (2 ) (a-1,(22))]

choices for j (where y' is as in (3)). [J
LemMMA 3.6. For0<j<2s+1,w=0, +1, set
, m+ 1y if j is even,
r] =
m+rye1 if jis odd,

and set
(g gl — ) if 2y, 0 #0,
q(rj“r;""l)/z(q("}’l)ﬂ -+ a)ﬂ]) lf 2*"]', w # O,
Vj = vj(w;L, q) = — 1
a g - ) (@ + ) if 2, 0 =0,
{ ql—r;/2(qr]-l _ 1) if 2*rj’ w=0.

For j>s, let vyj(w) = vas(@), vaj+1(w) = vas41(w). Choose x € Kas — qKa, fix
¢ =0.

(a) Say x € Rys; set w = x,(Q(x)/q). The proportion of chains K»s, ..., Ko such
that ¢’x € Ko is (var41(@))/ (vast1()).

(b) Say x ¢ Ras; set @ = x,(Q(x)). The proportion of chains Ky, ...,Ko such
that q°x € Kg is vz (@) /vas().

Proof. First notice that if ry 1 =1, or if ry 1 =2 and py; = —1, then
q* ¥ Q(x) for x € Rys — qKg; similarly, if ry; = 1, or if r, = 2 and g, = —1, then
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q / Q(x) for x € Ka5 — Rys. Thus vyep1(@), vos(w) are never zero, where

_ { Xq(Q(x)/q) if x € Rys — qKZS,
Clx (@) if xeKa—ra

As argued in the proof of Lemma 3.3, K is determined by the choice of the
(rj, u;)-subspace M of the (7j+2, Bj+2)-space Rjy1/qRji1. Now the number of
alternative bases for an (r, u)-space is W[(r, u): (r, u)]. Hence, having chosen K;
for j < i < 2s, the number of choices for K is

P((rj, ) (rs2s By42)]
¥((rj, )+ (rjy 1))

and the number of choices of K; containing a given vector x is

‘Pi[("ja #j) : ("j+2, ﬂj+2)]
Wil(rj, 15): (ry, )]

By Lemma 3.5,

Y[ (r), Hp): ("j+2a#j+2)]‘l'[("j1 Hp): ("j’ﬂj)] _ vi(w)
Wil (r, 1) (s )1 (s 1) (s Hj12)] viwa(o)

Thus, for x € Ky, the proportion of chains with g’x € K is

v2i—1()
<izsV2it1(@)

if x € Rys — qKo;,

V2i-2 (w)
¢<izs Vai(w)

ifoKzs—st.

Thus, by Lemma 3.3, if x € Ry; — gK3;, then the proportion of chains with
q’x e Ky is

vai1(@) _ Var41 ()
reicsV2r3(@)  Vasi(w)

Similarly, if x € Kos — Ry, then the proportion of chains with g’x € Ky is

V2,'(0)) =VZ/(CO)
(<i<sv2i+2(w) vas()
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THEOREM 3.7. Suppose m =rank L is even, m > 6, and (—1)"'/2 dL=1
(mod 4). For n € Z, the average representation number is

r(gen L,2n) = p; HPL,q(n)’
q

where p;, ,, = (2m)"? /T (m/2), and for fixed q, PLq(n) is defined as follows.
Write dL = NN?, where N is square-free; define y by

_1\m/2
(d) = sgn (@) ((—”-(—,—ﬂ> ,

where (x) denotes the Kronecker symbol. Thus y is a character with conductor N.
Let vj(e) =vj(e;L,q) be as defined in Lemma 3.6. Then for e = ordy(n),

e=((n/q°)/9);

pLo(m) =ve(&L,g)+ Y g™y, (0L, q).

0</<e-1

Proof. If L has minimal level and discriminant, then the theorem follows
immediately from Corollary 2.7. Thus, we argue by induction on the number of
primes g at which L does not have minimal level and discriminant at q.

