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level and character. For square-free level, we simultaneously diagonalize the space with
respect to all the Hecke operators, computing the eigenvalues explicitly, and obtain a
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1. Introduction

Automorphic forms appear in almost every area of modern number theory;
Eisenstein series are fundamental examples of automorphic forms. In the case of clas-
sical elliptic modular forms (i.e. holomorphic automorphic forms of integral weight),
Eisenstein series are well-understood: For instance, the Fourier expansions of a “nat-
ural” basis of Eisenstein series have long been known; as well, it has long been known
that the space of Eisenstein series of weight k, level N and character χ has a basis
of simultaneous eigenforms for the Hecke operators {T (p) : p prime, p � N}, and
for {T (p) : p prime} when N is square-free (see, e.g., [9, Chap. IV]). The Fourier
coefficients of these simultaneous eigenforms are (after appropriate normalization)
the Hecke eigenvalues, and are doubly-twisted divisor functions; that is, the mth
Fourier coefficient of such a (normalized) form of weight k is∑

d|m
χ1(d)χ2(m/d)dk−1,

where χ1, χ2 are Dirichlet characters, reflecting the fact that the Fourier coefficients
of Hecke eigenforms carry number theoretic information.
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In the case of Siegel Eisenstein series, our knowledge is much less complete (for
instance, we have limited knowledge of Fourier coefficients for arbitrary degree,
level, and character). However we do have analogues of some of the classical results
regarding the action of Hecke operators. By studying the abstract Hecke algebra,
Evdokimov [3, 4] and Freitag [5] showed that the space of Siegel modular forms
of arbitrary level and character can be diagonalized with respect to the Hecke
operators associated to primes not dividing the level. These results also show that
the subspace of Siegel Eisenstein series is invariant under these Hecke operators.
Further, in [5] Freitag computed some of the eigenvalues of Siegel Eisenstein series
under the Hecke operator T (p)m where p is a prime not dividing the level, and m is
a suitable power. Following his proof of the injectivity of the Hecke operator T (p)
when p is a prime exactly dividing the level of a space of Siegel modular forms [1], in
[2], Böcherer applied powers of T (p) to the level 1 Siegel Eisenstein series, obtaining
a basis for the space of Siegel Eisenstein series of level p and trivial character, and
thereby also obtaining Fourier expansions for this basis. In [12], for p any prime,
we applied an explicit set of matrices for T (p), T1(p2), T2(p2) directly to a basis for
the subspace of Siegel Eisenstein series of degree 2, square-free level, and arbitrary
character; we then constructed a basis of simultaneous eigenforms and computed all
their eigenvalues. Recently in [8], Klosin used adelic methods to compute the Hecke
eigenvalues (for primes not dividing the level) on the space of Hermitian forms on
U(2, 2).

In the current paper, we extend the techniques of [12] to allow arbitrary degree
n, level N , and character χ modulo N . In Sec. 3, for each γ ∈ Spn(Z), we define
a Eisenstein series with character χ corresponding to the Γ0(N )-orbit of Γ∞γ. We
identify necessary conditions for one of these series to be non-zero, and in the case
that N is square-free, we show that these conditions are also sufficient (Proposition
3.6). Next we consider square-free level N and arbitrary character χ modulo N .
We subscript each element of our basis for this space of Eisenstein series by some
σ = (N0, . . . ,Nn) where N0 · · · Nn = N . Using an explicit set of matrices giving
the action of T (q) where q is a prime dividing N , we directly evaluate the action
of T (q) on each basis element Eσ, computing precisely the coefficients in the linear
combination of Eisenstein series that is equal to Eσ|T (q) (Theorem 4.1). This allows
us to show that we can (algorithmically) diagonalize the space of Eisenstein series
with respect to {T (q) : q prime, q|N}, obtaining a new basis {Ẽσ}σ for the space.
With σ = (N0, . . . ,Nn) and q a prime dividing Nd, we show that

Ẽσ |T (q) = λσ(q)Ẽσ with |λσ(q)| = qkd−d(d+1)/2

(Corollary 4.3; note that this recovers a result from [2] in the case that N is prime
and χ is trivial). Since we must have k > n + 1 for absolute convergence of the
Eisenstein series, this shows we have “multiplicity-one”; that is, for Ẽσ �= Ẽρ, there
is some prime q|N so that λσ(q) �= λρ(q). Following this, for 1 ≤ j ≤ n, we directly
evaluate the action of Tj(q2) on the original basis elements Eσ where we still assume
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that q is a prime dividing N (Theorem 4.4). We then compute the Tj(q2)-eigenvalues
for each of the elements in the diagonalized basis (Corollary 4.5).

In Sec. 5, we consider Eisenstein series of arbitrary level N and arbitrary char-
acter χ, and we directly evaluate the action of T (p), Tj(p2) for primes p � N so that
we can explicitly construct a basis of simultaneous eigenforms for these Hecke oper-
ators. To help us diagonalize the space with respect to these operators, we introduce
a group action of UN ×UN on the space of Eisenstein series where UN = (Z/NZ)×

(Proposition 5.1). Then we use characters ψ on this group to average Eisenstein
series relative to this group action; by orthogonality of characters, this yields a
basis {Eσ,ψ} for the space of Eisenstein series, where σ indexes our natural basis.
In Corollary 5.3 we show that for any prime p � N , Eσ,ψ|T (p) = λσ,ψ(p)Eσ,ψ where

λσ,ψ(p) = ψ1(p)ψ2(p
n)

n∏
i=1

(ψ1χ(p)pk−i + 1);

here ψ(v, w) = ψ1(v)ψ2(w). In Theorem 5.4 we evaluate the action of Tj(p2) on
the natural basis. Theorems 5.2 and 5.4 show that the Hecke operators commute
with the group action of UN × UN on the space of Eisenstein series; we let R(w)
be the operator corresponding to the action of the group element (1, w). Then
to obtain more attractive eigenvalues, we introduce operators T ′

j(p
2) so that the

algebra generated by

{T (p), T ′
j(p

2), R(p) : prime p � N , 1 ≤ j ≤ n}
is the algebra generated by {T (p), Tj(p2), R(p) : prime p � N , 1 ≤ j ≤ n}, and in
Corollary 5.5, we show Eσ,ψ|T ′

j(p
2) = λ′j;σ,ψ(p2)Eσ,ψ where

λ′j;σ,ψ(p2) = βp(n, j)p
(k−n)j+j(j−1)/2χ(pj)

j∏
i=1

(ψ2χ(p)pk−i + 1)

(here βp(n, j) is the number of j-dimensional subspaces of an n-dimensional space
over Z/pZ). When N is square-free, we show Eσ,ψ = 0 unless ψ1 =

∏
0<d≤n χ

d
Nd

and
ψ2 = χ2

Nn
(where σ = (N0, . . . ,Nn)), and then with such ψ, Ẽσ|T (p) = λσ,ψ(p)Ẽσ

and Ẽσ |T ′
j(p

2) = λ′j;σ,ψ(p2)Ẽσ (where Ẽσ is as in Corollary 4.3).
Note that when χ2 = 1, T ′

j(p
2) is the operator introduced in [10] and again in

[11] so that θ(n)(genL)|T ′
j(p

2) = λ′j(p
2)θ(n)(genL) where θ(n)(genL) is the averaged

(“genus”) theta series attached to the genus of the lattice L, which is equipped with
a positive definite quadratic form.

As all the arguments herein are valid when considering non-holomorphic Eisen-
stein series in the variables τ and s (defined in Sec. 3), the results extend immedi-
ately to include these forms (with k replaced by k + s in the formulas).

2. Notation and Hecke Operators

For n ∈ Z+, Spn(Z) denotes the group of 2n × 2n integral, symplectic matrices;
we often write these in block form

(A B
C D

)
where A,B,C,D are n × n matrices.
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Subgroups of importance to us include

Γ∞ =

{(
A B

0 D

)
∈ Spn(Z)

}
,

Γ+
∞ =

{(
A B

0 D

)
∈ Spn(Z) : detA = 1

}
,

Γ(N ) = {γ ∈ Spn(Z) : γ ≡ I (N )},

Γ0(N ) =

{(
A B

C D

)
∈ Spn(Z) : C ≡ 0(N )

}
;

here N ∈ Z+. It is well known that for γ =
( ∗ ∗
M N

)
, γ′ =

( ∗ ∗
M ′ N ′

) ∈ Spn(Z), we

have γ′ ∈ Γ+
∞γ if and only if (M ′ N ′) ∈ SLn(Z)(M N) . Suppose

(K L
M N

) ∈ Spn(Z);
then (M N) is a coprime symmetric pair, meaning that M,N are integral, M tN is
symmetric, and for every prime p, rankp(M N) = n, where rankp denotes the rank
over Z/pZ. On the other hand, given any coprime symmetric pair of n×n matrices
(M N), there exists some

(K L
M N

) ∈ Spn(Z). We often write (M,N) = 1 to denote
that a pair of integral matrices (M N) is coprime.

Degree n > 1 Siegel modular forms have as their domain

Hn = {X + iY : X,Y ∈ Rn,nsym, Y > 0},
where Rn,nsym denotes the set of symmetric n× n matrices over R, and Y > 0 means
that the quadratic form represented by Y is positive definite. For n, k,N ∈ Z+ and
χ a Dirichlet character modulo N , a Siegel modular form of degree n, weight k,
level N , character χ is a holomorphic function f : Hn → C (holomorphic in all
variables of τ ∈ Hn) so that for all

(A B
C D

) ∈ Γ0(N ), we have

f((Aτ +B)(Cτ +D)−1) = χ(detD) det(Cτ +D)kf(τ).

(Note that this generalizes the definition of a classical modular form, except in that
case, where n = 1, we also require

lim
τ→i∞

(cτ + d)−kf
(
aτ + b

cτ + d

)
<∞

for all
(a b
c d

) ∈ SL2(Z).) We use M(n)
k (N , χ) to denote the space of all such forms.

To define the Hecke operators, fix a prime p. Set Γ = Γ0(N ) and take f ∈
M(n)

k (N , χ). We define

f |T (p) = pn(k−n−1)/2
∑
γ

χ(γ)f |δ−1γ,

where δ =
(pIn

In

)
, γ varies over

(δΓδ−1 ∩ Γ)\Γ,
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and for γ′ =
(A B
C D

)
,

f(τ)|γ′ = (det γ′)k/2 det(Cτ +D)−kf((Aτ +B)(Cτ +D)−1).

We define

f |Tj(p2) = pj(k−n−1)
∑
γ

χ(γ) f |δ−1
j γ,

where δj =
(Xj

X−1
j

)
, Xj = Xj(p) =

(pIj

In−j

)
, and γ varies over

(δjΓδ−1
j ∩ Γ)\Γ.

To help us describe a set of matrices giving the action of each Hecke operator,
we fix the following notation. For r, s ∈ Z≥0 so that r + s ≤ n, let

Xr,s = Xr,s(p) =


pIr

I

1
p
Is

 (n× n),

Kr,s = Kr,s(p) = Xr,sSLn(Z)X−1
r,s ∩ SLn(Z);

set Xr = Xr,0, Kr = Kr,0.

Proposition 2.1. Let p be a prime, f ∈ M(n)
k (N , χ).

(a) We have

f |T (p) = pn(k−n−1)/2
∑

0≤r≤n
χ(pn−r)

∑
G,Y

f

∣∣∣∣∣∣∣
X

−1
r

1
p
Xr

 (G−1 Y tG
tG

)

where, for each r, G varies over SLn(Z)/Kr(p) and Y varies over

Yr(p) =

{(
Y0

0

)
∈ Zn,nsym : Y0 r × r, varying modulo p

}
.

