HECKE EIGENVALUES AND RELATIONS FOR SIEGEL
EISENSTEIN SERIES OF ARBITRARY DEGREE, LEVEL,
AND CHARACTER

LYNNE H. WALLING

ABSTRACT. We evaluate the action of Hecke operators on Siegel Eisen-
stein series of arbitrary degree, level and character. For square-free level,
we simultaneously diagonalize the space with respect to all the Hecke op-
erators, computing the eigenvalues explicitly, and obtain a multiplicity-
one result. For arbitrary level, we simultaneously diagonalize the space
with respect to the Hecke operators attached to primes not dividing the
level, again computing the eigenvalues explicitly.

1. INTRODUCTION

Automorphic forms appear in almost every area of modern number theory;
Eisenstein series are fundamental examples of automorphic forms. In the
case of classical elliptic modular forms (i.e. holomorphic automorphic forms
of integral weight), Eisenstein series are well-understood: For instance, the
Fourier expansions of a “natural” basis of Eisenstein series have long been
known; as well, it has long been known that the space of Eisenstein series
of weight k, level N and character y has a basis of simultaneous eigenforms
for the Hecke operators {T'(p) : p prime, pt N }, and for {T'(p) : p prime }
when N is square-free. (see, e.g., chapter IV [9]). The Fourier coefficients
of these simultaneous eigenforms are (after appropriate normalization) the
Hecke eigenvalues, and are doubly-twisted divisor functions; that is, the mth
Fourier coefficient of such a (normalized) form of weight k is

> xa(d)xa(m/d)d* !

dlm
where x1,x2 are Dirichlet characters, reflecting the fact that the Fourier
coefficients of Hecke eigenforms carry number theoretic information.

In the case of Siegel Eisenstein series, our knowledge is much less complete
(for instance, we have limited knowledge of Fourier coefficients for arbitrary
degree, level, and character). However we do have analogues of some of
the classical results regarding the action of Hecke operators. By studying
the abstract Hecke algebra, Evdokimov ([3], [4]) and Freitag ([5]) showed
that the space of Siegel modular forms of arbitrary level and character can
be diagonalized with respect to the Hecke operators associated to primes
not dividing the level. These results also show that the subspace of Siegel
Eisenstein series is invariant under these Hecke operators. Further, in [5]
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Freitag computed some of the eigenvalues of Siegel Eisenstein series under
the Hecke operator T(p)™ where p is a prime not dividing the level, and
m is a suitable power. Following his proof of the injectivity of the Hecke
operator T'(p) when p is a prime exactly dividing the level of a space of Siegel
modular forms ([1]), in [2], Bocherer applied powers of T'(p) to the level 1
Siegel Eisenstein series, obtaining a basis for the space of Siegel Eisenstein
series of level p and trivial character, and thereby also obtaining Fourier
expansions for this basis. In [12], for p any prime, we applied an explicit
set of matrices for T(p), Ty (p?), To(p?) directly to a basis for the subspace of
Siegel Eisenstein series of degree 2, square-free level, and arbitrary character;
we then constructed a basis of simultaneous eigenforms and computed all
their eigenvalues. Recently in [8], Klosin used adelic methods to compute
the Hecke eigenvalues (for primes not dividing the level) on the space of
hermitian forms on U(2,2).

In the current paper, we extend the techniques of [12] to allow arbitrary
degree n, level N, and character y modulo N. In §3, for each v € Sp,(Z),
we define a Eisenstein series with character y corresponding to the T'o(N)-
orbit of I'ooy. We identify necessary conditions for one of these series to be
nonzero, and in the case that A is square-free, we show that these conditions
are also sufficient (Proposition 3.6). Next we consider square-free level N/
and arbitrary character y modulo A'. We subscript each element of our
basis for this space of Eisenstein series by some o = (N, ...,N,) where
No -+ N, = N. Using an explicit set of matrices giving the action of T'(q)
where ¢ is a prime dividing N, we directly evaluate the action of T'(q) on
each basis element E,, computing precisely the coefficients in the linear
combination of Eisenstein series that is equal to E,;|T(q) (Theorem 4.1).
This allows us to show that we can (algorithmically) diagonalize the space
of Eisenstein series with respect to {T'(¢) : ¢ prime, ¢|N }, obtaining a new
basis {Eq}, for the space. With o = (Np,...,N,) and ¢ a prime dividing
Ny, we show that

Eo|T(q) = A (q)Eo with [A,(g)| = g"44d+D/2

(Corollary 4.3; note that this recovers a result from [2] in the case that A is
prime and x is trivial). Since we must have & > n + 1 for absolute conver-
gence of the Eisenstein series, this shows we have “multiplicity-one”; that is,
for E; # E,, there is some prime ¢|N so that A,(q) # A,(¢). Following this,
for 1 < j < n, we directly evaluate the action of T;(¢?) on the original basis
elements E, where we still assume that ¢ is a prime dividing A" (Theorem
4.4). We then compute the the Tj(q?)-eigenvalues for each of the elements
in the diagonalized basis (Corollary 4.5).

In §5, we consider Eisenstein series of arbitrary level N/ and arbitrary
character x, and we directly evaluate the action of T'(p), T;(p?) for primes
p1 N so that we can explicitly construct a basis of simultaneous eigenforms
for these Hecke operators. To help us diagonalize the space with respect
to these operators, we introduce a group action of Uxs X Upr on the space
of Eisenstein series where Uy = (Z/NZ)* (Proposition 5.1). Then we use
characters ¢ on this group to average Eisenstein series relative to this group
action; by orthogonality of characters, this yields a basis {E, y } for the space
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of Eisenstein series, where ¢ indexes our natural basis. In Corollary 5.3 we
show that for any prime p{ N, E, 4|T(p) = Aoy (p)Egs . where

n
Aoy (D) = p") [J(rx(@)p*" + 1);

i=1
here ¥ (v, w) = 1 (v)h2(w). In Theorem 5.4 we evaluate the action of T}j(p?)
on the natural basis. Theorems 5.2 and 5.4 show that the Hecke operators
commute with the group action of Uxr x Up on the space of Eisenstein series;
we let R(w) be the operator corresponding to the action of the group element
(1,w). Then to obtain more attractive eigenvalues, we introduce operators
T; (p?) so that the algebra generated by

{T(p),T}(p*), R(p) : prime ptN, 1<j<n}

is the algebra generated by {T(p),Tj(pQ), R(p) : prime ptN, 1<j<n},
and in Corollary 5.5, we show IEU7¢|T;(p ) =N (P ?)Ey ., where

J
o (07) = By(n, §)p* T2y () TT (ax(p)p* ™" + 1)

=1
(here B,(n, j) is the number of j-dimensional subspaces of an n-dimensional
space over Z7/pZ). When N is square-free, we show E,, = 0 unless ¢ =
H0<d<n XNd and 1y = XN (Where o= (MNo,...,Ny)), and then with such
), Eo|T(p) = Ao (p)Es and Eo|Ti(p?) = X, ,(p*)E, (where E, is as in
Corollary 4.3).

Note that when x? = 1, T]{(pz) is the operator introduced in [10] and again
in [11] so that 8 (gen L)|T]((p2) =\ (p?)8™ (gen L) where 0™ (gen L) is the
averaged (“genus”) theta series attached to the genus of the lattice L, which
is equipped with a positive definite quadratic form.

As all the arguments herein are valid when considering non-holomorphic
Eisenstein series in the variables 7 and s (defined in §3), the results extend
immediately to incude these forms (with k replaced by k+s in the formulas).

2. NOTATION AND HECKE OPERATORS

For n € Z, Spn(Z) denotes the group of 2n x 2n integral, symplectic
B
c D> where A, B,C, D are

n X n matrices. Subgroups of importance to us include

= {({ D)oo}

F;‘O:{<61 g) € Spp(Z): detA=1 },

TN)={ve€Spu(Z): y=1IN) },

matrices; we often write these in block form <
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M N M' N’

Spn(Z), we have v/ € T'l vy if and only if (M' N') € SL,(Z)(M N) . Suppose
(f\; ]{;[) € Spn(Z); then (M N) is a coprime symmetric pair, meaning that
M, N are integral, M !N is symmetric, and for every prime p, rank, (M N) =
n, where rank, denotes the rank over Z/pZ. On the other hand, given
any coprime symmetric pair of n x n matrices (M N), there exists some

K L

M N
integral matrices (M N) is coprime.

Degree n > 1 Siegel modular forms have as their domain

here NV € Z, . Tt is well-known that for v = <* *> Y = ( PR ) €

€ Spn(Z). We often write (M, N) = 1 to denote that a pair of

Hy={X+iY: X, Y eRL, Y >0}

Sym?

where Rgym denotes the set of symmetric n x n matrices over R, and Y > 0
means that the quadratic form represented by Y is positive definite. For
n,k,N € Z, and x a Dirichlet character modulo NV, a Siegel modular form of
degree n, weight k, level N/, character y is a holomorphic function f : H,, —
C (holomorphic in all variables of 7 € H,,) so that for all (é IB;) eTo(N),

we have
f((AT + B)(CT + D)™ ') = x(det D) det(CT + D)* (7).

(Note that this generalises the definition of a classical modular form, except
in that case, where n = 1, we also require

lim (er +d) % f(r) < 00

T—100

for all (CCL Z) € SLy(Z).) We use /\/l (N X) to denote the space of all

such forms.
To define the Hecke operators, fix a prime p. Set I' = I'o(N) and take

fe M,gn) (N, x). We define
fIT(p) = p" "~ WQZX ) f167"y

where 6 = (p In >, 7 varies over
L,

(T6~ 1 NI)\T,

A B
r_
and for 7' = <C D)’

F(O) = (dety)*2 det(CT + D)™* f((Ar + B)(CT + D)™1).
We define
fIT5(p%) = p/ ™ I)Zx ) f1o5 1y
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X ,
where 0; = < J X-_1>’ X; =Xj(p) = <pIJ I, j), and v varies over
; _

(6,16, ' NT\T.

To help us describe a set of matrices giving the action of each Hecke
operator, we fix the following notation. For r,s € Z>g so that r+s <mn, let

pl;,
Xrs = r,s(p) = I (TL X n),
1y
p S
Krs = Krs(p) = XpsSLn(Z) X, N SLy(Z);
set X, = X,.0, K = Kpp.

Proposition 2.1. Let p be a prime, f € M,(Cn) (N, x).
(a) We have

x-1 -1 t
1 =t S e S () (97 )
GY P

0<r<n

where, for each r, G varies over SLy(Z)/K,(p) and Y wvaries over

Vr(p) = {(YO 0) € Lggm » Yo T X 1, varying modulo p} .

(Here Zsym denotes the set of integral, symmetric n X n matrices.)
(b) For 1 < j<n,

fIT3(0%)
(o—n— - X! Gl viG
— (k’ n 1) no+n2 no,n
o 5 () )
no+na<j GY ’
Here, for each pairng, ng, G = G1Gz2, where Gy varies over SLy(Z) /Ky ny (D),
In,
Gy = G’

I,

with G’ varying over SL, (Z)/t/C;,(p) where n’ = n—ng—nq, 7' = j—ng—na,

r ij/ lIj/
g = (77 st (W )nseec.

andY wvaries over Vg n, (p?), the set of all integral, symmetric n xn matrices

Yo Yo Y3 O

'Y, Yi/p O
th 0
0

with Yy ng X ng, varying modulo p?, Y1 §' % j', varying modulo p provided
p1detYy, and Ys,Ys varying modulo p with Y3 ng X ns.
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Proof. Fix A = Zx1 @ -+ - @ Zz,, (a reference lattice).

By Lemma 6.2, as G varies over SL,(Z)/K,, @ = AGX, varies over all
lattices Q, pA C Q C A with [A: Q] = p". Thus by Proposition 3.1 [7] and
(the proof of) Theorem 6.1 in [7], claim (1) of the proposition follows.

For Q another lattice on QA, let multyy.oy(z) be the multiplicity of the
value of x among the invariant factors {A : Q}. By Lemma 6.3, as G,
varies over SLyp(Z)/Knyns(p), @ = AG1Xp,n, varies over all lattices €,
pA C Q C %A, with mult{y.01(1/p) = ng, multgs.03(p) = no. Then with
D=QdN &N, A= %Q S Q1 @ pQo, as G’ varies over SLy/(Z)/ 'K} (p)

NG <Ij/ O) modulo p

varies over all dimension j' subspaces of €y /pQ;. Thus by Proposition 2.1 [7]
and (the proofs of) Theorems 4.1 and 6.1 in [7], claim (2) of the proposition
follows. (]

Remark. For N7 € Z, so that p t N/, by Lemma 6.1 we can choose G in
the above proposition so that G = I (N’), and since N'Y will vary over a
set of representatives for V,.(p) or Vng.n,(p?) as Y does, we can choose Y in
the above proposition so that Y =0 (N”). Also, when p|\, we have

1r ly
— n(k—n—1)/2 pin
fIT@) =p i (" )

where Y varies over ), (p), and
Y X1 G ' YiG
) = (V) (0 )
GY J

where G varies over SL,(Z)/K;(p) and Y varies over YV;o(p?).

