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Abstract. We evaluate the action of Hecke operators on Siegel Eisen-
stein series of arbitrary degree, level and character. For square-free level,
we simultaneously diagonalize the space with respect to all the Hecke op-
erators, computing the eigenvalues explicitly, and obtain a multiplicity-
one result. For arbitrary level, we simultaneously diagonalize the space
with respect to the Hecke operators attached to primes not dividing the
level, again computing the eigenvalues explicitly.

1. Introduction

Automorphic forms appear in almost every area of modern number theory;
Eisenstein series are fundamental examples of automorphic forms. In the
case of classical elliptic modular forms (i.e. holomorphic automorphic forms
of integral weight), Eisenstein series are well-understood: For instance, the
Fourier expansions of a “natural” basis of Eisenstein series have long been
known; as well, it has long been known that the space of Eisenstein series
of weight k, level N and character χ has a basis of simultaneous eigenforms
for the Hecke operators {T (p) : p prime, p - N }, and for {T (p) : p prime }
when N is square-free. (see, e.g., chapter IV [9]). The Fourier coefficients
of these simultaneous eigenforms are (after appropriate normalization) the
Hecke eigenvalues, and are doubly-twisted divisor functions; that is, the mth
Fourier coefficient of such a (normalized) form of weight k is∑

d|m

χ1(d)χ2(m/d)dk−1

where χ1, χ2 are Dirichlet characters, reflecting the fact that the Fourier
coefficients of Hecke eigenforms carry number theoretic information.

In the case of Siegel Eisenstein series, our knowledge is much less complete
(for instance, we have limited knowledge of Fourier coefficients for arbitrary
degree, level, and character). However we do have analogues of some of
the classical results regarding the action of Hecke operators. By studying
the abstract Hecke algebra, Evdokimov ([3], [4]) and Freitag ([5]) showed
that the space of Siegel modular forms of arbitrary level and character can
be diagonalized with respect to the Hecke operators associated to primes
not dividing the level. These results also show that the subspace of Siegel
Eisenstein series is invariant under these Hecke operators. Further, in [5]
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Freitag computed some of the eigenvalues of Siegel Eisenstein series under
the Hecke operator T (p)m where p is a prime not dividing the level, and
m is a suitable power. Following his proof of the injectivity of the Hecke
operator T (p) when p is a prime exactly dividing the level of a space of Siegel
modular forms ([1]), in [2], Böcherer applied powers of T (p) to the level 1
Siegel Eisenstein series, obtaining a basis for the space of Siegel Eisenstein
series of level p and trivial character, and thereby also obtaining Fourier
expansions for this basis. In [12], for p any prime, we applied an explicit
set of matrices for T (p), T1(p2), T2(p2) directly to a basis for the subspace of
Siegel Eisenstein series of degree 2, square-free level, and arbitrary character;
we then constructed a basis of simultaneous eigenforms and computed all
their eigenvalues. Recently in [8], Klosin used adelic methods to compute
the Hecke eigenvalues (for primes not dividing the level) on the space of
hermitian forms on U(2, 2).

In the current paper, we extend the techniques of [12] to allow arbitrary
degree n, level N , and character χ modulo N . In §3, for each γ ∈ Spn(Z),
we define a Eisenstein series with character χ corresponding to the Γ0(N )-
orbit of Γ∞γ. We identify necessary conditions for one of these series to be
nonzero, and in the case that N is square-free, we show that these conditions
are also sufficient (Proposition 3.6). Next we consider square-free level N
and arbitrary character χ modulo N . We subscript each element of our
basis for this space of Eisenstein series by some σ = (N0, . . . ,Nn) where
N0 · · · Nn = N . Using an explicit set of matrices giving the action of T (q)
where q is a prime dividing N , we directly evaluate the action of T (q) on
each basis element Eσ, computing precisely the coefficients in the linear
combination of Eisenstein series that is equal to Eσ|T (q) (Theorem 4.1).
This allows us to show that we can (algorithmically) diagonalize the space
of Eisenstein series with respect to {T (q) : q prime, q|N }, obtaining a new

basis {Ẽσ}σ for the space. With σ = (N0, . . . ,Nn) and q a prime dividing
Nd, we show that

Ẽσ|T (q) = λσ(q)Ẽσ with |λσ(q)| = qkd−d(d+1)/2

(Corollary 4.3; note that this recovers a result from [2] in the case that N is
prime and χ is trivial). Since we must have k > n + 1 for absolute conver-
gence of the Eisenstein series, this shows we have “multiplicity-one”; that is,

for Ẽσ 6= Ẽρ, there is some prime q|N so that λσ(q) 6= λρ(q). Following this,
for 1 ≤ j ≤ n, we directly evaluate the action of Tj(q

2) on the original basis
elements Eσ where we still assume that q is a prime dividing N (Theorem
4.4). We then compute the the Tj(q

2)-eigenvalues for each of the elements
in the diagonalized basis (Corollary 4.5).

In §5, we consider Eisenstein series of arbitrary level N and arbitrary
character χ, and we directly evaluate the action of T (p), Tj(p

2) for primes
p - N so that we can explicitly construct a basis of simultaneous eigenforms
for these Hecke operators. To help us diagonalize the space with respect
to these operators, we introduce a group action of UN × UN on the space
of Eisenstein series where UN = (Z/NZ)× (Proposition 5.1). Then we use
characters ψ on this group to average Eisenstein series relative to this group
action; by orthogonality of characters, this yields a basis {Eσ,ψ} for the space



HECKE OPERATORS ON SIEGEL EISENSTEIN SERIES 3

of Eisenstein series, where σ indexes our natural basis. In Corollary 5.3 we
show that for any prime p - N , Eσ,ψ|T (p) = λσ,ψ(p)Eσ,ψ where

λσ,ψ(p) = ψ1(p)ψ2(pn)
n∏
i=1

(ψ1χ(p)pk−i + 1);

here ψ(v, w) = ψ1(v)ψ2(w). In Theorem 5.4 we evaluate the action of Tj(p
2)

on the natural basis. Theorems 5.2 and 5.4 show that the Hecke operators
commute with the group action of UN ×UN on the space of Eisenstein series;
we let R(w) be the operator corresponding to the action of the group element
(1, w). Then to obtain more attractive eigenvalues, we introduce operators
T ′j(p

2) so that the algebra generated by

{T (p), T ′j(p
2), R(p) : prime p - N , 1 ≤ j ≤ n }

is the algebra generated by {T (p), Tj(p
2), R(p) : prime p - N , 1 ≤ j ≤ n },

and in Corollary 5.5, we show Eσ,ψ|T ′j(p2) = λ′j;σ,ψ(p2)Eσ,ψ where

λ′j;σ,ψ(p2) = βp(n, j)p
(k−n)j+j(j−1)/2χ(pj)

j∏
i=1

(ψ2χ(p)pk−i + 1)

(here βp(n, j) is the number of j-dimensional subspaces of an n-dimensional
space over Z/pZ). When N is square-free, we show Eσ,ψ = 0 unless ψ1 =∏

0<d≤n χ
d
Nd and ψ2 = χ2

Nn (where σ = (N0, . . . ,Nn)), and then with such

ψ, Ẽσ|T (p) = λσ,ψ(p)Ẽσ and Ẽσ|T ′j(p2) = λ′j;σ,ψ(p2)Ẽσ (where Ẽσ is as in

Corollary 4.3).
Note that when χ2 = 1, T ′j(p

2) is the operator introduced in [10] and again

in [11] so that θ(n)(genL)|T ′j(p2) = λ′j(p
2)θ(n)(genL) where θ(n)(genL) is the

averaged (“genus”) theta series attached to the genus of the lattice L, which
is equipped with a positive definite quadratic form.

As all the arguments herein are valid when considering non-holomorphic
Eisenstein series in the variables τ and s (defined in §3), the results extend
immediately to incude these forms (with k replaced by k+s in the formulas).

2. Notation and Hecke operators

For n ∈ Z+, Spn(Z) denotes the group of 2n × 2n integral, symplectic

matrices; we often write these in block form

(
A B
C D

)
where A,B,C,D are

n× n matrices. Subgroups of importance to us include

Γ∞ =

{(
A B
0 D

)
∈ Spn(Z)

}
,

Γ+
∞ =

{(
A B
0 D

)
∈ Spn(Z) : detA = 1

}
,

Γ(N ) = {γ ∈ Spn(Z) : γ ≡ I (N ) },

Γ0(N ) =

{(
A B
C D

)
∈ Spn(Z) : C ≡ 0 (N )

}
;
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here N ∈ Z+. It is well-known that for γ =

(
∗ ∗
M N

)
, γ′ =

(
∗ ∗
M ′ N ′

)
∈

Spn(Z), we have γ′ ∈ Γ+
∞γ if and only if (M ′ N ′) ∈ SLn(Z)(M N) . Suppose(

K L
M N

)
∈ Spn(Z); then (M N) is a coprime symmetric pair, meaning that

M,N are integral, M tN is symmetric, and for every prime p, rankp(M N) =
n, where rankp denotes the rank over Z/pZ. On the other hand, given
any coprime symmetric pair of n × n matrices (M N), there exists some(
K L
M N

)
∈ Spn(Z). We often write (M,N) = 1 to denote that a pair of

integral matrices (M N) is coprime.
Degree n > 1 Siegel modular forms have as their domain

Hn = {X + iY : X,Y ∈ Rn,nsym, Y > 0 }

where Rn,nsym denotes the set of symmetric n× n matrices over R, and Y > 0
means that the quadratic form represented by Y is positive definite. For
n, k,N ∈ Z+ and χ a Dirichlet character moduloN , a Siegel modular form of
degree n, weight k, level N , character χ is a holomorphic function f : Hn →

C (holomorphic in all variables of τ ∈ Hn) so that for all

(
A B
C D

)
∈ Γ0(N ),

we have

f((Aτ +B)(Cτ +D)−1) = χ(detD) det(Cτ +D)kf(τ).

(Note that this generalises the definition of a classical modular form, except
in that case, where n = 1, we also require

lim
τ→i∞

(cτ + d)−kf(τ) <∞

for all

(
a b
c d

)
∈ SL2(Z).) We use M(n)

k (N , χ) to denote the space of all

such forms.
To define the Hecke operators, fix a prime p. Set Γ = Γ0(N ) and take

f ∈M(n)
k (N , χ). We define

f |T (p) = pn(k−n−1)/2
∑
γ

χ(γ) f |δ−1γ

where δ =

(
pIn

In

)
, γ varies over

(δΓδ−1 ∩ Γ)\Γ,

and for γ′ =

(
A B
C D

)
,

f(τ)|γ′ = (det γ′)k/2 det(Cτ +D)−k f((Aτ +B)(Cτ +D)−1).

We define

f |Tj(p2) = pj(k−n−1)
∑
γ

χ(γ) f |δ−1
j γ
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where δj =

(
Xj

X−1
j

)
, Xj = Xj(p) =

(
pIj

In−j

)
, and γ varies over

(δjΓδ
−1
j ∩ Γ)\Γ.

To help us describe a set of matrices giving the action of each Hecke
operator, we fix the following notation. For r, s ∈ Z≥0 so that r+ s ≤ n, let

Xr,s = Xr,s(p) =

pIr I
1
pIs

 (n× n),

Kr,s = Kr,s(p) = Xr,sSLn(Z)X−1
r,s ∩ SLn(Z);

set Xr = Xr,0, Kr = Kr,0.

Proposition 2.1. Let p be a prime, f ∈M(n)
k (N , χ).

(a) We have

f |T (p) = pn(k−n−1)/2
∑

0≤r≤n
χ(pn−r)

∑
G,Y

f |
(
X−1
r

1
pXr

)(
G−1 Y tG

tG

)
where, for each r, G varies over SLn(Z)/Kr(p) and Y varies over

Yr(p) =

{(
Y0

0

)
∈ Zn,nsym : Y0 r × r, varying modulo p

}
.

(Here Zn,nsym denotes the set of integral, symmetric n× n matrices.)
(b) For 1 ≤ j ≤ n,

f |Tj(p2)

= pj(k−n−1)
∑

n0+n2≤j
χ(pj−n0+n2)

∑
G,Y

f |
(
X−1
n0,n2

Xn0,n2

)(
G−1 Y tG

tG

)
.

Here, for each pair n0, n2, G = G1G2, where G1 varies over SLn(Z)/Kn0,n2(p),

G2 =

In0

G′

In2


with G′ varying over SLn′(Z)/ tK′j′(p) where n′ = n−n0−n2, j′ = j−n0−n2,

K′j′ =

(
pIj′

I

)
SLn′(Z)

(1
pIj′

I

)
∩ SLn′(Z),

and Y varies over Yn0,n2(p2), the set of all integral, symmetric n×n matrices
Y0 Y2 Y3 0
tY2 Y1/p 0
tY3 0
0


with Y0 n0 × n0, varying modulo p2, Y1 j

′ × j′, varying modulo p provided
p - detY1, and Y2, Y3 varying modulo p with Y3 n0 × n2.
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Proof. Fix Λ = Zx1 ⊕ · · · ⊕ Zxn (a reference lattice).
By Lemma 6.2, as G varies over SLn(Z)/Kr, Ω = ΛGXr varies over all

lattices Ω, pΛ ⊆ Ω ⊆ Λ with [Λ : Ω] = pr. Thus by Proposition 3.1 [7] and
(the proof of) Theorem 6.1 in [7], claim (1) of the proposition follows.

For Ω another lattice on QΛ, let mult{Λ:Ω}(x) be the multiplicity of the
value of x among the invariant factors {Λ : Ω}. By Lemma 6.3, as G1

varies over SLn(Z)/Kn0,n2(p), Ω = ΛG1Xn0,n2 varies over all lattices Ω,
pΛ ⊆ Ω ⊆ 1

pΛ, with mult{Λ:Ω}(1/p) = n2, mult{Λ:Ω}(p) = n0. Then with

Ω = Ω0 ⊕ Ω1 ⊕ Ω2, Λ = 1
pΩ⊕ Ω1 ⊕ pΩ2, as G′ varies over SLn′(Z)/ tK′j′(p)

Ω1G
′
(
Ij′

0

)
modulo p

varies over all dimension j′ subspaces of Ω1/pΩ1. Thus by Proposition 2.1 [7]
and (the proofs of) Theorems 4.1 and 6.1 in [7], claim (2) of the proposition
follows. �

Remark. For N ′ ∈ Z+ so that p - N ′, by Lemma 6.1 we can choose G in
the above proposition so that G ≡ I (N ′), and since N ′Y will vary over a
set of representatives for Yr(p) or Yn0,n2(p2) as Y does, we can choose Y in
the above proposition so that Y ≡ 0 (N ′). Also, when p|N , we have

f |T (p) = pn(k−n−1)/2
∑
Y

f |
(1
pIn

1
pY

In

)
where Y varies over Yn(p), and

f |Tj(p2) = pj(k−n−1)
∑
G,Y

f |
(
X−1
j

Xj

)(
G−1 Y tG

tG

)
where G varies over SLn(Z)/Kj(p) and Y varies over Yj,0(p2).