(Here Zn,nsym denotes the set of integral, symmetric n× n matrices.)
(b) For 1 ≤ j ≤ n,

f |Tj(p2) = pj(k−n−1)
∑

n0+n2≤j
χ(pj−n0+n2)

∑
G,Y

f

∣∣∣∣∣∣
(
X−1
n0,n2

Xn0,n2

)

×
(
G−1 Y tG

tG

)
.
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Here, for each pair n0, n2, G = G1G2, where G1 varies over SLn(Z)/Kn0,n2(p),

G2 =

In0

G′

In2


with G′ varying over SLn′(Z)/ tK′

j′ (p) where n′ = n− n0 − n2, j
′ = j − n0 − n2,

K′
j′ =

(
pIj′

I

)
SLn′(Z)

1
p
Ij′

I

 ∩ SLn′(Z),

and Y varies over Yn0,n2(p2), the set of all integral, symmetric n× n matrices
Y0 Y2 Y3 0
tY2 Y1/p 0
tY3 0

0


with Y0 n0×n0, varying modulo p2, Y1 j

′× j′, varying modulo p provided p � detY1,

and Y2, Y3 varying modulo p with Y3 n0 × n2.

Proof. Fix Λ = Zx1 ⊕ · · · ⊕ Zxn (a reference lattice).
By Lemma 6.2, as G varies over SLn(Z)/Kr , Ω = ΛGXr varies over all lattices

Ω, pΛ ⊆ Ω ⊆ Λ with [Λ : Ω] = pr. Thus by Proposition 3.1 in [7] and (the proof of)
Theorem 6.1 in [7], claim (1) of the proposition follows.

For Ω another lattice on QΛ, let mult{Λ:Ω}(x) be the multiplicity of the value
of x among the invariant factors {Λ : Ω}. By Lemma 6.3, as G1 varies over
SLn(Z)/Kn0,n2(p), Ω = ΛG1Xn0,n2 varies over all lattices Ω, pΛ ⊆ Ω ⊆ 1

pΛ,
with mult{Λ:Ω}(1/p) = n2, mult{Λ:Ω}(p) = n0. Then with Ω = Ω0 ⊕ Ω1 ⊕ Ω2,
Λ = 1

pΩ ⊕ Ω1 ⊕ pΩ2, as G′ varies over SLn′(Z)/ tK′
j′ (p),

Ω1G
′
(
Ij′

0

)
modulo p

varies over all dimension j′ subspaces of Ω1/pΩ1. Thus by Proposition 2.1 in [7] and
(the proofs of) Theorems 4.1 and 6.1 in [7], claim (2) of the proposition follows.

Remark. For N ′ ∈ Z+ so that p � N ′, by Lemma 6.1 we can choose G in the above
proposition so that G ≡ I (N ′), and since N ′Y will vary over a set of representatives
for Yr(p) or Yn0,n2(p2) as Y does, we can choose Y in the above proposition so that
Y ≡ 0 (N ′). Also, when p|N , we have

f |T (p) = pn(k−n−1)/2
∑
Y

f

∣∣∣∣∣
1
p
In

1
p
Y

In

,
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where Y varies over Yn(p), and

f |Tj(p2) = pj(k−n−1)
∑
G,Y

f

∣∣∣∣(X−1
j

Xj

) (
G−1 Y tG

tG

)
,

where G varies over SLn(Z)/Kj(p) and Y varies over Yj,0(p2).

To describe the Hecke eigenvalues, we make use of the following elementary
functions: Fix m ≥ 0. With r > 0,

δ(m, r) = δp(m, r) =
r−1∏
i=0

(pm−i + 1),

µ(m, r) = µp(m, r) =
r−1∏
i=0

(pm−i − 1),

β(m, r) = βp(m, r) = µ(m, r)/µ(r, r)

(note that βp(m, r) is the number of r-dimensional subspaces of an m-dimensional
space over Z/pZ). Take δ(m, 0) = µ(m, 0) = 1. For r < 0, we take β(m, r) = 0.
As well, we will use the following functions: With p prime, t ∈ Z+, and F = Z/pZ,
let symp(t) be the number of invertible matrices in Ft,tsym, the set of symmetric t× t

matrices over F. More generally, let χ be a character of square-free modulus N ,
with p|N ; set

symχ
p (t) =

∑
U∈F

t,t
sym

χp(detU),

and

symχ
p (t− s, s) =

∑
U

χp

(
det

(
U1 U2

tU2 0

))
,

where U =
(U1 U2

tU2 0

) ∈ Ft,tsym with U1 of size (t−s)×(t−s) (so symχ
p (t, 0) = symχ

p (t)).

Note that as U varies over invertible matrices in Ft,tsym, so does U (where UU = I in
Ft,t), we have symχ

p (t) = symχ
p (t); similarly, symχ

p (t − s, s) = symχ
p (t − s, s). Also,

take symχ
p (0) = symχ

p (0, 0) = 1. Although we will not use the precise values of these
functions in this work, one can use the theory of quadratic forms over finite fields
to show that for p odd and ε = (−1

p ),

symχ
p (b, c) =



pm
2+m−cµ(b, b)

µδ(m− c,m− c)
if b+ c = 2m and χp = 1,

εmpm
2
µ(b, b)

µδ(m− c,m− c)
if b+ c = 2m, χ2

p = 1, and χp �= 1,

pm
2+mµ(b, b)

µδ(m− c,m− c)
if b+ c = 2m+ 1 and χp = 1,

0 otherwise,
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and for p = 2,

symχ
2 (b, c) =


2m(m+1)µ(b, b)

µδ(m− c,m− c)
if b + c = 2m+ 1,

2m(m+1)µ(b, b)
µδ(m− 1,m− 1)

(
µ(2m− 1, 2c)
µδ(m− 1, c)

+ µδ(m, c)
)

if b + c = 2m.

(Here µ = µp, δ = δp.)
For p prime, M ∈ Zn,m, we write rankpM to denote the rank of M over Z/pZ;

we will also refer to this rank as the p-rank of M .
Recall that for χ a character modulo N with N = N ′N ′′ so that (N ′,N ′′) = 1,

we know that χ factors uniquely as χN ′χN ′′ where χN ′ is a character modulo N ′

and χN ′′ is a character modulo N ′′.
In what follows, we will sometimes use the matrices G± =

(−1
In−1

)
and γ± =(G±

G±

)
.

3. Defining Siegel Eisenstein Series

Fix k, n,N ∈ Z+, χ a character modulo N . To define Eisenstein series for Γ0(N )
with k even, one can begin by defining a Γ(N )-Eisenstein series∑

δ∗
1(τ)|δ∗ where 1(τ)|

(
A B

C D

)
= det(Cτ +D)−k

and δ∗ varies so that Γ∞Γ(N ) =
⋃
δ∗ Γ∞δ∗ (disjoint); then for γ ∈ Spn(Z), one can

consider ∑
δ∗,δ

χ(δ) 1(τ)|δ∗γδ,

where δ varies so that Γ∞γΓ0(N ) =
⋃
δ Γ∞Γ(N )γδ (disjoint). However, when k is

odd, these sums are not well defined, since with γ± as defined in Sec. 2, we have
γ± ∈ Γ∞ and 1(τ)|γ±δ∗ = (−1)k1(τ)|δ∗ for any δ∗ ∈ Γ(N ). Further, for k even or
odd, the latter sum is not well defined unless χ is trivial on any matrix in Γ0(N )
that stabilizes Γ∞Γ(N )γ. Thus we proceed as follows.

Let δ∗ ∈ Γ(N ) vary so that

Γ+
∞Γ(N ) =

⋃
δ∗

Γ+
∞δ

∗ (disjoint),

and set

E∗(τ) =
∑
δ∗

1(τ)|δ∗.

Since 1(τ)|δδ∗ = 1(τ)|δ∗ for δ ∈ Γ+
∞, E∗ is well defined. Further, provided k >

n+ 1, E∗(τ) converges absolutely uniformly on subsets {τ ∈ Hn :�τ ≥ Y } for any
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Y ∈Rn,nsym with Y > 0, and so E∗ is analytic (in all variables of τ). So suppose
k > n+ 1. Now take β ∈ Γ0(N ) so that

Γ0(N ) =
⋃
β

Γ∞Γ(N )β (disjoint),

and for γ ∈ Spn(Z), set

E′
γ =

∑
β

χ(β)E∗|γβ +
∑
β

χ(γ±β)E∗|γ±γβ

(where γ± is as defined in Sec. 2). Note that

Γ∞γΓ0(N ) =
⋃
β

(Γ+
∞Γ(N )γβ ∪ Γ+

∞Γ(N )γ±γβ).

Let

Γ+
γ = {δ′ ∈ Γ0(N ) : Γ+

∞Γ(N )γδ′ = Γ+
∞Γ(N )γ}

denote the subgroup of Γ0(N ) that stabilizes Γ+∞Γ(N )γ. Thus with δ varying over
Γ+
γ \Γ0(N ), δ′ over Γ(N )\Γ+

γ , and noting that E∗|γ± = (−1)kE∗, we find

E′
γ = (1 + χ(−1)(−1)k)

∑
δ′,δ

χ(δ′δ) E∗|γδ′δ.

Since δ′ ∈ Γ+
γ v we have γδ′γ−1 ∈ Γ+

∞Γ(N ), so E∗|γδ′ = E∗|γ. Hence

E′
γ = (1 + χ(−1)(−1)k)

∑
δ′
χ(δ′)

∑
δ

χ(δ)E∗|γδ.

Thus E′
γ = 0 if χ(−1) �= (−1)k, or if χ is not trivial on Γ+

γ . Also note that when
N ≤ 2, we have γ± ∈ Γ(N ) and hence E∗ = E∗|γ± = (−1)kE∗; so E′

γ = 0 if N ≤ 2
and k is odd.

Suppose N > 2 or k is even; then

lim
τ→i∞I

E∗(τ) = #{δ∗ ∈ Γ+
∞\Γ+

∞Γ(N ) : δ∗ ∈ Γ∞}

=

{
2 if N ≤ 2,

1 if N > 2.

Set

Eγ =
1

2[Γ+
γ : Γ(N )]

E′
γ .

Suppose χ(−1) = (−1)k, χ is trivial on Γ+
γ , and suppose still that either N > 2 or

k is even; we show that Eγ �= 0. We have

Eγ(τ) =
∑
δ∗,δ

χ(δ)1(τ)|δ∗γδ,

where δ∗ varies over Γ+
∞\Γ+

∞Γ(N ) and δ varies over Γ+
γ \Γ0(N ). We have δ∗γδγ−1 ∈

Γ∞ only if Γ∞Γ(N )γδ = Γ∞Γ(N )γ, and since Γ∞ = Γ+
∞ ∪ γ±Γ+

∞, we have

In
t. 

J.
 N

um
be

r 
T

he
or

y 
20

17
.1

3:
32

5-
37

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
B

R
IS

T
O

L
 o

n 
08

/0
8/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



December 15, 2016 13:11 WSPC/S1793-0421 203-IJNT 1750021

334 L. H. Walling

δ∗γδγ−1 ∈ Γ∞ only if δ ∈ Γ+
γ or δ ∈ Γ+

γ γ
−1γ±γ. If δ ∈ Γ+

γ then E∗|γδγ−1 = E∗

and by assumption χ(δ) = 1. If δ = βγ−1γ±γ−1 for some β ∈ Γ+
γ , then with our

assumptions,

χ(δ)E∗|γδγ−1 = χ(γ±)E∗|γ± = E∗.

Thus

lim
τ→i∞I

Eγ(τ)|γ−1 = #{δ∗, δ : δ∗γδγ−1 ∈ Γ∞}
(where δ∗ varies over Γ+

∞\Γ+
∞Γ(N ), δ varies over Γ+

γ \Γ0(N )), and this number is
at least 1. Hence Eγ �= 0. Noting that E′

γ±γ = (−1)kE′
γ , as γσ varies over a set of

representatives for Γ∞\Spn(Z)/Γ0(N ), the non-zero E′
γσ

are linearly independent.
Thus we have the following proposition.