To describe the Hecke eigenvalues, we make use of the following elemen-
tary functions: Fix m > 0. With r > 0,

r—1

d(m,r) = 6p(ma r) = H(pm—i + 1),

=0
r—1 .
p(m,r) = py(m,r) = [~ = 1),
=0
ﬂ(m?r) = ﬁp(m,r) = u(m,r)/u(r, T)
(note that B3,(m,r) is the number of r-dimensional subspaces of an m-
dimensional space over Z/pZ). Take §(m,0) = pu(m,0) = 1. For r < 0,

we take B(m,r) = 0. As well, we will use the following functions: With
p prime, t € Zy, and F = Z/pZ, let sym,(t) be the number of invertible

matrices in Fé’;m, the set of symmetric ¢ x ¢ matrices over F. More generally,
let x be a character of square-free modulus N, with p|A\/; set

symx(t) = Z Xp(detU),

t,t
UEFsym
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and
symx(t —s,8) = Z Xp <det (t[[J}Q U02>)
U
(U1 U tt . . X _
where U = ., o )€ Feym with Uy of size (t—s) x (t—s) (so symy (£,0) =
2

symX(t)). Note that as U varies over invertible matrices in F§lm, so does
U (where UU = I in F5), we have sym)(t) = symX(t); similarly, symj (t —
s,8) = symy(t — s,5). Also, take symy(0) = >°X(0,0) = 1. Although we
will not use the precise values of these functions in this work, one can use
the theory of quadratic forms over finitie fields to show that for p odd and

£ = ;l ,

P
ﬁ;m_im if b+c=2m and y, =1,
() = sty b o= X = Land xp 21
W ifb+c=2m+1and x, =1,
0 otherwise,
and for p = 2,
sym} (b, ¢) = W ifb+c=2m+1,

m+1) 14(b,b 2m—1,2¢ . .
/_L(s(m—l,l;rf—l)) (’;(a(m_17c)) + [Ms(m, C)) if b +c= 2m.

(Here p = p,, 6 = 6).)

For p prime, M € Z™™, we write rank, M to denote the rank of M over
Z./pZ; we will also refer to this rank as the p-rank of M.

Recall that for x a character modulo N with N' = NN so that (N, N") =
1, we know that x factors uniquely as x a7 x a7 Where x a7 is a character mod-
ulo N7 and s~ is a character modulo N,

In what follows, we will sometimes use the matrices G4 = <_1 I >
n—1

e (% )

3. DEFINING SIEGEL EISENSTEIN SERIES

Fix k,n,N € Z,, x a character modulo /. To define Eisenstein series
for T'g(N) with k even, one can begin by defining a I'(N)-Eisenstein series

> " 1(7)[6* where 1(7)| <é g) = det(CT + D)7F
e

and 0* varies so that Too['(N) = UsT'sod* (disjoint); then for v € Sp,(Z),
one can consider

S X(0) 1(7)]6%75

0*,6

where § varies so that TeoyTo(N) = UsToo'(N)vd (disjoint). However,
when k is odd, these sums are not well-defined, since with v4 as defined
in §2, we have v+ € T'oo and 1(7)|y+6* = (—1)*1(7)|6* for any 6* € T'(N).
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Further, for k even or odd, the latter sum is not well-defined unless x is
trivial on any matrix in To(N) that stablises I'ooI'(N')y. Thus we proceed
as follows.

Let 6* € T'(N) vary so that

It T(N) = UsTL6* (disjoint),

and set
E*(r) =Y 1(r)]6".
6*
Since 1(7)|66* = 1(7)]6* for § € T, E* is well-defined. Further, provided
k> n+1, E*(r) converges absolutely uniformly on subsets {7 € H,, : J7 >
Y } for any Y € Rgym with Y > 0, and so E* is analytic (in all variables of
7). So suppose k > n + 1. Now take 8 € T'g(N) so that
Lo(N) = Ugl' (W) (disjoint),
and for v € Sp,(Z), set
E,=> XB)Ev8 + Y X(v+8)E*|r+v8
B B
(where ~4 is as defined in §2). Note that
Toc7To(N) = Ug (TLT(N)yBUTLT(N)7£98) -
Let
I7 ={0" €To(N): TLTN)yd" =TLT(N)y },
the subgroup of T'o(N) that stabilizes I'Z_T'(N)~y. Thus with § varying over
THA\To(N), &' over T(M)\I'F, and noting that E*|y+ = (—1)*E*, we find

E, = (1 + X(—1)(—1)’f) 3 X(S8) E* 1S,
55
Since &' € I'T, we have 40’y € TLT(N), so E*|yd’ = E*|y. Hence

E) = 1+ x(=D)(=1)" Y _x(8") D X(OE|ys.
&’ 0

Thus E, = 0 if x(—1) # (—1), or if y is not trivial on I'f. Also note that
when N < 2, we have v4 € T'(NV) and hence E* = E*|yx = (—1)*E*; so
E;:(Jif./\/§2andk:is odd.

Suppose N > 2 or k is even; then

lim E*(7) = # {6 e TI\TAT(N): 6* €l }
T—i00]
J2 N <2,
)1 AN > 2

Set
1 /

E,=—FE.
7 2[l4 . T(N)] 7
Suppose x(—1) = (—1)¥, x is trivial on F;”, and suppose still that either
N > 2 or k is even; we show that E, # 0. We have

E\ (1) =Y _X(6)1(7)]|6"y0
5%6
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where 0* varies over TX\T'LT'(NV) and § varies over I'Y\I'o(N). We have
§*y8y™1 € T only if T T'(N)76 = Too'(N)7, and since 'y, = T UyLTE
we have 6*v6y™! € T only if § € T'7 or 6 € TTy ypy. If § € T then
E*|y6y~! = E* and by assumption x(§) = 1. If 6 = By tyLy ™! for some
B € T'Y, then with our assumptions,

X(OE*|yoy ™! = X(v+)E*|ye = E*.
Thus
lim B (7)|y ™" = #{6*,6: 6*v67 ' €T }

T—i00]

(where §* varies over I} \I'{, ['(N), d varies over TT\I'g(N)), and this num-
ber is at least 1. Hence E, # 0. Noting that E! . = (—1)’“Efy, as 7, varies
over a set of representatives for I'oo\Sp,(Z)/To(N), the nonzero E! are

Yo
linearly independent.
Thus we have the following.

Proposition 3.1. For v € Sp,(Z), E, be as defined above.

(a) We have E, # 0 if and only if (1) x(—1) = (=1)*, (2) x is trivial on
It and (3) either N> 2 or k is even.

(b) When E. # 0, we have E (1) = 5X(0) 1(7)|vd where § € To(N) varies

s0 that TIATo(N) = UsTE 0 (disjoint); equivalently, with v = <é g) )
E, (1) = Z X(M,N)det(Mr + N)=*
(M N)

where (M N) are coprime symmetric pairs varying so that
SL,(Z)(C D)I'y(N) = U N)SLn(Z)(M N) (disjoint),
and x(M,N) = x(8) for 6 € To(N) so that (M N) € SL,(Z)(C D)é.
(c) With v, varying over a set of representatives for T so\Spn(Z)/To(N),

the non-zero K. form a basis for Elgn) (N, x), the space of Eisenstein series
of degree n, weight k, level N, and character x.

Remarks.
(1) Having fixed representatives {7y} for T'oo\Spn(Z)/To(N), we con-

sider {E,_} to be a “natural” basis for Elgn) (N, x)-
(2) For s € C with k4 Rs > n+ 1, we can define a non-holomorphic
Eisenstein series by replacing det(M7 + N)~* by

det(M7 4+ N)7%|det(M1 + N)|*.

Then all the arguments and results herein are trivially modified to
extend to these non-holomorphic forms.

The next three propositions describe some useful relations when working
with Eisenstein series; then for N square-free, we describe a convenient set
of representatives for I'no\Sp,(Z)/To(N) and how to evaluate x (M, N).

Proposition 3.2. Supposey,y € Spn(Z) and § € To(N) so that TILT(N)y/
LET(N)yo. Then Ey = x(0)E,.
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Proof. We have E = 23, X(8r)E*|78, where To(N) = UpT'(NV)B (dis-
joint). Thus To(N) = dTo(N) = URT'(N)By, (recall that T'(A) is a normal
subgroup of Sp,(Z)); since [[o(N) : T'(N)] < oo, this last union must be
disjoint. Thus

B, =2 X(081)E* 768, = 2x%(5) Y X(Bw)E* Y By = X(0)E,.
h h

Since F,t, = 0I'F671, we have [[o(N) : Fj{r/] = [[o(N) : 7] and so the

proposition follows. O

Proposition 3.3. Fix N € Z. Suppose (M I), (M' N'), (M" I) are
coprime symmetric pairs so that (M" I) = (M’ N') (N) and (M’ N') €
SLn(Z)(M I)To(N). Then (M" I) € (M' N')I'(N) and hence (M" I) €
SIAZ)(M DTN,

Proof. Since (M',N') =1 and N’ = I (N), we have (WM', N') = 1. Thus
! /

there is some < L > € Spn(Z) with L' =0 (N), and hence K’ = I (N).

M N’
Set
(K U\ (I 0\
7_ M/ N/ M// I I
thus v € T'(N) and (M” I) = (M’ N")y € SL,(Z)(M I)T'x(N). O

Proposition 3.4. For v € Sp,(Z), there exists some 7" = <]é,, ?) €

Spn(Z) so that v € TT~"To(N). Equivalently, for (M N) a coprime sym-
metric pair, there is some symmetric M" so that

(M N) € SLy(Z)(M" T)To(N).

S n_ (I O
M N} T\ T
v € TT4"To(N) if and only if (M” I) € SL,(Z)(M N)I'y(N). By Propo-
sition 3.3, it suffices to show there is some (M’ N') € SL,(Z)(M N)I'o(N)
so that N = I (NV); we proceed algorithmically.

Fix a prime ¢ dividing A" and take ¢ so that ¢' || /. Using Lemma 6.1,
we can choose Ey, Go € SL,(Z) so that Ey, Go = I (N/q") and EoNtGa1 =

(1\(;1 8) (¢) where Ny is d x d and invertible modulo ¢ (so d = rank, N).

Proof. Given vy = ( > € Spn(Z), recall that we have

We can adjust Ey, Gy so that N; = (a I) (¢'), some a. Similarly, we
U v u v\ _ t u vy _
can choose <w x> € SLy(Z) so that <w a;> =1 (N/q", ( ) =

(g O) (¢') (where a@ =1 (¢')). Then .

a
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and Eo(M N) (GO tG51> v = ((%; %z) (Id 0)) (¢") with M,

d x d. By the symmetry of M!N, M3 = 0 (q'); since (M, N) = 1, My is
invertible modulo ¢. Thus using Lemma 6.1 we can find E}, G| € SL,,_4(Z)
so that B, Gy =1 (N/¢),

Mj = E1M,G = (I a’) (¢"), some a’.

Take F1 = (Id ,>, Gi1 = <Id ,>. Using the Chinese Remainder The-
11 G
orem, we can choose W' so that W/ = 0 (N /¢") and W' = <In_d_1 ,) (q)

where a'a’ =1 (¢'); set W = (Od W’) . Then with

coemanm(* g)s(* ) )

we have (C D) € SL,(Z)(M N)['o(N), (C D) = (M N) (N/¢"), and
D=1 (q".

Next, suppose p is another prime dividing A/ with p" || A. Apply-
ing the above process to the pair (C' D), we obtain a pair (C' D') €
SL,(Z)(M N)To(N) with (C" D") = (M N) (N/(¢'p")) and D' = I (¢'p").
Continuing, we obtain (M’ N') € SL,(Z)(M N)T'¢(N) with N' = I (N).
Applying Proposition 3.3 completes the proof. O

Proposition 3.5. Let (M N) be a coprime symmetric pair. There is
some symmetric matric M, so that (M N) € SL,(Z)(M, I)To(N) and

la 0 where d = d(q) =

rank, M. Thus when N is square-free and M, is as above, we have (M N) €
SL,(Z) (M, I)To(N) if and only if rank, M = rank, M, for all primes g|N .
Further, with N square-free, we can take M, diagonal, and we have

SLn(Z)(Mo I)To(N) = GLn(Z)(My I)To(N).

for each prime q with q || N, we have M, =

Proof. First note that if (M N), (M, I) are coprime symmetric pairs with
(M N) € SL,(Z)(My I)To(N), then rank, M = rank, M, for all primes

q|\V, since elements of T'o(N') are of the form <é IB)> with C' =0 (N) and

thus A invertible modulo .