To describe the Hecke eigenvalues, we make use of the following elemen-
tary functions: Fix m ≥ 0. With r > 0,

δ(m, r) = δp(m, r) =
r−1∏
i=0

(pm−i + 1),

µ(m, r) = µp(m, r) =

r−1∏
i=0

(pm−i − 1),

β(m, r) = βp(m, r) = µ(m, r)/µ(r, r)

(note that βp(m, r) is the number of r-dimensional subspaces of an m-
dimensional space over Z/pZ). Take δ(m, 0) = µ(m, 0) = 1. For r < 0,
we take β(m, r) = 0. As well, we will use the following functions: With
p prime, t ∈ Z+, and F = Z/pZ, let symp(t) be the number of invertible

matrices in Ft,tsym, the set of symmetric t× t matrices over F. More generally,
let χ be a character of square-free modulus N , with p|N ; set

symχ
p (t) =

∑
U∈Ft,tsym

χp(detU),
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and

symχ
p (t− s, s) =

∑
U

χp

(
det

(
U1 U2
tU2 0

))
where U =

(
U1 U2
tU2 0

)
∈ Ft,tsym with U1 of size (t−s)×(t−s) (so symχ

p (t, 0) =

symχ
p (t)). Note that as U varies over invertible matrices in Ft,tsym, so does

U (where UU = I in Ft,t), we have symχ
p (t) = symχ

p (t); similarly, symχ
p (t−

s, s) = symχ
p (t − s, s). Also, take symχ

p (0) =
∑χ

p (0, 0) = 1. Although we
will not use the precise values of these functions in this work, one can use
the theory of quadratic forms over finitie fields to show that for p odd and

ε =
(
−1
p

)
,

symχ
p (b, c) =



pm
2+m−cµ(b,b)

µδ(m−c,m−c) if b+ c = 2m and χp = 1,

εmpm
2
µ(b,b)

µδ(m−c,m−c) if b+ c = 2m, χ2
p = 1, and χp 6= 1,

pm
2+mµ(b,b)

µδ(m−c,m−c) if b+ c = 2m+ 1 and χp = 1,

0 otherwise,

and for p = 2,

symχ
2 (b, c) =


2m(m+1)µ(b,b)
µδ(m−c,m−c) if b+ c = 2m+ 1,
2m(m+1)µ(b,b)
µδ(m−1,m−1)

(
µ(2m−1,2c)
µδ(m−1,c) + µδ(m, c)

)
if b+ c = 2m.

(Here µ = µp, δ = δp.)
For p prime, M ∈ Zn,m, we write rankpM to denote the rank of M over

Z/pZ; we will also refer to this rank as the p-rank of M .
Recall that for χ a character moduloN withN = N ′N ′′ so that (N ′,N ′′) =

1, we know that χ factors uniquely as χN ′χN ′′ where χN ′ is a character mod-
ulo N ′ and χN ′′ is a character modulo N ′′.

In what follows, we will sometimes use the matrices G± =

(
−1

In−1

)
and γ± =

(
G±

G±

)

3. Defining Siegel Eisenstein series

Fix k, n,N ∈ Z+, χ a character modulo N . To define Eisenstein series
for Γ0(N ) with k even, one can begin by defining a Γ(N )-Eisenstein series∑

δ∗

1(τ)|δ∗ where 1(τ)|
(
A B
C D

)
= det(Cτ +D)−k

and δ∗ varies so that Γ∞Γ(N ) = ∪δ∗Γ∞δ∗ (disjoint); then for γ ∈ Spn(Z),
one can consider ∑

δ∗,δ

χ(δ) 1(τ)|δ∗γδ

where δ varies so that Γ∞γΓ0(N ) = ∪δΓ∞Γ(N )γδ (disjoint). However,
when k is odd, these sums are not well-defined, since with γ± as defined
in §2, we have γ± ∈ Γ∞ and 1(τ)|γ±δ∗ = (−1)k1(τ)|δ∗ for any δ∗ ∈ Γ(N ).
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Further, for k even or odd, the latter sum is not well-defined unless χ is
trivial on any matrix in Γ0(N ) that stablises Γ∞Γ(N )γ. Thus we proceed
as follows.

Let δ∗ ∈ Γ(N ) vary so that

Γ+
∞Γ(N ) = ∪δ∗Γ+

∞δ
∗ (disjoint),

and set
E∗(τ) =

∑
δ∗

1(τ)|δ∗.

Since 1(τ)|δδ∗ = 1(τ)|δ∗ for δ ∈ Γ+
∞, E∗ is well-defined. Further, provided

k > n+ 1, E∗(τ) converges absolutely uniformly on subsets {τ ∈ Hn : =τ ≥
Y } for any Y ∈ Rn,nsym with Y > 0, and so E∗ is analytic (in all variables of
τ). So suppose k > n+ 1. Now take β ∈ Γ0(N ) so that

Γ0(N ) = ∪βΓ∞Γ(N )β (disjoint),

and for γ ∈ Spn(Z), set

E′γ =
∑
β

χ(β)E∗|γβ +
∑
β

χ(γ±β)E∗|γ±γβ

(where γ± is as defined in §2). Note that

Γ∞γΓ0(N ) = ∪β
(
Γ+
∞Γ(N )γβ ∪ Γ+

∞Γ(N )γ±γβ
)
.

Let
Γ+
γ = {δ′ ∈ Γ0(N ) : Γ+

∞Γ(N )γδ′ = Γ+
∞Γ(N )γ },

the subgroup of Γ0(N ) that stabilizes Γ+
∞Γ(N )γ. Thus with δ varying over

Γ+
γ \Γ0(N ), δ′ over Γ(N )\Γ+

γ , and noting that E∗|γ± = (−1)kE∗, we find

E′γ =
(

1 + χ(−1)(−1)k
)∑
δ′,δ

χ(δ′δ)E∗|γδ′δ.

Since δ′ ∈ Γ+
γ , we have γδ′γ−1 ∈ Γ+

∞Γ(N ), so E∗|γδ′ = E∗|γ. Hence

E′γ = (1 + χ(−1)(−1)k)
∑
δ′

χ(δ′)
∑
δ

χ(δ)E∗|γδ.

Thus E′γ = 0 if χ(−1) 6= (−1)k, or if χ is not trivial on Γ+
γ . Also note that

when N ≤ 2, we have γ± ∈ Γ(N ) and hence E∗ = E∗|γ± = (−1)kE∗; so
E′γ = 0 if N ≤ 2 and k is odd.

Suppose N > 2 or k is even; then

lim
τ→i∞I

E∗(τ) = #
{
δ∗ ∈ Γ+

∞\Γ+
∞Γ(N ) : δ∗ ∈ Γ∞

}
=

{
2 if N ≤ 2,

1 if N > 2.

Set

Eγ =
1

2[Γ+
γ : Γ(N )]

E′γ .

Suppose χ(−1) = (−1)k, χ is trivial on Γ+
γ , and suppose still that either

N > 2 or k is even; we show that Eγ 6= 0. We have

Eγ(τ) =
∑
δ∗,δ

χ(δ)1(τ)|δ∗γδ
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where δ∗ varies over Γ+
∞\Γ+

∞Γ(N ) and δ varies over Γ+
γ \Γ0(N ). We have

δ∗γδγ−1 ∈ Γ∞ only if Γ∞Γ(N )γδ = Γ∞Γ(N )γ, and since Γ∞ = Γ+
∞∪γ±Γ+

∞,
we have δ∗γδγ−1 ∈ Γ∞ only if δ ∈ Γ+

γ or δ ∈ Γ+
γ γ
−1γ±γ. If δ ∈ Γ+

γ then

E∗|γδγ−1 = E∗ and by assumption χ(δ) = 1. If δ = βγ−1γ±γ
−1 for some

β ∈ Γ+
γ , then with our assumptions,

χ(δ)E∗|γδγ−1 = χ(γ±)E∗|γ± = E∗.

Thus

lim
τ→i∞I

Eγ(τ)|γ−1 = #{δ∗, δ : δ∗γδγ−1 ∈ Γ∞ }

(where δ∗ varies over Γ+
∞\Γ+

∞Γ(N ), δ varies over Γ+
γ \Γ0(N )), and this num-

ber is at least 1. Hence Eγ 6= 0. Noting that E′γ±γ = (−1)kE′γ , as γσ varies

over a set of representatives for Γ∞\Spn(Z)/Γ0(N ), the nonzero E′γσ are
linearly independent.

Thus we have the following.

Proposition 3.1. For γ ∈ Spn(Z), Eγ be as defined above.

(a) We have Eγ 6= 0 if and only if (1) χ(−1) = (−1)k, (2) χ is trivial on
Γ+
γ , and (3) either N > 2 or k is even.

(b) When Eγ 6= 0, we have Eγ(τ) =
∑

δ χ(δ) 1(τ)|γδ where δ ∈ Γ0(N ) varies

so that Γ+
∞γΓ0(N ) = ∪δΓ+

∞γδ (disjoint); equivalently, with γ =

(
A B
C D

)
,

Eγ(τ) =
∑

(M N)

χ(M,N) det(Mτ +N)−k

where (M N) are coprime symmetric pairs varying so that

SLn(Z)(C D)Γ0(N ) = ∪(M N)SLn(Z)(M N) (disjoint),

and χ(M,N) = χ(δ) for δ ∈ Γ0(N ) so that (M N) ∈ SLn(Z)(C D)δ.
(c) With γσ varying over a set of representatives for Γ∞\Spn(Z)/Γ0(N ),

the non-zero Eγσ form a basis for E(n)
k (N , χ), the space of Eisenstein series

of degree n, weight k, level N , and character χ.

Remarks.

(1) Having fixed representatives {γσ} for Γ∞\Spn(Z)/Γ0(N ), we con-

sider {Eγσ} to be a “natural” basis for E(n)
k (N , χ).

(2) For s ∈ C with k + <s > n + 1, we can define a non-holomorphic
Eisenstein series by replacing det(Mτ +N)−k by

det(Mτ +N)−k|det(Mτ +N)|−s.

Then all the arguments and results herein are trivially modified to
extend to these non-holomorphic forms.

The next three propositions describe some useful relations when working
with Eisenstein series; then for N square-free, we describe a convenient set
of representatives for Γ∞\Spn(Z)/Γ0(N ) and how to evaluate χ(M,N).

Proposition 3.2. Suppose γ, γ′ ∈ Spn(Z) and δ ∈ Γ0(N ) so that Γ+
∞Γ(N )γ′ =

Γ+
∞Γ(N )γδ. Then Eγ′ = χ(δ)Eγ .
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Proof. We have E′γ = 2
∑

h χ(βh)E∗|γβh where Γ0(N ) = ∪hΓ(N )βh (dis-
joint). Thus Γ0(N ) = δΓ0(N ) = ∪hΓ(N )δβh (recall that Γ(N ) is a normal
subgroup of Spn(Z)); since [Γ0(N ) : Γ(N )] < ∞, this last union must be
disjoint. Thus

E′γ = 2
∑
h

χ(δβh)E∗|γδβh = 2χ(δ)
∑
h

χ(βh)E∗|γ′βh = χ(δ)E′γ′ .

Since Γ+
γ′ = δΓ+

γ δ
−1, we have [Γ0(N ) : Γ+

γ′ ] = [Γ0(N ) : Γ+
γ ] and so the

proposition follows. �

Proposition 3.3. Fix N ∈ Z. Suppose (M I), (M ′ N ′), (M ′′ I) are
coprime symmetric pairs so that (M ′′ I) ≡ (M ′ N ′) (N ) and (M ′ N ′) ∈
SLn(Z)(M I)Γ0(N ). Then (M ′′ I) ∈ (M ′ N ′)Γ(N ) and hence (M ′′ I) ∈
SLn(Z)(M I)Γ0(N ).

Proof. Since (M ′, N ′) = 1 and N ′ ≡ I (N ), we have (NM ′, N ′) = 1. Thus

there is some

(
K ′ L′

M ′ N ′

)
∈ Spn(Z) with L′ ≡ 0 (N ), and hence K ′ ≡ I (N ).

Set

γ =

(
K ′ L′

M ′ N ′

)−1(
I 0
M ′′ I

)
;

thus γ ∈ Γ(N ) and (M ′′ I) = (M ′ N ′)γ ∈ SLn(Z)(M I)Γ0(N ). �

Proposition 3.4. For γ ∈ Spn(Z), there exists some γ′′ =

(
I 0
M ′′ I

)
∈

Spn(Z) so that γ ∈ Γ+
∞γ
′′Γ0(N ). Equivalently, for (M N) a coprime sym-

metric pair, there is some symmetric M ′′ so that

(M N) ∈ SLn(Z)(M ′′ I)Γ0(N ).

Proof. Given γ =

(
∗ ∗
M N

)
, γ′′ =

(
I 0
M ′′ I

)
∈ Spn(Z), recall that we have

γ ∈ Γ+
∞γ
′′Γ0(N ) if and only if (M ′′ I) ∈ SLn(Z)(M N)Γ0(N ). By Propo-

sition 3.3, it suffices to show there is some (M ′ N ′) ∈ SLn(Z)(M N)Γ0(N )
so that N ′ ≡ I (N ); we proceed algorithmically.

Fix a prime q dividing N and take t so that qt ‖ N . Using Lemma 6.1,
we can choose E0, G0 ∈ SLn(Z) so that E0, G0 ≡ I (N/qt) and E0N

tG−1
0 ≡(

N1 0
0 0

)
(qt) where N1 is d× d and invertible modulo q (so d = rankqN).

We can adjust E0, G0 so that N1 ≡
(
a

I

)
(qt), some a. Similarly, we

can choose

(
u v
w x

)
∈ SL2(Z) so that

(
u v
w x

)
≡ I (N/qt),

(
u v
w x

)
≡(

a 0
0 a

)
(qt) (where aa ≡ 1 (qt)). Then

γ0 =


u v

In−1

w x
In−1

 ∈ Γ0(N )
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and E0(M N)

(
G0

tG−1
0

)
γ0 ≡

((
M1 M2

M3 M4

) (
Id

0

))
(qt) with M1

d × d. By the symmetry of M tN , M3 ≡ 0 (qt); since (M,N) = 1, M4 is
invertible modulo q. Thus using Lemma 6.1 we can find E′1, G

′
1 ∈ SLn−d(Z)

so that E′1, G
′
1 ≡ I (N/qt),

M ′4 = E′1M4G
′
1 ≡

(
I

a′

)
(qt), some a′.

Take E1 =

(
Id

E′1

)
, G1 =

(
Id

G′1

)
. Using the Chinese Remainder The-

orem, we can chooseW ′ so thatW ′ ≡ 0 (N/qt) andW ′ ≡
(
In−d−1

a′

)
(qt)

where a′a′ ≡ 1 (qt); set W =

(
0d

W ′

)
. Then with

(C D) = E1E0(M N)

(
G0

tG−1
0

)
γ0

(
G1

tG−1
1

)(
I W
0 I

)
,

we have (C D) ∈ SLn(Z)(M N)Γ0(N ), (C D) ≡ (M N) (N/qt), and
D ≡ I (qt).

Next, suppose p is another prime dividing N with pr ‖ N . Apply-
ing the above process to the pair (C D), we obtain a pair (C ′ D′) ∈
SLn(Z)(M N)Γ0(N ) with (C ′ D′) ≡ (M N) (N/(qtpr)) and D′ ≡ I (qtpr).
Continuing, we obtain (M ′ N ′) ∈ SLn(Z)(M N)Γ0(N ) with N ′ ≡ I (N ).
Applying Proposition 3.3 completes the proof. �

Proposition 3.5. Let (M N) be a coprime symmetric pair. There is
some symmetric matrix Mσ so that (M N) ∈ SLn(Z)(Mσ I)Γ0(N ) and

for each prime q with q ‖ N , we have Mσ ≡
(
Id

0

)
where d = d(q) =

rankqM. Thus when N is square-free and Mσ is as above, we have (M N) ∈
SLn(Z)(Mσ I)Γ0(N ) if and only if rankqM = rankqMσ for all primes q|N .
Further, with N square-free, we can take Mσ diagonal, and we have

SLn(Z)(Mσ I)Γ0(N ) = GLn(Z)(Mσ I)Γ0(N ).