Proposition 3.1. For γ ∈ Spn(Z), Eγ be as defined above.

(a) We have Eγ �= 0 if and only if (1) χ(−1) = (−1)k, (2) χ is trivial on Γ+
γ , and

(3) either N > 2 or k is even.
(b) When Eγ �= 0, we have Eγ(τ) =

∑
δ χ(δ) 1(τ)|γδ where δ ∈ Γ0(N ) varies so

that Γ+
∞γΓ0(N ) =

⋃
δ Γ+

∞γδ (disjoint); equivalently, with γ =
(A B
C D

)
,

Eγ(τ) =
∑

(M N)

χ(M,N) det(Mτ +N)−k,

where (M N) are coprime symmetric pairs varying so that

SLn(Z)(C D)Γ0(N ) =
⋃

(M N)

SLn(Z)(M N) (disjoint),

and χ(M,N) = χ(δ) for δ ∈ Γ0(N ) so that (M N) ∈ SLn(Z)(C D)δ.
(c) With γσ varying over a set of representatives for Γ∞\Spn(Z)/Γ0(N ), the non-

zero Eγσ form a basis for E(n)
k (N , χ), the space of Eisenstein series of degree n,

weight k, level N , and character χ.

Remark. (1) Having fixed representatives {γσ} for Γ∞\Spn(Z)/Γ0(N ), we con-
sider {Eγσ} to be a “natural” basis for E(n)

k (N , χ).
(2) For s ∈ C with k + 
s > n + 1, we can define a non-holomorphic Eisenstein

series by replacing det(Mτ +N)−k by

det(Mτ +N)−k|det(Mτ +N)|−s.
Then all the arguments and results herein are trivially modified to extend to
these non-holomorphic forms.

The next three propositions describe some useful relations when working with
Eisenstein series; then for N square-free, we describe a convenient set of represen-
tatives for Γ∞\Spn(Z)/Γ0(N ) and how to evaluate χ(M,N).

Proposition 3.2. Suppose γ, γ′ ∈ Spn(Z) and δ ∈ Γ0(N ) so that Γ+
∞Γ(N )γ′ =

Γ+
∞Γ(N )γδ. Then Eγ′ = χ(δ)Eγ .
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Proof. We have E′
γ = 2

∑
h χ(βh)E∗|γβh where Γ0(N ) =

⋃
h Γ(N )βh (disjoint).

Thus Γ0(N ) = δΓ0(N ) =
⋃
h Γ(N )δβh (recall that Γ(N ) is a normal subgroup of

Spn(Z)); since [Γ0(N ) : Γ(N )] <∞, this last union must be disjoint. Thus

E′
γ = 2

∑
h

χ(δβh)E∗|γδβh = 2χ(δ)
∑
h

χ(βh)E∗|γ′βh = χ(δ)E′
γ′ .

Since Γ+
γ′ = δΓ+

γ δ
−1, we have [Γ0(N ) : Γ+

γ′ ] = [Γ0(N ) : Γ+
γ ] and so the proposition

follows.

Proposition 3.3. Fix N ∈ Z. Suppose (M I), (M ′ N ′), (M ′′ I) are coprime sym-
metric pairs so that (M ′′ I) ≡ (M ′ N ′) (N ) and (M ′ N ′) ∈ SLn(Z)(M I)Γ0(N ).
Then (M ′′ I) ∈ (M ′ N ′)Γ(N ) and hence (M ′′ I) ∈ SLn(Z)(M I)Γ0(N ).

Proof. Since (M ′, N ′) = 1 and N ′ ≡ I (N ), we have (NM ′, N ′) = 1. Thus there
is some

(K′ L′

M ′ N ′
) ∈ Spn(Z) with L′ ≡ 0 (N ), and hence K ′ ≡ I (N ). Set

γ =

(
K ′ L′

M ′ N ′

)−1(
I 0

M ′′ I

)
;

thus γ ∈ Γ(N ) and (M ′′ I) = (M ′ N ′)γ ∈ SLn(Z)(M I)Γ0(N ).

Proposition 3.4. For γ ∈ Spn(Z), there exists some γ′′ =
( I 0
M ′′ I

) ∈ Spn(Z) so that
γ ∈ Γ+

∞γ
′′Γ0(N ). Equivalently, for (M N) a coprime symmetric pair, there is some

symmetric M ′′ so that

(M N) ∈ SLn(Z)(M ′′ I)Γ0(N ).

Proof. Given γ =
( ∗ ∗
M N

)
, γ′′ =

(I 0
M ′′ I

) ∈ Spn(Z), recall that we have γ ∈
Γ+
∞γ

′′Γ0(N ) if and only if (M ′′ I) ∈ SLn(Z)(M N)Γ0(N ). By Proposition 3.3,
it suffices to show that there is some (M ′ N ′) ∈ SLn(Z)(M N)Γ0(N ) so that
N ′ ≡ I (N ); we proceed algorithmically.

Fix a prime q dividing N and take t so that qt ‖ N . Using Lemma 6.1, we can
choose E0, G0 ∈ SLn(Z) so that E0, G0 ≡ I (N/qt) and E0N

tG−1
0 ≡ (N1 0

0 0

)
(qt)

where N1 is d× d and invertible modulo q (so d = rankq N). We can adjust E0, G0

so that N1 ≡ (a
I

)
(qt), for some a. Similarly, we can choose

(u v
w x

) ∈ SL2(Z) so

that
(u v
w x

) ≡ I (N/qt),
(u v
w x

) ≡ (a 0
0 a

)
(qt) (where aa ≡ 1 (qt)). Then

γ0 =


u v

In−1

w x

In−1

 ∈ Γ0(N )

and E0(M N)
(G0

tG−1
0

)
γ0 ≡ (M1 M2

M3 M4

)(Id

0

)
(qt) with M1 d×d. By the symmetry

of M tN , M3 ≡ 0 (qt); since (M,N) = 1, M4 is invertible modulo q. Thus using
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Lemma 6.1 we can find E′
1, G

′
1 ∈ SLn−d(Z) so that E′

1, G
′
1 ≡ I (N/qt),

M ′
4 = E′

1M4G
′
1 ≡

(
I

a′

)
(qt), some a′.

Take E1 =
(Id

E′
1

)
, G1 =

(Id

G′
1

)
. Using the Chinese Remainder Theorem, we can

choose W ′ so that W ′ ≡ 0 (N/qt) and W ′ ≡ (In−d−1
a′
)
(qt) where a′a′ ≡ 1 (qt);

set W =
(0d

W ′
)
. Then with

(C D) = E1E0(M N)

(
G0

tG−1
0

)
γ0

(
G1

tG−1
1

)(
I W

0 I

)
,

we have (C D) ∈ SLn(Z)(M N)Γ0(N ), (C D) ≡ (M N) (N/qt), and D ≡ I (qt).
Next, suppose p is another prime dividing N with pr ‖ N . Applying the above

process to the pair (C D), we obtain a pair (C′ D′) ∈ SLn(Z)(M N)Γ0(N ) with
(C′ D′) ≡ (M N) (N/(qtpr)) and D′ ≡ I (qtpr). Continuing, we obtain (M ′ N ′) ∈
SLn(Z)(M N)Γ0(N ) with N ′ ≡ I (N ). Applying Proposition 3.3 completes the
proof.

Proposition 3.5. Let (M N) be a coprime symmetric pair. There is some sym-
metric matrix Mσ so that (M N) ∈ SLn(Z)(Mσ I)Γ0(N ) and for each prime q

with q ‖ N , we have Mσ ≡ (Id

0

)
(q) where d = d(q) = rankqM. Thus when N

is square-free and Mσ is as above, we have (M N) ∈ SLn(Z)(Mσ I)Γ0(N ) if and
only if rankqM = rankqMσ for all primes q|N . Further, with N square-free, we
can take Mσ diagonal, and we have

SLn(Z)(Mσ I)Γ0(N ) = GLn(Z)(Mσ I)Γ0(N ).

Proof. First note that if (M N), (Mσ I) are coprime symmetric pairs with (M N) ∈
SLn(Z)(Mσ I)Γ0(N ), then rankqM = rankqMσ for all primes q|N , since elements
of Γ0(N ) are of the form

(A B
C D

)
with C ≡ 0 (N ) and thus A invertible modulo N .

From Proposition 3.4, we know that there is a symmetric matrix M ′′ so that
(M N) ∈ SLn(Z)(M ′′ I)Γ0(N ). Suppose q is prime with q ‖ N ; let d = d(q) =
rankqM ′′. If d = 0 then set Eq = In and γq = I2n. Otherwise, using Lemma 6.1, we

can choose Eq ∈ SLn(Z) so that Eq ≡ I (N/q) and EqM ′′ tEq ≡
(
a

Id−1
0

)
(q);

choose
(w x
y z

) ∈ SLn(Z) so that(
w x

y z

)
≡ I (N/q),

(
w x

y z

)
≡
(
a a− 1
0 a

)
(q)

where aa ≡ 1 (q), and set

γq =
(
tEq

E−1
q

)
w x

In−1 0
y z

0 In−1

.
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Set E =
∏
q‖N Eq, γ =

∏
q‖N γq. Thus E ∈ SLn(Z), γ ∈ Γ0(N ); set (M ′ N ′) =

E(M ′′ I)γ. So (M ′ N ′) ≡ (Mσ I) (N ) for some symmetric Mσ with Mσ ≡(Id(q)
0

)
(q) for all primes q ‖ N . Then by Proposition 3.3, (M N) ∈ SLn(Z) (Mσ I)

Γ0(N ).
Suppose N is square-free; then we can use the Chinese Remainder Theorem to

choose Mσ diagonal with Mσ ≡ (Id(q)
0

)
(q) for each prime q|N . Also,

SLn(Z)(Mσ I)Γ0(N )

= SLn(Z)(Mσ I)Γ0(N ) ∪ SLn(Z)(Mσ I)γ±Γ0(N )

= SLn(Z)(Mσ I)Γ0(N ) ∪ SLn(Z)G±(Mσ I)Γ0(N )

= GLn(Z)(Mσ I)Γ0(N ).

This proves the proposition.

Using Proposition 3.5, we fix a set of representatives {γσ =
( I 0
Mσ I

)}
σ

for

Γ∞\Spn(Z)/Γ0(N ) so that when q is a prime with q ‖ N , we have Mσ ≡ (Id

0

)
(q)

for some d = d (q), and when N is square-free, Mσ is diagonal. Let Eσ denote Eγσ .

Proposition 3.6. Suppose that χ(−1) = (−1)k, and either N > 2 or k is even.

(1) Suppose Eσ �= 0 and q is prime so that q ‖ N ; let d = d(q) = rankqMσ. If
0 < d < n then χ2

q = 1.
(2) Suppose N is square-free. Then Eσ �= 0 if and only if χ2

q = 1 for all primes q|N
so that 0 < rankqMσ < n.

Proof. (1) Suppose we have a prime q ‖ N with 0 < d < n where d = rankqMσ.

Choose u ∈ Z so that q � u, and (using Lemma 6.1) choose
(w x
y z

) ∈ SLn(Z) so that(w x
y z

) ≡ I (N/q) and
(w x
y z

) ≡ (u u

)
(q) where uu ≡ 1 (q). Set E =

(
w x

In−2
y z

)
,

δ =



z x

In−2 0

z x

y w

0 In−2

y w




1 1 − u2

In−1 0

1

In−1

.