From Proposition 3.4, we know there is a symmetric matrix M” so that
(M N) € SL,(Z)(M" I)To(N). Suppose q is prime with ¢ || N let d =
d(q) = rank, M". If d = 0 then set E;, = I, and v, = Ia,. Otherwise,
using Lemma 6.1, we can choose E; € SL,(Z) so that E, = I (N/q) and

a
E,M"'E, = Ig—q (q); choose (Z ﬁ) € SL,(Z) so that
0

(&) =rovm (5 9)=(5 ") @
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where aa =1 (¢), and set

w x
_['E, I 0
Yq = Eq—l y Py
0 In—l
Set £ = [[nvEe v = [lyn e Thus E € SLy(Z), v € To(N); set
(M' Ny = E(M" I)y. So (M' N') = (M, I) (N) for some symmetric

M, with M, = Ta(q) 0 (q) for all primes ¢ || N. Then by Proposition
3.3, (M N) € SL,(Z)(My I)To(N).

Suppose N is square-free; then we can use the Chinese Remainder Theo-
rem to choose M, diagonal with M, = (Id(q) 0> (q) for each prime g|N.
Also,

Ln(Z)(Ms I)Io(N)
= SLn(Z)(M, )FO(N) U SLy(Z) (Mo I)'YiFO(N)
= SLn(Z)(Ms I)T'o(N) U SLn(Z)G+(My I)To(N)
= GLn(Z)(Mo I)T'o(N).
This proves the proposition. (]

Using Proposition 3.5, we fix a set of representatives {% = < ]\j ?) }
g
for Too\Spn(Z)/To(N) so that when ¢ is a prime with ¢ || N, we have
1
M, = ("¢ 0

diagonal. Let E, denote E_

(q) for some d = d(q), and when N is square-free, M, is

Proposition 3.6. Suppose that x(—1) = (=1)%, and either N' > 2 or k is
even.

(1) Suppose E; # 0 and q is prime so that q || N; let d = d(q) = rank, M,.
Ifo<d<n thenxgzl.

(2) Suppose N is square-free. Then B, # 0 if and only if X?I =1 for all
primes q|N so that 0 < rank, M, < n.

Proof. (1) Suppose we have a prime ¢ || N with 0 < d < n where d =
rank, M,. Choose u € Z so that ¢ { u, and (using Lemma 6.1) choose

(Z x) € SL,(Z) so that (Z’ ﬁ) =1 (N/q) and (Z ;U) = (u u) (a)

w x
where vt =1 (q). Set E = I, ,
Y z
z x
I 0 1 1 —u?
5= z T 1,1 0
Y w 1
0 In72 Infl
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Thus E € SL,(Z), § € To(N), and E(M, I)d = (M, I) (N). So 6 € T,
and thus E, = E,|6. We also have E,|0 = x,(u?)E,. Since E, # 0, this
means xa(u) = 1, and this holds for all u € Z where ¢ { u. Hence x2 = 1.
(2) Now suppose N is square-free, and that for each prime ¢|N with 0 <
rank, M, < n, we have Xg = 1. To show E, # 0, we need to show y is trivial
on I'Y . To do this, we show that for all primes ¢|N, x, is trivial on T'Y .

tp—1
So take 8 = <é g) € I'Y . Thus there exist § = < E VVEE ey,

B € T'(N) so that §3v,8 = v,. Thus E(M,A M,B + D) = (M, I) (N).
Fix a prime ¢|N, and set d = rank, M,.

When d = 0, we have ED = I (q), so detD = detE = 1 (¢q) and
Xq(det D) = 1. When d = n, we have EA = I = A'D (q), so detD =
det E =1 (¢q) and x4(det D) = 1.

Now suppose 0 < d < n. Write

(A1 A (D1 Do _(E1 Es
= w)oo=(o p) 2= (2 &)

1,

where A1, D1, By are dxd. Since EM,A = ( ) (q), we have E3(A; Ag) =

0
0 (g). Since A is invertible modulo ¢, the rows of (4; As) are linearly in-
dependent modulo ¢, and hence we must have E3 = 0 (g), rank, E1 = d,
rank, Fy = n —d, and

1 =det E = det E; - det Ey (q).
Also, since
Ei(Ar A2) = (14 0) (q), Ea(D3 Dg) = (0 In—q) (q),

we have A, D3 =0 (q), A1 = E1 (¢), Dy = E4 (q). Since A'D =1 (q), we
must have D1 = 'Fy (q). Thus we have

det D = det E; - det B4 = (det E1)? ()

and hence
Xq(det D) = Xg(det Ey) =1.

Thus with 8 € 'Y, for all primes g|N we have x4(5) = 1; consequently, by
Proposition 3.1, E, # 0. O

Proposition 3.7. Suppose E, # 0, (M N) € SL,(Z)(M, I)y where v €
[o(N), and fix a prime q so that q || N'. There are Ey, E1 € SL,(Z) so that

_(M; O
with My invertible modulo q; for any such Ey, E1 we have
tp-1_ (N1 N2
EyN"E| " = ( 0 N, (q)
and x4(v) = xq(det My - det Ny). Further, for any G € GLy(Z), we have
Xq(GM,GN) = xq(det G)xq(M,N) = Xq(MG_la N'G).
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Proof. By assumption, (M N) = E(M, I)y for some E € SL,(Z). Set
d = ranky M,. If d =0 then N = ED (q) so xq(7) = xq(det N). If d = n
then M = EA = E'D™! (q) so x4(7) = xq(det M) (where MM =1 (q)).
Suppose 0 < d < n. By Proposition 3.5, we know rank, M = rank, M, =
d, so there are Ey, E1 € SL,(Z) so that EyME; = <J\g1 8) (¢) with M,
d x d and invertible modulo ¢q. Then by the symmetry of M !N, we have

EgN'Ef = ]\(;1 %i (q) with Ny d x d, and Ny invertible modulo ¢

since (M,N) = 1. Set Ey = EpE; given the shape of M, and of FgMEj,

!
B > (q) with E’ d x d and invertible modulo q.

we must have Foy = <O %

Hence

S N I G R

2

where

, tEfl E , E'tE!
g —( ? E2>'y< ' tE11> € To(N) and M E( 0> ()-

. A B A1 AQ Dy Dy
/! — —
Write 7' = (C D)’ A= <A3 A4>’ D = <D3 D4> where A1, Dy are

dxd. Since (Ml 0> = M'A (q), we have Ay =0 (q), A; invertible modulo

q, and My = E''E'A; (q). Then since A'D = I (q), we have D3 = 0 (q),
A1t'Dy =1 (q), Ny = Dy (q). Thus
Xa(7) = xa(7") = X5 (E")xq(det M1 - det Ny)

(where MM, = I (g)). Since 0 < d < n and E, # 0, we know from
Proposition 3.6 that y2 = 1.

Suppose (M N) = E(M, I)y where E € SL,(Z), v € To(N); take
G € GL,(Z). If det G = 1 then the above argument shows x,(GM,GN) =
Xq(M,N). Say det G = —1; then E' = GEG+ € SL,(Z) and

G(M N)=E'GL(M, I)y= E' (M, I)v+v (q).

Hence x,(GM,GN) = xq(7+7) = xq(=1)xq(M, N). Somewhat similarly,

(MG~ N'G) = E(M, I)y (Gl tG> ,

50 xg(MG™1, N'G) = x4 ('y (Gl t G>> = Xo(1)xg(det G). O

4. HECKE OPERATORS ON SIEGEL EISENSTEIN SERIES OF SQUARE-FREE
LEVEL

Throughout this section, we assume A is square-free, x is a character
modulo N so that y(—1) = (—1)¥; further, we assume either N' > 2 or k is
even.
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Let o be a “multiplicative partition” of A/, meaning o = (N, ..., Ny)
where N; € Zy and Ny---N,, = N; take M, to be a diagonal n x n

matrix so that for each d, 0 < d < n, we have M, = <Id O> (Na).

M, I
a set of representatives for I'no\Spn(Z)/To(N), and by Proposition 3.5 we
have TooYeLo(N) = TX7,T0(N). Thus given any coprime symmetric pair
(M N), there is a unique multiplicative partition o of A" so that (M N) €
SLn(Z) (M, I)To(N).

To ease notation, we write E, to denote K, .

e . 1 .
By Proposition 3.1, as we vary o, the matrices v, = ) give us

Theorem 4.1. Fix a prime g|N and a multiplicative partition
o =N,...,N)
of NJq; let Xq = X4(q) (as defined in §2). For 0 < d < n, let o4 =

(No, - .., Ny) where

N i,
M_{q/\/(g ifi=d.

Then when E,, # 0, we have

Ea'd‘T(q> — qkd—d(d-i-l)/QyN/q (qu—lMO_d’Xd—l)
n—d
Y g IR (d 4-1,t) symX (t) B,

t=0
(with symy (t) as defined in §2).
Proof. To ease notation further, temporarily write Eq for E,, and My for
My, . Also, write Ky for Kyq(q), Yn for Vn(q), X, for X.(q), B(m,r) for
By(m, ).

By Proposition 2.1, we have
Eq(T)|T(q) = ¢ "D " X(M,N) det(Mr/q+ MY/q+ N)™*
M,NY

where SL,,(Z)(M N) varies over S L, (Z)(Mg I)To(N) and Y varies over V,;
recall that we can take Y =0 (M /q). (Note that in Proposition 2.1, when
pIN we have x(p"") = 0 unless r = n.) Using left multiplication from

SL,(Z) to adjust each representative (M N), we can assume ¢ divides the
lower n — d rows of M. Set

1
(M N') = Xu(M/q MY/q+N) = - Xa(M MY +gN);

clearly M', N’ are integral given our assumption that ¢ divides the lower
n —d rows of M. We know the upper d rows of M are linearly independent
modulo ¢, as are the lower n — d rows of N. Thus (M’, N’) = 1, and with
d’ = ranky, M', we have d’ > d. Since ranky My = ranky My for all primes
¢'|N'/q, by Proposition 3.5 we have (M’ N') € SL,(Z)(Mg I)To(N). Also,

we have

det(M7/q+ MY/q+ N)™*F = ¢k det(M'r + N') 7.
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Reversing, given (M’ N') € SL,(Z)(My I)To(N) (with d’ > d), we need
to identify the equivalence classes SL,(Z)(M N) € SL,(Z)(My I)T'o(N)
and Y € ), so that

(11Xd(M MY + N) € SLo(Z)(M' N').

Equivalently, we need to identify Y € ), and the equivalence classes
SLu(Z)gX; ' B(M' (N' — M'Y)/q) € SLy(Z)(My I)To(N)

where F € SL,(Z) and (M’ N') is a coprime symmetric pair. For E €
SL,(Z), we have X, 'EXy € SL,(Z) if and only if E € Kg4; thus we need
to identify Y € Y, and E € K4\SL,(Z) so that

¢X; ' E(M' (N' = M'Y)/q)

is an integral, coprime pair with rank, qXJlEM "= d (that M tN is symmet-
ric is automatic). For each coprime symmetric pair (M’ N’), let Cq(M', N')
be the set of all pairs (F,Y") that meet the above criteria (note that Cq(M’, N')
could be empty); then

Eq(r)|T(q) = ¢* D2 N " cy(M',N') det(M'r + N')~F
(M',N")
where
ca(M',N') => X(¢X;'"EM', X' E(N' = M'Y)),
EY
with the sum over all (E,Y) € Cq(M’, N').
We also know that 5,81) (N, x) is equal to

span{(Ct 4+ D)~* . (C D) coprime, symmetric } N M (N X),

and M (N X) is invariant under the Hecke operators. Hence E4|T'(q) is
again an Eisenstein series, and so the above discussion shows that

Eq|T(q) = ¢* 02" cy(My, DEq.
d>d

Thus we need to compute cg(Mg, I) for each d’ > d.
Fix d' > d, and choose E € K4\SL,(Z); note that we can choose E
I (N/q). With Y € Y, set

(M N) = gX; ' E(Mg (I = MgY)/q).

To have rank, M = d, we need the top d rows of EMy to have g-rank
d; by Lemma 6.4(a), the number of such E is ¢“"~4)3(d’,d). Also, since
),

My = <Id/ > (q), the upper left d x d’ block of E must have g-rank d;

/
thus using left multiplication from K4, we can assume FE = lg Vf) where

E' € SLy(Z). (Note that we can still assume that £ = T (N /q).) So fix
/ -1
such E (and thus fix M). Set G = <E I); SO <G tG) e To(N). We

know N is integral if and only if EN'G = X;}(E*G -~ EMyG~' - GY 'G) is
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integral; also, when N is integral, (M, N) = 1 if and only if (MG~!, N!G) =

. It El E2 ”1
1. erte E E/ = <tE2 3), [/‘/ — ( 2>7

Yi Yo Y3
GY'G=|"Y, Yy Y;
Y3 s Ye
where F1,Y; are d x d and symmetric, F3, Yy are (d' — d) x (d' — d) (and

symmetric), and Wi is d x (n — d'). We have EMyG~! = (Id/ 0) (q), so
NG is integral if and only if (Y Y Y3) = (E1 Es W1) (q). When NG is
integral, we have

(Ev—Y1)/q (E2—Y2)/q (Wi1—Y3)/q
NG = 0 E;-Y, Ws — Y5 (9),
0 0 I

so (MG, N'G) = 1 if and only if rank,(E3 — Yy) = d’ — d. As Yy varies
over symmetric (d' — d) x (d' — d) matrices modulo ¢, so does F3 — Yj.
Recall that we can choose Y = 0 (N/q); thus for E,Y as above, we have
My = Mg (N'/q), so

X q(M,N) = Xnq(aX g Ma, X371 = X 1g(@XaMa, Xa)
and
Xq(M,N) = Xq(MG_la NtG) = Xq(det(E3 — Yy)).
Since Y5, Yg are unconstrained modulo g,
ca(My, 1) = /=D =@ =Dn=dHDR(d, d) symi(d' — d)

(recall Yy is symmetric). Collecting terms and setting ¢ = d’ — d yields the
result. O

To help us diagonalize the space Eisenstein series of square-free level, we
put a partial ordering on {¢}, the multiplicative partitions of N, as follows.