Proof. First note that if (M N), (Mσ I) are coprime symmetric pairs with
(M N) ∈ SLn(Z)(Mσ I)Γ0(N ), then rankqM = rankqMσ for all primes

q|N , since elements of Γ0(N ) are of the form

(
A B
C D

)
with C ≡ 0 (N ) and

thus A invertible modulo N .
From Proposition 3.4, we know there is a symmetric matrix M ′′ so that

(M N) ∈ SLn(Z)(M ′′ I)Γ0(N ). Suppose q is prime with q ‖ N ; let d =
d(q) = rankqM

′′. If d = 0 then set Eq = In and γq = I2n. Otherwise,
using Lemma 6.1, we can choose Eq ∈ SLn(Z) so that Eq ≡ I (N/q) and

EqM
′′ tEq ≡

a Id−1

0

 (q); choose

(
w x
y z

)
∈ SLn(Z) so that

(
w x
y z

)
≡ I (N/q),

(
w x
y z

)
≡
(
a a− 1
0 a

)
(q)
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where aa ≡ 1 (q), and set

γq =

(
tEq

E−1
q

)
w x

In−1 0
y z

0 In−1

 .

Set E =
∏
q‖N Eq, γ =

∏
q‖N γq. Thus E ∈ SLn(Z), γ ∈ Γ0(N ); set

(M ′ N ′) = E(M ′′ I)γ. So (M ′ N ′) ≡ (Mσ I) (N ) for some symmetric

Mσ with Mσ ≡
(
Id(q)

0

)
(q) for all primes q ‖ N . Then by Proposition

3.3, (M N) ∈ SLn(Z)(Mσ I)Γ0(N ).
Suppose N is square-free; then we can use the Chinese Remainder Theo-

rem to choose Mσ diagonal with Mσ ≡
(
Id(q)

0

)
(q) for each prime q|N .

Also,

SLn(Z)(Mσ I)Γ0(N )

= SLn(Z)(Mσ I)Γ0(N ) ∪ SLn(Z)(Mσ I)γ±Γ0(N )

= SLn(Z)(Mσ I)Γ0(N ) ∪ SLn(Z)G±(Mσ I)Γ0(N )

= GLn(Z)(Mσ I)Γ0(N ).

This proves the proposition. �

Using Proposition 3.5, we fix a set of representatives

{
γσ =

(
I 0
Mσ I

)}
σ

for Γ∞\Spn(Z)/Γ0(N ) so that when q is a prime with q ‖ N , we have

Mσ ≡
(
Id

0

)
(q) for some d = d(q), and when N is square-free, Mσ is

diagonal. Let Eσ denote Eγσ .

Proposition 3.6. Suppose that χ(−1) = (−1)k, and either N > 2 or k is
even.
(1) Suppose Eσ 6= 0 and q is prime so that q ‖ N ; let d = d(q) = rankqMσ.
If 0 < d < n then χ2

q = 1.

(2) Suppose N is square-free. Then Eσ 6= 0 if and only if χ2
q = 1 for all

primes q|N so that 0 < rankqMσ < n.

Proof. (1) Suppose we have a prime q ‖ N with 0 < d < n where d =
rankqMσ. Choose u ∈ Z so that q - u, and (using Lemma 6.1) choose(
w x
y z

)
∈ SLn(Z) so that

(
w x
y z

)
≡ I (N/q) and

(
w x
y z

)
≡
(
u

u

)
(q)

where uu ≡ 1 (q). Set E =

w x
In−2

y z

 ,

δ =


z x

In−2 0
z x

y w
0 In−2

y w




1 1− u2

In−1 0
1

In−1

 .
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Thus E ∈ SLn(Z), δ ∈ Γ0(N ), and E(Mσ I)δ ≡ (Mσ I) (N ). So δ ∈ Γ+
γσ ,

and thus Eσ = Eσ|δ. We also have Eσ|δ = χq(u
2)Eσ. Since Eσ 6= 0, this

means χ2
q(u) = 1, and this holds for all u ∈ Z where q - u. Hence χ2

q = 1.
(2) Now suppose N is square-free, and that for each prime q|N with 0 <

rankqMσ < n, we have χ2
q = 1. To show Eσ 6= 0, we need to show χ is trivial

on Γ+
γσ . To do this, we show that for all primes q|N , χq is trivial on Γ+

γσ .

So take β =

(
A B
C D

)
∈ Γ+

γσ . Thus there exist δ =

(
tE−1 WE

E

)
∈ Γ+

∞,

β′ ∈ Γ(N ) so that δβ′γσβ = γσ. Thus E(MσA MσB + D) ≡ (Mσ I) (N ).
Fix a prime q|N , and set d = rankqMσ.

When d = 0, we have ED ≡ I (q), so detD ≡ detE ≡ 1 (q) and
χq(detD) = 1. When d = n, we have EA ≡ I ≡ A tD (q), so detD ≡
detE ≡ 1 (q) and χq(detD) = 1.

Now suppose 0 < d < n. Write

A =

(
A1 A2

A3 A4

)
, D =

(
D1 D2

D3 D4

)
, E =

(
E1 E2

E3 E4

)
whereA1, D1, E1 are d×d. Since EMσA ≡

(
Id

0

)
(q), we have E3(A1 A2) ≡

0 (q). Since A is invertible modulo q, the rows of (A1 A2) are linearly in-
dependent modulo q, and hence we must have E3 ≡ 0 (q), rankq E1 = d,
rankq E4 = n− d, and

1 = detE ≡ detE1 · detE4 (q).

Also, since

E1(A1 A2) ≡ (Id 0) (q), E4(D3 D4) ≡ (0 In−d) (q),

we have A2, D3 ≡ 0 (q), A1 ≡ E1 (q), D4 ≡ E4 (q). Since A tD ≡ I (q), we
must have D1 ≡ tE1 (q). Thus we have

detD ≡ detE1 · detE4 ≡ (detE1)2 (q)

and hence

χq(detD) = χ2
q(detE1) = 1.

Thus with β ∈ Γ+
γσ , for all primes q|N we have χq(β) = 1; consequently, by

Proposition 3.1, Eσ 6= 0. �

Proposition 3.7. Suppose Eσ 6= 0, (M N) ∈ SLn(Z)(Mσ I)γ where γ ∈
Γ0(N ), and fix a prime q so that q ‖ N . There are E0, E1 ∈ SLn(Z) so that

E0ME1 ≡
(
M1 0
0 0

)
(q)

with M1 invertible modulo q; for any such E0, E1 we have

E0N
tE−1

1 ≡
(
N1 N2

0 N4

)
(q)

and χq(γ) = χq(detM1 · detN4). Further, for any G ∈ GLn(Z), we have

χq(GM,GN) = χq(detG)χq(M,N) = χq(MG−1, N tG).
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Proof. By assumption, (M N) = E(Mσ I)γ for some E ∈ SLn(Z). Set
d = rankqMσ. If d = 0 then N ≡ ED (q) so χq(γ) = χq(detN). If d = n

then M ≡ EA ≡ E tD−1 (q) so χq(γ) = χq(detM) (where MM ≡ I (q)).
Suppose 0 < d < n. By Proposition 3.5, we know rankqM = rankqMσ =

d, so there are E0, E1 ∈ SLn(Z) so that E0ME1 ≡
(
M1 0
0 0

)
(q) with M1

d × d and invertible modulo q. Then by the symmetry of M tN , we have

E0N
tE−1

1 ≡
(
N1 N2

0 N4

)
(q) with N1 d × d, and N4 invertible modulo q

since (M,N) = 1. Set E2 = E0E; given the shape of Mσ and of E0ME1,

we must have E2 ≡
(
E′ ∗
0 E′′

)
(q) with E′ d × d and invertible modulo q.

Hence

E0(M N)

(
E1

tE−1
1

)
= E2(Mσ I)

(
tE2

E−1
2

)
γ′ = (M ′ I)γ′

where

γ′ =

(
tE−1

2
E2

)
γ

(
E1

tE−1
1

)
∈ Γ0(N ) and M ′ ≡

(
E′ tE′

0

)
(q).

Write γ′ =

(
A B
C D

)
, A =

(
A1 A2

A3 A4

)
, D =

(
D1 D2

D3 D4

)
where A1, D1 are

d×d. Since

(
M1

0

)
≡M ′A (q), we have A2 ≡ 0 (q), A1 invertible modulo

q, and M1 ≡ E′ tE′A1 (q). Then since A tD ≡ I (q), we have D3 ≡ 0 (q),
A1

tD1 ≡ I (q), N4 ≡ D4 (q). Thus

χq(γ) = χq(γ
′) = χ2

q(E
′)χq(detM1 · detN4)

(where M1M1 ≡ I (q)). Since 0 < d < n and Eσ 6= 0, we know from
Proposition 3.6 that χ2

q = 1.
Suppose (M N) = E(Mσ I)γ where E ∈ SLn(Z), γ ∈ Γ0(N ); take

G ∈ GLn(Z). If detG = 1 then the above argument shows χq(GM,GN) =
χq(M,N). Say detG = −1; then E′ = GEG± ∈ SLn(Z) and

G(M N) ≡ E′G±(Mσ I)γ ≡ E′(Mσ I)γ±γ (q).

Hence χq(GM,GN) = χq(γ±γ) = χq(−1)χq(M,N). Somewhat similarly,

(MG−1 N tG) = E(Mσ I)γ

(
G−1

tG

)
,

so χq(MG−1, N tG) = χq

(
γ

(
G−1

tG

))
= χq(γ)χq(detG). �

4. Hecke operators on Siegel Eisenstein series of square-free
level

Throughout this section, we assume N is square-free, χ is a character
modulo N so that χ(−1) = (−1)k; further, we assume either N > 2 or k is
even.
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Let σ be a “multiplicative partition” of N , meaning σ = (N0, . . . ,Nn)
where Ni ∈ Z+ and N0 · · · Nn = N ; take Mσ to be a diagonal n × n

matrix so that for each d, 0 ≤ d ≤ n, we have Mσ ≡
(
Id

0

)
(Nd).

By Proposition 3.1, as we vary σ, the matrices γσ =

(
I 0
Mσ I

)
give us

a set of representatives for Γ∞\Spn(Z)/Γ0(N ), and by Proposition 3.5 we
have Γ∞γσΓ0(N ) = Γ+

∞γσΓ0(N ). Thus given any coprime symmetric pair
(M N), there is a unique multiplicative partition σ of N so that (M N) ∈
SLn(Z)(Mσ I)Γ0(N ).

To ease notation, we write Eσ to denote Eγσ .

Theorem 4.1. Fix a prime q|N and a multiplicative partition

σ′ = (N ′0, . . . ,N ′n)

of N/q; let Xd = Xd(q) (as defined in §2). For 0 ≤ d ≤ n, let σd =
(N0, . . . ,Nn) where

Ni =

{
N ′i if i 6= d,

qN ′d if i = d.

Then when Eσd 6= 0, we have

Eσd |T (q) = qkd−d(d+1)/2χN/q
(
qX−1

d Mσd , X
−1
d

)
·
n−d∑
t=0

q−dt−t(t+1)/2βq(d+ t, t) symχ
q (t)Eσd+t

(with symχ
q (t) as defined in §2).

Proof. To ease notation further, temporarily write Ed′ for Eσd′ and Md′ for
Mσd′ . Also, write Kd for Kd(q), Yn for Yn(q), Xr for Xr(q), β(m, r) for
βq(m, r).

By Proposition 2.1, we have

Ed(τ)|T (q) = q−n(n+1)/2
∑

M,N,Y

χ(M,N) det(Mτ/q +MY/q +N)−k

where SLn(Z)(M N) varies over SLn(Z)(Md I)Γ0(N ) and Y varies over Yn;
recall that we can take Y ≡ 0 (N/q). (Note that in Proposition 2.1, when
p|N we have χ(pn−r) = 0 unless r = n.) Using left multiplication from
SLn(Z) to adjust each representative (M N), we can assume q divides the
lower n− d rows of M . Set

(M ′ N ′) = Xd(M/q MY/q +N) =
1

q
Xd(M MY + qN);

clearly M ′, N ′ are integral given our assumption that q divides the lower
n− d rows of M . We know the upper d rows of M are linearly independent
modulo q, as are the lower n − d rows of N . Thus (M ′, N ′) = 1, and with
d′ = rankqM

′, we have d′ ≥ d. Since rankq′Md′ = rankq′Md for all primes
q′|N/q, by Proposition 3.5 we have (M ′ N ′) ∈ SLn(Z)(Md′ I)Γ0(N ). Also,
we have

det(Mτ/q +MY/q +N)−k = qkd det(M ′τ +N ′)−k.
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Reversing, given (M ′ N ′) ∈ SLn(Z)(Md′ I)Γ0(N ) (with d′ ≥ d), we need
to identify the equivalence classes SLn(Z)(M N) ∈ SLn(Z)(Md I)Γ0(N )
and Y ∈ Yn so that

1

q
Xd(M MY +N) ∈ SLn(Z)(M ′ N ′).

Equivalently, we need to identify Y ∈ Yn and the equivalence classes

SLn(Z)qX−1
d E(M ′ (N ′ −M ′Y )/q) ∈ SLn(Z)(Md I)Γ0(N )

where E ∈ SLn(Z) and (M ′ N ′) is a coprime symmetric pair. For E ∈
SLn(Z), we have X−1

d EXd ∈ SLn(Z) if and only if E ∈ Kd; thus we need
to identify Y ∈ Yn and E ∈ Kd\SLn(Z) so that

qX−1
d E(M ′ (N ′ −M ′Y )/q)

is an integral, coprime pair with rankq qX
−1
d EM ′ = d (thatM tN is symmet-

ric is automatic). For each coprime symmetric pair (M ′ N ′), let Cd(M ′, N ′)
be the set of all pairs (E, Y ) that meet the above criteria (note that Cd(M ′, N ′)
could be empty); then

Ed(τ)|T (q) = qkd−n(n+1)/2
∑

(M ′,N ′)

cd(M
′, N ′) det(M ′τ +N ′)−k

where

cd(M
′, N ′) =

∑
E,Y

χ(qX−1
d EM ′, X−1

d E(N ′ −M ′Y )),

with the sum over all (E, Y ) ∈ Cd(M ′, N ′).
We also know that E(n)

k (N , χ) is equal to

span{(Cτ +D)−k : (C D) coprime, symmetric } ∩M(n)
k (N , χ),

and M(n)
k (N , χ) is invariant under the Hecke operators. Hence Ed|T (q) is

again an Eisenstein series, and so the above discussion shows that

Ed|T (q) = qkd−n(n+1)/2
∑
d′≥d

cd(Md′ , I)Ed′ .

Thus we need to compute cd(Md′ , I) for each d′ ≥ d.
Fix d′ ≥ d, and choose E ∈ Kd\SLn(Z); note that we can choose E ≡

I (N/q). With Y ∈ Yn, set

(M N) = qX−1
d E(Md′ (I −Md′Y )/q).

To have rankqM = d, we need the top d rows of EMd′ to have q-rank

d; by Lemma 6.4(a), the number of such E is qd(n−d′)β(d′, d). Also, since

Md′ ≡
(
Id′

0

)
(q), the upper left d × d′ block of E must have q-rank d;

thus using left multiplication from Kd, we can assume E =

(
E′ W
0 I

)
where

E′ ∈ SLd′(Z). (Note that we can still assume that E ≡ I (N/q).) So fix

such E (and thus fix M). Set G =

(
E′

I

)
; so

(
G−1

tG

)
∈ Γ0(N ). We

know N is integral if and only if EN tG = X−1
d (E tG−EMd′G

−1 ·GY tG) is
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integral; also, when N is integral, (M,N) = 1 if and only if (MG−1, N tG) =

1. Write E′ tE′ =

(
E1 E2
tE2 E3

)
, W =

(
W1

W2

)
,

GY tG =

Y1 Y2 Y3
tY2 Y4 Y5
tY3

tY5 Y6


where E1, Y1 are d × d and symmetric, E3, Y4 are (d′ − d) × (d′ − d) (and

symmetric), and W1 is d× (n− d′). We have EMd′G
−1 ≡

(
Id′

0

)
(q), so

N tG is integral if and only if (Y1 Y2 Y3) ≡ (E1 E2 W1) (q). When N tG is
integral, we have

N tG ≡

(E1 − Y1)/q (E2 − Y2)/q (W1 − Y3)/q
0 E3 − Y4 W2 − Y5

0 0 I

 (q),

so (MG−1, N tG) = 1 if and only if rankq(E3 − Y4) = d′ − d. As Y4 varies
over symmetric (d′ − d) × (d′ − d) matrices modulo q, so does E3 − Y4.
Recall that we can choose Y ≡ 0 (N/q); thus for E, Y as above, we have
Md′ ≡Md (N/q), so

χN/q(M,N) = χN/q(qX
−1
d Md, X

−1
d ) = χN/q(qXdMd, Xd)

and

χq(M,N) = χq(MG−1, N tG) = χq(det(E3 − Y4)).