The induction hypothesis is that the theorem holds for all lattices which have
fewer than h primes at which the lattice does not have minimal level and dis-
criminant. Let L be a lattice with & such primes. Fix such a prime ¢, and let K be
as in Lemma 3.1. If ry is odd or u,, = —1, then K has minimal level and dis-
criminant at ¢, and the induction hypothesis (and the fact that the local struc-
tures of K and L agree for primes p # q) implies that

r(gen K,2n) = pg ,(n)pL 0 - H PLp(n),
p#q

where pg ,(n) is as in Corollary 2.7, and p; ,(n) is as in the statement of the
theorem to be proved. If ry is even and u,, = 1, then K7 has minimal level and
discriminant at g, and the induction hypothesis again implies that

r(gen K%,2n) = pga o(M)pr o0 - || prp(an) = xn(@pxag(m) - [] oL,p(),
P#4q p#q

where pgq,(n) is as in Corollary 2.7, and p; ,(n) is as in the theorem to be
proved.
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Case 1. First consider the case that either 2 f ry; or u,, = —1; so K, L lie in
the same quadratic space. Assume s > 1. Fore=+1, o =0, +1, set

_ o) 22(8) v-1(0)
Be(e) =1(9) 5+ (1= 1) S

_ (@) v o v (0)
A,(co)—ocvzs+1(w) V2s(0)+(1 “=#) va5+1(0)

(Here the notation is as in Lemmas 3.2 and 3.6; we take v_;(x) =0.) Fix £ > 0,
and let R=preimage in K of rad K/gK. Then from Lemmas 3.2 and 3.6, we
have the following.
(@) For x e K — R and q|Q(x), the proportion of Ko in K containing gx is
A¢(w), where w = ((Q(x)/9)/9)-
(b) For x € K — R and q } Q(x), the proportion of Ko in K containing g’x is
By(e), where & = (Q(x)/q)-
(c) For x e R —gK and q|Q(x), the proportion of Kg in K containing g°x is
var11(€)/Vas+1(e), where & = ((Q(x)/9)/9)-
If g/ N, R = qK. So suppose g|N. Let g’ be a prime associated to g as in
Proposition 2.1. Then, as discussed in the proof of Proposition 2.1, we know that

0(gen K; )| Ty = 0(gen M; 1),

1
(q/)m/Z—l + 1

where M(,) ~ K‘(I;) for all primes p # q’, and M(y) ~ K 4. Thus, the nth Fourier
coefficient of 8(gen M; 1) is r(gen M, 2n) = px , [, prr,(n), where our conditions
on ¢’ give us

{ Pkp(n)  forp¥ N { Pkp(qn) forp #gq,
Pmp\n) = =

Pk p(a'n) for p|N Pxq(a'n) forp=gq.

Then, Proposition 2.1 implies that the nth Fourier coefficient of 6(gen R;7) is

0 if gt n,
r(gen R,2n) = g™

+1 1 .
——qm/Tr(gen M,2n/q) — Wr(gen K,2n) fif gn,

SO

r(gen K, 2n)

r(gen R,2n) = ()
Jq

pR,q(”) )
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where pg ,(1) = 0if ./ n, and for e = ordy(n) > 1,

m/2 1
pra@ = (Lo pala'n/a) = s oaln)) 1)

g +1 -1 2-1)(e-1
=CK(‘1)+—W—X4(2¢1 n/q*)ine(d°” )q(m/2=1e=

1 -
- q—m/ﬁ)(q(2”/‘18)10\1/‘1(‘Ie)ll(m/2 De

= ck(q) + Xq(2n/qe)xN/q(qe)q(m/2-—1)(e—1)

qm/Z 1 + 1
X (qu(q )XN/q(Q) ,,,/2_1 .
Now, by our conditions on q’, we have

%a(@)tn/q(@) = x4(d)xns(d) = 2(d) = 1;

sofore>1,

Prq(n) = (cx(@) + x,(2n/a%)xn/q(a%)a™ > D21 (q).