Definition Let o, a be multiplicative partitions of A/, and let ¢ be a prime
dividing N. We write 0 < « (¢) if rank, M, < rank, M., 0 = « (q) if
rank, M, = rank, M,, and o < « (q) if rank, M, < rank, M,. For Q|N, we
write 0 < a (Q) if ranky M, < rank, M, for all primes ¢|Q, 0 = « (Q) if
rank, M, = rank, M, for all primes ¢|Q, 0 < « (Q) if rank, M, < rank, M,
for all primes ¢|@Q,

We first determine how to find eigenforms for 7'(q).

Corollary 4.2. Suppose o is a multiplicative partition of N so that E, # 0,
and let q be a prime dividing N'. For partitions o of N with a« = o (N /q),
a > o (q), there are aso(q) € C so that

EO’ + E aa,a(Q) Ea
a=o (N/q)
a>o (q)

is an eigenform for T'(q), and ay(q) # 0 only if either (1) xq =1, or (2)
x2 = 1 and rank, M, —rank, M, is even. With such as o and d = rank, M,
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the eigenvalue of Bo + Y a—0 (W /q) @0,0(q) Ba is
a>o (q)

Arlg) = ¢* D2 (@XM, Xa)
where qg =1 (N/q).

Proof. By Lemma 6.6 symj () = 0 if and only if (1) x, = 1, or (2) x2 =1
and ¢ is even. Thus by Theorem 4.1, the subspace

span {Ea ca=0 N/q), a>0(q), Ey #0, and either (1) x4 =1,
or (2) X621 =1 and rank, M, — rank, M, is even }

is invariant under 7'(q), and the matrix for T'(¢) on this subspace basis (or-
dered with rank, M, increasing) is upper triangular with diagonal entries
Aa(q). Then the standard process of diagonalizing an upper triangular ma-
trix yields the result. O

We now diagonalize the space of Eisenstein series with respect to
{T'(q) : q prime, ¢\ }

and obtain a multiplicity-one result for the Eisenstein series of square-free
level.

Corollary 4.3. Suppose o a multiplicative partition of N so that E, # 0.
For a prime q|N and « a multiplicative partition of N with o > o (N), set
ao,a(q) = 1 if o = 0 (q), and otherwise set asn(q) = apa(q) where p is a
multiplicative partition of N with p = o (N'/q), p =0 (q), and a,.(q) is as
in Corollary 4.2. For QN and a > o (Q), set

to,a(Q) = H o.0(q)

qlQ
q prime
Then with
]EO' = Ug,« (N)Ea,
a>o (N)
for every prime qIN we have E,|T(q) = Ao(q)Ey (where A\, (q) is as in
Corollary 4.2). Further, for o # p (N), there is some prime q|N so that

)\U(Q) # )‘p(Q)-

Proof. Fix a prime ¢g|N. For «, 8 multiplicative partitions of ' with a >
o (N), B=a (N/q), and 8 = 0o (q), we have ayo(N) = a5 s(N/q)as.a(q).
Thus, varying 3, a so that 8 > o (N'/q), 8 =0 (q), a = 8 (N /q), a« > 5 (q),

we have
EO’ = Z aa,B(N/Q) Z aﬂ,a(Q)Ea
3 a

By Corollary 4.2,

Zaﬁa VEo|T(q) Zaﬁa
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So to show Ey|T(q) = Ae(q)Es, we need to show that As(q) = As(q) for any
B so that 8 > o (N/q), B = o (¢q), and a,p(N/q) # 0. Equivalently, we
need to show that for 8 > o (N/q), f = o (q) with a, g(N/q) # 0, we have

Xq (@XaMp, Xa) = X (@XaMo, Xa)
for all primes ¢'|NV'/q (where qg =1 (N/q)).
Let d = rank, MU, and fix 3 so that 8 > o (N/q), S ( ), and

as3(N/q) # 0. Let ¢’ be a prime dividing N'/q. If 8 = o (¢'), then Mg =
M, (¢') and so

Xq (@XaMp, Xa) = xg (@XaMo, Xa) -
So suppose 8 > o (¢'). Since a,3(N/q) # 0, by Corollary 5.3 we either
have x, = 1, or ng = 1 with ranky, Mg, rank, M, of the same parity.
Consequently (using Proposition 3.7),

Xq (@XaMp, Xq) = x¢ (@XaMo, Xg) .

Hence I~EU|T(q) = )\g(q)INEa, proving the first part of the corollary.
To prove the second part, suppose now that o # p (N). Thus for some
prime g|N, we have d = rank, M, # rank, M, = d’. Then

’)\J(Q)‘ _qk:d d(d+1)/2 #qkd/ d'(d'+1)/2 _ ‘)\ ( )|
since 0 < d,d <nand k >n+1. O

Now we evaluate the action of Tj(q2) on E,. Note that since the Hecke
operators commute, the multiplicity-one result of Corollary 4.3 tells us that
each E, is an eigenform for Tj(¢?) (1 < j < n), and in fact for T(p), T;(p?)
(1 <j < mn)) for any prime p. So we could simply do enough computation
to find the eigenvalue )\j;o(q2), but we take just a bit more effort and give
a complete description of E,|T;(q?). Then in Corollary 4.5 we simplify our
expressions for the 7T} (¢*)-eigenvalues.

Theorem 4.4. Assume N is square-free, and fix a prime g|N. For o a
multiplicative partition of N'/q and 0 < d < n, let E,, be the level N
Fisenstein series as in Theorem 4.1; suppose E,, # 0. Then for 0 < j <n,

E,,|Ti(q ZA (d,t)E,,,,
where
Aj(d,t) = qU=D=1N2G (d 4 ¢ 1)
Jj j—di ds

(dydy ,ds,dg)— -1 oy —1 -1
NN gudduddsly (X My, X, X X
d1=0d5=0dg=0

- By(d,d1)B,(t,ds5)By(n —d —t,dy +n—d—j—ds)
By (t — ds, ds) symy (t — d5 — dg) symy (ds, ds),
r=j—dy —ds+dg, and
a;j(d;dy,ds,dg) = (k — d)(2d1 + ds — dg) + di(di —dg —j — 1)
+ds(j —ds) —ds(ds +1)/2 4 dg(dg + 1) /2.
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(Here symy (b, ¢) is as defined in §2.) Thus Eo,|Tj(¢?) = A;(d,0)E,,.

Proof. As in the proof of Theorem 4.1, temporarily write Ey for E,, and
Mg for M, . Let Ky s = Ky 5(q), Vio = yj,o(qz), Xrs = Xrs(q), B(m,r) =

/Bq(ma T)v /‘l‘(m’ T) = /J‘q(m) T)'
By Proposition 2.1,

o Xt G' Y'G
i) =3 m (B ) (T )
GY J

where G varies over SL,(Z)/K;, Y over Yjo; recall that we can take G =
I (N/q) and Y =0 (N/q). So

Ea(7)|T5(q%)

= gi(k=n—1) Z X(M, N) det (MXjflG—lT +MX;'Y'G+NX; tG) *
G,Y,M,N
(where SL,(Z)(M N) varies over SLy(Z)(My I)To(N)).
Take (M N) € SL,(Z)(Mg I)To(N). Let d; be the g-rank of the first j
columns of M (so d; < j); using left-multiplication from SL,(Z), we can
My M,
adjust our choice of representative to assume M = | ¢Ms My | where M;
qMsg  qMg
is dy x j (so rank, My = dy), My is dy x (n—j) with rank, My = dq = d—d;.
N1 N
Correspondingly, write N = | N3 N4 | where Ny is dy X j and N4 is
Ng  Ng
. My 0
dy % (n—j). Take r so that rank, (Mé N
choice of representative, we can assume
qMs qMg Ns Ne >
¢*M7 qMg N; qNg

) = n —dy4 — r; so adjusting our

(aM2 oMy Ni Ng) = (

where Mg, Ng are (n —d — ) x (n — j) and rank, (%1 ]8) =n—dy—r.
5 Ne

Note that since (M, N) = 1, we must have rank, N7 = r. Then

My qMy ¢*>Ni qNo

Xt Ms My qN3 Ny

Xy (M N) (9 _
i ) ( X_j> Ms qMs qNs Ng
M; Mg N7 Ny

has g-rank n. Hence for any Y € )},
X! G! viG
o ¥ = xaee M) (5 ) (G NG
is a coprime symmetric pair with rank, M’ = d+t for some ¢ > 0. Note that
det(M'7 + N')7F = g H =) det(M X 'G™'r + MX; 'Y 'G + NX;'G) k.
As discussed in the proof of Theorem 4.1, we have

n

Eq|Tj(¢*) = > ca(Ma)Ea,
d'=d
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some cq(My) € C. So reversing, suppose d > d and Ey # 0. To com-
pute cq(My ), we need to identify the equivalence classes SL,(Z)(M N) €
SLn(Z)(Mg I)To(N) and Y € V0, G € SL,(Z)/K; so that

Xy, (M N) (Xa‘ 1 Xj) <G0 1 {Zf) € SLo(Z)(My I).

Equivalently, we need to identify Y € Y, G € SL,(Z)/K; and the equiva-
lence classes

. G -Gy (X
SLa(Z) X! E(My 1)( > < —
J

tG—l

where E € SLy,(Z). For E € SLy(Z), we have X' EXy, » € SL,(Z) if and
only if E € Kg4, », so we only need to consider £ € ICg, ,\SLy(Z). Thus we
need to consider all E,G,Y so that with

_ G -GY X,
vy = xgeon 0 (¢80 (Y xa)

) € SL,(Z)(My T)To(N)

M, N are integral with (M, N) = 1 and rank, M = d (that M 'N is sym-
metric is automatic). Note that since we can take E,G = I (N/q) and
Y =0 (N/q) and we know My = My (N/q), for such (M N) we have

X 7q(MN) = Xovyg(Xg, L, Ma X, X X7,
For E,G € SL,(Z), write

M1 M2 Nl N2
EMyG= | M, M|, E'G™' =[N, N}
M7 Mg N7 Ns
where My, Ny are di X j, M7, N7 are r x j. Then
M1 Mg/q
M= | qM; M;
My qMs

So to have M integral, we need My = 0 (gq), and to have rank, M = d, we

need rank, (Ml 0

0 Mi) = d. So suppose these conditions are met. We have

Y = <t[‘]/ ‘g) where U is j x 7 and symmetric; to have N integral, we need

N1y = MU + My'V (¢?), Na = MiV (q), and N = MLU + M;'V (q). We
are supposing that rank,(M; My Ni N2) = d; and My = 0 (g), so we can
solve these first two congruences only if rank, M; = d;. So supposing this
condition is met, we have Mj/q in the column span of M; modulo ¢, so we
must have rank, M; = d4 where dy = d — d;. Then adjusting E using left
multiplication from Ky, ,, and adjusting G' using right multiplication from
Kj, we can assume

M, M,
| M3 My
EMyG = | f )

My Mg
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where My is dy x (n — j) with rank, My = d4 and Mg = 0 (q); further,

we can assume M; = (A} A;) where A} has d; columns when 7 is odd, dg4

columns when i is even, A} =0 (¢?) for i # 1,4, and A; = 0 (¢?) for i < 4.

Correspondingly, split N§ as <%3>, Nj as <]]$4> where N3, Ny have dy
5 6

rows, and split N; as (B! B;) where B] has d; columns when 7 is odd, dy4

columns when ¢ is even. Split U as <tU[}1 g2> where U; is d; X di, and
2 Us
i s

split V' as <V V> where V; is di x dg. Then MU = Ay (Uy Us) (¢?),
3 Vy

MV = Ay(Vi Vo) (q), My'V = A} (*V4 'V3) (q). So to have N integral, we
need to choose Uy, Us, Vi, Vo, V3 so that

(B} B1) = A1(U1 Us) (¢%), (Bh By) = A(Vi V) (q), Bs = A}'V3 (q).