Since Y5, Y6 are unconstrained modulo q,

cd(Md′ , I) = qd(n−d′)+(n−d′)(d′−d)+(n−d′)(n−d′+1)/2β(d′, d) symχ
q (d′ − d)

(recall Y6 is symmetric). Collecting terms and setting t = d′ − d yields the
result. �

To help us diagonalize the space Eisenstein series of square-free level, we
put a partial ordering on {σ}, the multiplicative partitions of N , as follows.

Definition Let σ, α be multiplicative partitions of N , and let q be a prime
dividing N . We write σ < α (q) if rankqMσ < rankqMα, σ = α (q) if
rankqMσ = rankqMα, and σ ≤ α (q) if rankqMσ ≤ rankqMα. For Q|N , we
write σ < α (Q) if rankqMσ < rankqMα for all primes q|Q, σ = α (Q) if
rankqMσ = rankqMα for all primes q|Q, σ ≤ α (Q) if rankqMσ ≤ rankqMα

for all primes q|Q,
We first determine how to find eigenforms for T (q).

Corollary 4.2. Suppose σ is a multiplicative partition of N so that Eσ 6= 0,
and let q be a prime dividing N . For partitions α of N with α = σ (N/q),
α > σ (q), there are aσ,α(q) ∈ C so that

Eσ +
∑

α=σ (N/q)
α>σ (q)

aσ,α(q)Eα

is an eigenform for T (q), and aσ,α(q) 6= 0 only if either (1) χq = 1, or (2)
χ2
q = 1 and rankqMα−rankqMσ is even. With such aσ,α and d = rankqMσ,
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the eigenvalue of Eσ +
∑

α=σ (N/q)
α>σ (q)

aσ,α(q)Eα is

λσ(q) = qkd−d(d+1)/2χN/q(qXdMσ, Xd)

where qq ≡ 1 (N/q).

Proof. By Lemma 6.6 symχ
q (t) = 0 if and only if (1) χq = 1, or (2) χ2

q = 1
and t is even. Thus by Theorem 4.1, the subspace

span
{
Eα : α = σ (N/q), α ≥ σ (q), Eα 6= 0, and either (1) χq = 1,

or (2) χ2
q = 1 and rankqMα − rankqMσ is even

}
is invariant under T (q), and the matrix for T (q) on this subspace basis (or-
dered with rankqMα increasing) is upper triangular with diagonal entries
λα(q). Then the standard process of diagonalizing an upper triangular ma-
trix yields the result. �

We now diagonalize the space of Eisenstein series with respect to

{T (q) : q prime, q|N }

and obtain a multiplicity-one result for the Eisenstein series of square-free
level.

Corollary 4.3. Suppose σ a multiplicative partition of N so that Eσ 6= 0.
For a prime q|N and α a multiplicative partition of N with α ≥ σ (N ), set
aσ,α(q) = 1 if α = σ (q), and otherwise set aσ,α(q) = aρ,α(q) where ρ is a
multiplicative partition of N with ρ = α (N/q), ρ = σ (q), and aρ,α(q) is as
in Corollary 4.2. For Q|N and α ≥ σ (Q), set

aσ,α(Q) =
∏
q|Q

q prime

aσ,α(q).

Then with

Ẽσ =
∑

α≥σ (N )

aσ,α(N )Eα,

for every prime q|N we have Ẽσ|T (q) = λσ(q)Ẽσ (where λσ(q) is as in
Corollary 4.2). Further, for σ 6= ρ (N ), there is some prime q|N so that
λσ(q) 6= λρ(q).

Proof. Fix a prime q|N . For α, β multiplicative partitions of N with α ≥
σ (N ), β = α (N/q), and β = σ (q), we have aσ,α(N ) = aσ,β(N/q)aβ,α(q).
Thus, varying β, α so that β ≥ σ (N/q), β = σ (q), α = β (N/q), α ≥ β (q),
we have

Ẽσ =
∑
β

aσ,β(N/q)
∑
α

aβ,α(q)Eα.

By Corollary 4.2,∑
α

aβ,α(q)Eα|T (q) = λβ(q)
∑
α

aβ,α(q)Eα.
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So to show Ẽσ|T (q) = λσ(q)Ẽσ, we need to show that λβ(q) = λσ(q) for any
β so that β ≥ σ (N/q), β = σ (q), and aσ,β(N/q) 6= 0. Equivalently, we
need to show that for β ≥ σ (N/q), β = σ (q) with aσ,β(N/q) 6= 0, we have

χq′ (qXdMβ, Xd) = χq′ (qXdMσ, Xd)

for all primes q′|N/q (where qq ≡ 1 (N/q)).
Let d = rankqMσ, and fix β so that β ≥ σ (N/q), β = σ (q), and

aσ,β(N/q) 6= 0. Let q′ be a prime dividing N/q. If β = σ (q′), then Mβ ≡
Mσ (q′) and so

χq′ (qXdMβ, Xd) = χq′ (qXdMσ, Xd) .

So suppose β > σ (q′). Since aσ,β(N/q) 6= 0, by Corollary 5.3 we either
have χq′ = 1, or χ2

q′ = 1 with rankq′Mβ, rankq′Mσ of the same parity.

Consequently (using Proposition 3.7),

χq′ (qXdMβ, Xd) = χq′ (qXdMσ, Xd) .

Hence Ẽσ|T (q) = λσ(q)Ẽσ, proving the first part of the corollary.
To prove the second part, suppose now that σ 6= ρ (N ). Thus for some

prime q|N , we have d = rankqMσ 6= rankqMρ = d′. Then

|λσ(q)| = qkd−d(d+1)/2 6= qkd
′−d′(d′+1)/2 = |λρ(q)|,

since 0 ≤ d, d′ ≤ n and k > n+ 1. �

Now we evaluate the action of Tj(q
2) on Eσ. Note that since the Hecke

operators commute, the multiplicity-one result of Corollary 4.3 tells us that

each Ẽσ is an eigenform for Tj(q
2) (1 ≤ j ≤ n), and in fact for T (p), Tj(p

2)
(1 ≤ j ≤ n)) for any prime p. So we could simply do enough computation
to find the eigenvalue λj;σ(q2), but we take just a bit more effort and give
a complete description of Eσ|Tj(q2). Then in Corollary 4.5 we simplify our
expressions for the Tj(q

2)-eigenvalues.

Theorem 4.4. Assume N is square-free, and fix a prime q|N . For σ a
multiplicative partition of N/q and 0 ≤ d ≤ n, let Eσd be the level N
Eisenstein series as in Theorem 4.1; suppose Eσd 6= 0. Then for 0 ≤ j ≤ n,

Eσd |Tj(q
2) =

n−d∑
t=0

Aj(d, t)Eσd+t

where

Aj(d, t) = q(j−t)d−t(t+1)/2βq(d+ t, t)

·
j∑

d1=0

j−d1∑
d5=0

d5∑
d8=0

qaj(d;d1,d5,d8)χN/q(X
−1
d1,r

MσdXj , X
−1
d1,r

X−1
j )

· βq(d, d1)βq(t, d5)βq(n− d− t, d1 + n− d− j − d8)

· βq(t− d5, d8) symχ
q (t− d5 − d8) symχ

q (d5, d8),

r = j − d1 − d5 + d8, and

aj(d; d1, d5, d8) = (k − d)(2d1 + d5 − d8) + d1(d1 − d8 − j − 1)

+ d8(j − d5)− d5(d5 + 1)/2 + d8(d8 + 1)/2.
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(Here symχ
q (b, c) is as defined in §2.) Thus Ẽσd |Tj(q2) = Aj(d, 0)Ẽσd .

Proof. As in the proof of Theorem 4.1, temporarily write Ed′ for Eσd′ and

Md′ for Mσd′ . Let Kr,s = Kr,s(q), Yj,0 = Yj,0(q2), Xr,s = Xr,s(q), β(m, r) =
βq(m, r), µ(m, r) = µq(m, r).

By Proposition 2.1,

Ed|Tj(q2) = qj(k−n−1)
∑
G,Y

Ed|
(
X−1
j

Xj

)(
G−1 Y tG

tG

)
where G varies over SLn(Z)/Kj , Y over Yj,0; recall that we can take G ≡
I (N/q) and Y ≡ 0 (N/q). So

Ed(τ)|Tj(q2)

= qj(k−n−1)
∑

G,Y,M,N

χ(M,N) det
(
MX−1

j G−1τ +MX−1
j Y tG+NXj

tG
)−k

(where SLn(Z)(M N) varies over SLn(Z)(Md I)Γ0(N )).
Take (M N) ∈ SLn(Z)(Md I)Γ0(N ). Let d1 be the q-rank of the first j

columns of M (so d1 ≤ j); using left-multiplication from SLn(Z), we can

adjust our choice of representative to assume M =

M1 M2

qM3 M4

qM ′5 qM ′6

 where M1

is d1× j (so rankqM1 = d1), M4 is d4× (n− j) with rankqM4 = d4 = d−d1.

Correspondingly, write N =

N1 N2

N3 N4

N ′5 N ′6

 where N1 is d1 × j and N4 is

d4× (n− j). Take r so that rankq

(
M1 0
M ′5 N ′6

)
= n−d4− r; so adjusting our

choice of representative, we can assume

(qM ′5 qM
′
6 N

′
5 N

′
6) =

(
qM5 qM6 N5 N6

q2M7 qM8 N7 qN8

)
where M6, N6 are (n− d− r)× (n− j) and rankq

(
M1 0
M5 N6

)
= n− d4 − r.

Note that since (M,N) = 1, we must have rankqN7 = r. Then

Xd1,r(M N)

(
X−1
j

Xj

)
=


M1 qM2 q2N1 qN2

M3 M4 qN3 N4

M5 qM6 qN5 N6

M7 M8 N7 N8


has q-rank n. Hence for any Y ∈ Yj ,

(M ′ N ′) = Xd1,r(M N)

(
X−1
j

Xj

)(
G−1 Y tG

0 tG

)
is a coprime symmetric pair with rankqM

′ = d+t for some t ≥ 0. Note that

det(M ′τ +N ′)−k = q−k(d1−r) det(MX−1
j G−1τ +MX−1

j Y tG+NXj
tG)−k.

As discussed in the proof of Theorem 4.1, we have

Ed|Tj(q2) =

n∑
d′=d

cd(Md′)Ed′ ,
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some cd(Md′) ∈ C. So reversing, suppose d′ ≥ d and Ed′ 6= 0. To com-
pute cd(Md′), we need to identify the equivalence classes SLn(Z)(M N) ∈
SLn(Z)(Md I)Γ0(N ) and Y ∈ Yj,0, G ∈ SLn(Z)/Kj so that

Xd1,r(M N)

(
X−1
j

Xj

)(
G−1 Y tG

0 tG

)
∈ SLn(Z)(Md′ I).

Equivalently, we need to identify Y ∈ Yj,0, G ∈ SLn(Z)/Kj and the equiva-
lence classes

SLn(Z)X−1
d1,r

E(Md′ I)

(
G −GY

tG−1

)(
Xj

X−1
j

)
∈ SLn(Z)(Md I)Γ0(N )

where E ∈ SLn(Z). For E ∈ SLn(Z), we have X−1
d1,r

EXd1,r ∈ SLn(Z) if and

only if E ∈ Kd1,r, so we only need to consider E ∈ Kd1,r\SLn(Z). Thus we
need to consider all E,G, Y so that with

(M N) = X−1
d1,r

E(Md′ I)

(
G −GY

tG−1

)(
Xj

X−1
j

)
,

M,N are integral with (M,N) = 1 and rankqM = d (that M tN is sym-
metric is automatic). Note that since we can take E,G ≡ I (N/q) and
Y ≡ 0 (N/q) and we know Md′ ≡Md (N/q), for such (M N) we have

χN/q(M,N) = χN/q(X
−1
d1,r

MdXj , X
−1
d1,r

X−1
j ).

For E,G ∈ SLn(Z), write

EMd′G =

M1 M2

M ′3 M ′4
M7 M8

 , E tG−1 =

N1 N2

N ′3 N ′4
N7 N8


where M1, N1 are d1 × j, M7, N7 are r × j. Then

M =

 M1 M2/q
qM ′3 M ′4
q2M7 qM8

 .

So to have M integral, we need M2 ≡ 0 (q), and to have rankqM = d, we

need rankq

(
M1 0
0 M ′4

)
= d. So suppose these conditions are met. We have

Y =

(
U V
tV 0

)
where U is j× j and symmetric; to have N integral, we need

N1 ≡ M1U + M2
tV (q2), N2 ≡ M1V (q), and N ′3 ≡ M ′3U + M ′4

tV (q). We
are supposing that rankq(M1 M2 N1 N2) = d1 and M2 ≡ 0 (q), so we can
solve these first two congruences only if rankqM1 = d1. So supposing this
condition is met, we have M2/q in the column span of M1 modulo q, so we
must have rankqM

′
4 = d4 where d4 = d − d1. Then adjusting E using left

multiplication from Kd1,r, and adjusting G using right multiplication from
Kj , we can assume

EMd′G =


M1 M2

M3 M4

M5 M6

M7 M8





22 LYNNE H. WALLING

where M4 is d4 × (n − j) with rankqM4 = d4 and M6 ≡ 0 (q); further,
we can assume Mi = (A′i Ai) where A′i has d1 columns when i is odd, d4

columns when i is even, A′i ≡ 0 (q2) for i 6= 1, 4, and Ai ≡ 0 (q2) for i ≤ 4.

Correspondingly, split N ′3 as

(
N3

N5

)
, N ′4 as

(
N4

N6

)
where N3, N4 have d4

rows, and split Ni as (B′i Bi) where B′i has d1 columns when i is odd, d4

columns when i is even. Split U as

(
U1 U2
tU2 U3

)
where U1 is d1 × d1, and

split V as

(
V1 V2

V3 V4

)
where V1 is d1 × d4. Then M1U ≡ A′1(U1 U2) (q2),

M1V ≡ A′1(V1 V2) (q), M4
tV ≡ A′4( tV1

tV3) (q). So to have N integral, we
need to choose U1, U2, V1, V2, V3 so that

(B′1 B1) ≡ A′1(U1 U2) (q2), (B′2 B2) ≡ A′1(V1 V2) (q), B3 ≡ A′4 tV3 (q).

Then by the symmetry of EMd′
tE, we have B′3

tA′1 ≡ A′4 tB′2 (q), so we have
B′3 ≡ A′4 tV1 (q). By symmetry, we also have

B′5
tA′1 ≡ A5

tB1 +A6
tB2 ≡ A5

tU2
tA′1 +A6

tV2
tA′1 (q2),

B′6
tA′4 ≡ A5

tB3 ≡ A5V3
tA′4 (q),

B′7
tA′1 ≡ A7

tB1 +A8
tB2 ≡ A7

tU2
tA′1 +A8

tV2
tA′1 (q).