Thus E ∈ SLn(Z), δ ∈ Γ0(N ), and E(Mσ I)δ ≡ (Mσ I) (N ). So δ ∈ Γ+
γσ

, and thus
Eσ = Eσ|δ. We also have Eσ|δ = χq(u2)Eσ . Since Eσ �= 0, this means χ2

q(u) = 1,
and this holds for all u ∈ Z where q � u. Hence χ2

q = 1.
(2) Now suppose N is square-free, and that for each prime q|N with 0 <

rankqMσ < n, we have χ2
q = 1. To show Eσ �= 0, we need to show χ is trivial
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on Γ+
γσ

. To do this, we show that for all primes q|N , χq is trivial on Γ+
γσ

. So take

β =
(A B
C D

) ∈ Γ+
γσ

. Thus there exist δ =
(tE−1 WE

E

) ∈ Γ+∞, β′ ∈ Γ(N ) so that
δβ′γσβ = γσ. Thus E(MσA MσB + D) ≡ (Mσ I) (N ). Fix a prime q|N , and set
d = rankqMσ.

When d = 0, we have ED ≡ I (q), so detD ≡ detE ≡ 1 (q) and χq(detD)= 1.
When d = n, we have EA ≡ I ≡ A tD (q), so detD ≡ detE ≡ 1 (q) and
χq(detD)= 1.

Now suppose 0 < d < n. Write

A =

(
A1 A2

A3 A4

)
, D =

(
D1 D2

D3 D4

)
, E =

(
E1 E2

E3 E4

)
,

where A1, D1, E1 are d× d. Since EMσA ≡ (Id

0

)
(q), we have E3(A1 A2) ≡ 0 (q).

Since A is invertible modulo q, the rows of (A1 A2) are linearly independent modulo
q, and hence we must have E3 ≡ 0 (q), rankq E1 = d, rankq E4 = n− d, and

1 = detE ≡ detE1 · detE4 (q).

Also, since

E1(A1 A2) ≡ (Id 0) (q), E4(D3 D4) ≡ (0 In−d) (q),

we have A2, D3 ≡ 0 (q), A1 ≡ E1 (q), D4 ≡ E4 (q). Since A tD ≡ I (q), we must
have D1 ≡ tE1 (q). Thus we have

detD ≡ detE1 · detE4 ≡ (detE1)2 (q)

and hence

χq(detD) = χ2
q(detE1) = 1.

Thus with β ∈ Γ+
γσ

, for all primes q|N we have χq(β) = 1; consequently, by Propo-
sition 3.1, Eσ �= 0.

Proposition 3.7. Suppose Eσ �= 0, (M N) ∈ SLn(Z)(Mσ I)γ where γ ∈ Γ0(N ),
and fix a prime q so that q ‖ N . There are E0, E1 ∈ SLn(Z) so that

E0ME1 ≡
(
M1 0
0 0

)
(q)

with M1 invertible modulo q; for any such E0, E1 we have

E0N
tE−1

1 ≡
(
N1 N2

0 N4

)
(q)

and χq(γ) = χq(detM1 · detN4). Further, for any G ∈ GLn(Z), we have

χq(GM,GN) = χq(detG)χq(M,N) = χq(MG−1, N tG).

Proof. By assumption, (M N) = E(Mσ I)γ for some E ∈ SLn(Z). Set d =
rankqMσ. If d = 0 then N ≡ ED (q) so χq(γ) = χq(detN). If d = n then M ≡
EA ≡ E tD−1 (q) so χq(γ) = χq(detM) (where MM ≡ I (q)).
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Suppose 0 < d < n. By Proposition 3.5, we know rankqM = rankqMσ = d, so
there areE0, E1 ∈ SLn(Z) so that E0ME1 ≡ (M1 0

0 0

)
(q) withM1 d×d and invertible

modulo q. Then by the symmetry of M tN , we have E0N
tE−1

1 ≡ (N1 N2
0 N4

)
(q) with

N1 d × d, and N4 invertible modulo q since (M,N) = 1. Set E2 = E0E; given the
shape of Mσ and of E0ME1, we must have E2 ≡ (E′ ∗

0 E′′
)

(q) with E′ d × d and
invertible modulo q. Hence

E0(M N)
(
E1

tE−1
1

)
= E2(Mσ I)

(
tE2

E−1
2

)
γ′ = (M ′ I)γ′,

where

γ′ =

(
tE−1

2

E2

)
γ

(
E1

tE−1
1

)
∈ Γ0(N ) and M ′ ≡

(
E′ tE′

0

)
(q).

Write γ′ =
(A B
C D

)
, A =

(A1 A2
A3 A4

)
, D =

(D1 D2
D3 D4

)
where A1, D1 are d × d. Since(M1

0

) ≡ M ′A (q), we have A2 ≡ 0 (q), A1 invertible modulo q, and M1 ≡
E′ tE′A1 (q). Then since A tD≡ I (q), we have D3 ≡ 0 (q), A1

tD1 ≡ I (q),
N4 ≡D4 (q). Thus

χq(γ) = χq(γ′) = χ2
q(E

′)χq(detM1 · detN4)

(where M1M1 ≡ I (q)). Since 0 < d < n and Eσ �= 0, we know from Proposition
3.6 that χ2

q = 1.
Suppose (M N) = E(Mσ I)γ where E ∈ SLn(Z), γ ∈ Γ0(N ); take G ∈ GLn(Z).

If detG = 1 then the above argument shows χq(GM,GN) = χq(M,N). Say detG =
−1; then E′ = GEG± ∈ SLn(Z) and

G(M N) ≡ E′G±(Mσ I)γ ≡ E′(Mσ I)γ±γ (q).

Hence χq(GM,GN) = χq(γ±γ) = χq(−1)χq(M,N). Somewhat similarly,

(MG−1 N tG) = E(Mσ I)γ

(
G−1

tG

)
,

so χq(MG−1, N tG) = χq
(
γ
(G−1

tG

))
= χq(γ)χq(detG).

4. Hecke Operators on Siegel Eisenstein Series of Square-free Level

Throughout this section, we assume N is square-free, χ is a character modulo N
so that χ(−1) = (−1)k; further, we assume either N > 2 or k is even.

Let σ be a “multiplicative partition” of N , meaning σ = (N0, . . . ,Nn) where
Ni ∈ Z+ and N0 · · · Nn = N ; take Mσ to be a diagonal n×n matrix so that for each
d, 0 ≤ d ≤ n, we have Mσ ≡ (Id

0

)
(Nd). By Proposition 3.1, as we vary σ, the

matrices γσ =
( I 0
Mσ I

)
give us a set of representatives for Γ∞\Spn(Z)/Γ0(N ), and

by Proposition 3.5 we have Γ∞γσΓ0(N ) = Γ+
∞γσΓ0(N ). Thus given any coprime
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symmetric pair (M N), there is a unique multiplicative partition σ of N so that
(M N) ∈ SLn(Z)(Mσ I)Γ0(N ).

To ease notation, we write Eσ to denote Eγσ .

Theorem 4.1. Fix a prime q|N and a multiplicative partition

σ′ = (N ′
0, . . . ,N ′

n)

of N/q; let Xd = Xd(q) (as defined in Sec. 2). For 0 ≤ d ≤ n, let σd = (N0, . . . ,Nn)
where

Ni =

{
N ′
i if i �= d,

qN ′
d if i = d.

Then when Eσd
�= 0, we have

Eσd
|T (q) = qkd−d(d+1)/2χN/q(qX

−1
d Mσd

, X−1
d )

·
n−d∑
t=0

q−dt−t(t+1)/2βq(d+ t, t) symχ
q (t)Eσd+t

(with symχ
q (t) as defined in Sec. 2).

Proof. To ease notation further, temporarily write Ed′ for Eσd′ and Md′ for Mσd′ .
Also, write Kd for Kd(q), Yn for Yn(q), Xr for Xr(q), β(m, r) for βq(m, r).

By Proposition 2.1, we have

Ed(τ)|T (q) = q−n(n+1)/2
∑

M,N,Y

χ(M,N) det(Mτ/q +MY/q +N)−k,

where SLn(Z)(M N) varies over SLn(Z)(Md I)Γ0(N ) and Y varies over Yn; recall
that we can take Y ≡ 0 (N/q). (Note that in Proposition 2.1, when p|N we have
χ(pn−r) = 0 unless r = n.) Using left multiplication from SLn(Z) to adjust each
representative (M N), we can assume q divides the lower n− d rows of M . Set

(M ′ N ′) = Xd(M/q MY/q +N) =
1
q
Xd(M MY + qN);

clearly M ′, N ′ are integral given our assumption that q divides the lower n−d rows
of M . We know that the upper d rows of M are linearly independent modulo q, as
are the lower n−d rows of N . Thus (M ′, N ′) = 1, and with d′ = rankqM ′, we have
d′ ≥ d. Since rankq′ Md′ = rankq′ Md for all primes q′|N/q, by Proposition 3.5 we
have (M ′ N ′) ∈ SLn(Z)(Md′ I)Γ0(N ). Also, we have

det(Mτ/q +MY/q +N)−k = qkd det(M ′τ +N ′)−k.

Reversing, given (M ′ N ′) ∈ SLn(Z)(Md′ I)Γ0(N ) (with d′ ≥ d), we need to
identify the equivalence classes SLn(Z)(M N) ∈ SLn(Z)(Md I)Γ0(N ) and Y ∈ Yn
so that

1
q
Xd(M MY +N) ∈ SLn(Z)(M ′ N ′).
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Equivalently, we need to identify Y ∈ Yn and the equivalence classes

SLn(Z)qX−1
d E(M ′ (N ′ −M ′Y )/q) ∈ SLn(Z)(Md I)Γ0(N ),

where E ∈ SLn(Z) and (M ′ N ′) is a coprime symmetric pair. For E ∈ SLn(Z), we
have X−1

d EXd ∈ SLn(Z) if and only if E ∈ Kd; thus we need to identify Y ∈ Yn
and E ∈ Kd\SLn(Z) so that

qX−1
d E(M ′ (N ′ −M ′Y )/q)

is an integral, coprime pair with rankq qX−1
d EM ′ = d (that M tN is symmetric is

automatic). For each coprime symmetric pair (M ′ N ′), let Cd(M ′, N ′) be the set of
all pairs (E, Y ) that meet the above criteria (note that Cd(M ′, N ′) could be empty);
then

Ed(τ)|T (q) = qkd−n(n+1)/2
∑

(M ′,N ′)

cd(M ′, N ′) det(M ′τ +N ′)−k

where

cd(M ′, N ′) =
∑
E,Y

χ(qX−1
d EM ′, X−1

d E(N ′ −M ′Y )),

with the sum over all (E, Y ) ∈ Cd(M ′, N ′).
We also know that E(n)

k (N , χ) is equal to

span{(Cτ +D)−k : (C D) coprime, symmetric} ∩M(n)
k (N , χ),

and M(n)
k (N , χ) is invariant under the Hecke operators. Hence Ed|T (q) is again an

Eisenstein series, and so the above discussion shows that

Ed|T (q) = qkd−n(n+1)/2
∑
d′≥d

cd(Md′ , I)Ed′ .

Thus we need to compute cd(Md′ , I) for each d′ ≥ d.
Fix d′ ≥ d, and choose E ∈ Kd\SLn(Z); note that we can choose E ≡ I (N/q).

With Y ∈ Yn, set

(M N) = qX−1
d E(Md′ (I −Md′Y )/q).