Notice that for e = 2, pg (1) = pg ,(n/4*) = pyx 4(n).
Let 6 denote the number of K in K; we have

53 ko9 =0 ki) + 3 5 Ao (22) )eforarn)

c K-R 0</<
KosK quIQ() 0</<s

+3 3 5((22))etownn

XEK 0</<s
vai ((222))
B o v (@) ) 2

q

=0g'K;)+ Y, >, A ((Q( X/ q))e{Q(q x)t}

eK-R </t <
o 0sest-l

+
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+3 % 5((2))etonn

xEK 0</<t—-1

+ Y W“((Q:q))

x€R—gK 0</<t—1V25+1 ((M))

q

e{0(q’x)7}

for any t > s. So with e = ordy(n) and &= ((2n/q%)/q), the nth coefficient of

((Ay(e)(a(K,n/q*) — a(R,n/q*))

+ vary1(8) (a(R, n/th) —a(gK, n/th))
V2s+1 (8)

+0 ¢<t—1 A¢(0)(a(K,n/q*) — a(R,n/q*))

V2r+1 (O)
0<s<t—1V2s+1 (0)

Bi(e)a(K,n/q*)

+0<;<)t_1 A¢(0)(a(K,n/q*) — a(R,n/q¥))

A

+

(a(R,n/q¥*) — a(qK,n/q¥)) ife=2t+1,

b5 2O R,/ — alak ) it e=2.
L 0</<t— 1v2s+1(0)

Note that a(gK,n/q¥) = a(K,n/q**?); so a(qgK,n/q*)=0 when g**!|n.
Now

6 Z 0(K0,‘C) Z #{G'GO(V){K O-L,}={KL}}0(L,T),

KosK L'egenL o(L')

where {K: L} denotes the invariant factors of L in K (see [4]), and o(L') denotes
the order of the orthogonal group of L’; thus

> 5K

MegenK
KoM

#{ceO0(V): {L': ag**'M} = {L: ¢*'K}} 1
L'genL MegenK 0(qs+1M) O(L’)
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Since the invariant factors {L: ¢**'K} are all powers of g,

#{oceO0(V): {L': 6¢*"'M} = {L: ¢°+'K}}
o(qs+1M)

6 =

MegenK

is determined by the structure of L ,; hence &' is independent of the choice of
L' egen L. So

0’ mass L 1
'6 mass K B(gen L) = 6 mass K M;K (M ) 6(Ko;7),
KoM

and for n#0, the nth Fourier coefficient of 1/(5 mass K) 3 mesnx(1/0(M))6(Ko; 7)
is o=

Ay(e)(r(gen K,2n/q*) — r(gen R, 2n/q™))

va+1(€)

vars1(@) 2 r(gen R, 2n/q%)

+ X A/(0)(r(gen K,2n/q*) — r(gen R, 2n/q%))

0</<t-1

4 + ¥ varn (0 )(r(genR 2n/q*) —r(gen K,2n/q¥*?)) if e=2t+1,
0<é<1-1V25+1(0)

By(¢)r(gen K, 2n/q*)

+ 2 AdO)(r(gen K, 2n/q*) — r(gen R, 2n/q*))

</<t-1

+ 3 v2+1(0) (r(gen R,2n/q*) — r(gen K, 2n/q**?)) if e = 2t.
L 0</<t— 1V2s+1(0)

Note that the zeroth coefficients of f(gen L; t) and 1/(6 mass K)Euemx(l Jo(M))x

0(Ko;t) are both 1, so ¢’ mass L/(6 mass K) = 1. Note also that when g2|n’,
Prg(1) = px q(n' /q2) Our induction hypothesis now gives us

r(gen L,2n) = PK, IIPK,p(”) ’
P
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where
([ A:(e)(pk,g(n/q*) — prg(n/g™))
vary1(8) 2
Yarr1(2) Prq(n/q7)
pLg(n) = S +0<§t lAf(O)(pK,q(n/q”) — pr (n/q¥ D)) fe=2t+1,
By(e)pk 4(n/q*)
+ 3 A0)(pxy(n/q%) — px 4(n/a¥*?)) if e =2t.
\ 0</<t-1
For g%*2|n,

(x(@)g™> )" (1 + x(9)a™* 1)1 (a)

2¢ 2042 if g 4 dK,
Pr(n/q”) — pr g(n/q™ ") = s ,
1a(2n/a°) AN yq(a%) g2~ 02720 (g2 1)1 (g)
if g|dK .
Also if g ¥ dK, then R = gK; so for e = 2t or 2t + 1,
f(9) if e = 2t,

pK,q(n/th) - pR,q(n/th) = pK,q(n/th) = { .
(L+x(9)g™*)f(q) ife=2e+1.