Then by the symmetry of EMy 'E, we have B}' A} = A} 'B), (¢), so we have
B} = A,'V; (¢). By symmetry, we also have

By'Al = A5'Bi + Ag "By = AUy T AL + A 'V ' A (¢P),
Bé tAl = As th = A5V:3tA£1 (Q)a
Br'Ay = A7'B1+ A3 "By = A7 U2 T AL + As VoA (g).

So to have N integral, we also need to choose Us so that Bs = A5Us (q),
and then the lower n — d rows of N are congruent modulo ¢ to

0 (Bs—AsUs—As'Vy)/qg 0 Bs— AsVy
0 By — A;Us — AgtVy 0 0 )

Further refining our choices for F, G using Ky, , K;, we can assume

0 0 O 0 O
A7=10 0 a7 ] (q9), As=[0 0] (¢
0 0 O ag 0

where «; is d; x d; and invertible modulo ¢, o is (n—d—r—ds) x (j —d; —
ds —dy7), and ag is (n—d —r —ds) x (n— j —d4 — dg); here the top r —dy —dg
and bottom dg rows of A7 are 0 modulo q. Correspondingly, write

(B B2 B3 (M e
BS_(@L Bs 56)’ B6_<’Y3 74)’

61 09 O3 €1 €2
Br= |04 65 06|, Bs=|€e3 €
07 ds 09 €5 €6

By symmetry and the invertibility of as, a7, ag modulo g, we have that Sy,
B6, V3, 01, 03, €1 = 0 (g), the bottom n — d — r — d5 rows of B, Bf, and
the top r — d7 — dg rows of Bh, By are 0 modulo ¢. Then since E{G™! is

invertible, we know that rank, (§5 Z4> =n—d.
2 €
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Write
u1r p2 M3 vy 2
Us=\T"p2 pa ps|, Va=[vs w
t/ﬁ3 tus He Vs Ug

where py is ds X ds, ug is d7 X dy, vy is ds X dg, vs is d7 X dg. To have
Bs = AsU3 (q), we need (81 2 f3) = as(p1 p2 p3) (q), and 85 =0 (¢) (and

hence ~4 is invertible modulo ¢). When these conditions are met, we must
have rank, v4 = n — d — r — ds, and by symmetry,

Silas = ar'Bs = ar'ustas (q).
Then to have (M, N) = 1, we need

g ((Bs—AsUs — As'Va) /g Bs — AsVa
Br — A7Us — Ag'Vy  q(Bs — A7Va)

to have g-rank n — d. Note that modulo ¢, B is congruent to

(B1—asp1)/q (B2 —aspz)/q (B3 —asps)/q 71— asvy Y2 — sty

0 * * 0 Y4
0 02 0 0 0
0 65 — a7 s 06 — arfig 0 0
57 — Qg tl/l 68 — Qg th 59 — Qg tVG 0 0

Since E'G~! is invertible, and given that 4, f5, 86,73 and the lower n —
d—r—ds rows of Bf, Bf, are 0 modulo ¢, we must have rank, v4 = n—d—r—ds.
To have B invertible modulo ¢, we need rank, do = r — d7 — dg. Given the
sizes of 74, 09, this requires

n—d—r—d5§n—j—d4—d8 andr—d7—d8§j—d1—d5—d7,

so this requires r = j — dy — ds + dg (in which case 74,02 are square, and
hence invertible modulo g).
Choose (n — d) x (n — d) permutation matrices P;, P» so that

Qs
ag

As A
P1 (Ai Az) PQ = 0 (q),

Bi M 2 B3 B

07 €5 €5 09 08

Bs B
P, ( 35 BG> Po=18s v3 v Bs Bs
Toes 84 €3 €4 O 05
01 €1 € 03 09

(So P; corresponds to the permutation (2 3 5), P, to the permutation
(2 53 4).) Thus (still supposing that 85 = 0 (¢), and that 74,2 are in-
vertible modulo ¢), we have P;BP, is congruent modulo ¢ to

(Br—aspr)/g m —oasvr y2—asve (B3 —asps)/q (B2 —as —p2)/q

(57 — Qg tl/l 0 0 (59 — Qg tl/6 58 — Qg tl/g
0 0 Y4 * *
0 0 0 06 — ariig b5 — a7 s
0 0 0 0 09
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Hence B is invertible modulo ¢ if and only if

(Br—aspu)/q M — 045V1>
(57 — Qg tl/1 0
and g — arug are invertible modulo ¢. Note that by the symmetry of My,
t t
we know that (6 — arue) farr and (((5517 —Cz)f)g%lz/)l)%z/g,q (n a(“;’yl) ag> are
symmetric modulo q.
To compute x (M, N), recall that we can (and do) assume that F,G =
I (N/q),Y =0 (N/q), and we know that My = My (N/q); so

X /g (M, N) = X (X5, Ma X, Xt X5,

To help compute X, (M, V), let G1 be the n x n permutation matrix so that

A0 0 0
0 A, 0 0

EMd/GGl = 0 04 A5 Aﬁ (q)
0 0 A7 Ag

Setting Fy = (Id p ), Go = <Id P) , and remembering that {P~1 = P
1 2

for a permutation matrix P, we have

Xq(det E1G1G2)xq(M, N)
= Xq(ElMG1G2, ElNGlGQ)
= X, (det A7 - det A} - det a5 - det a7 - det ag)xq(det vy - det )

_ t _ ¢
“Xq <det <((5517 O;f’;?y)l)o,fz/g)q (n aé’yl) aS) - det(ds — arpie) tow) .

Also, since xq(Mg,I) =1, we have

Xq(det E1G1G2)
= Xq(E1 My G1Ga, E1G1G2)
= X, (det A7 - det A} - det as - det ay - det ag)xq(det vy - det da).

To summarise: Given (M’ N') with rank, M’ = d', and given choices
for dl,d4 =d- dl,d5,d7,d8 =d —d-—- d5 — d7 and r = _] — d1 - d5 +d8
(with dy +ds +d7 < j, dy + dg < n — j), to be able to choose E,G,Y so
that M, N are integral and coprime with rank, M = d, we need to choose
E € K4, +\SLn(Z) so that the g-rank of the upper d; rows of EM’ is dy,
and the g-rank of the upper n —r rows of EM' is d+ d5 (where d5 < j — dy;
note this is only possible when d' —d —ds < r). By Lemma 6.4 (b), we have

B(d,d+ds)B(n—d,n—r—d—ds)B3(d+ds,dy)
. q(d+d5)(’r‘+d+d5—d')+d1(n—d—ds)

choices for E. Modifying F using left multiplication from g4, ,, we can
assume the upper d+ ds rows of E My have g-rank d+ds. We need to choose
G € SL,(Z)/K; to meet various conditions (as detailed in the preceding
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discussion); choosing Gy € SL,,(Z) so that

My 0 O O

0o C 0 0
EMd/GO = 0 0 0 0 (q)

0 0 C 0

where M is di x dqi, C is (d4 + d5) X (d4 + d5), C' is (d7 + dg) X (d7 + dg)
and M, C,C" are invertible modulo ¢, Lemma 6.5 describes the conditions
that

E(My 1) (G tG—1>

must meet, where G = GoG' € SL,(Z)/K; (note that as G’ varies over
SLy(Z)/K;, so does G). By Lemma 6.5, we have

B(dy + ds, ds) B(dy + dg, dg)g ¥+~ =ds)=drds

choices for G. Then with further adjustments to F using left multiplication
from Kg4, » and to G using right multiplication from /C; (as described above),
using notation as above and writing p; = p; + qu!’, we have that pf, ph, uh
are uniquely determined modulo ¢, 14, it5 are unconstrained modulo ¢2, and
W, 15, 1, V2, V3, Vi, Vs, Vg are unconstrained modulo ¢q. Let F = Z/¢Z; as
W, vi, pg vary modulo g,

<(51 —asp)tas/q (71— asp) tas)

(57 — asg tljl)t()ég) O

varies over elements in Fg§$d8’d5+d8 of the form (

tD g) with C d5 X d5,
d7,d

and (8 — arpug) ‘ar varies over Fgim’. Hence as we vary Y subject to these
constraints, we have

Z Xq(Xd—l}TEMd,GXj, Xd—l}TE( ta—1 — Md,GY)Xj—l)
Y
— q(j—dl)(n—d1—d4+1)—d5(j—d1+ds+l)—d7(d7+1)/2 Symff(d5, ds) Symg(d7).

This yields a formula for A;(d,t); to simplify this formula, note that
B(m,s) = B(m,m — s), so
B(d1 + ds + ds,d1)B(d', dy + dy + d5)B(ds + ds, dy)

_ pld+ds,di)p(d+tt —ds)p(d — di + ds, ds) p(t, ds)

a p(dy, di)p(t — ds, t — ds)p(ds, ds) p(t, ds)

op(dH-tdy A t)pu(t, ds)

- p(dy, dy)p(t, t) p(ds, ds)

_ ,Ll,(d +1, t)u’(dv dl)”’(ta d5)

p(t t)p(dy, di)p(ds, ds)

= B(d +t,t)B(d, d1)B(t, ds)
where t = d’ — d. We have the constraints that r = j — d; — d5 + ds,
d=di+ds, t =ds+dr+dg, di +ds+d7 < j, dy+dg <n—j, and dg < ds.
Taking 0 < dy < j,0<ds < j—di,and 0 < dg < d5, a summand in the final
formula for A;(d,t) is 0 if the other constraints on the d; are not met. [
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Corollary 4.5. Let o be a multiplicative partition 0]: N, and suppose Egjé
0. Then for a prime q|N and d = rank, M,, we have E|T;(¢*) = Ajio (¢°)Eq
where N} = N;/(q,N;) and

j
o (@) = 7Y™ (@)X, (@Y 7)B, (A, 0B, (n—d, i~ 0).
=0
Proof. Since T'(q) and Tj(q?) commute, by Corollary 4.3 and Theorem 4.4,

we know that E, is an eigenform for 7}(¢*) with eigenvalue A4;(d,0). By
Theorem 4.4, using ¢ in place of dj, and noting that B(m,r) = B(m, m —r),
we have

A;(d,0)
_ qjdzj: q€(2k72d+€fj*1)y/v/q(ij,l_zMJde,X[,jl_ng_l)
£=0
B, 0B(n—d,j—0).
Note that <Xj
Thus
YN/q(XE_,jl—eMOdXJ” Xé_,jl—EXj_l) = YN/q(Xf_,jl—KMUd’ ngl—e)XN/q(qj)‘

Then we use Propositions 3.6 and 3.7 to evaluate yN/q(Xé_jl—ZMGd7 X[}J).
U

X_1> is congruent modulo N /q to an element of Sp,(Z).
J

5. HECKE OPERATORS ON KEISENSTEIN SERIES OF ARBITRARY LEVEL

Fix N' € Z; and x a character modulo A/. Assume that k > n + 1,

x(—1) = (=1)* and that either V' > 2 or k is even. Let {% = <Z\§ ?.) }
be a set of representatives for I'oo\Spn(Z)/To(N) so that when N is squaureci
free, M, is as in Proposition 3.5, and let E, = E, .

To more easily describe the action of Hecke operators on E,, we define
an action of Uy x Uy on Eisenstein series where Uy = (Z/NZ)*. Toward
this, we have the following.

Proposition 5.1. Suppose v = ( I 0 € Spn(Z), v,w € Z with (vw,N') =

M I

1 0

1;set(v,w)-M—U<w I>M<w I) and(v,w)-’y—<(%w)'M I)'
With v' = v (N), w' = w (N), we have (V',w') -y € (v,w) - yT'(N); hence

0
E(v,w)~'y

M T
E, = Ey. Then Eyw)y = Ewuw) so we have an action of the group
Un X Up on

= E(y w)~- Further, suppose o' = < € Spn(Z) so that

Al

{EV: = (AZ ?) € Spa(Z) }
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When N is square-free,

Ewuwyo = | Xn,@®) T[] Xa,(0?) | Eo
0<d<n

where we write By for Eq, and B, .o for By w).y, with v, chosen as in §4.

Proof. Take ~,7,v,w,v',w’ as in the statement of the proposition. By
Proposition 3.5 we have (v/,w’) -y € (v,w) - yI'(N), so by Proposition 3.2
we have E(,, ).y = E(yr w)y-

Now, given the assumption that E, = E./, there is some G € GL,(Z),

0= <é g) € I'y(N) so that G(M I)6 = (M’ I) and x(det G -det D) = 1.