To have rankqM = d, we need the top d rows of EMd′ to have q-rank d; by Lemma
6.4(a), the number of such E is qd(n−d

′)β(d′, d). Also, since Md′ ≡ (Id′
0

)
(q),

the upper left d × d′ block of E must have q-rank d; thus using left multipli-
cation from Kd, we can assume E =

(E′ W
0 I

)
where E′ ∈ SLd′(Z). (Note that

we can still assume that E ≡ I (N/q).) So fix such E (and thus fix M). Set
G =

(E′

I

)
; so

(G−1

tG

) ∈ Γ0(N ). We know that N is integral if and only if

EN tG = X−1
d (E tG − EMd′G

−1 · GY tG) is integral; also, when N is integral,
(M,N) = 1 if and only if (MG−1, N tG) = 1. Write E′ tE′ =

(E1 E2
tE2 E3

)
, W =

(W1
W2

)
,

GY tG =

Y1 Y2 Y3

tY2 Y4 Y5

tY3
tY5 Y6

,
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where E1, Y1 are d×d and symmetric, E3, Y4 are (d′−d)×(d′−d) (and symmetric),
and W1 is d× (n− d′). We have EMd′G

−1 ≡ (Id′
0

)
(q), so N tG is integral if and

only if (Y1 Y2 Y3) ≡ (E1 E2 W1) (q). When N tG is integral, we have

N tG ≡
(E1 − Y1)/q (E2 − Y2)/q (W1 − Y3)/q

0 E3 − Y4 W2 − Y5

0 0 I

 (q),

so (MG−1, N tG) = 1 if and only if rankq(E3 − Y4) = d′ − d. As Y4 varies over
symmetric (d′ − d) × (d′ − d) matrices modulo q, so does E3 − Y4. Recall that we
can choose Y ≡ 0 (N/q); thus for E, Y as above, we have Md′ ≡Md (N/q), so

χN/q(M,N) = χN/q(qX
−1
d Md, X

−1
d ) = χN/q(qXdMd, Xd)

and

χq(M,N) = χq(MG−1, N tG) = χq(det(E3 − Y4)).

Since Y5, Y6 are unconstrained modulo q,

cd(Md′ , I) = qd(n−d
′)+(n−d′)(d′−d)+(n−d′)(n−d′+1)/2β(d′, d) symχ

q (d′ − d)

(recall Y6 is symmetric). Collecting terms and setting t = d′ − d yield the result.

To help us diagonalize the space Eisenstein series of square-free level, we put a
partial ordering on {σ}, the multiplicative partitions of N , as follows.

Definition. Let σ, α be multiplicative partitions of N , and let q be a prime dividing
N . We write σ < α (q) if rankqMσ < rankqMα, σ = α (q) if rankqMσ = rankqMα,

and σ ≤ α (q) if rankqMσ ≤ rankqMα. For Q|N , we write σ < α (Q) if rankqMσ <

rankqMα for all primes q|Q, σ = α (Q) if rankqMσ = rankqMα for all primes q|Q,
σ ≤ α (Q) if rankqMσ ≤ rankqMα for all primes q|Q,

We first determine how to find eigenforms for T (q).

Corollary 4.2. Suppose σ is a multiplicative partition of N so that Eσ �= 0, and
let q be a prime dividing N . For partitions α of N with α = σ (N/q), α > σ (q),
there are aσ,α(q) ∈ C so that

Eσ +
∑

α=σ (N/q)
α>σ (q)

aσ,α(q) Eα

is an eigenform for T (q), and aσ,α(q) �= 0 only if either (1) χq = 1, or (2) χ2
q = 1

and rankqMα−rankqMσ is even. With such aσ,α and d = rankqMσ, the eigenvalue
of Eσ +

∑
α=σ (N/q)
α>σ (q)

aσ,α(q) Eα is

λσ(q) = qkd−d(d+1)/2χN/q(qXdMσ, Xd),

where qq ≡ 1 (N/q).
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Proof. By Lemma 6.6 symχ
q (t) = 0 if and only if (1) χq = 1, or (2) χ2

q = 1 and t

is even. Thus by Theorem 4.1, the subspace

span{Eα :α = σ (N/q), α ≥ σ (q),Eα �= 0, and either (1) χq = 1,

or (2) χ2
q = 1 and rankqMα − rankqMσ is even}

is invariant under T (q), and the matrix for T (q) on this subspace basis (ordered
with rankqMα increasing) is upper triangular with diagonal entries λα(q). Then
the standard process of diagonalizing an upper triangular matrix yields the
result.

We now diagonalize the space of Eisenstein series with respect to

{T (q) : q prime, q|N}
and obtain a multiplicity-one result for the Eisenstein series of square-free level.

Corollary 4.3. Suppose σ a multiplicative partition of N so that Eσ �= 0. For a
prime q|N and α a multiplicative partition of N with α ≥ σ (N ), set aσ,α(q) = 1 if
α = σ (q), and otherwise set aσ,α(q) = aρ,α(q) where ρ is a multiplicative partition
of N with ρ = α (N/q), ρ = σ (q), and aρ,α(q) is as in Corollary 4.2. For Q|N and
α ≥ σ (Q), set

aσ,α(Q) =
∏
q|Q

q prime

aσ,α(q).

Then with

Ẽσ =
∑

α≥σ (N )

aσ,α(N )Eα,

for every prime q|N we have Ẽσ|T (q) = λσ(q)Ẽσ (where λσ(q) is as in Corol-
lary 4.2). Further, for σ �= ρ (N ), there is some prime q|N so that λσ(q) �= λρ(q).

Proof. Fix a prime q|N . For α, β multiplicative partitions of N with α ≥ σ (N ),
β = α (N/q), and β = σ (q), we have aσ,α(N ) = aσ,β(N/q)aβ,α(q). Thus, varying
β, α so that β ≥ σ (N/q), β = σ (q), α = β (N/q), α ≥ β (q), we have

Ẽσ =
∑
β

aσ,β(N/q)
∑
α

aβ,α(q)Eα.

By Corollary 4.2, ∑
α

aβ,α(q)Eα |T (q) = λβ(q)
∑
α

aβ,α(q)Eα.

So to show Ẽσ|T (q) = λσ(q)Ẽσ , we need to show that λβ(q) = λσ(q) for any β so
that β ≥ σ (N/q), β = σ (q), and aσ,β(N/q) �= 0. Equivalently, we need to show
that for β ≥ σ (N/q), β = σ (q) with aσ,β(N/q) �= 0, we have

χq′(qXdMβ , Xd) = χq′(qXdMσ, Xd)

for all primes q′|N/q (where qq ≡ 1 (N/q)).
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Let d = rankqMσ, and fix β so that β ≥ σ (N/q), β = σ (q), and aσ,β(N/q) �= 0.
Let q′ be a prime dividing N/q. If β = σ (q′), then Mβ ≡Mσ (q′) and so

χq′(qXdMβ, Xd) = χq′(qXdMσ, Xd).

So suppose β > σ (q′). Since aσ,β(N/q) �= 0, by Corollary 5.3 we either have
χq′ = 1, or χ2

q′ = 1 with rankq′ Mβ, rankq′ Mσ of the same parity. Consequently
(using Proposition 3.7),

χq′(qXdMβ, Xd) = χq′(qXdMσ, Xd).

Hence Ẽσ|T (q) = λσ(q)Ẽσ , proving the first part of the corollary.
To prove the second part, suppose now that σ �= ρ (N ). Thus for some prime

q|N , we have d = rankqMσ �= rankqMρ = d′. Then

|λσ(q)| = qkd−d(d+1)/2 �= qkd
′−d′(d′+1)/2 = |λρ(q)|,

since 0 ≤ d, d′ ≤ n and k > n+ 1.

Now we evaluate the action of Tj(q2) on Eσ. Note that since the Hecke operators
commute, the multiplicity-one result of Corollary 4.3 tells us that each Ẽσ is an
eigenform for Tj(q2) (1 ≤ j ≤ n), and in fact for T (p), Tj(p2) (1 ≤ j ≤ n) for any
prime p. So we could simply do enough computation to find the eigenvalue λj;σ(q2),
but we take just a bit more effort and give a complete description of Eσ|Tj(q2).
Then in Corollary 4.5 we simplify our expressions for the Tj(q2)-eigenvalues.

Theorem 4.4. Assume N is square-free, and fix a prime q|N . For σ a multiplica-
tive partition of N/q and 0 ≤ d ≤ n, let Eσd

be the level N Eisenstein series as in
Theorem 4.1; suppose Eσd

�= 0. Then for 0 ≤ j ≤ n,

Eσd
|Tj(q2) =

n−d∑
t=0

Aj(d, t)Eσd+t
,

where

Aj(d, t) = q(j−t)d−t(t+1)/2βq(d+ t, t)

·
j∑

d1=0

j−d1∑
d5=0

d5∑
d8=0

qaj(d;d1,d5,d8)χN/q(X
−1
d1,r

Mσd
Xj , X

−1
d1,r

X−1
j )

·βq(d, d1)βq(t, d5)βq(n− d− t, d1 + n− d− j − d8)

·βq(t− d5, d8) symχ
q (t− d5 − d8) symχ

q (d5, d8),

r = j − d1 − d5 + d8, and

aj(d; d1, d5, d8) = (k − d)(2d1 + d5 − d8) + d1(d1 − d8 − j − 1)

+ d8(j − d5) − d5(d5 + 1)/2 + d8(d8 + 1)/2.

(Here symχ
q (b, c) is as defined in Sec. 2.) Thus Ẽσd

|Tj(q2) = Aj(d, 0)Ẽσd
.
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Proof. As in the proof of Theorem 4.1, temporarily write Ed′ for Eσd′ and Md′

for Mσd′ . Let Kr,s = Kr,s(q), Yj,0 = Yj,0(q2), Xr,s = Xr,s(q), β(m, r) = βq(m, r),
µ(m, r) = µq(m, r).

By Proposition 2.1,

Ed|Tj(q2) = qj(k−n−1)
∑
G,Y

Ed

∣∣∣∣∣
(
X−1
j

Xj

)(
G−1 Y tG

tG

)
,

where G varies over SLn(Z)/Kj , Y over Yj,0; recall that we can take G ≡ I (N/q)
and Y ≡ 0 (N/q). So

Ed(τ)|Tj(q2)
= qj(k−n−1)

∑
G,Y,M,N

χ(M,N) det(MX−1
j G−1τ +MX−1

j Y tG+NXj
tG)−k

(where SLn(Z)(M N) varies over SLn(Z)(Md I)Γ0(N )).
Take (M N) ∈ SLn(Z)(Md I)Γ0(N ). Let d1 be the q-rank of the first j columns

of M (so d1 ≤ j); using left-multiplication from SLn(Z), we can adjust our choice of

representative to assume M =
(
M1 M2
qM3 M4
qM ′

5 qM ′
6

)
where M1 is d1 × j (so rankqM1 = d1),

M4 is d4 × (n − j) with rankqM4 = d4 = d − d1. Correspondingly, write N =(
N1 N2
N3 N4
N ′

5 N ′
6

)
where N1 is d1×j and N4 is d4×(n−j). Take r so that rankq

(M1 0
M ′

5 N ′
6

)
=

n− d4 − r; so adjusting our choice of representative, we can assume

(qM ′
5 qM

′
6 N

′
5 N

′
6) =

(
qM5 qM6 N5 N6

q2M7 qM8 N7 qN8

)

where M6, N6 are (n− d− r) × (n− j) and rankq
(M1 0
M5 N6

)
= n− d4 − r. Note that

since (M,N) = 1, we must have rankqN7 = r. Then

Xd1,r(M N)

(
X−1
j

Xj

)
=


M1 qM2 q2N1 qN2

M3 M4 qN3 N4

M5 qM6 qN5 N6

M7 M8 N7 N8


has q-rank n. Hence for any Y ∈ Yj ,

(M ′ N ′) = Xd1,r(M N)

(
X−1
j

Xj

)(
G−1 Y tG

0 tG

)
is a coprime symmetric pair with rankqM ′ = d + t for some t ≥ 0. Note that
det(M ′τ +N ′)−k = q−k(d1−r) det(MX−1

j G−1τ +MX−1
j Y tG+NXj

tG)−k.
As discussed in the proof of Theorem 4.1, we have

Ed|Tj(q2) =
n∑

d′=d

cd(Md′)Ed′ ,
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for some cd(Md′) ∈ C. So reversing, suppose d′ ≥ d and Ed′ �= 0. To com-
pute cd(Md′), we need to identify the equivalence classes SLn(Z)(M N) ∈
SLn(Z)(Md I)Γ0(N ) and Y ∈ Yj,0, G ∈ SLn(Z)/Kj so that

Xd1,r(M N)

(
X−1
j

Xj

)(
G−1 Y tG

0 tG

)
∈ SLn(Z)(Md′ I).