So to have N integral, we also need to choose U3 so that B5 ≡ A5U3 (q),
and then the lower n− d rows of N are congruent modulo q to(

0 (B5 −A5U3 −A6
tV4)/q 0 B6 −A5V4

0 B7 −A7U3 −A8
tV4 0 0

)
.

Further refining our choices for E,G using Kd1,r,Kj , we can assume

A5 ≡
(
α5 0 0
0 qα′5 0

)
(q2), A6 ≡

(
0 0
0 qα′6

)
(q2),

A7 ≡

0 0 0
0 0 α7

0 0 0

 (q), A8 ≡

 0 0
0 0
α8 0

 (q)

where αi is di×di and invertible modulo q, α′5 is (n−d− r−d5)× (j−d1−
d5−d7), and α′6 is (n−d−r−d5)× (n−j−d4−d8); here the top r−d7−d8

and bottom d8 rows of A7 are 0 modulo q. Correspondingly, write

B5 =

(
β1 β2 β3

β4 β5 β6

)
, B6 =

(
γ1 γ2

γ3 γ4

)
,

B7 =

δ1 δ2 δ3

δ4 δ5 δ6

δ7 δ8 δ9

 , B8 =

ε1 ε2
ε3 ε4
ε5 ε6

 .

By symmetry and the invertibility of α5, α7, α8 modulo q, we have that β4,
β6, γ3, δ1, δ3, ε1 ≡ 0 (q), the bottom n − d − r − d5 rows of B′5, B

′
6, and

the top r − d7 − d8 rows of B′7, B
′
8 are 0 modulo q. Then since E tG−1 is

invertible, we know that rankq

(
β5 γ4

δ2 ε2

)
= n− d′.
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Write

U3 =

µ1 µ2 µ3
tµ2 µ4 µ5
tµ3

tµ5 µ6

 , V4 =

ν1 ν2

ν3 ν4

ν5 ν6


where µ1 is d5 × d5, µ6 is d7 × d7, ν1 is d5 × d8, ν5 is d7 × d8. To have
B5 ≡ A5U3 (q), we need (β1 β2 β3) ≡ α5(µ1 µ2 µ3) (q), and β5 ≡ 0 (q) (and
hence γ4 is invertible modulo q). When these conditions are met, we must
have rankq γ4 = n− d− r − d5, and by symmetry,

δ4
tα5 ≡ α7

tβ3 ≡ α7
tµ3

tα5 (q).

Then to have (M,N) = 1, we need

B =

(
(B5 −A5U3 −A6

tV4)/q B6 −A5V4

B7 −A7U3 −A8
tV4 q(B8 −A7V4)

)
to have q-rank n− d. Note that modulo q, B is congruent to

(β1 − α5µ1)/q (β2 − α5µ2)/q (β3 − α5µ3)/q γ1 − α5ν1 γ2 − α5ν2

0 ∗ ∗ 0 γ4

0 δ2 0 0 0
0 δ5 − α7

tµ5 δ6 − α7µ6 0 0
δ7 − α8

tν1 δ8 − α8
tν3 δ9 − α8

tν6 0 0

 .

Since E tG−1 is invertible, and given that β4, β5, β6, γ3 and the lower n−
d−r−d5 rows of B′5, B

′
6 are 0 modulo q, we must have rankq γ4 = n−d−r−d5.

To have B invertible modulo q, we need rankq δ2 = r − d7 − d8. Given the
sizes of γ4, δ2, this requires

n− d− r − d5 ≤ n− j − d4 − d8 and r − d7 − d8 ≤ j − d1 − d5 − d7,

so this requires r = j − d1 − d5 + d8 (in which case γ4, δ2 are square, and
hence invertible modulo q).

Choose (n− d)× (n− d) permutation matrices P1, P2 so that

P1

(
A5 A6

A7 A8

)
P2 ≡


α5

α8

0
α7

0

 (q),

P1

(
B5 B6

B7 B8

)
P2 =


β1 γ1 γ2 β3 β2

δ7 ε5 ε6 δ9 δ8

β4 γ3 γ4 β6 β5

δ4 ε3 ε4 δ6 δ5

δ1 ε1 ε2 δ3 δ2

 .

(So P1 corresponds to the permutation (2 3 5), P2 to the permutation
(2 5 3 4).) Thus (still supposing that β5 ≡ 0 (q), and that γ4, δ2 are in-
vertible modulo q), we have P1BP2 is congruent modulo q to

(β1 − α5µ1)/q γ1 − α5ν1 γ2 − α5ν2 (β3 − α5µ3)/q (β2 − α5 − µ2)/q
δ7 − α8

tν1 0 0 δ9 − α8
tν6 δ8 − α8

tν3

0 0 γ4 ∗ ∗
0 0 0 δ6 − α7µ6 δ5 − α7

tµ5

0 0 0 0 δ2

 .
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Hence B is invertible modulo q if and only if

(
(β1 − α5µ1)/q γ1 − α5ν1

δ7 − α8
tν1 0

)
and δ6 − α7µ6 are invertible modulo q. Note that by the symmetry of Md′ ,

we know that (δ6−α7µ6) tα7 and

(
(β1 − α5µ1) tα5/q (γ1 − α5ν1) tα8

(δ7 − α8
tν1) tα5 0

)
are

symmetric modulo q.
To compute χ(M,N), recall that we can (and do) assume that E,G ≡

I (N/q), Y ≡ 0 (N/q), and we know that Md′ ≡Md (N/q); so

χN/q(M,N) = χN/q(X
−1
d1,r

MdXj , X
−1
d1,r

X−1
j ).

To help compute χq(M,N), let G1 be the n×n permutation matrix so that

EMd′GG1 ≡


A′1 0 0 0
0 A′4 0 0
0 0 A5 A6

0 0 A7 A8

 (q).

Setting E1 =

(
Id

P1

)
, G2 =

(
Id

P2

)
, and remembering that tP−1 = P

for a permutation matrix P , we have

χq(detE1G1G2)χq(M,N)

= χq(E1MG1G2, E1NG1G2)

= χq(detA′1 · detA′4 · detα5 · detα7 · detα8)χq(det γ4 · det δ2)

· χq
(

det

(
(β1 − α5µ1) tα5/q (γ1 − α5ν1) tα8

(δ7 − α8
tν1) tα5 0

)
· det(δ6 − α7µ6) tα7

)
.

Also, since χq(Md′ , I) = 1, we have

χq(detE1G1G2)

= χq(E1Md′G1G2, E1G1G2)

= χq(detA′1 · detA′4 · detα5 · detα7 · detα8)χq(det γ4 · det δ2).

To summarise: Given (M ′ N ′) with rankqM
′ = d′, and given choices

for d1, d4 = d − d1, d5, d7, d8 = d′ − d − d5 − d7 and r = j − d1 − d5 + d8

(with d1 + d5 + d7 ≤ j, d4 + d8 ≤ n − j), to be able to choose E,G, Y so
that M,N are integral and coprime with rankqM = d, we need to choose
E ∈ Kd1,r\SLn(Z) so that the q-rank of the upper d1 rows of EM ′ is d1,
and the q-rank of the upper n− r rows of EM ′ is d+ d5 (where d5 ≤ j− d1;
note this is only possible when d′− d− d5 ≤ r). By Lemma 6.4 (b), we have

β(d′, d+ d5)β(n− d′, n− r − d− d5)β(d+ d5, d1)

· q(d+d5)(r+d+d5−d′)+d1(n−d−d5)

choices for E. Modifying E using left multiplication from Kd1,r, we can
assume the upper d+d5 rows of EMd′ have q-rank d+d5. We need to choose
G ∈ SLn(Z)/Kj to meet various conditions (as detailed in the preceding
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discussion); choosing G0 ∈ SLn(Z) so that

EMd′G0 ≡


M1 0 0 0
0 C 0 0
0 0 0 0
0 0 C ′ 0

 (q)

where M1 is d1 × d1, C is (d4 + d5)× (d4 + d5), C ′ is (d7 + d8)× (d7 + d8)
and M1, C, C

′ are invertible modulo q, Lemma 6.5 describes the conditions
that

E(Md′ I)

(
G

tG−1

)
must meet, where G = G0G

′ ∈ SLn(Z)/Kj (note that as G′ varies over
SLn(Z)/Kj , so does G). By Lemma 6.5, we have

β(d4 + d5, d4)β(d7 + d8, d8)q(d4+d8)(j−d1−d5)−d7d8

choices for G. Then with further adjustments to E using left multiplication
from Kd1,r and to G using right multiplication from Kj (as described above),
using notation as above and writing µi = µ′i + qµ′′i , we have that µ′1, µ′2, µ′3
are uniquely determined modulo q, µ4, µ5 are unconstrained modulo q2, and
µ′′2, µ′′3, µ′′6, ν2, ν3, ν4, ν5, ν6 are unconstrained modulo q. Let F = Z/qZ; as
µ′′1, ν1, µ′6 vary modulo q,(

(β1 − α5µ1) tα5/q (γ1 − α5µ1) tα8

(δ7 − α8
tν1) tα5 0

)
varies over elements in Fd5+d8,d5+d8

sym of the form

(
C D
tD 0

)
with C d5 × d5,

and (δ6 − α7µ
′
6) tα7 varies over Fd7,d7sym . Hence as we vary Y subject to these

constraints, we have∑
Y

χq(X
−1
d1,r

EMd′GXj , X
−1
d1,r

E( tG−1 −Md′GY )X−1
j )

= q(j−d1)(n−d1−d4+1)−d5(j−d1+d8+1)−d7(d7+1)/2 symχ
q (d5, d8) symχ

q (d7).

This yields a formula for Aj(d, t); to simplify this formula, note that
β(m, s) = β(m,m− s), so

β(d1 + d4 + d5, d1)β(d′, d1 + d4 + d5)β(d4 + d5, d4)

=
µ(d+ d5, d1)µ(d+ t, t− d5)µ(d− d1 + d5, d5)

µ(d1, d1)µ(t− d5, t− d5)µ(d5, d5)

µ(t, d5)

µ(t, d5)

=
µ(d+ t, d1 + t)µ(t, d5)

µ(d1, d1)µ(t, t)µ(d5, d5)

=
µ(d+ t, t)µ(d, d1)µ(t, d5)

µ(t, t)µ(d1, d1)µ(d5, d5)

= β(d+ t, t)β(d, d1)β(t, d5)

where t = d′ − d. We have the constraints that r = j − d1 − d5 + d8,
d = d1 + d4, t = d5 + d7 + d8, d1 + d5 + d7 ≤ j, d4 + d8 ≤ n− j, and d8 ≤ d5.
Taking 0 ≤ d1 ≤ j, 0 ≤ d5 ≤ j−d1, and 0 ≤ d8 ≤ d5, a summand in the final
formula for Aj(d, t) is 0 if the other constraints on the di are not met. �
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Corollary 4.5. Let σ be a multiplicative partition of N , and suppose Eσ 6=
0. Then for a prime q|N and d = rankqMσ, we have Ẽσ|Tj(q2) = λj;σ(q2)Ẽσ
where N ′i = Ni/(q,Ni) and

λj;σ(q2) = qjd
j∑
`=0

q`(2k−2d−j+`−1)χ
N′0

(q2`)χ
N′n

(q2(j−`))βq(d, `)βq(n−d, j−`).

Proof. Since T (q) and Tj(q
2) commute, by Corollary 4.3 and Theorem 4.4,

we know that Ẽσ is an eigenform for Tj(q
2) with eigenvalue Aj(d, 0). By

Theorem 4.4, using ` in place of d1, and noting that β(m, r) = β(m,m− r),
we have

Aj(d, 0)

= qjd
j∑
`=0

q`(2k−2d+`−j−1)χN/q(X
−1
`,j−`MσdXj , X

−1
`,j−`X

−1
j )

· β(d, `)β(n− d, j − `).

Note that

(
Xj

X−1
j

)
is congruent modulo N/q to an element of Spn(Z).

Thus

χN/q(X
−1
`,j−`MσdXj , X

−1
`,j−`X

−1
j ) = χN/q(X

−1
`,j−`Mσd , X

−1
`,j−`)χN/q(q

j).

Then we use Propositions 3.6 and 3.7 to evaluate χN/q(X
−1
`,j−`Mσd , X

−1
`,j−`).

�

5. Hecke operators on Eisenstein series of arbitrary level

Fix N ∈ Z+ and χ a character modulo N . Assume that k > n + 1,

χ(−1) = (−1)k, and that either N > 2 or k is even. Let

{
γσ =

(
I 0
Mσ I

)}
σ

be a set of representatives for Γ∞\Spn(Z)/Γ0(N ) so that when N is square-
free, Mσ is as in Proposition 3.5, and let Eσ = Eγσ .

To more easily describe the action of Hecke operators on Eσ, we define
an action of UN × U× on Eisenstein series where UN = (Z/NZ)×. Toward
this, we have the following.

Proposition 5.1. Suppose γ =

(
I 0
M I

)
∈ Spn(Z), v, w ∈ Z with (vw,N ) =

1; set (v, w) ·M = v

(
w

I

)
M

(
w

I

)
and (v, w) · γ =

(
I 0

(v, w) ·M I

)
.

With v′ ≡ v (N ), w′ ≡ w (N ), we have (v′, w′) · γ ∈ (v, w) · γΓ(N ); hence

E(v,w)·γ = E(v′,w′)·γ . Further, suppose γ′ =

(
I 0
M ′ I

)
∈ Spn(Z) so that

Eγ = Eγ′. Then E(v,w)·γ = E(v,w)·γ′, so we have an action of the group
UN × UN on {

Eγ : γ =

(
I 0
M I

)
∈ Spn(Z)

}
.
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When N is square-free,

E(v,w)·σ =

χNn(w2)
∏

0<d≤n
χNd(v

d)

 Eσ

where we write Eσ for Eγσ and E(v,w)·σ for E(v,w)·γσ with γσ chosen as in §4.

Proof. Take γ, γ′, v, w, v′, w′ as in the statement of the proposition. By
Proposition 3.5 we have (v′, w′) · γ ∈ (v, w) · γΓ(N ), so by Proposition 3.2
we have E(v,w)·γ = E(v′,w′)·γ .

Now, given the assumption that Eγ = Eγ′ , there is some G ∈ GLn(Z),

δ =

(
A B
C D

)
∈ Γ0(N ) so that G(M I)δ = (M ′ I) and χ(detG · detD) = 1.

By Lemma 6.1, there is some δ′ =

(
A′ B′

C ′ D′

)
∈ Γ0(N ) so that δ′ ≡ δ (N ),

δ′ ≡ I (v); set δ′′ =

(
A′ B′/v
vC ′ D′

)
(so δ′′ ∈ Γ0(N )). Since SLn(Z) maps

onto SLn(Z/NZ), we can find E ∈ SLn(Z) so that

E ≡
(
w · detG

I

)
G

(
w

I

)
(N );

set G′ =

(
detG

I

)
E. Take

(
r s
t u

)
∈ SL2(Z) so that(

r s
t u

)
≡
(
w 0
0 w

)
(N ),

and set

β =


r s

In−1 0
t u

0 In−1


(so β ∈ Γ0(N )). Then

G′
(
(v, w) ·M I)

)
β−1δ′′β ≡

(
(v, w) ·M ′ I)

)
(N ),

so
(
(v, w) · M ′ I)

)
∈ GLn(Z)

(
(v, w) · M I)

)
Γ0(N ). Since χ(β−1δ′′β) =

χ(detD) and χ(detG′) = χ(detG), by Proposition 3.2 we have E(v,w)·γ =
E(v,w)·γ′ .