! /
By Lemma 6.1, there is some § = é, g,) € To(N) so that &' =6 (N),
/ !
§ =1 (v); set §" = <;é,, BD/,U> (so 8" € Ty(N)). Since SL,(Z) maps

onto SL,(Z/NZ), we can find E € SL,(Z) so that

EE(w-detG [>G<w [> A);

set G' = det & E. Take (© )€ SLo(Z) so that
1 U

t
r s\ _(fw O
()= %) w
and set
r s
_ 1,1 0
B= t U
0 In—l

(so B € Ty(N)). Then
G ((v,w) - M 1)B716"8 = ((v,w) - M' I)) (N),

so ((v,w) - M' I)) € GLn(Z)((v,w) - M I))To(N). Since x(8716"B) =
x(det D) and x(det G') = x(det G), by Proposition 3.2 we have E, .., =
Bw,w)y-

Now suppose N is square-free. For all primes ¢|\, we have rank, (v, w) -
M =rank, M, so ((v,w)- M, I) € SLy(M, I)T'o(N). Fix a prime ¢|N and
take d = rank, M,. Thus by Proposition 3.5, we have E(, ... = x((v,w) -
My, I)Ey. If d =0 then x4((v,w) - My, I) = x4(0,1) =1. If 0 < d < n then

UU]2

Xq((va w) - My, I) = Xq vlg_1 A | = YQ(vde)a
0

and since Xg =1, Yq(vde) = Xq(vd). If d = n then xq4((v,w) - My, I) =
X, (V" w?). O
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Suppose E, # 0. We have (1,—1) - v, = v+7,7+, and I’a )y =
’yiF%’yi, S0 X is trivial on Fa_l)q and hence E(; _1)., # 0. With To(N) =
U5F(1,—1)-% (disjoint), left multiplication by v+ gives us [o(N) = UsT'3 740

(disjoint). Then
Eq-1)0 Z X(O)E* | v+v5v+]6
5

= X(7£) Y X(O)E*|7o]720
19
—E,.

If (1,-1) - M, I) = E(M, I)y for some E € SL,(Z) and v € Ty(N),
then by Proposition 3.2 we have E(; 1), = X(7)Es, so from above we
must have x(y) = 1. Thus if (M N) € SL,(Z)(M, I)y and (M N) €
SLn(Z)((1,-1) - My I)v" for o',4" € To(N), we have x(v') = x(7").

So with x(M,N) = x(v) where (M N) € SL,(Z)(My I)yor (M N) €
SLn(Z)((1,-1) - My I)y for v € SL,(Z), x(M,N) is well-defined. Also,
E, = %(IE(7 +E@1,-1).0), a fact we will use in the proofs of Theorems 5.2 and
5.4.

Theorem 5.2. Suppose E, # 0; fiz a prime pt N and p so that pp =1 (N).
Then

E ’T ZX n— r (n— T)*(nfT)(nJrH&)/Qﬁp(n,r) E(p,ﬁ’")ﬂ-

Proof. Write KC,. for KC;(p), X for X,.(p), B(m,r) for B,(m,7).
When E,/ # 0, set

s= (e ) (mine, 1)

So § € T'(N), and hence by Proposition 3.2, E,, = E, ;. Thus we may
replace 7, by 740 (effectively, we may assume p?|M,/).
Now, by Proposition 2.1, we have

B, (7)|T(p) = p="0+D/2 3™ 3 (oY% (M, N)

(M N)
r,G)Y

cdet(pM X 'G7lr + pM XY 'G + NX,.'G)7F

Here SL,(Z)(M N) varies over SL,(Z)(M, I)To(N), 0 < r < n, and for
each r, G varies over SL,(Z)/K,, Y varies over Y, (p); recall that since p { N,
we can take G =1 (N), Y =0 (N). Write M = (M| M}), N = (N{ NJ)
with M{, N] nxr, and let s = rank, (M| N}). We can use left multiplication
from SL,(Z) to adjust our representative (M N) to assume that

_ (pMy My (N1 pNs
M_<M3 M4>’N_(N3 N,

where M3, N3 are s x r; so rank,(Ms Ny) = s, and rank,(My N1) =n —s
since ranky,(M N) = n. Set

(M'G N''G™Y = X' (pMX, ' NX, + pMX,'Y);
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SO
rank,(M' N') = rank,(pX,, ' MX, ! X, ' NX,)

B My, My Ny Ny
= ranky <M3 pMy pN3 N4>

= ’n/’
and hence (M', N’) = 1. Note that
det(M'r + N')™F = p*(=9) det (pM X 'G 17 + pM XY 'G + NX, 'G) 7",
We know

1
Eq|T(p) = §(Ea +Eq,-1).0)|T(p)

1
= 5 Z Co,0’ (Eo" + E(l,—l)v’)

for some ¢, € C. So to compute ¢, for any given o', we first identify
those r, s, G,Y and

SLn(Z)(M N) € GLo(Z)(My I)To(N)
so that
X, L(pMX, 'GP NX,'G + pM X, 'Y Q)
€ SLy(Z)(Myr I) U SLp(Z)((1,—1) - My I).
Equivalently, we identify r, s, G,Y and SL,(Z)-equivalence classes

SL,(Z) X, sF <1M’GX,, (tG_l - 1M’GY> X;l)
p p

that lie in GL,(Z)(M, I)T'o(N), where M’ = M, or (1,—1) - M/, and
E € SL,(Z). Note that we only need to consider E € 'K, _\SL,(Z), as
SL,(Z)Xn—sE = SL,(Z)X,_s if and only if E € 'K,_s; note also that we
can take E =1 (N).

Take M’ = My or (1,—1) - M, (some o). Recall that we can assume
p3| My, so with

(M N) =X, _sE <1M’GXT (tG_l — 1M’GY> X,rl) :
p p

we have M =0 (p), and we have N integral with rank, N = n if and only

if n—s=rand E'G™! € 'K, (independent of the choice of ). We know
there are p"("t1)/2 choices for Y, and by Lemma 6.2, B(n,r) choices for G.

also, withn—s =r and E € 'K, 'G, we have (M N) = (%XTM’XT I) (N).
So when

1
<XTM’XT I> € GL,(Z)(M, I)Ty(N),
p
we get a contribution of
Y(T?XTMU/XT, I)X(pn—r)pk(n—r)—l—(r—n)(T+n+1)/2ﬂ(n’ ,r,)

toward ¢, (and a contribution of 0 otherwise).
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To determine when (%XTM’XT I) € GLn(Z)(M, I)To(N), take E' ¢

SL,(Z),~ € To(N); then take E” € SL,(Z),~ € T'o(N) so that E” = I (p),
E"=FE (N),v =1 (p),y =~ (N). Then set E. = X 'E"X,,

er ’ pXr_l
Yr = <p X7»1> Y < Xr) )

s0 B! € SLy(Z), 7 € To(N). Then (%XTM’XT 1) is equal to E'(M, I)y
or to E'((1,—1) - M, I)v if and only if

pX, !

or n=Exonn (P o0

or

-1
(M’ I) = E'\G4 X (M, I) <pXT

Xr> Y+Vr (N)
Hence using Proposition 3.3, we have (%XTM’XT I) € GL,(Z) (M, I)To(N)
if and only if (M’ I) € GL,(Z)(pX, *M, X"t I)To(N). Note that when

=r—1

p
r > 0, we can find G, € SL,(Z) so that G, = pl,_1 (N), and
I
then

Gx M 1) (P ) = () Mo D )

r

Thus (%X,,M’XT 1) € GLn(Z)(M, I)To(N) if and only if

(M/ I) S GLN(Z)((]),]?T) - My I)PO(N)'

Also, by Proposition 3.2, we have X(v;)Ey» = E(,5r).o- Therefore E,|T'(p) =
Z::() X(pnfr)pk("*T)Jr(T*")(T+n+1)/2E(p,pr).g, as claimed. O

Definition. Let Uy = (Z/NZ)*, ¢ € UmN, the character group of
Un < Upr. Set
Eo’,w = Z w(vaw)E(uw)v'

v, WEUN

Below we will show that when non-zero, E,, is an eigenform for all
T(p), Tj(p?), p prime not dividing /. Note that by orthogonality of charac-
ters,

span{E,.. : w € Uy x Uy } =span{E; : ¢ € Z/l'/\/'/>-<\2/{./\/' }.

Also, we have ¥(v,w) = ¥1(v)ha(w) where 11,19 are characters on Ups;
using Proposition 5.1, when N is square-free we have

Eyyp = Z (v, w) H v, (0% | X, (w?) Eq,

v, WEUN 0<d<n

s0 E;y = 0 unless E; # 0 and ¢1 = [[o_4<, Y/d\/d’ Wy = y%/n where N is
the product of all primes ¢|N so that rank, M, = d.
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Corollary 5.3. Suppose E, # 0, and let p be a prime with p t N'. Let
¥ be a character on Uy X Unr; so (v, w) = 1 (v)e(w) where 1, 1)a are
characters on Uyr. Then Eq y|T'(p) = Aoy (p)Es . where

Ao (p) = U1 (p)a(p") - [ [ (Wax(p)p* " +1).

i=1

When N square-free, Ey|T(p) = Ao (p)Ey and Eq|T(p) = Ay (p)Es where By
is as in Corollary 4.3 and

o) = TI xnv(p ﬁ( P)Xn, P?)p"~ Z+1)

0<d<n i=1

Proof. Write B(m,r) for B,(m,r). As in the proof of Theorem 5.2, we can
assume p3|M,. Identify p~! with p where pp =1 (N).
With v, w varying over Uy and r varying so that 0 < r < n, we have

Eou|T(p) = p 02N " a0, w)x (p" 7 )p ™ T2 B, 1) E i r)-or

Making the change of variables v — pv and w — p"w, we get
Eou|T(p) = 1 (p)x(p")p* """ 28 (n, k) Bo y

where
szx —kr+r(r+1) /2ﬁ( )

Using that B(n,r) = ’"ﬁ(n — 1,7") + B(n—1,r — 1), we find that
S(n, k) = (T/sz(*) DSt —1,k—1)

—H%X R 4)

=¢2X(13n) —nk+n(n+1)/ H(w2X( ) k— i—i—l).

i=1
Now suppose N is square-free. With 1 = J],. d<n in\[d and 19 = XJQ\/n,
we have Eqy = |Un|? - Eo; recalling that xn;, = X, for 0 < d < n (see
Proposition 3.6), the above result gives us E,|T(p) = A\;(p)Es, as claimed.
We also have I~EU => azo (N) .o Eq With a, » = 1; since the Hecke operators
commute, the multiplicity-one result of Corollary 4.3 tells us Ey = Ay (p)IEU.
O

Theorem 5.4. With p a prime not dividing N,
Eo|T;(p%) = B,(n,5) Y x(p/ " T)ptu=rta)==nth)
r4+s<j
: ﬁp(j? T),Bp(j - 8) Symp(j -—Tr—= S)E(l,pS*T)U

(where sym,,(t) is the number of invertible, symmetric t x t matrices modulo

p)-
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Proof. To a large extent, we follow the line of reasoning in the proof of The-

orem 5.2. We write K, s for K 5(p), Xy s for X, s(p), B(m,r) for B,(m,r).
As discussed at the beginning of the proof of Theorem 5.2, we can modify

our representatives (M, I) to assume p3|M,,. By Proposition 2.1, we have

Eo (7)|Tj(p%) = > x(@"0t"2)x(M, N)p/ ==
cdet(MX, L, GTlr + MX, L YIG+ NXygn, 'G)F

nop,n2 no,n2
where SL,(Z)(M N) varies over SL,(Z)(My I)To(N), ng,n2 € Z>( vary
subject to ng + n2 < j, G € SLy(Z)/Kngngs Y € Vngns(p?); note that we
can assume that Y =0 (N) and, using Lemma 6.1, that G = I (N). Given
(M N) € SL(Z)(M, I)To(N) and

Yo Yo Y3 0

Yo Yi/p O
Y € Va0,

0

Y:

we decompose M, N into 3 x 4 block matrices as follows. First, write
M = (M} My, Miy M), N = (Nj Niy Nf, Ny) where M, N are
n x ng, Mjy, Niy are n X (j — ng — ng2), and M],, N{, are n x ng. Let
s = rank,(Mgy M{, Niy); using left multiplication from SL,(Z), we can
assume

L (oML opM, ML ML\ (N, Np MO N
Mg My My M)’ \Ng Nig Nu Nig)’

where My, N§ are (n—s) xna, My, Ng are s Xng, Mig, Nig are s x (j —ng—n2)
(so s = rank, (Mg Mig Ni2)). Take r so that

_ M{ M; N+ Mgy, Ni Ny

n —r = rank, <M9 0 MioYs 0 N

Thus using left multiplication from SL,(Z) (leaving the lower s rows fixed),

we can assume p divides the upper r rows of (M M} N§ + M{Y1 N, NY),
and so

p’My pMs pMs My Ni N, pN3 p*Ny
M=|pMs pMg M; Mg |, N=|Ns Ng¢ N; pNg
My Mg My Mo N9 Nig Ni1 Nio

with M, N1 r x ng. Also, since p divides the upper r rows of N§ + M{Y1,
we have Ny = —MsY; (p) and

Ms M7 Ng+ MgY1 N7y Ng\
rank,, <M9 0 MY, 0 N12> =n-—r.

Note that we necessarily have rank,(M, N1 N3) = r; since Y) is invertible
modulo p and Ny = —M3Y7 (p), we have rank, (M My Ni) =r. Set

(M'G N''G™ = X, Y (MX, L NXpgn, + MX, L Y).