Next, for e = 2t + 1 and g|dK,

(Hasq! ™% + qo+1—m/ 2e(Ugshias41))f ()
if q|ldK,
2 2
oc/’K,q(n/q N+ (1- a)pR’q(n/q = q—m/2(qd+1 + 1)(qm/2—1 -1
77— 1 f(@)
if 2|dK .

Note that when g t dK, we must have ry even, uy; = —1, pye =1, and x, = 1;
hence x(q) = pashtas1 = —1. When g||dK, we have y,(2n/q°) = ((2n/q°)/q) and

_ym/2-1 _ym/2-1
XN/‘I(q) = (N;I/q) = (( 1) q NO/‘]) = (( 1) q dK/q) = HosMas+1>
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where N = NgN? with Ny square-free (recall that (—1)"‘/ 2N =1 (mod 4)). Sim-
ilarly, when ¢2|dK, x, = 1 and

_1\ym/2 _1\ym/2 2
An/g(4) = <‘1\%) = (( l)q NO) = (( 2 qu/q ) = Hoshasr = 1.

Then straightforward computations show that p; ,(n) is as claimed.

Case 2. Now, suppose r is even and u,, = 1; so K7 is an integral lattice on
V4. Set

var-1(0)
V2s+1(0)

var-2(0)
V2s(0) ’

vor(w)

A,(w) = ast((D)

+5 +(1—a-B)

and

v2-2(0)

B(9) = 1) 2+ (1 = 5(0) 220D

+1(8)

As in the preceding case, for ¢ > 0, Lemmas 3.2 and 3.6 give us the following.
(a) For x € K — gK, q|qQ(x), the proportion of Kg in K containing g*x (¢ > 0)

is As(w), where o = (Q(x)/q).
(b) For xe K —gK, qkxqQ(x), the proportion of Ko in K containing g’x
(¢ = 1) is By(¢e), where ¢ = (¢Q(x)/q). Thus

% > (K1) =0(qs+1K‘1;r)+“;Mm o<22/<s ((Q( )))e{qQ(q x)t}

Koc K
9@ (x)

+ ¥ % 5((2Y))etantane.

xeK1 1</<s
ak9Q(x)

where J is the number of K in K. We have L € gen K, so an argument similar
to that when ry is odd or u,, = —1 gives us

[ Ai(e)r(gen K9, 2n/q*)

+0§ A4(0)(r(gen K9,2n/q%) — r(gen K9, 2n/q%+2))
<<t
if q2t+1||n,
r(gen L{, n) = ¢
By(e)r(gen K‘l,zn/th)
+ 3> A,(0)(r(gen K9,2n/q*) — r(gen K9,2n/q%*?))

L 0<s<t

if g%*||n,t > 1,0  otherwise,
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where e = ord,(n) and ¢ = ((n/q°)/q). By hypothesis,

r(gen K9,2n) = x5 (2)Pxag(MPL w0 | [ PLp(1/9).
p#q

So, as in Case 1,
r(gen L9,2qn) = r(gen K&,2qn) = py o, - [ | prap(an),
p

where

[ Ai(e)pkaq(an/a®)

+ Y Ar(0)(pkagy(an/a*) — piag(an/a*+?))

0<s<t
if e = 2t,

PLea() =\ By()pga ,(an/a*)

+ > A:0)(pkay(an/q*) — pog(an/a**?))

0<e<t
ife=2t—1,t>1,

0 otherwise .
We know that

1 — (x(q)g™> 1)
1—x(q)gm/?-1

Piag(n) = (1 - x(9)g™™?)

and
Prag(n/a%) — prag(n/4*+?)
= x(q)q™/* V=2 (g2 4 y(@)) (1 — x(@)a™?),

where x(q) = pyshosyy = Mos,q- Also, one easily verifies that r(gen L9,2qn)
r(gen L, 2n). Thus

r(gen L, 2n) = r(gen L, 2qn) = ppa4(qn) - pr0 | | PLp(a")
P#q

= 1(@)Proga@m) Lo || PLo() = pr.w [[ Lo,
P#q p

where p; ,(n) is as claimed in the theorem. []
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