Now suppose N is square-free. For all primes q|N , we have rankq(v, w) ·
M = rankqM, so ((v, w) ·Mσ I) ∈ SLn(Mσ I)Γ0(N ). Fix a prime q|N and
take d = rankqMσ. Thus by Proposition 3.5, we have E(v,w)·σ = χ((v, w) ·
Mσ, I)Eσ. If d = 0 then χq((v, w) ·Mσ, I) = χq(0, I) = 1. If 0 < d < n then

χq((v, w) ·Mσ, I) = χq

vw2

vId−1

0

 , I

 = χq(v
dw2),

and since χ2
q = 1, χq(v

dw2) = χq(v
d). If d = n then χq((v, w) ·Mσ, I) =

χq(v
nw2). �
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Suppose Eσ 6= 0. We have (1,−1) · γσ = γ±γσγ±, and Γ+
(1,−1)·γσ =

γ±Γ+
γσγ±, so χ is trivial on Γ+

(1,−1)·γσ and hence E(1,−1)·σ 6= 0. With Γ0(N ) =

∪δΓ+
(1,−1)·γσ (disjoint), left multiplication by γ± gives us Γ0(N ) = ∪δΓ+

γσγ±δ

(disjoint). Then

E(1,−1)·σ
∑
δ

χ(δ)E∗|γ±γσγ±|δ

= χ(γ±)
∑
δ

χ(δ)E∗|γσ|γ±δ

= Eσ.

If ((1,−1) · Mσ I) = E(Mσ I)γ for some E ∈ SLn(Z) and γ ∈ Γ0(N ),
then by Proposition 3.2 we have E(1,−1)·σ = χ(γ)Eσ, so from above we
must have χ(γ) = 1. Thus if (M N) ∈ SLn(Z)(Mσ I)γ′ and (M N) ∈
SLn(Z)((1,−1) ·Mσ I)γ′′ for γ′, γ′′ ∈ Γ0(N ), we have χ(γ′) = χ(γ′′).

So with χ(M,N) = χ(γ) where (M N) ∈ SLn(Z)(Mσ I)γ or (M N) ∈
SLn(Z)((1,−1) ·Mσ I)γ for γ ∈ SLn(Z), χ(M,N) is well-defined. Also,
Eσ = 1

2(Eσ +E(1,−1)·σ), a fact we will use in the proofs of Theorems 5.2 and
5.4.

Theorem 5.2. Suppose Eσ 6= 0; fix a prime p - N and p so that pp ≡ 1 (N ).
Then

Eσ|T (p) =

n∑
r=0

χ(pn−r)pk(n−r)−(n−r)(n+r+1)/2βp(n, r)E(p,pr)·σ.

Proof. Write Kr for Kr(p), Xr for Xr(p), β(m, r) for βp(m, r).
When Eσ′ 6= 0, set

δ =

(
I 0
−Mσ′ I

)(
I 0

(pp)3Mσ′ I

)
.

So δ ∈ Γ(N ), and hence by Proposition 3.2, Eγσ = Eγσδ. Thus we may
replace γσ′ by γσ′δ (effectively, we may assume p3|Mσ′).

Now, by Proposition 2.1, we have

Eσ(τ)|T (p) = pkn−n(n+1)/2
∑

(M N)
r,G,Y

χ(pn−r)χ(M,N)

· det(pMX−1
r G−1τ + pMX−1

r Y tG+NXr
tG)−k.

Here SLn(Z)(M N) varies over SLn(Z)(Mσ I)Γ0(N ), 0 ≤ r ≤ n, and for
each r, G varies over SLn(Z)/Kr, Y varies over Yr(p); recall that since p - N ,
we can take G ≡ I (N ), Y ≡ 0 (N ). Write M = (M ′1 M

′
2), N = (N ′1 N

′
2)

with M ′1, N
′
1 n×r, and let s = rankp(M

′
1 N

′
2). We can use left multiplication

from SLn(Z) to adjust our representative (M N) to assume that

M =

(
pM1 M2

M3 M4

)
, N =

(
N1 pN2

N3 N4

)
where M3, N3 are s × r; so rankp(M3 N4) = s, and rankp(M2 N1) = n − s
since rankq(M N) = n. Set

(M ′G N ′ tG−1) = X−1
n−s(pMX−1

r NXr + pMX−1
r Y );
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so

rankp(M
′ N ′) = rankp(pX

−1
n−sMX−1

r X−1
n−sNXr)

= rankp

(
M1 M2 N1 N2

M3 pM4 pN3 N4

)
= n,

and hence (M ′, N ′) = 1. Note that

det(M ′τ +N ′)−k = pk(n−s) det(pMX−1
r G−1τ + pMX−1

r Y tG+NXr
tG)−k.

We know

Eσ|T (p) =
1

2
(Eσ + E(1,−1)·σ)|T (p)

=
1

2

∑
σ′

cσ,σ′(Eσ′ + E(1,−1)·σ′)

for some cσ,σ′ ∈ C. So to compute cσ,σ′ for any given σ′, we first identify
those r, s,G, Y and

SLn(Z)(M N) ∈ GLn(Z)(Mσ I)Γ0(N )

so that

X−1
n−s(pMX−1

r G−1 NXr
tG+ pMX−1

r Y tG)

∈ SLn(Z)(Mσ′ I) ∪ SLn(Z)((1,−1) ·Mσ′ I).

Equivalently, we identify r, s,G, Y and SLn(Z)-equivalence classes

SLn(Z)Xn−sE

(
1

p
M ′GXr

(
tG−1 − 1

p
M ′GY

)
X−1
r

)
that lie in GLn(Z)(Mσ I)Γ0(N ), where M ′ = Mσ′ or (1,−1) · Mσ′ , and
E ∈ SLn(Z). Note that we only need to consider E ∈ tKn−s\SLn(Z), as
SLn(Z)Xn−sE = SLn(Z)Xn−s if and only if E ∈ tKn−s; note also that we
can take E ≡ I (N ).

Take M ′ = Mσ′ or (1,−1) ·Mσ′ (some σ′). Recall that we can assume
p3|Mσ′ , so with

(M N) = Xn−sE

(
1

p
M ′GXr

(
tG−1 − 1

p
M ′GY

)
X−1
r

)
,

we have M ≡ 0 (p), and we have N integral with rankpN = n if and only
if n− s = r and E tG−1 ∈ tKr (independent of the choice of Y ). We know

there are pr(r+1)/2 choices for Y , and by Lemma 6.2, β(n, r) choices for G.

also, with n−s = r and E ∈ tKr tG, we have (M N) ≡
(

1
pXrM

′Xr I
)

(N ).

So when (
1

p
XrM

′Xr I

)
∈ GLn(Z)(Mσ I)Γ0(N ),

we get a contribution of

χ(pXrMσ′Xr, I)χ(pn−r)pk(n−r)+(r−n)(r+n+1)/2β(n, r)

toward cσ,σ′ (and a contribution of 0 otherwise).
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To determine when
(

1
pXrM

′Xr I
)
∈ GLn(Z)(Mσ I)Γ0(N ), take E′ ∈

SLn(Z), γ ∈ Γ0(N ); then take E′′ ∈ SLn(Z), γ′ ∈ Γ0(N ) so that E′′ ≡ I (p),
E′′ ≡ E′ (N ), γ′ ≡ I (p), γ′ ≡ γ (N ). Then set E′r = X−1

r E′′Xr,

γr =

(1
pXr

X−1
r

)
γ′
(
pX−1

r

Xr

)
;

so E′r ∈ SLn(Z), γr ∈ Γ0(N ). Then
(

1
pXrM

′Xr I
)

is equal to E′(Mσ I)γ

or to E′((1,−1) ·Mσ I)γ if and only if

(M ′ I) ≡ E′rX−1
r (Mσ I)

(
pX−1

r

Xr

)
γr (N )

or

(M ′ I) ≡ E′rG±X−1
r (Mσ I)

(
pX−1

r

Xr

)
γ±γr (N ).

Hence using Proposition 3.3, we have
(

1
pXrM

′Xr I
)
∈ GLn(Z)(Mσ I)Γ0(N )

if and only if (M ′ I) ∈ GLn(Z)(pX−1
r MσX

−1
r I)Γ0(N ). Note that when

r > 0, we can find Gr ∈ SLn(Z) so that Gr ≡

pr−1

pIr−1

I

 (N ), and

then

Gr(pX
−1
r MσX

−1
r I)

(
tGr

G−1
r

)
≡ ((p, pr) ·Mσ I) (N ).

Thus
(

1
pXrM

′Xr I
)
∈ GLn(Z)(Mσ I)Γ0(N ) if and only if

(M ′ I) ∈ GLn(Z)((p, pr) ·Mσ I)Γ0(N ).

Also, by Proposition 3.2, we have χ(γr)Eσ′ = E(p,pr)·σ. Therefore Eσ|T (p) =∑n
r=0 χ(pn−r)pk(n−r)+(r−n)(r+n+1)/2E(p,pr)·σ, as claimed. �

Definition. Let UN = (Z/NZ)×, ψ ∈ ̂UN × UN , the character group of
UN × UN . Set

Eσ,ψ =
∑

v,w∈UN

ψ(v, w)E(v,w)·σ.

Below we will show that when non-zero, Eσ,ψ is an eigenform for all
T (p), Tj(p

2), p prime not dividing N . Note that by orthogonality of charac-
ters,

span{Eu·σ : u ∈ UN × UN } = span{Eσ,ψ : ψ ∈ ̂UN × UN }.

Also, we have ψ(v, w) = ψ1(v)ψ2(w) where ψ1, ψ2 are characters on UN ;
using Proposition 5.1, when N is square-free we have

Eσ,ψ =
∑

v,w∈UN

ψ(v, w)

 ∏
0<d≤n

χNd(v
d)

χNn(w2)Eσ,

so Eσ,ψ = 0 unless Eσ 6= 0 and ψ1 =
∏

0<d≤n χ
d
Nd , ψ2 = χ2

Nn where Nd is

the product of all primes q|N so that rankqMσ = d.
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Corollary 5.3. Suppose Eσ 6= 0, and let p be a prime with p - N . Let
ψ be a character on UN × UN ; so ψ(v, w) = ψ1(v)ψ2(w) where ψ1, ψ2 are
characters on UN . Then Eσ,ψ|T (p) = λσ,ψ(p)Eσ,ψ where

λσ,ψ(p) = ψ1(p)ψ2(pn) ·
n∏
i=1

(ψ2χ(p)pk−i + 1).

When N square-free, Eσ|T (p) = λσ(p)Eσ and Ẽσ|T (p) = λσ(p)Ẽσ where Ẽσ
is as in Corollary 4.3 and

λσ(p) =

 ∏
0<d≤n

χNd(p
d)

 n∏
i=1

(
χ(p)χNn(p2)pk−i + 1

)
.

Proof. Write β(m, r) for βp(m, r). As in the proof of Theorem 5.2, we can

assume p3|Mσ. Identify p−1 with p where pp ≡ 1 (N ).
With v, w varying over UN and r varying so that 0 ≤ r ≤ n, we have

Eσ,ψ|T (p) = pkn−n(n+1)/2
∑
v,w,r

ψ(v, w)χ(pn−r)p−kr+r(r+1)/2β(n, r)E(pv,prw)·σ.

Making the change of variables v 7→ pv and w 7→ prw, we get

Eσ,ψ|T (p) = ψ1(p)χ(pn)pkn−n(n+1)/2S(n, k)Eσ,ψ
where

S(n, k) =
n∑
r=0

ψ2χ(pr)p−kr+r(r+1)/2β(n, r).

Using that β(n, r) = prβ(n− 1, r) + β(n− 1, r − 1), we find that

S(n, k) = (ψ2χ(p)p1−k + 1)S(n− 1, k − 1)

=
n∏
i=1

(ψ2χ(p)pi−k + 1)

= ψ2χ(pn)p−nk+n(n+1)/2
n∏
i=1

(ψ2χ(p)pk−i + 1).

Now suppose N is square-free. With ψ1 =
∏

0<d≤n χ
d
Nd and ψ2 = χ2

Nn ,

we have Eσ,ψ = |UN |2 · Eσ; recalling that χNd = χNd for 0 < d < n (see
Proposition 3.6), the above result gives us Eσ|T (p) = λσ(p)Eσ, as claimed.

We also have Ẽσ =
∑

α≥σ (N ) aσ,αEα with aσ,σ = 1; since the Hecke operators

commute, the multiplicity-one result of Corollary 4.3 tells us Ẽσ = λσ(p)Ẽσ.
�

Theorem 5.4. With p a prime not dividing N ,

Eσ|Tj(p2) = βp(n, j)
∑
r+s≤j

χ(pj−r+s)pk(j−r+s)−(j−r)(n+1)

· βp(j, r)βp(j − r, s) symp(j − r − s)E(1,ps−r)·σ

(where symp(t) is the number of invertible, symmetric t× t matrices modulo
p).
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Proof. To a large extent, we follow the line of reasoning in the proof of The-
orem 5.2. We write Kr,s for Kr,s(p), Xr,s for Xr,s(p), β(m, r) for βp(m, r).

As discussed at the beginning of the proof of Theorem 5.2, we can modify
our representatives (Mσ′ I) to assume p3|Mσ′ . By Proposition 2.1, we have

Eσ(τ)|Tj(p2) =
∑

χ(pj−n0+n2)χ(M,N)pj(k−n−1)

· det(MX−1
n0,n2

G−1τ +MX−1
n0,n2

Y tG+NXn0,n2
tG)−k

where SLn(Z)(M N) varies over SLn(Z)(Mσ I)Γ0(N ), n0, n2 ∈ Z≥0 vary
subject to n0 + n2 ≤ j, G ∈ SLn(Z)/Kn0,n2 , Y ∈ Yn0,n2(p2); note that we
can assume that Y ≡ 0 (N ) and, using Lemma 6.1, that G ≡ I (N ). Given
(M N) ∈ SLn(Z)(Mσ I)Γ0(N ) and

Y =


Y0 Y2 Y3 0
tY2 Y1/p 0
tY3 0
0

 ∈ Yn0,n2(p2),

we decompose M,N into 3 × 4 block matrices as follows. First, write
M = (M ′9 M ′10 M ′11 M ′12), N = (N ′9 N ′10 N ′11 N ′12) where M ′9, N

′
9 are

n × n0, M ′10, N
′
10 are n × (j − n0 − n2), and M ′12, N

′
12 are n × n2. Let

s = rankp(M
′
9 M ′10 N ′12); using left multiplication from SLn(Z), we can

assume

M =

(
pM ′5 pM ′6 M ′7 M ′8
M9 M10 M11 M12

)
, N =

(
N ′5 N ′6 N ′7 pN ′8
N9 N10 N11 N12

)
,

where M ′8, N
′
8 are (n−s)×n2, M9, N9 are s×n0, M10, N10 are s×(j−n0−n2)

(so s = rankp(M9 M10 N12)). Take r so that

n− r = rankp

(
M ′5 M ′7 N ′6 +M ′6Y1 N ′7 N ′8
M9 0 M10Y1 0 N12

)
.

Thus using left multiplication from SLn(Z) (leaving the lower s rows fixed),
we can assume p divides the upper r rows of (M ′5 M

′
7 N

′
6 + M ′6Y1 N

′
7 N

′
8),

and so

M =

p2M1 pM2 pM3 M4

pM5 pM6 M7 M8

M9 M10 M11 M12

 , N =

N1 N2 pN3 p2N4

N5 N6 N7 pN8

N9 N10 N11 N12


with M1, N1 r × n0. Also, since p divides the upper r rows of N ′6 + M ′6Y1,
we have N2 ≡ −M2Y1 (p) and

rankp

(
M5 M7 N6 +M6Y1 N7 N8

M9 0 M10Y1 0 N12

)
= n− r.

Note that we necessarily have rankp(M4 N1 N2) = r; since Y1 is invertible
modulo p and N2 ≡ −M2Y1 (p), we have rankp(M2 M4 N1) = r. Set

(M ′G N ′ tG−1) = X−1
r,s (MX−1

n0,n2
NXn0,n2 +MX−1

n0,n2
Y ).