,S no,n2 no,n2
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Yo Y2 Y3 0
tY2
'Ys
0

Hence M’, N’ are integral, and with Y’ = , we have

rank, (M’ N')

= rank,(M'G N''G™1)

= rank,(M'G N''G™' — M'GY")
My, My Ms My N (Na+ MYi)/p N3 Ny

=rank, [ M5 O M; O 0 Ng + MgY1 N7 Ng
Mg O 0 0 0 MioY1 0 Ny
My My 0 My M 0 0 0

> rankp Ms 0 My 0 0 Ng+ MgYy N7 Ng

0 0 0 0 0 Ml[)Yl 0 N12

= n.
So (M’ N') is an integral coprime pair, and

det(MX, !, G'1 + NXp 0, 'G+ MX, !

no,n2 no,n2

= p*=) det (M7 + N')~*,
Now take an index o/, E € 'K, s\SLy(Z), and set
(M N) = XT,SE(MU’GXnO,nQ tgix 1 —MGYX; ! )

no,n2 no,n2

where M’ is M, or (1,—1) - M,s. We first determine exactly when (M N)
is an integral coprime pair, and then we determine when

(M N) € GLn(Z)(My I)L'o(N).

Recall that G = G1G3 (as described in Proposition 2.1) with G vary-
In,
ing over SL,(Z)/Knyn, and Gy = G with G’ varying over
In,
SL,; (Z)/th;-, where n' = n —ng — na, 7/ = j — ng — ng; also recall that
since we can assume p3|M,, we have M = 0 (p). So to have (M N) integral
and coprime, we need X,ﬂ,SEI"G_anU,n2 integral and invertible modulo p.
Since X, n, and G2 commute, to have XmEtG_anom2 integral, we need
N1 Ny N3
EtGl_1 = | pNy N5 Ng | where Ny is r X ng, Ny is s X ng, which means
p*N7 pNg Ny
we have rank, N1 = ng, rank, Ng = s. Then

yig)™*

Ny pNs p*N3
N=|N, Ns pNs | (p?),
Nz Ng Ny

so to have N invertible modulo p, we need rank, N1 = r, rank, Ng = no,
meaning r = ng, s = ng; we then must have rank, N5 = n — ng — ns
since EtGl_1 is invertible modulo p. So suppose r = ng, s = ng, and fix
G1. Then we have XT’SE"/Gl_lX;s1 integral if and only if EtGl_1 € Kys;
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consequently, (M N) is integral and coprime if and only if r = ng, s = ng,
and F € ththl.

To summarise: For any choices of G1 € SLn(Z) /Koy, G2 € SLy (Z) /K,
Y € Vrs(p?), we have

(M N) = XT7$E(MUIGXn07n2 tgix- 1 —MGYX; ! )

no,n2 no,n2

integral and coprime if and only if r = ng, s = ng, and FE € 'K, s 'G1. There
are p"*B(n,r)B(n — r,s) choices for G1, B(n —r — s,j —r — s) choices for
Ga, and pr D+ (=r=s) gy (j—r — 5) = pr™=s+D gym (j —r — s) choices
for Y.

With (M N) integral and coprime, we have (M, N) = X(X, s My Xy 5, I),
and arguing as in the proof of Theorem 5.2, we find that

(M N) € GLn(Z)(Mo I)I'o(N)

if and only if (Mg I) € GLn(Z)((1,p"%) - My I)T'o(N). Also, E(y yr—sy., =
xX((1,p" %) - M, I)E, . Note also that
B(n,r)B(n—r,s)B(n—r—=s,j—1r—23)
_pnr)pn —rs)pn —r—s,j—r—s) p(j,r + s)
 p(nr)p(s,s)p(G—r—sj—r—s p(jr+s)
= B(n,j)B3, B —r,5).
For this the theorem follows. O

We now choose a different set of generators for the Hecke algebra to obtain
more attractive eigenvalues.

Definitions. Let p be a prime not dividing NV, and fix j, 1 < j <n. Asin
[7], we set

Tip?) = Y x0T NB (0 — £, = OTe(p?)

0<e<j
where Tp(p?) is the identity map. The effect of this averaging is to remove
on Y] the condition that p { det Y} (where Y € Yy n, (p?) is as described in

Proposition 2.1). For u € Uy and v = (]\14 ?) € Spn(Z), we define

R(U)E’Y = E(l,u)vyv

and we extend R(u) linearly to Eén) (N, x), which we know is spanned by
all such E.; by Proposition 5.1, R(u) is well-defined. By Theorems 5.2 and
5.4, we see that R(u) commutes with T'(p) and 7;(p®) (p prime, p { N,
1 <j <mn). Thus

{T(p), T;(»*), R(p)  prime pt N, 0<j <n}
generates a commutative algebra of operators on Slgn) (N, x). Set
J
Ti(p*) = > (—1)'p D28, (n — j +i,i)T;—i(p*)R(P")
i=0
where pp =1 (N). (Recall that R(u) is defined for any u € Z with (u,N') =
1, so R(p") makes sense.)
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Corollary 5.5. We have

E@wu—’]{(pQ) = )‘;';o,w(p2) Ea,zp
where
Ny (%) = By(n, §)p*=mIHG=D2 () T (ax(p)p"~* + 1).
i=1
When N is square— free, we have IE0|TJf(p2) = /\3;0(102)330 and ]E0|T]((p2) _
o
N (P*)Es where
Ny (D7) = By(n, j)p* 7002 () TT O, ()P + 1),
i=1
Proof. Write B(m,r) for 8,(m,r). Using Theorem 5.4, averaging over v, w €

Un (and replacing w by wp" % inside the sum on r,s in the formula of
Theorem 5.4), we get Ey |7 (p?) = Ao (p?)Egyy where

j U,w ZX p]JrS r s r)pj(kfnfl)+r(n+1)+k(sfr)

L,r,s

’ ﬂ(nv Z)B(n - gv.] - E)ﬂ(€7 ’I“)ﬂ(f - s) Symp(é -r-= S)

where 0 </ < j,0<r+s </ orequivalently, 0 <r4+s<j,r+s <0< 7.
We make the change of variables £ — j — ¢ and use that

. 4 . : p(Jj, )

ﬁ(n7] —E),B(?’L —J +£a€)5(] _Ea T)IB(j - — T, 8)“(]7£)
= B(n, j)B(,r)B( — 1, 8)B( — 7 — 5,4)

= B(n,4)B3, B —71,8)B(J —r—s,j—L—71—5).

Now we make the change of variable £ — j — ¢ —r — s, we get

)‘j;a,w(p2) = ﬁ(n,j) Z X(pj+s_T)¢2(pS—T)pj(k—n—1)+r(n+l)+k(s—r)

0<r+s<j

BUTBG —rs)- Y B —r—s0)sym,(¢).

0<l<j—r—s

By Lemma 6.7, the sum on £ is p(j_’"_s)(j_”_erl)/Q,
We have Bqy | R(FY) = By(p)Eay. Thus EayT0?) = X, (1) Esy
where

A;'aw(pQ)
= (1) pIB(n — j+ i, i)y (P )X (T (")

ZT’S

. p(j—i—r)(k—n—1)+ks+(j—i—r—s)(j—i—r—s+1)/2

Bn,j—1)B(G —i,7)B(J —i—r,s)
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where 0 <1< 5,0<r<j—1i, 0<s<j—1i—r. Making the change of
variable r +— j — i — r we get

)‘;';0,1/1 (p2) _ Z(_l)ipi(ifl)/QX(pr+8)w2 (szrrfj)pr(kfnfl)+ks+(rfs)(rfs+1)/2

B(n—] +i7i)ﬁ(n7j - l)ﬁ(] _i,j —i—T’)ﬂ(T‘, 5)?

where 0 < ¢ < 5, 0<r<j—14, 0<s <r, orequivalently, 0 < r < j,
0<i:<j—7r,0<s<r. Note that

Bn—j+i,i)B(n.j — )BG — i,r) D)

= B(n7])18(]7r)6(] - T>i)'
Also, using the relation B(m,r) =p"B(m — 1,7) + B(m — 1,r — 1), we get

J

S (1) 2 p( i) ={ O
=0

<

— 0 otherwise.
2

Hence )\;-;gw(p X(pj)pj(k*"*I)Jrj(jH)/z,B(n,j)S(j, k — j) where

j
y) =Y p D2 (p°) B, ).

s=0
Using the identity B(m,s) = p°*B(m — 1,s) + B(m — 1,s — 1), we have

Sk =) = (xta(p)p" 7 + 1)S( — Lk —j+1)

J
H XQ;Z)Q 1)>

proving the corollary. U

6. LEMMAS

Lemma 6.1. Suppose N' N € Z, with (N, N") = 1.

(a) Given any E' € SL,(Z), there is some E € SL,(Z) so that E = E' (N”)
and E=1 (N").

(b) Suppose v € To(N”). Then there is some ' € To(N') so thaty =~ (N')
and v =1 (N").

Proof. (a) Choose y, z € Z so that yN” + 2N’ = 1. Thus (yN”,zN") = 1,
so there are w,z € Z so that wz(N")? — ay(N")? = 1. Hence Gy =

7 1" _
(;”Af\/ %) € SLy(Z) with Go = T ("), Go = (? 01> (M). For
1
beZ G = ((1] byf/ >7 Gy = (byjl\/” (1)>, we have G1,Gy € SLy(7Z)
with G1,Gs = I ("), Gy = (é 11’) W Gr = () ). Ao,

for a € Z so that q { a, take ¢ € Z so that ¢ = 1 (N”), ¢ = a (N).
Thus (¢, N'N"") = 1 so there are u,v € Z so that cu — (N'N")?v = 1.
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Set G3 = <’U./\/$./\/w NlN")

(C 0) (N) (where cc = 1 (N')). For any d, 0 < d < n — 2, the map

. So G3 € SLQ(Z), Gy =1 (N//)’ Gs

0 ¢
I
G — G is an embedding of SLy(Z) into SL,(Z). Thus
In_q—2
we have matrices that allow us to perform "local” elementary row and col-
umn operations modulo N’ within SL,,(Z). Hence, given some E' € SL,,(Z),
there are G,G' € SL,(Z) so that G,G' = I (N") and GE'G' = I (N'); hence
with E = (G’'G)™!, we have E € SL,(Z) with E=1 (N"), E = E' (N").
(b) Write v = é IB; ;50 C =0 (N'). Set a = det A; since A'D =
I (N'), we can choose @ € Z so that aa = 1 (N’). So we can choose

G € SL,(Z) so that G = <a I> AN, G=1T1(N"). We know A'B is

symmetric; set W = NN G~! “

I) B where NN =1 (N). Now take

(ZJ i) € SLo(Z) so that <Z z> = <a a) (N") and (Z] ij) =1 (N").
Set
w x
N 0 | (6 aw\
Y= y 2 <0 tG1> )
0 Infl
soy € To(N),y=~ (N'), and v/ =T (N). O

Lemma 6.2. Let A = Zx1 @ -+ @ Zxy; fix a prime q and let Kq = Kq(q).
The elements of SL,(Z)/Kq are in one-to-one correspondence with lattices
Q where gA € Q C A and [A : Q] = ¢%. The correspondence is given as
follows: For GKgq € SLy(Z)/Kq, Q is the lattice with basis

(1 ... )G (qu I>.

Further, the number of such Q is B(n,r).

Proof. Given G € SL,(Z), we map G to the sublattice of A with basis

(@1 ... 2n)G (qld 1)'

Clearly each €2 described in the lemma can be obtained this way. Further,
for H € SL,(Z),

(@1 ... 20)GH (‘ﬂd 1>

is also a basis for Q if and only if H € 4. Also, each such £ corresponds
to a dimension n — r subspace of A/gA, of which there are B(n,n —r) =

B(n,r). O
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For d,r >0, d+1r < n, let K4,(q) be the subspace of SL,(Z) consisting
of matrices

Gy B1 Bs
Ci G2 Bs
Cy C3 G

where G1 is d x d, Ggis r x r, B1, B3 =0 (q), Bo =0 (¢?).