Equivalently, we need to identify Y ∈ Yj,0, G ∈ SLn(Z)/Kj and the equivalence
classes

SLn(Z)X−1
d1,r

E(Md′ I)

(
G −GY

tG−1

)(
Xj

X−1
j

)
∈ SLn(Z)(Md I)Γ0(N ),

where E ∈ SLn(Z). For E ∈ SLn(Z), we have X−1
d1,r

EXd1,r ∈ SLn(Z) if and only if
E ∈ Kd1,r, so we only need to consider E ∈ Kd1,r\SLn(Z). Thus we need to consider
all E,G, Y so that with

(M N) = X−1
d1,r

E(Md′ I)

(
G −GY

tG−1

)(
Xj

X−1
j

)
,

M,N are integral with (M,N) = 1 and rankqM = d (that M tN is symmetric is
automatic). Note that since we can take E,G ≡ I (N/q) and Y ≡ 0 (N/q) and we
know Md′ ≡Md (N/q), for such (M N) we have

χN/q(M,N) = χN/q(X
−1
d1,r

MdXj , X
−1
d1,r

X−1
j ).

For E,G ∈ SLn(Z), write

EMd′G =

M1 M2

M ′
3 M ′

4

M7 M8

, E tG−1 =

N1 N2

N ′
3 N ′

4

N7 N8

,
where M1, N1 are d1 × j, M7, N7 are r × j. Then

M =

 M1 M2/q

qM ′
3 M ′

4

q2M7 qM8

.
So to have M integral, we need M2 ≡ 0 (q), and to have rankqM = d,
we need rankq

(M1 0
0 M ′

4

)
= d. So suppose these conditions are met. We have

Y =
( U V

tV 0

)
where U is j × j and symmetric; to have N integral, we need

N1 ≡M1U +M2
tV (q2), N2 ≡M1V (q), and N ′

3 ≡M ′
3U +M ′

4
tV (q). We are sup-

posing that rankq(M1 M2 N1 N2) = d1 and M2 ≡ 0 (q), so we can solve these first
two congruences only if rankqM1 = d1. So supposing this condition is met, we have
M2/q in the column span of M1 modulo q, so we must have rankqM ′

4 = d4 where
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d4 = d − d1. Then adjusting E using left multiplication from Kd1,r, and adjusting
G using right multiplication from Kj , we can assume

EMd′G =


M1 M2

M3 M4

M5 M6

M7 M8

,
where M4 is d4×(n−j) with rankqM4 = d4 and M6 ≡ 0 (q); further, we can assume
Mi = (A′

i Ai) where A′
i has d1 columns when i is odd, d4 columns when i is even,

A′
i ≡ 0 (q2) for i �= 1, 4, and Ai ≡ 0 (q2) for i ≤ 4. Correspondingly, split N ′

3 as(N3
N5

)
, N ′

4 as
(N4
N6

)
where N3, N4 have d4 rows, and split Ni as (B′

i Bi) where B′
i has

d1 columns when i is odd, d4 columns when i is even. Split U as
( U1 U2

tU2 U3

)
where U1

is d1×d1, and split V as
(V1 V2
V3 V4

)
where V1 is d1×d4. Then M1U ≡ A′

1(U1 U2) (q2),
M1V ≡ A′

1(V1 V2) (q), M4
tV ≡ A′

4(
tV1

tV3) (q). So to have N integral, we need to
choose U1, U2, V1, V2, V3 so that

(B′
1 B1) ≡ A′

1(U1 U2) (q2), (B′
2 B2) ≡ A′

1(V1 V2) (q), B3 ≡ A′
4
tV3 (q).

Then by the symmetry of EMd′
tE, we have B′

3
tA′

1 ≡ A′
4
tB′

2 (q), so we have
B′

3 ≡ A′
4
tV1 (q). By symmetry, we also have

B′
5
tA′

1 ≡ A5
tB1 +A6

tB2 ≡ A5
tU2

tA′
1 +A6

tV2
tA′

1 (q2),

B′
6
tA′

4 ≡ A5
tB3 ≡ A5V3

tA′
4 (q),

B′
7
tA′

1 ≡ A7
tB1 +A8

tB2 ≡ A7
tU2

tA′
1 +A8

tV2
tA′

1 (q).

So to have N integral, we also need to choose U3 so that B5 ≡ A5U3 (q), and then
the lower n− d rows of N are congruent modulo q to(

0 (B5 −A5U3 −A6
tV4)/q 0 B6 −A5V4

0 B7 −A7U3 −A8
tV4 0 0

)
.

Further refining our choices for E,G using Kd1,r,Kj , we can assume

A5 ≡
(
α5 0 0

0 qα′
5 0

)
(q2), A6 ≡

(
0 0

0 qα′
6

)
(q2),

A7 ≡

0 0 0

0 0 α7

0 0 0

 (q), A8 ≡

 0 0

0 0

α8 0

 (q),

where αi is di×di and invertible modulo q, α′
5 is (n−d−r−d5)× (j−d1−d5−d7),

and α′
6 is (n− d− r− d5)× (n− j − d4 − d8); here the top r− d7 − d8 and bottom
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d8 rows of A7 are 0 modulo q. Correspondingly, write

B5 =

(
β1 β2 β3

β4 β5 β6

)
, B6 =

(
γ1 γ2

γ3 γ4

)
,

B7 =

δ1 δ2 δ3

δ4 δ5 δ6

δ7 δ8 δ9

, B8 =

ε1 ε2

ε3 ε4

ε5 ε6

.
By symmetry and the invertibility of α5, α7, α8 modulo q, we have that β4, β6, γ3,
δ1, δ3, ε1 ≡ 0 (q), the bottom n− d− r− d5 rows of B′

5, B
′
6, and the top r− d7 − d8

rows of B′
7, B

′
8 are 0 modulo q. Then since E tG−1 is invertible, we know that

rankq
(β5 γ4
δ2 ε2

)
= n− d′.

Write

U3 =

µ1 µ2 µ3

tµ2 µ4 µ5

tµ3
tµ5 µ6

, V4 =

ν1 ν2

ν3 ν4

ν5 ν6

,
where µ1 is d5×d5, µ6 is d7×d7, ν1 is d5×d8, ν5 is d7×d8. To have B5 ≡ A5U3 (q),
we need (β1 β2 β3) ≡ α5(µ1 µ2 µ3) (q), and β5 ≡ 0 (q) (and hence γ4 is invertible
modulo q). When these conditions are met, we must have rankq γ4 = n−d− r−d5,
and by symmetry,

δ4
tα5 ≡ α7

tβ3 ≡ α7
tµ3

tα5 (q).

Then to have (M,N) = 1, we need

B =

(
(B5 −A5U3 −A6

tV4)/q B6 −A5V4

B7 −A7U3 −A8
tV4 q(B8 −A7V4)

)
to have q-rank n− d. Note that modulo q, the matrix B is congruent to

(β1 − α5µ1)/q (β2 − α5µ2)/q (β3 − α5µ3)/q γ1 − α5ν1 γ2 − α5ν2

0 ∗ ∗ 0 γ4

0 δ2 0 0 0

0 δ5 − α7
tµ5 δ6 − α7µ6 0 0

δ7 − α8
tν1 δ8 − α8

tν3 δ9 − α8
tν6 0 0

.

Since E tG−1 is invertible, and given that β4, β5, β6, γ3 and the lower n−d−r−d5

rows of B′
5, B

′
6 are 0 modulo q, we must have rankq γ4 = n− d− r− d5. To have B

invertible modulo q, we need rankq δ2 = r − d7 − d8. Given the sizes of γ4, δ2, this
requires

n− d− r − d5 ≤ n− j − d4 − d8 and r − d7 − d8 ≤ j − d1 − d5 − d7,

so this requires r = j − d1 − d5 + d8 (in which case γ4, δ2 are square, and hence
invertible modulo q).
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Choose (n− d) × (n− d) permutation matrices P1, P2 so that

P1

(
A5 A6

A7 A8

)
P2 ≡



α5

α8

0

α7

0

 (q),

P1

(
B5 B6

B7 B8

)
P2 =



β1 γ1 γ2 β3 β2

δ7 ε5 ε6 δ9 δ8

β4 γ3 γ4 β6 β5

δ4 ε3 ε4 δ6 δ5

δ1 ε1 ε2 δ3 δ2

.

(So P1 corresponds to the permutation (2 3 5), P2 to the permutation (2 5 3 4).)
Thus (still supposing that β5 ≡ 0 (q), and that γ4, δ2 are invertible modulo q), we
have that P1BP2 is congruent modulo q to



(β1 − α5µ1)/q γ1 − α5ν1 γ2 − α5ν2 (β3 − α5µ3)/q (β2 − α5 − µ2)/q

δ7 − α8
tν1 0 0 δ9 − α8

tν6 δ8 − α8
tν3

0 0 γ4 ∗ ∗
0 0 0 δ6 − α7µ6 δ5 − α7

tµ5

0 0 0 0 δ2

.

Hence B is invertible modulo q if and only if
(

(β1 − α5µ1)/q γ1 − α5ν1
δ7 − α8

tν1 0

)
and δ6−α7µ6

are invertible modulo q. Note that by the symmetry of Md′, we know that (δ6 −
α7µ6) tα7 and

(
(β1 − α5µ1) tα5/q (γ1 − α5ν1)

tα8
(δ7 − α8

tν1) tα5 0

)
are symmetric modulo q.

To compute χ(M,N), recall that we can (and do) assume that E,G ≡ I (N/q),
Y ≡ 0 (N/q), and we know that Md′ ≡Md (N/q); so

χN/q(M,N) = χN/q(X−1
d1,r

MdXj , X
−1
d1,r

X−1
j ).

To help compute χq(M,N), let G1 be the n× n permutation matrix so that

EMd′GG1 ≡


A′

1 0 0 0

0 A′
4 0 0

0 0 A5 A6

0 0 A7 A8

 (q).
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Setting E1 =
(
Id

P1

)
, G2 =

(
Id

P2

)
, and remembering that tP−1 = P for a

permutation matrix P , we have

χq(detE1G1G2)χq(M,N)

= χq(E1MG1G2, E1NG1G2)

= χq(detA′
1 · detA′

4 · detα5 · detα7 · detα8)χq(det γ4 · det δ2)

· χq
(

det

(
(β1 − α5µ1) tα5/q (γ1 − α5ν1) tα8

(δ7 − α8
tν1) tα5 0

)
· det(δ6 − α7µ6) tα7

)
.

Also, since χq(Md′ , I) = 1, we have

χq(detE1G1G2)

= χq(E1Md′G1G2, E1G1G2)

= χq(detA′
1 · detA′

4 · detα5 · detα7 · detα8)χq(det γ4 · det δ2).