HECKE OPERATORS ON SIEGEL EISENSTEIN SERIES 33

Hence M ′, N ′ are integral, and with Y ′ =


Y0 Y2 Y3 0
tY2
tY3

0

 , we have

rankp(M
′ N ′)

= rankp(M
′G N ′ tG−1)

= rankp(M
′G N ′ tG−1 −M ′GY ′)

= rankp

M1 M2 M3 M4 N1 (N2 +M2Y1)/p N3 N4

M5 0 M7 0 0 N6 +M6Y1 N7 N8

M9 0 0 0 0 M10Y1 0 N12


≥ rankp

M1 M2 0 M4 N1 0 0 0
M5 0 M7 0 0 N6 +M6Y1 N7 N8

0 0 0 0 0 M10Y1 0 N12


= n.

So (M ′ N ′) is an integral coprime pair, and

det(MX−1
n0,n2

G−1τ +NXn0,n2
tG+MX−1

n0,n2
Y tG)−k

= pk(s−r) det(M ′τ +N ′)−k.

Now take an index σ′, E ∈ tKr,s\SLn(Z), and set

(M N) = Xr,sE(Mσ′GXn0,n2
tG−1X−1

n0,n2
−M ′GYX−1

n0,n2
)

where M ′ is Mσ′ or (1,−1) ·Mσ′ . We first determine exactly when (M N)
is an integral coprime pair, and then we determine when

(M N) ∈ GLn(Z)(Mσ I)Γ0(N ).

Recall that G = G1G2 (as described in Proposition 2.1) with G1 vary-

ing over SLn(Z)/Kn0,n2 and G2 =

In0

G′

In2

 with G′ varying over

SLn′(Z)/ tK′j′ where n′ = n − n0 − n2, j′ = j − n0 − n2; also recall that

since we can assume p3|Mσ′ , we have M ≡ 0 (p). So to have (M N) integral
and coprime, we need Xr,sE

tG−1Xn0,n2 integral and invertible modulo p.
Since Xn0,n2 and G2 commute, to have Xr,sE

tG−1Xn0,n2 integral, we need

E tG−1
1 =

 N1 N2 N3

pN4 N5 N6

p2N7 pN8 N9

 where N1 is r×n0, N9 is s×n2, which means

we have rankpN1 = n0, rankpN9 = s. Then

N ≡

N1 pN2 p2N3

N4 N5 pN6

N7 N8 N9

 (p2),

so to have N invertible modulo p, we need rankpN1 = r, rankpN9 = n2,
meaning r = n0, s = n2; we then must have rankpN5 = n − n0 − n2

since E tG−1
1 is invertible modulo p. So suppose r = n0, s = n2, and fix

G1. Then we have Xr,sE
tG−1

1 X−1
r,s integral if and only if E tG−1

1 ∈ tKr,s;
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consequently, (M N) is integral and coprime if and only if r = n0, s = n2,
and E ∈ tKr,s tG1.

To summarise: For any choices ofG1 ∈ SLn(Z)/Kn0,n2 , G2 ∈ SLn′(Z)/K′j′ ,
Y ∈ Yr,s(p2), we have

(M N) = Xr,sE(Mσ′GXn0,n2
tG−1X−1

n0,n2
−M ′GYX−1

n0,n2
)

integral and coprime if and only if r = n0, s = n2, and E ∈ tKr,s tG1. There
are prsβ(n, r)β(n − r, s) choices for G1, β(n − r − s, j − r − s) choices for

G2, and pr(r+1)+r(n−r−s) symp(j − r− s) = pr(n−s+1) symp(j − r− s) choices
for Y .

With (M N) integral and coprime, we have χ(M,N) = χ(Xr,sMσ′Xr,s, I),
and arguing as in the proof of Theorem 5.2, we find that

(M N) ∈ GLn(Z)(Mσ I)Γ0(N )

if and only if (Mσ′ I) ∈ GLn(Z)((1, pr−s) ·Mσ I)Γ0(N ). Also, E(1,pr−s)·σ =

χ((1, pr−s) ·Mσ, I)Eσ′ . Note also that

β(n, r)β(n− r, s)β(n− r − s, j − r − s)

=
µ(n, r)µ(n− r, s)µ(n− r − s, j − r − s)

µ(r, r)µ(s, s)µ(j − r − s, j − r − s
µ(j, r + s)

µ(j, r + s)

= β(n, j)β(j, r)β(j − r, s).
For this the theorem follows. �

We now choose a different set of generators for the Hecke algebra to obtain
more attractive eigenvalues.

Definitions. Let p be a prime not dividing N , and fix j, 1 ≤ j ≤ n. As in
[7], we set

T̃j(p
2) =

∑
0≤`≤j

χ(pj−`)p(j−`)(k−n−1)βp(n− `, j − `)T`(p2)

where T0(p2) is the identity map. The effect of this averaging is to remove
on Y1 the condition that p - detY1 (where Y ∈ Yn0,n2(p2) is as described in

Proposition 2.1). For u ∈ UN and γ =

(
I 0
M I

)
∈ Spn(Z), we define

R(u)Eγ = E(1,u)·γ ,

and we extend R(u) linearly to E(n)
k (N , χ), which we know is spanned by

all such Eγ ; by Proposition 5.1, R(u) is well-defined. By Theorems 5.2 and
5.4, we see that R(u) commutes with T (p) and Tj(p

2) (p prime, p - N ,
1 ≤ j ≤ n). Thus

{T (p), Tj(p
2), R(p) : prime p - N , 0 ≤ j ≤ n }

generates a commutative algebra of operators on E(n)
k (N , χ). Set

T ′j(p
2) =

j∑
i=0

(−1)ipi(i−1)/2βp(n− j + i, i)T̃j−i(p
2)R(pi)

where pp ≡ 1 (N ). (Recall that R(u) is defined for any u ∈ Z with (u,N ) =
1, so R(pi) makes sense.)
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Corollary 5.5. We have

Eσ,ψ|T ′j(p2) = λ′j;σ,ψ(p2)Eσ,ψ

where

λ′j;σ,ψ(p2) = βp(n, j)p
(k−n)j+j(j−1)/2χ(pj)

j∏
i=1

(ψ2χ(p)pk−i + 1).

When N is square−free, we have Eσ|T ′j(p2) = λ′j;σ(p2)Eσ and Ẽσ|T ′j(p2) =

λ′j;σ(p2)Ẽσ where

λ′j;σ(p2) = βp(n, j)p
(k−n)j+j(j−1)/2χ(pj)

j∏
i=1

(χχ2
Nn(p)pk−i + 1).

Proof. Write β(m, r) for βp(m, r). Using Theorem 5.4, averaging over v, w ∈
UN (and replacing w by wpr−s inside the sum on r, s in the formula of

Theorem 5.4), we get Eσ,ψ|T̃j(p2) = λ̃j;σ,ψ(p2)Eσ,ψ where

λ̃j;σ,ψ(p2) =
∑
`,r,s

χ(pj+s−r)ψ2(ps−r)pj(k−n−1)+r(n+1)+k(s−r)

· β(n, `)β(n− `, j − `)β(`, r)β(`− r, s) symp(`− r − s)

where 0 ≤ ` ≤ j, 0 ≤ r+ s ≤ `, or equivalently, 0 ≤ r+ s ≤ j, r+ s ≤ ` ≤ j.
We make the change of variables ` 7→ j − ` and use that

β(n, j − `)β(n− j + `, `)β(j − `, r)β(j − `− r, s)µ(j, `)

µ(j, `)

= β(n, j)β(j, r)β(j − r, s)β(j − r − s, `)
= β(n, j)β(j, r)β(j − r, s)β(j − r − s, j − `− r − s).

Now we make the change of variable ` 7→ j − `− r − s, we get

λ̃j;σ,ψ(p2) = β(n, j)
∑

0≤r+s≤j
χ(pj+s−r)ψ2(ps−r)pj(k−n−1)+r(n+1)+k(s−r)

β(j, r)β(j − r, s) ·
∑

0≤`≤j−r−s
β(j − r − s, `) symp(`).

By Lemma 6.7, the sum on ` is p(j−r−s)(j−r−s+1)/2.
We have Eσ,ψ|R(pi) = ψ2(pi)Eσ,ψ. Thus Eσ,ψ|T ′j(p2) = λ′j;σ,ψ(p2)Eσ,ψ

where

λ′j;σ,ψ(p2)

=
∑
i,r,s

(−1)ipi(i−1)/2β(n− j + i, i)ψ2(pi)χ(pj−i+s−r)ψ2(ps−r)

· p(j−i−r)(k−n−1)+ks+(j−i−r−s)(j−i−r−s+1)/2

β(n, j − i)β(j − i, r)β(j − i− r, s)
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where 0 ≤ i ≤ j, 0 ≤ r ≤ j − i, 0 ≤ s ≤ j − i − r. Making the change of
variable r 7→ j − i− r we get

λ′j;σ,ψ(p2) =
∑
i,r,s

(−1)ipi(i−1)/2χ(pr+s)ψ2(ps+r−j)pr(k−n−1)+ks+(r−s)(r−s+1)/2

· β(n− j + i, i)β(n, j − i)β(j − i, j − i− r)β(r, s),

where 0 ≤ i ≤ j, 0 ≤ r ≤ j − i, 0 ≤ s ≤ r, or equivalently, 0 ≤ r ≤ j,
0 ≤ i ≤ j − r, 0 ≤ s ≤ r. Note that

β(n− j + i, i)β(n, j − i)β(j − i, r)µ(j, i)

µ(j, i)

= β(n, j)β(j, r)β(j − r, i).

Also, using the relation β(m, r) = prβ(m− 1, r) + β(m− 1, r − 1), we get

j−r∑
i=0

(−1)ipi(i−1)/2β(j − r, i) =

{
1 if j = r,

0 otherwise.

Hence λ′j;σ,ψ(p2) = χ(pj)pj(k−n−1)+j(j+1)/2β(n, j)S(j, k − j) where

S(j, y) =

j∑
s=0

pys+s(s−1)/2χψ1(ps)β(j, s).

Using the identity β(m, s) = psβ(m− 1, s) + β(m− 1, s− 1), we have

S(j, k − j) = (χψ2(p)pk−j + 1)S(j − 1, k − j + 1)

=

j∏
i=1

(χψ2(p)pk−i + 1),

proving the corollary. �

6. Lemmas

Lemma 6.1. Suppose N ′,N ′′ ∈ Z+ with (N ′,N ′′) = 1.
(a) Given any E′ ∈ SLn(Z), there is some E ∈ SLn(Z) so that E ≡ E′ (N ′)
and E ≡ I (N ′′).
(b) Suppose γ ∈ Γ0(N ′). Then there is some γ′ ∈ Γ0(N ′) so that γ′ ≡ γ (N ′)
and γ′ ≡ I (N ′′).

Proof. (a) Choose y, z ∈ Z so that yN ′′ + zN ′ = 1. Thus (yN ′′, zN ′) = 1,
so there are w, x ∈ Z so that wz(N ′)2 − xy(N ′′)2 = 1. Hence G0 =(
wN ′ xN ′′
yN ′′ zN ′

)
∈ SL2(Z) with G0 ≡ I (N ′′), G0 ≡

(
0 −1
1 0

)
(N ′). For

b ∈ Z, G1 =

(
1 byN ′′
0 1

)
, G2 =

(
1 0

byN ′′ 1

)
, we have G1, G2 ∈ SL2(Z)

with G1, G2 ≡ I (N ′′), G1 ≡
(

1 b
0 1

)
(N ′), G2 ≡

(
1 0
b 1

)
(N ′). Also,

for a ∈ Z so that q - a, take c ∈ Z so that c ≡ 1 (N ′′), c ≡ a (N ′).
Thus (c,N ′N ′′) = 1 so there are u, v ∈ Z so that cu − (N ′N ′′)2v = 1.



HECKE OPERATORS ON SIEGEL EISENSTEIN SERIES 37

Set G3 =

(
c N ′N ′′

vN ′N ′′ u

)
. So G3 ∈ SL2(Z), G3 ≡ I (N ′′), G3 ≡(

c 0
0 c

)
(N ′) (where cc ≡ 1 (N ′)). For any d, 0 ≤ d ≤ n − 2, the map

G 7→

Id G
In−d−2

 is an embedding of SL2(Z) into SLn(Z). Thus

we have matrices that allow us to perform ”local” elementary row and col-
umn operations moduloN ′ within SLn(Z). Hence, given some E′ ∈ SLn(Z),
there are G,G′ ∈ SLn(Z) so that G,G′ ≡ I (N ′′) and GE′G′ ≡ I (N ′); hence
with E = (G′G)−1, we have E ∈ SLn(Z) with E ≡ I (N ′′), E ≡ E′ (N ′).

(b) Write γ =

(
A B
C D

)
; so C ≡ 0 (N ′). Set a = detA; since A tD ≡

I (N ′), we can choose a ∈ Z so that aa ≡ 1 (N ′). So we can choose

G ∈ SLn(Z) so that G ≡
(
a

I

)
A (N ′), G ≡ I (N ′′). We know A tB is

symmetric; set W = N ′′N ′′G−1

(
a

I

)
B where N ′′N ′′ ≡ 1 (N ′). Now take(

w x
y z

)
∈ SL2(Z) so that

(
w x
y z

)
≡
(
a

a

)
(N ′) and

(
w x
y z

)
≡ I (N ′′).

Set

γ′ =


w x

In−1 0
y z

0 In−1

(G GW
0 tG−1

)
;

so γ′ ∈ Γ0(N ′), γ ≡ γ (N ′), and γ′ ≡ I (N ′′). �

Lemma 6.2. Let Λ = Zx1 ⊕ · · · ⊕ Zxn; fix a prime q and let Kd = Kd(q).
The elements of SLn(Z)/Kd are in one-to-one correspondence with lattices
Ω where qΛ ⊆ Ω ⊆ Λ and [Λ : Ω] = qd. The correspondence is given as
follows: For GKd ∈ SLn(Z)/Kd, Ω is the lattice with basis

(x1 . . . xn)G

(
qId

I

)
.

Further, the number of such Ω is β(n, r).

Proof. Given G ∈ SLn(Z), we map G to the sublattice of Λ with basis

(x1 . . . xn)G

(
qId

I

)
.

Clearly each Ω described in the lemma can be obtained this way. Further,
for H ∈ SLn(Z),

(x1 . . . xn)GH

(
qId

I

)
is also a basis for Ω if and only if H ∈ Kd. Also, each such Ω corresponds
to a dimension n − r subspace of Λ/qΛ, of which there are β(n, n − r) =
β(n, r). �



38 LYNNE H. WALLING

For d, r ≥ 0, d+ r ≤ n, let Kd,r(q) be the subspace of SLn(Z) consisting
of matrices G1 B1 B2

C1 G2 B3

C2 C3 G3


where G1 is d× d, G3 is r × r, B1, B3 ≡ 0 (q), B2 ≡ 0 (q2).

Lemma 6.3. Let Λ = Zx1⊕· · ·⊕Zxn; fix a prime q and let Kd,r = Kd,r(q).
For Ω a sublattice of Λ containing q2Λ, let mi denote the multiplicity of qi

among the invariant factors {Λ : Ω}. Then the elements of SLn(Z)/Kd,r
are in one-to-one correspondence with sublattices Ω of Λ containing q2Λ
with m0 = r and m2 = d. The correspondence is given as follows: For
G ∈ SLn(Z)/Kd,r, Ω is the lattice with basis

(x1 . . . xn)G

q2Id
qI

Ir

 .

Further, there are qdrβ(n, d)β(n− d, r) such Ω.