Lemma 6.3. Let A = Zx1 @ - - - ® Zay,; fix a prime q and let Kq, = Kqr(q).
For Q a sublattice of A containing ¢*>A, let m; denote the multiplicity of ¢'
among the invariant factors {A : Q}. Then the elements of SLy(Z)/Kq,
are in one-to-one correspondence with sublattices Q of A containing ¢*>A

with mg = 7 and mgy = d. The correspondence is given as follows: For
G € SLy(Z)/Kay, Q is the lattice with basis
¢*14
(1 xn)G ql
I,

Further, there are ¢ B(n,d)B(n — d,r) such Q.
Proof. Given G € SL,(Z), we map G to the sublattice of A with basis

¢*1q
(r1 ... )G ql
I,

Clearly each €2 described in the lemma can be obtained this way. Further,
for H € SL,(Z),
¢*1q
(1 ... zn)GH ql
I,
is also a basis for 2 if and only if H € Ky, .
On the other hand, given such Q, we have Q = ¢?A¢ @ gA; ® Ay where
A =Ag® AL P Ay with rank Ay = d, rank Ay = r. We can construct all such
Q as follows. First let A be the preimage in A of a dimension n — d subspace
of A/qA; there are B(n,n — d) = B(n,d) such subspaces. Then let Q2 be the
preimage in A of a dimension r subspace of A/gA that is independent of
qA; there are qdrﬁ(n —d,r) choices. Since A = LONA, a different choice in
step 1 or step 2 of this construction yields a different lattice €. O

Remark. Let A = Za1 @ ®Zxy, A = Zy1 © - - - & Ly, where (y1 ... yn)
is the basis dual to (z; ... x,). Then for G € SL,(Z), the basis dual to
(r1 ... 2,)G is (Y1 ... yn)'G™Y; thus the elements of SL,(Z)/K4(q) are
in one-to-one correspondence with subspaces Fyj @ --- & Fy/, C A# g\ .
Similarly, the elements of SL,(Z)/Kq,(q) are in one-to-one correspondence
with sublattices Q' where ¢?A# C Q' C A# and

14
(1 - yn) G ql
¢*I,

is a basis for (V.
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Lemma 6.4. Fiz a prime q; suppose M' € Z™" with d’ = rank, M'. Let
K:Kd(q)? ,Cmﬂ" = ICmﬂ"(Q); /B(mv T’) = Bq(mv T)'

(a) For 0 < d < d', there are ¢®™=4)3(d',d) choices for E € Kg\SLn(Z) so
that the top d rows of EM' are linearly independent modulo q.

(b) For r,m,s >0 so thatd —r <m+ s < d, there are

Bn—d n—r—m—s)B(d,m+s)B(m+s,m)gn7-d)Fs(rmis=d)

choices for E € Ky, ,\SLy(Z) so that the g-rank of the top m rows of EM’
is m and the q-rank of the top n —r rows of EM’ is m + s.

Proof. (a) Take Ey € SL,(Z) so that ¢ divides the lower n — d’ rows of
EoM’; as E varies over a set of representatives for K;z\SL,(Z), so does
EFEy. Thus we may as well assume that ¢ divides the lower n — d’ rows of
M’'. We know by Lemma 6.2 and the remark preceding this lemma that
each F € K4\SLy(Z) corresponds to a sublattice Q = Fy; & --- & Fy,, of
A =TFz; @---®Fa, with [A: Q] = ¢"~%, where

Y1 r1

Iy
= E
< qIn—d)

Yn T,

Thus rank, <Id ) EM’' = d if and only if E is chosen so that Fy; ®

qIn—d
- @®TFyg is independent of Fag 1 @ - - - @ Fay; there are B(d', d)g“"%) such
subspaces.

(b) Let A = Za1 ® - - - ® Zxy,, and let A(*M’) mod ¢ denote the subspace
of ™! obtained by replacing each x; by column i of ‘M’ modulo q. We
know that each element E € K, ,\SLy(Z) corresponds to a lattice Q =
A ®ghi & q2A2 with basis

I,
(1 ... 2,)'E ql
@1,

We want to choose 2 so that, with A = éQ NA = Ay ® A1 & g, the

map A — A(*M’) mod q takes Q to a dimension m subspace and A to a
dimension m + s subspace. Let m; = rank A;.
Given Q a sublattice of A containing ¢?A and with mg = m, mg = r,

Q) determines a unique dimension n — r sublattice A = %Q NA of A/gA,

and then with A the preimage of A in A, and Q determines a unique di-
mension m sublattice Q of A/qA. Thus we can build all 2 corresponding to
Ko \SLy(Z) by first choosing a dimension n — r subspace A of A/gA; then
the preimage of A is A = A; @ gAs where Ay has rank 7 and A = A @ As.
Then in A/qA, we choose a dimension m subspace Q that is independent
of gA = gAs; then the preimage of Q in A is Q. So each Q corresponds to a
(unique) dimension n — r subspace A of A/gA, and a (unique) dimension m
subspace of A/gA.
We know d’ = dim A(‘M’) mod ¢, so A = W & R where

R=ker (A~ A(*M') mod q).
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So in A/gA, dim R = n — d’. We choose A of dimension n — r in A/qgA so

that dim AN R =n—1r —m — s. Thus there are
Bn—d,n—r—m=—s)B(d,m+s)gmts)mtstr—d)

choices for A so that A — A(*M’) mod ¢ takes A to a dimension m + s

subspace. Then A/qA = U@ R where diimU = m + s and R’ C R+ gA.

We choose € of dimension m and independent of El; so we have B(m +

5,m)q™"~™m=%) choices for Q C A so that A — A(*M’) mod ¢ takes Q to
a dimension m subspace. O

Lemma 6.5. Fiz a prime q and write 3(m,r) for B,(m,r). Suppose (M' N')
s an n X n coprime symmetric pair such that

A, 0 0 0
, o ¢ o0 o
M=|4 o o o @
0 0 C' 0

with Ay di x dy, C (dy +d5) x (dy + ds), C" (d7 + dg) x (d7 + dg), and
Ay, C,C" invertible modulo q. (So with d' = rank, M', we have d' = di +
dy+ds +d7 + dg.) Suppose also that dy +ds +d7 < j < n—dy—ds, and set
r=j—dy —ds+dg. Then there are

Blds + ds, 1) Bds + ds, dg)q 4+~ —ds)~drds

choices for G € SL,(Z)/K; so that, writing

My My N1 No
MG= My M|, NG '=[N;3 Ny
Ms Mg N5 Ng

with My, Ny dy x j, Ms, N5 r x j, we have rank, M1 = dy, My = 0 (q),
ranky, My = dy, rank, (%2) = d4 + dg, rank, (%;) = dj + ds5, the lower
n—r—d; —dg — ds rows of N3 are 0 modulo q, and the upper r — dv — dg
rows of N5 have g-rank r — d7 — dg.

Proof. Let V. =Fx1 & ---®Fx,. We know by Lemma 6.2 that the elements
G € SL,(Z)/K; are in one-to-one correspondence with the subspaces W =
Fa! | ® --- ® Faj, where (¢} ... x7,) = (21 ... 2,)G. We translate the
lemma’s criteria on G to criteria on W, and then count such W.

Let V# = Fy; @ --- @ Fy,, be the dual space for V; so for G € SL,(F),
(y1 ... yn)'G~! is the basis dual to (z1 ... z,)G. Let V(M') denote the
subspace of F™! obtained by replacing each x; by the ith column of M’
modulo q. We split V as V1 @ Vo @ V3 @V} as follows. Let (ay ... a,) denote
(the columns of) the top di + dy + d5 rows of M', (g1 ... gn) the top dy
rows of M’; set

Vi =ker (V= V (M),
Vs Vi=ker (Ve Via ... an)),
Vz@vé@vz;:ker(VHV(Eh gn))

(SodimVy =n—d, dim Vs = d7+dg, dim Vo = dy +d5, dim V; = dy.) Thus
with W determined by G as above, M’'G meets the criteria of the lemma if
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and only if the map V — V(g1 ... gn) takes W to a dimension 0 subspace,
Vi V(a ... ay) takes W to a dimension d4 subspace, V +— V(M') takes
W to a dimension d4 + dg subspace.

This splitting V = Vi @ Vo @ V3 @ Vj corresponds to a splitting V# =
VieVy® V@ V] where V], V] @ Vy, V] @ V] ® V3 are uniquely determined
(recall that V- = V] @ Vy @ V3, etc.). Let (by ... by) berows di +dy+ds+1
through n —d; —ds of N’ (¢1 ... ¢,) be rows dy +dy +ds + 1 through n —r
of N'.

With U’ = Wt C V#, N'*G~! meets the criteria of the lemma if and
only if the map V# — V#(c; ... ¢,) takes U’ to a dimension 0 subspace,
and V# + V#(by ... b,) takes U’ to a dimension r — d7 — dg subspace.

Now we construct and count all dimension n — j subspaces W of V so
that the above criteria for W and W= is met.

We know by the symmetry of M’'!N’ that

VieVieVy=ker (V¥ — V¥ ... by));

so ker (V# = V#(c; ... ¢,)) = V{ @ V4 & V] @ Uy, with U; C V/. We need
to choose W so that under the map V# + V#(N’), U’ = W+ is mapped to
a dimension 0 subspace. Equivalently, we need U’ C V] ®Vy®V{ U, which
means Wy C W where Wy = (V{ @ V§ @ V4 & Uj)*~ C V4. (So we can split
Vi =Us®Wy.) Since (M',N') =1, (b1 ... b,) = (0 D) (q) where D is (n—
d') x (n—d') with rank, D =n —d'. So V# +— V#(by ... b,) automatically
takes U} to a subspace of dimension r — d7 — dg. Since (M’, N') = 1, we also
know ranky(c; ... ¢,) =n —j —ds — dg. Hence

dimker (V# = V#(c; ... ¢n)) =7+ di + da + ds,

so dimUj = r — dy — dg; thus dim Wy = dim Vy — dim U} =n — j — dy — ds.

We need dimW =n — j, and we need V — V(a1 ... a,) to take W to a
dimension d4 subspace. Thus W must be of the form Wy & W3 & Wy where
W3 & Wy gker(VHV(al an)) =V3®Vy, dmWs Wy =n—j —dy,
and Wo is independent of V3 @ V. Since we need V — V(M’) to take W to
a dimension d4 + dg subspace, we must have W3 independent of ker (V —
V(M’)) = V4. So we extend Wy to W3 & Wy where dim W3 = dg with W3
independent of Vj; thus we have 3(d7+ds, dg)qu(j —di—d5—d7) choices for Ws.
Then we extend W3 & Wy to Wo & W3 & Wy where dim Wy = dg and W is
independent of V3 @ Vj; thus we have 3(dy + ds, d4)qd4(j —d1=d5) choices for
Wa. O

Lemma 6.6. Suppose N is square-free, x is a character modulo N, and q
is a prime diwiding N'. Set F =7Z/qZ and
symy(t) = Z Xq(detU).
UeFLt,
Then symg (t) # 0 if and only if either (1) xq =1, or (2) Xg =1andt is

ceven.

Proof. Say ¢ = 2. Then x, = 1 (since N is square-free), so symy(t) is
the number of invertible, symmetric ¢ X ¢ matrices modulo 2; clearly this is
non-zero.



42 LYNNE H. WALLING

So suppose ¢ is odd. Set J = <w I > where w is not a square in F.
t—1

We know GL(F) acts by conjugation on the subset of invertible elements
of Fg;m, the orbits are represented by I and J. Note that for U € ng’tm, U
is in the orbit of I (resp. the orbit of J) if and only if, for some o € F*,
we have det U = o? (resp. detU = a?w); also, given a € F*, the number
of U € Fify with det U = a2 (resp. with detU = a?w) is the number of
U € F4'n with det U = 1 (resp. with det U = w). With o(U) the order of
the stabilizer of U, we know o(U) = o(U’) when U, U’ are in the same orbit.
Hence

2 #GL(F) 1 )
q—l' o(1) '§ZXq(0‘)

aelFx

symy(t) =

2 #GL(F) 1
P B 5 e

a€elFx

CHCLE) [ 1 xw) -
e <o<f>+ o<J>> 2_ i@

a€elFx

Thus symg (¢) = 0 if xi # 1. Suppose xﬁ = 1; then x4(w) = —1 if and only
if x4 # 1. Also, by the theory of quadratic forms over finite fields (see, for
instance, [6]), we know o(I) = o(J) if and only if ¢ is odd, so the lemma
follows. O

Lemma 6.7. Forp prime, t € Z,, we have 3 j_, B,(t,£) sym,(£) = ptt+1)/2,

Proof. Let F = Z/pZ; take V. = Fx1 @ - - - ® Fzy. For each t — ¢-dimensional
subspace R of V| fix Gr € GLi(F) so that R = Fyp.q & --- ® Fy; where
(y1 -+ ye) = (21 -~ 2;)Gr. Take Q € F4'm so that rank Q = £. Let (V, Q)
denote the quadratic space with ) the quadratic form on V relative to the

basis (x1 --- x¢). By the uniqueness of the radical of V' (with respect to
Q), there exists a unique R so that ‘GrQGg = g 8 where U € Fﬁfm

with U invertible, and there are sym,,(¢) possibilities for U (depending on
Q). Hence F;;m is partitioned into sets {Q : rank@ = ¢ }, 0 < ¢ < t,
and given £, {Q : rank@Q = ¢ } is partitioned into sets {Q : 'GrQGr =

(lg 8) }, R varying over dimension ¢ — ¢ subspaces of V, of which there

are B,(t,t — () = B,(t,£), U varying over invertible elements on Fﬁ’fm, of
which there are sym,,(¢). From this the lemma follows. O
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