To summarize: Given (M ′ N ′) with rankqM ′ = d′, and given choices for d1, d4 =
d− d1, d5, d7, d8 = d′ − d− d5 − d7 and r = j − d1 − d5 + d8 (with d1 + d5 + d7 ≤ j,
d4 +d8 ≤ n−j), to be able to choose E,G, Y so that M,N are integral and coprime
with rankqM = d, we need to choose E ∈ Kd1,r\SLn(Z) so that the q-rank of the
upper d1 rows of EM ′ is d1, and the q-rank of the upper n − r rows of EM ′ is
d + d5 (where d5 ≤ j − d1; note this is only possible when d′ − d − d5 ≤ r). By
Lemma 6.4(b), we have

β(d′, d+ d5)β(n− d′, n− r − d− d5)β(d+ d5, d1)

· q(d+d5)(r+d+d5−d′)+d1(n−d−d5)

choices for E. Modifying E using left multiplication from Kd1,r, we can assume the
upper d+ d5 rows of EMd′ have q-rank d+ d5. We need to choose G ∈ SLn(Z)/Kj
to meet various conditions (as detailed in the preceding discussion); choosing G0 ∈
SLn(Z) so that

EMd′G0 ≡


M1 0 0 0

0 C 0 0

0 0 0 0

0 0 C′ 0

 (q)

where M1 is d1 × d1, C is (d4 + d5) × (d4 + d5), C′ is (d7 + d8) × (d7 + d8) and
M1, C, C

′ are invertible modulo q, Lemma 6.5 describes the conditions that

E(Md′ I)
(
G

tG−1

)
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must meet, where G = G0G
′ ∈ SLn(Z)/Kj (note that as G′ varies over SLn(Z)/Kj ,

so does G). By Lemma 6.5, we have

β(d4 + d5, d4)β(d7 + d8, d8)q(d4+d8)(j−d1−d5)−d7d8

choices for G. Then with further adjustments to E using left multiplication from
Kd1,r and to G using right multiplication from Kj (as described above), using nota-
tion as above and writing µi = µ′

i + qµ′′
i , we have that µ′

1, µ
′
2, µ

′
3 are uniquely

determined modulo q, µ4, µ5 are unconstrained modulo q2, and µ′′
2 , µ′′

3 , µ′′
6 , ν2, ν3,

ν4, ν5, ν6 are unconstrained modulo q. Let F = Z/qZ; as µ′′
1 , ν1, µ′

6 vary modulo q,(
(β1 − α5µ1) tα5/q (γ1 − α5µ1) tα8

(δ7 − α8
tν1) tα5 0

)

varies over elements in Fd5+d8,d5+d8sym of the form
( C D

tD 0

)
with C d5 × d5, and (δ6 −

α7µ
′
6)
tα7 varies over Fd7,d7sym . Hence as we vary Y subject to these constraints, we

have ∑
Y

χq(X−1
d1,r

EMd′GXj , X
−1
d1,r

E( tG−1 −Md′GY )X−1
j )

= q(j−d1)(n−d1−d4+1)−d5(j−d1+d8+1)−d7(d7+1)/2 symχ
q (d5, d8) symχ

q (d7).

This yields a formula for Aj(d, t); to simplify this formula, note that β(m, s) =
β(m,m− s), so

β(d1 + d4 + d5, d1)β(d′, d1 + d4 + d5)β(d4 + d5, d4)

=
µ(d+ d5, d1)µ(d+ t, t− d5)µ(d− d1 + d5, d5)

µ(d1, d1)µ(t− d5, t− d5)µ(d5, d5)
µ(t, d5)
µ(t, d5)

=
µ(d+ t, d1 + t)µ(t, d5)
µ(d1, d1)µ(t, t)µ(d5, d5)

=
µ(d+ t, t)µ(d, d1)µ(t, d5)
µ(t, t)µ(d1, d1)µ(d5, d5)

= β(d+ t, t)β(d, d1)β(t, d5),

where t = d′ − d. We have the constraints that r = j − d1 − d5 + d8, d = d1 + d4,
t = d5 + d7 + d8, d1 + d5 + d7 ≤ j, d4 + d8 ≤ n− j, and d8 ≤ d5. Taking 0 ≤ d1 ≤ j,
0 ≤ d5 ≤ j − d1, and 0 ≤ d8 ≤ d5, a summand in the final formula for Aj(d, t) is 0
if the other constraints on the di are not met.

Corollary 4.5. Let σ be a multiplicative partition of N , and suppose Eσ �= 0.
Then for a prime q|N and d = rankqMσ, we have Ẽσ|Tj(q2) = λj;σ(q2)Ẽσ where
N ′
i = Ni/(q,Ni) and

λj;σ(q2) = qjd
j∑
�=0

q�(2k−2d−j+�−1)χN′
0
(q2�)χN′

n
(q2(j−�))βq(d, �)βq(n− d, j − �).
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Proof. Since T (q) and Tj(q2) commute, by Corollary 4.3 and Theorem 4.4, we
know that Ẽσ is an eigenform for Tj(q2) with eigenvalue Aj(d, 0). By Theorem 4.4,
using � in place of d1, and noting that β(m, r) = β(m,m− r), we have

Aj(d, 0) = qjd
j∑
�=0

q�(2k−2d+�−j−1)χN/q(X
−1
�,j−�Mσd

Xj , X
−1
�,j−�X

−1
j )

·β(d, �)β(n− d, j − �).

Note that
(
Xj

X−1
j

)
is congruent modulo N/q to an element of Spn(Z). Thus

χN/q(X
−1
�,j−�Mσd

Xj, X
−1
�,j−�X

−1
j ) = χN/q(X

−1
�,j−�Mσd

, X−1
�,j−�)χN/q(qj).

Then we use Propositions 3.6 and 3.7 to evaluate χN/q(X
−1
�,j−�Mσd

, X−1
�,j−�).

5. Hecke Operators on Eisenstein Series of Arbitrary Level

Fix N ∈ Z+ and χ a character modulo N . Assume that k > n+ 1, χ(−1) = (−1)k,
and that either N > 2 or k is even. Let

{
γσ =

( I 0
Mσ I

)}
σ

be a set of representatives
for Γ∞\Spn(Z)/Γ0(N ) so that when N is square-free, Mσ is as in Proposition 3.5,
and let Eσ = Eγσ .

To more easily describe the action of Hecke operators on Eσ, we define an action
of UN × U× on Eisenstein series where UN = (Z/NZ)×. Toward this, we have the
following proposition.

Proposition 5.1. Suppose γ =
( I 0
M I

) ∈ Spn(Z), v, w ∈ Z with (vw,N ) = 1;

set (v, w) ·M = v
(w

I

)
M
(w

I

)
and (v, w) · γ =

( I 0
(v, w) ·M I

)
. With v′ ≡ v (N ),

w′ ≡ w (N ), we have (v′, w′)·γ ∈ (v, w)·γΓ(N ); hence E(v,w)·γ = E(v′,w′)·γ . Further,
suppose γ′ =

( I 0
M ′ I

) ∈ Spn(Z) so that Eγ = Eγ′ . Then E(v,w)·γ = E(v,w)·γ′ , so we
have an action of the group UN × UN on{

Eγ : γ =

(
I 0

M I

)
∈ Spn(Z)

}
.

When N is square-free,

E(v,w)·σ =

χNn
(w2)

∏
0<d≤n

χNd
(vd)

 Eσ,

where we write Eσ for Eγσ and E(v,w)·σ for E(v,w)·γσ
with γσ chosen as in Sec. 4.

Proof. Take γ, γ′, v, w, v′, w′ as in the statement of the proposition. By Proposition
3.5 we have (v′, w′) · γ ∈ (v, w) · γΓ(N ), so by Proposition 3.2 we have E(v,w)·γ =
E(v′,w′)·γ .

Now, given the assumption sthat Eγ = Eγ′ , there is some G ∈ GLn(Z),

δ =
(
A B
C D

)
∈ Γ0(N ) so that G(M I)δ = (M ′ I) and χ(detG · detD) = 1. By

Lemma 6.1, there is some δ′ =
(
A′ B′

C′ D′

)
∈ Γ0(N ) so that δ′ ≡ δ (N ), δ′ ≡ I (v); set
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δ′′ =
(
A′ B′/v
vC′ D′

)
(so δ′′ ∈ Γ0 (N )). Since SLn(Z) maps onto SLn (Z/NZ), we can

find E ∈ SLn(Z) so that

E ≡
(
w · detG

I

)
G

(
w

I

)
(N );

set G′ =
(

detG
I

)
E. Take

(r s
t u

) ∈ SL2(Z) so that(
r s

t u

)
≡
(
w 0

0 w

)
(N ),

and set

β =


r s

In−1 0

t u

0 In−1


(so β ∈ Γ0(N )). Then

sG′((v, w) ·M I))β−1δ′′β ≡ ((v, w) ·M ′ I)) (N ),

so ((v, w) ·M ′ I)) ∈ GLn(Z)
(
(v, w) ·M I)

)
Γ0(N ). Since χ(β−1δ′′β) = χ(detD) and

χ(detG′) = χ(detG), by Proposition 3.2 we have E(v,w)·γ = E(v,w)·γ′ .

Now suppose N is square-free. For all primes q|N , we have rankq(v, w) ·M =
rankqM, so ((v, w) ·Mσ I) ∈ SLn(Mσ I)Γ0(N ). Fix a prime q|N and take d =
rankqMσ. Thus by Proposition 3.5, we have E(v,w)·σ = χ((v, w) ·Mσ , I)Eσ. If d = 0
then χq((v, w) ·Mσ, I) = χq(0, I) = 1. If 0 < d < n then

χq((v, w) ·Mσ, I) = χq


vw

2

vId−1

0

, I
 = χq(v

dw2),

and since χ2
q = 1, χq(vdw2) = χq(vd). If d = n then χq((v, w) ·Mσ, I) = χq(vnw2).

Suppose Eσ �= 0. We have (1,−1) · γσ = γ±γσγ±, and Γ+
(1,−1)·γσ

= γ±Γ+
γσ
γ±,

so χ is trivial on Γ+
(1,−1)·γσ

and hence E(1,−1)·σ �= 0. With Γ0(N ) =
⋃
δ Γ+

(1,−1)·γσ

(disjoint), left multiplication by γ± gives us Γ0(N ) =
⋃
δ Γ+

γσ
γ±δ (disjoint). Then

E(1,−1)·σ
∑
δ

χ(δ)E∗|γ±γσγ±|δ

= χ(γ±)
∑
δ

χ(δ)E∗|γσ|γ±δ

= Eσ.
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If ((1,−1) ·Mσ I) = E(Mσ I)γ for some E ∈ SLn(Z) and γ ∈ Γ0(N ), then by
Proposition 3.2 we have E(1,−1)·σ = χ(γ)Eσ , so from above we must have χ(γ) = 1.
Thus if (M N) ∈ SLn(Z)(Mσ I)γ′ and (M N) ∈ SLn(Z)((1,−1) · Mσ I)γ′′ for
γ′, γ′′ ∈ Γ0(N ), we have χ(γ′) = χ(γ′′).

So with χ(M,N) = χ(γ) where (M N) ∈ SLn(Z)(Mσ I)γ or (M N) ∈
SLn(Z)((1,−1) · Mσ I)γ for γ ∈ SLn(Z), χ(M,N) is well defined. Also, Eσ =
1
2 (Eσ + E(1,−1)·σ), a fact we will use in the proofs of Theorems 5.2 and 5.4.

Theorem 5.2. Suppose Eσ �= 0; fix a prime p � N and p so that pp ≡ 1 (N ). Then

Eσ|T (p) =
n∑
r=0

χ(pn−r)pk(n−r)−(n−r)(n+r+1)/2βp(n, r) E(p,pr)·σ.

Proof. Write Kr for Kr(p), Xr for Xr(p), β(m, r) for βp(m, r).
When Eσ′ �= 0, set

δ =

(
I 0

−Mσ′ I

)(
I 0

(pp)3Mσ′ I

)
.