Proof. Given G ∈ SLn(Z), we map G to the sublattice of Λ with basis

(x1 . . . xn)G

q2Id
qI

Ir

 .

Clearly each Ω described in the lemma can be obtained this way. Further,
for H ∈ SLn(Z),

(x1 . . . xn)GH

q2Id
qI

Ir


is also a basis for Ω if and only if H ∈ Kd,r.

On the other hand, given such Ω, we have Ω = q2Λ0 ⊕ qΛ1 ⊕ Λ2 where
Λ = Λ0⊕Λ1⊕Λ2 with rank Λ0 = d, rank Λ2 = r. We can construct all such
Ω as follows. First let ∆ be the preimage in Λ of a dimension n−d subspace
of Λ/qΛ; there are β(n, n− d) = β(n, d) such subspaces. Then let Ω be the
preimage in ∆ of a dimension r subspace of ∆/q∆ that is independent of
qΛ; there are qdrβ(n− d, r) choices. Since ∆ = 1

qΩ∩Λ, a different choice in

step 1 or step 2 of this construction yields a different lattice Ω. �

Remark. Let Λ = Zx1⊕· · ·⊕Zxn, Λ# = Zy1⊕· · ·⊕Zyn where (y1 . . . yn)
is the basis dual to (x1 . . . xn). Then for G ∈ SLn(Z), the basis dual to
(x1 . . . xn)G is (y1 . . . yn) tG−1; thus the elements of SLn(Z)/Kd(q) are
in one-to-one correspondence with subspaces Fy′1 ⊕ · · · ⊕ Fy′d ⊆ Λ#/qΛ# .
Similarly, the elements of SLn(Z)/Kd,r(q) are in one-to-one correspondence

with sublattices Ω′ where q2Λ# ⊆ Ω′ ⊆ Λ# and

(y1 . . . yn) tG−1

Id qI
q2Ir


is a basis for Ω′.
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Lemma 6.4. Fix a prime q; suppose M ′ ∈ Zn,n with d′ = rankqM
′. Let

K=Kd(q), Km,r = Km,r(q), β(m, r) = βq(m, r).

(a) For 0 ≤ d ≤ d′, there are qd(n−d′)β(d′, d) choices for E ∈ Kd\SLn(Z) so
that the top d rows of EM ′ are linearly independent modulo q.
(b) For r,m, s ≥ 0 so that d′ − r ≤ m+ s ≤ d′, there are

β(n− d′, n− r −m− s)β(d′,m+ s)β(m+ s,m)qm(n+r−d′)+s(r+m+s−d′)

choices for E ∈ Km,r\SLn(Z) so that the q-rank of the top m rows of EM ′

is m and the q-rank of the top n− r rows of EM ′ is m+ s.

Proof. (a) Take E0 ∈ SLn(Z) so that q divides the lower n − d′ rows of
E0M

′; as E varies over a set of representatives for Kd\SLn(Z), so does
EE0. Thus we may as well assume that q divides the lower n − d′ rows of
M ′. We know by Lemma 6.2 and the remark preceding this lemma that
each E ∈ Kd\SLn(Z) corresponds to a sublattice Ω = Fy1 ⊕ · · · ⊕ Fyn of
Λ = Fx1 ⊕ · · · ⊕ Fxn with [Λ : Ω] = qn−d, wherey1

...
yn

 =

(
Id

qIn−d

)
E

x1
...
xn

 .

Thus rankq

(
Id

qIn−d

)
EM ′ = d if and only if E is chosen so that Fy1 ⊕

· · ·⊕Fyd is independent of Fxd′+1⊕· · ·⊕Fxn; there are β(d′, d)qd(n−d′) such
subspaces.

(b) Let Λ = Zx1⊕· · ·⊕Zxn, and let Λ( tM ′) mod q denote the subspace
of Fn,1 obtained by replacing each xi by column i of tM ′ modulo q. We
know that each element E ∈ Km,r\SLn(Z) corresponds to a lattice Ω =
Λ0 ⊕ qΛ1 ⊕ q2Λ2 with basis

(x1 . . . xn) tE

Im qI
q2Ir

 .

We want to choose Ω so that, with ∆ = 1
qΩ ∩ Λ = Λ0 ⊕ Λ1 ⊕ qΛ2, the

map Λ 7→ Λ( tM ′) mod q takes Ω to a dimension m subspace and ∆ to a
dimension m+ s subspace. Let mi = rank Λi.

Given Ω a sublattice of Λ containing q2Λ and with m0 = m, m2 = r,

Ω determines a unique dimension n − r sublattice ∆ = 1
qΩ ∩ Λ of Λ/qΛ,

and then with ∆ the preimage of ∆ in Λ, and Ω determines a unique di-
mension m sublattice Ω of ∆/q∆. Thus we can build all Ω corresponding to
Km,r\SLn(Z) by first choosing a dimension n− r subspace ∆ of Λ/qΛ; then

the preimage of ∆ is ∆ = ∆1 ⊕ qΛ2 where Λ2 has rank r and Λ = ∆1 ⊕Λ2.
Then in ∆/q∆, we choose a dimension m subspace Ω that is independent
of qΛ = qΛ2; then the preimage of Ω in ∆ is Ω. So each Ω corresponds to a
(unique) dimension n− r subspace ∆ of Λ/qΛ, and a (unique) dimension m
subspace of ∆/q∆.

We know d′ = dim Λ( tM ′) mod q, so Λ = W ⊕R where

R = ker
(
Λ 7→ Λ( tM ′) mod q

)
.
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So in Λ/qΛ, dimR = n − d′. We choose ∆ of dimension n − r in Λ/qΛ so
that dim ∆ ∩R = n− r −m− s. Thus there are

β(n− d′, n− r −m− s)β(d′,m+ s)q(m+s)(m+s+r−d′)

choices for ∆ so that Λ 7→ Λ( tM ′) mod q takes ∆ to a dimension m + s

subspace. Then ∆/q∆ = U ⊕ R′ where dimU = m + s and R′ ⊆ R + qΛ.

We choose Ω of dimension m and independent of R
′
; so we have β(m +

s,m)qm(n−m−s) choices for Ω ⊆ ∆ so that Λ 7→ Λ( tM ′) mod q takes Ω to
a dimension m subspace. �

Lemma 6.5. Fix a prime q and write β(m, r) for βq(m, r). Suppose (M ′ N ′)
is an n× n coprime symmetric pair such that

M ′ ≡


A1 0 0 0
0 C 0 0
0 0 0 0
0 0 C ′ 0

 (q)

with A1 d1 × d1, C (d4 + d5) × (d4 + d5), C ′ (d7 + d8) × (d7 + d8), and
A1, C, C

′ invertible modulo q. (So with d′ = rankqM
′, we have d′ = d1 +

d4 + d5 + d7 + d8.) Suppose also that d1 + d5 + d7 ≤ j ≤ n− d4− d8, and set
r = j − d1 − d5 + d8. Then there are

β(d4 + d5, d4)β(d7 + d8, d8)q(d4+d8)(j−d1−d5)−d7d8

choices for G ∈ SLn(Z)/Kj so that, writing

M ′G =

M1 M2

M3 M4

M5 M6

 , N ′ tG−1 =

N1 N2

N3 N4

N5 N6


with M1, N1 d1 × j, M5, N5 r × j, we have rankqM1 = d1, M2 ≡ 0 (q),

rankqM4 = d4, rankq

(
M4

M6

)
= d4 + d8, rankq

(
M1

M3

)
= d1 + d5, the lower

n− r − d1 − d4 − d5 rows of N3 are 0 modulo q, and the upper r − d7 − d8

rows of N5 have q-rank r − d7 − d8.

Proof. Let V = Fx1⊕ · · · ⊕Fxn. We know by Lemma 6.2 that the elements
G ∈ SLn(Z)/Kj are in one-to-one correspondence with the subspaces W =

Fx′j+1 ⊕ · · · ⊕ Fx′n where (x′1 . . . x′n) = (x1 . . . xn)G. We translate the
lemma’s criteria on G to criteria on W , and then count such W .

Let V # = Fy1 ⊕ · · · ⊕ Fyn be the dual space for V ; so for G ∈ SLn(F),
(y1 . . . yn) tG−1 is the basis dual to (x1 . . . xn)G. Let V (M ′) denote the
subspace of Fn,1 obtained by replacing each xi by the ith column of M ′

modulo q. We split V as V1⊕V2⊕V3⊕V4 as follows. Let (a1 . . . an) denote
(the columns of) the top d1 + d4 + d5 rows of M ′, (g1 . . . gn) the top d1

rows of M ′; set

V4 = ker
(
V 7→ V (M ′)

)
,

V3 ⊕ V4 = ker
(
V 7→ V (a1 . . . an)

)
,

V2 ⊕ V3 ⊕ V4 = ker
(
V 7→ V (g1 . . . gn)

)
.

(So dimV4 = n−d′, dimV3 = d7 +d8, dimV2 = d4 +d5, dimV1 = d1.) Thus
with W determined by G as above, M ′G meets the criteria of the lemma if
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and only if the map V 7→ V (g1 . . . gn) takes W to a dimension 0 subspace,
V 7→ V (a1 . . . an) takes W to a dimension d4 subspace, V 7→ V (M ′) takes
W to a dimension d4 + d8 subspace.

This splitting V = V1 ⊕ V2 ⊕ V3 ⊕ V4 corresponds to a splitting V # =
V ′1 ⊕ V ′2 ⊕ V ′3 ⊕ V ′4 where V ′1 , V ′1 ⊕ V ′2 , V ′1 ⊕ V ′2 ⊕ V ′3 are uniquely determined
(recall that V ⊥4 = V ′1⊕V ′2⊕V ′3 , etc.). Let (b1 . . . bn) be rows d1 +d4 +d5 +1
through n−d7−d8 of N ′, (c1 . . . cn) be rows d1 +d4 +d5 + 1 through n− r
of N ′.

With U ′ = W⊥ ⊆ V #, N ′ tG−1 meets the criteria of the lemma if and
only if the map V # 7→ V #(c1 . . . cn) takes U ′ to a dimension 0 subspace,
and V # 7→ V #(b1 . . . bn) takes U ′ to a dimension r − d7 − d8 subspace.

Now we construct and count all dimension n − j subspaces W of V so
that the above criteria for W and W⊥ is met.

We know by the symmetry of M ′ tN ′ that

V ′1 ⊕ V ′2 ⊕ V ′3 = ker
(
V # 7→ V #(b1 . . . bn)

)
;

so ker
(
V # 7→ V #(c1 . . . cn)

)
= V ′1 ⊕ V ′2 ⊕ V ′3 ⊕U ′4, with U ′4 ⊆ V ′4 . We need

to choose W so that under the map V # 7→ V #(N ′), U ′ = W⊥ is mapped to
a dimension 0 subspace. Equivalently, we need U ′ ⊆ V ′1⊕V ′2⊕V ′3⊕U ′4, which
means W4 ⊆ W where W4 = (V ′1 ⊕ V ′2 ⊕ V ′3 ⊕ U ′4)⊥ ⊆ V4. (So we can split
V4 = U4⊕W4.) Since (M ′, N ′) = 1, (b1 . . . bn) ≡ (0 D) (q) where D is (n−
d′)× (n− d′) with rankqD = n− d′. So V # 7→ V #(b1 . . . bn) automatically
takes U ′4 to a subspace of dimension r−d7−d8. Since (M ′, N ′) = 1, we also
know rankq(c1 . . . cn) = n− j − d4 − d8. Hence

dim ker
(
V # 7→ V #(c1 . . . cn)

)
= r + d1 + d4 + d5,

so dimU ′4 = r − d7 − d8; thus dimW4 = dimV4 − dimU ′4 = n− j − d4 − d8.
We need dimW = n− j, and we need V 7→ V (a1 . . . an) to take W to a

dimension d4 subspace. Thus W must be of the form W2 ⊕W3 ⊕W4 where
W3 ⊕W4 ⊆ ker

(
V 7→ V (a1 . . . an)

)
= V3 ⊕ V4, dimW3 ⊕W4 = n− j − d4,

and W2 is independent of V3⊕ V4. Since we need V 7→ V (M ′) to take W to
a dimension d4 + d8 subspace, we must have W3 independent of ker

(
V 7→

V (M ′)
)

= V4. So we extend W4 to W3 ⊕W4 where dimW3 = d8 with W3

independent of V4; thus we have β(d7 +d8, d8)qd8(j−d1−d5−d7) choices for W3.
Then we extend W3 ⊕W4 to W2 ⊕W3 ⊕W4 where dimW2 = d4 and W2 is
independent of V3 ⊕ V4; thus we have β(d4 + d5, d4)qd4(j−d1−d5) choices for
W2. �

Lemma 6.6. Suppose N is square-free, χ is a character modulo N , and q
is a prime dividing N . Set F = Z/qZ and

symχ
q (t) =

∑
U∈Ft,tsym

χq(detU).

Then symχ
q (t) 6= 0 if and only if either (1) χq = 1, or (2) χ2

q = 1 and t is
even.

Proof. Say q = 2. Then χq = 1 (since N is square-free), so symχ
q (t) is

the number of invertible, symmetric t× t matrices modulo 2; clearly this is
non-zero.
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So suppose q is odd. Set J =

(
ω

It−1

)
where ω is not a square in F.

We know GLt(F) acts by conjugation on the subset of invertible elements

of Ft,tsym; the orbits are represented by I and J . Note that for U ∈ F t,tsym, U
is in the orbit of I (resp. the orbit of J) if and only if, for some α ∈ F×,
we have detU = α2 (resp. detU = α2ω); also, given α ∈ F×, the number

of U ∈ Ft,tsym with detU = α2 (resp. with detU = α2ω) is the number of

U ∈ Ft,tsym with detU = 1 (resp. with detU = ω). With o(U) the order of
the stabilizer of U , we know o(U) = o(U ′) when U,U ′ are in the same orbit.
Hence

symχ
q (t) =

2

q − 1
· #GLt(F)

o(I)
· 1

2

∑
α∈F×

χq(α
2)

+
2

q − 1
· #GLt(F)

o(J)
· 1

2

∑
α∈F×

χq(α
2ω)

=
#GLt(F)

q − 1

(
1

o(I)
+
χq(ω)

o(J)

) ∑
α∈F×

χ2
q(α).

Thus symχ
q (t) = 0 if χ2

q 6= 1. Suppose χ2
q = 1; then χq(ω) = −1 if and only

if χq 6= 1. Also, by the theory of quadratic forms over finite fields (see, for
instance, [6]), we know o(I) = o(J) if and only if t is odd, so the lemma
follows. �

Lemma 6.7. For p prime, t ∈ Z+, we have
∑t

`=0 βp(t, `) symp(`) = pt(t+1)/2.

Proof. Let F = Z/pZ; take V = Fx1 ⊕ · · · ⊕ Fxt. For each t− `-dimensional
subspace R of V , fix GR ∈ GLt(F) so that R = Fy`+1 ⊕ · · · ⊕ Fyt where

(y1 · · · yt) = (x1 · · · xt)GR. Take Q ∈ Ft,tsym so that rankQ = `. Let (V,Q)
denote the quadratic space with Q the quadratic form on V relative to the
basis (x1 · · · xt). By the uniqueness of the radical of V (with respect to

Q), there exists a unique R so that tGRQGR =

(
U 0
0 0

)
where U ∈ F`,`sym

with U invertible, and there are symp(`) possibilities for U (depending on

Q). Hence Ft,tsym is partitioned into sets {Q : rankQ = ` }, 0 ≤ ` ≤ t,
and given `, {Q : rankQ = ` } is partitioned into sets {Q : tGRQGR =(
U 0
0 0

)
}, R varying over dimension t − ` subspaces of V , of which there

are βp(t, t − `) = βp(t, `), U varying over invertible elements on F`,`sym, of
which there are symp(`). From this the lemma follows. �
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