So δ ∈ Γ(N ), and hence by Proposition 3.2, Eγσ = Eγσδ. Thus we may replace γσ′

by γσ′δ (effectively, we may assume p3|Mσ′).
Now, by Proposition 2.1, we have

Eσ(τ)|T (p) = pkn−n(n+1)/2
∑

(M N)
r,G,Y

χ(pn−r)χ(M,N)

· det(pMX−1
r G−1τ + pMX−1

r Y tG+NXr
tG)−k.

Here SLn(Z)(M N) varies over SLn(Z)(Mσ I)Γ0(N ), 0 ≤ r ≤ n, and for each r,
G varies over SLn(Z)/Kr, Y varies over Yr(p); recall that since p � N , we can take
G ≡ I (N ), Y ≡ 0 (N ). Write M = (M ′

1 M
′
2), N = (N ′

1 N
′
2) with M ′

1, N
′
1 n × r,

and let s = rankp(M ′
1 N

′
2). We can use left multiplication from SLn(Z) to adjust

our representative (M N) to assume that

M =

(
pM1 M2

M3 M4

)
, N =

(
N1 pN2

N3 N4

)
,

where M3, N3 are s × r; so rankp(M3 N4) = s, and rankp(M2 N1) = n − s since
rankq(M N) = n. Set

(M ′G N ′ tG−1) = X−1
n−s(pMX−1

r NXr + pMX−1
r Y );

so

rankp(M ′ N ′) = rankp(pX−1
n−sMX−1

r X−1
n−sNXr)

= rankp

(
M1 M2 N1 N2

M3 pM4 pN3 N4

)
= n,
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and hence (M ′, N ′) = 1. Note that

det(M ′τ +N ′)−k = pk(n−s) det(pMX−1
r G−1τ + pMX−1

r Y tG+NXr
tG)−k.

We know

Eσ|T (p) =
1
2
(Eσ + E(1,−1)·σ)|T (p)

=
1
2

∑
σ′
cσ,σ′(Eσ′ + E(1,−1)·σ′)

for some cσ,σ′ ∈ C. So to compute cσ,σ′ for any given σ′, we first identify those
r, s,G, Y and

SLn(Z)(M N) ∈ GLn(Z)(Mσ I)Γ0(N )

so that

X−1
n−s(pMX−1

r G−1 NXr
tG+ pMX−1

r Y tG)

∈ SLn(Z)(Mσ′ I) ∪ SLn(Z)((1,−1) ·Mσ′ I).

Equivalently, we identify r, s,G, Y and SLn(Z)-equivalence classes

SLn(Z)Xn−sE
(

1
p
M ′GXr

(
tG−1 − 1

p
M ′GY

)
X−1
r

)
that lie in GLn(Z)(Mσ I)Γ0(N ), where M ′ = Mσ′ or (1,−1)·Mσ′ , and E ∈ SLn(Z).
Note that we only need to consider E ∈ tKn−s\SLn(Z), as SLn(Z)Xn−sE =
SLn(Z)Xn−s if and only if E ∈ tKn−s; note also that we can take E ≡ I (N ).

Take M ′ = Mσ′ or (1,−1) ·Mσ′ (some σ′). Recall that we can assume p3|Mσ′ ,
so with

(M N) = Xn−sE
(

1
p
M ′GXr

(
tG−1 − 1

p
M ′GY

)
X−1
r

)
,

we haveM ≡ 0 (p), and we have N integral with rankpN = n if and only if n−s = r

and E tG−1 ∈ tKr (independent of the choice of Y ). We know there are pr(r+1)/2

choices for Y , and by Lemma 6.2, β(n, r) choices for G. Also, with n − s = r and
E ∈ tKr tG, we have (M N) ≡ ( 1

pXrM
′Xr I) (N ). So when(

1
p
XrM

′Xr I

)
∈ GLn(Z)(Mσ I)Γ0(N ),

we get a contribution of

χ(pXrMσ′Xr, I)χ(pn−r)pk(n−r)+(r−n)(r+n+1)/2β(n, r)

toward cσ,σ′ (and a contribution of 0 otherwise).
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To determine when ( 1
pXrM

′Xr I) ∈ GLn(Z)(Mσ I)Γ0(N ), take E′ ∈ SLn(Z),
γ ∈ Γ0(N ); then take E′′ ∈ SLn(Z), γ′ ∈ Γ0(N ) so that E′′ ≡ I (p), E′′ ≡ E′ (N ),
γ′ ≡ I (p), γ′ ≡ γ (N ). Then set E′

r = X−1
r E′′Xr,

γr =

1
p
Xr

X−1
r

 γ′
(
pX−1

r

Xr

)
;

so E′
r ∈ SLn(Z), γr ∈ Γ0(N ). Then ( 1

pXrM
′Xr I) is equal to E′(Mσ I)γ or to

E′((1,−1) ·Mσ I)γ if and only if

(M ′ I) ≡ E′
rX

−1
r (Mσ I)

(
pX−1

r

Xr

)
γr (N )

or

(M ′ I) ≡ E′
rG±X−1

r (Mσ I)

(
pX−1

r

Xr

)
γ±γr (N ).

Hence using Proposition 3.3, we have ( 1
pXrM

′Xr I) ∈ GLn(Z)(Mσ I)Γ0(N ) if and
only if (M ′ I) ∈ GLn(Z)(pX−1

r MσX
−1
r I)Γ0(N ). Note that when r > 0, we can

find Gr ∈ SLn(Z) so that Gr ≡
(
pr−1

pIr−1
I

)
(N ), and then

Gr(pX−1
r MσX

−1
r I)

(
tGr

G−1
r

)
≡ ((p, pr) ·Mσ I) (N ).

Thus ( 1
pXrM

′Xr I) ∈ GLn(Z)(Mσ I)Γ0 (N ) if and only if

(M ′ I) ∈ GLn(Z)((p, pr) ·Mσ I)Γ0 (N ).

Also, by Proposition 3.2, we have χ(γr)Eσ′ = E(p,pr)·σ. Therefore Eσ|T (p) =∑n
r=0 χ(pn−r)pk(n−r)+(r−n)(r+n+1)/2E(p,pr)·σ, as claimed.

Definition. Let UN = (Z/NZ)×, ψ ∈ ̂UN × UN , the character group of UN × UN .
Set

Eσ,ψ =
∑

v,w∈UN

ψ(v, w)E(v,w)·σ.

Below we will show that when non-zero, Eσ,ψ is an eigenform for all T (p), Tj(p2),
p prime not dividing N . Note that by orthogonality of characters,

span{Eu·σ :u ∈ UN × UN } = span{Eσ,ψ :ψ ∈ ̂UN × UN }.
Also, we have ψ(v, w) = ψ1(v)ψ2(w) where ψ1, ψ2 are characters on UN ; using
Proposition 5.1, when N is square-free we have

Eσ,ψ =
∑

v,w∈UN

ψ(v, w)

 ∏
0<d≤n

χNd
(vd)

χNn
(w2)Eσ,
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so Eσ,ψ = 0 unless Eσ �= 0 and ψ1 =
∏

0<d≤n χ
d
Nd

, ψ2 = χ2
Nn

where Nd is the
product of all primes q|N so that rankqMσ = d.

Corollary 5.3. Suppose Eσ �= 0, and let p be a prime with p � N . Let ψ be a
character on UN × UN ; so ψ(v, w) = ψ1(v)ψ2(w) where ψ1, ψ2 are characters on
UN . Then Eσ,ψ|T (p) = λσ,ψ(p)Eσ,ψ where

λσ,ψ(p) = ψ1(p)ψ2(p
n) ·

n∏
i=1

(ψ2χ(p)pk−i + 1).

When N square-free, Eσ|T (p) = λσ(p)Eσ and Ẽσ|T (p) = λσ(p)Ẽσ where Ẽσ is as
in Corollary 4.3 and

λσ(p) =

 ∏
0<d≤n

χNd
(pd)

 n∏
i=1

(χ(p)χNn
(p2)pk−i + 1).

Proof. Write β(m, r) for βp(m, r). As in the proof of Theorem 5.2, we can assume
p3|Mσ. Identify p−1 with p where pp ≡ 1 (N ).

With v, w varying over UN and r varying so that 0 ≤ r ≤ n, we have

Eσ,ψ|T (p) = pkn−n(n+1)/2
∑

v,w,r ψ(v, w)χ(pn−r)p−kr+r(r+1)/2β(n, r) E(pv,prw)·σ.

Making the change of variables v �→ pv and w �→ prw, we get

Eσ,ψ|T (p) = ψ1(p)χ(pn)pkn−n(n+1)/2S(n, k) Eσ,ψ

where

S(n, k) =
n∑
r=0

ψ2χ(pr)p−kr+r(r+1)/2β(n, r).

Using that β(n, r) = prβ(n− 1, r) + β(n− 1, r − 1), we find that

S(n, k) = (ψ2χ(p)p1−k + 1)S(n− 1, k − 1)

=
n∏
i=1

(ψ2χ(p)pi−k + 1)

= ψ2χ(pn)p−nk+n(n+1)/2
n∏
i=1

(ψ2χ(p)pk−i + 1).

Now suppose N is square-free. With ψ1 =
∏

0<d≤n χ
d
Nd

and ψ2 = χ2
Nn

, we
have Eσ,ψ = |UN |2 · Eσ; recalling that χNd

= χNd
for 0 < d < n (see Proposi-

tion 3.6), the above result gives us Eσ|T (p) = λσ(p)Eσ , as claimed. We also have
Ẽσ =

∑
α≥σ (N ) aσ,αEα with aσ,σ = 1; since the Hecke operators commute, the

multiplicity-one result of Corollary 4.3 tells us Ẽσ = λσ(p)Ẽσ .
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Theorem 5.4. With p a prime not dividing N ,

Eσ|Tj(p2) = βp(n, j)
∑
r+s≤j

χ(pj−r+s)pk(j−r+s)−(j−r)(n+1)

·βp(j, r)βp(j − r, s) symp(j − r − s)E(1,ps−r)·σ

(where symp(t) is the number of invertible, symmetric t× t matrices modulo p).

Proof. To a large extent, we follow the line of reasoning in the proof of Theorem
5.2. We write Kr,s for Kr,s(p), Xr,s for Xr,s(p), β(m, r) for βp(m, r).

As discussed at the beginning of the proof of Theorem 5.2, we can modify our
representatives (Mσ′ I) to assume p3|Mσ′ . By Proposition 2.1, we have

Eσ(τ)|Tj(p2) =
∑

χ(pj−n0+n2)χ(M,N)pj(k−n−1)

· det(MX−1
n0,n2

G−1τ +MX−1
n0,n2

Y tG+NXn0,n2
tG)−k,

where SLn(Z)(M N) varies over SLn(Z)(Mσ I)Γ0(N ), n0, n2 ∈ Z≥0 vary subject to
n0+n2 ≤ j, G ∈ SLn(Z)/Kn0,n2 , Y ∈ Yn0,n2(p2); note that we can assume that Y ≡
0 (N ) and, using Lemma 6.1, thatG ≡ I (N ). Given (M N) ∈ SLn(Z) (Mσ I)Γ0(N )
and

Y =


Y0 Y2 Y3 0
tY2 Y1/p 0
tY3 0

0

 ∈ Yn0,n2(p
2),

we decompose M,N into 3 × 4 block matrices as follows. First, write M =
(M ′

9 M
′
10 M

′
11 M

′
12), N = (N ′

9 N
′
10 N

′
11 N

′
12) where M ′

9, N
′
9 are n × n0, M ′

10, N
′
10

are n× (j − n0 − n2), and M ′
12, N

′
12 are n× n2. Let s = rankp(M ′

9 M
′
10 N

′
12); using

left multiplication from SLn(Z), we can assume

M =

(
pM ′

5 pM ′
6 M ′

7 M ′
8

M9 M10 M11 M12

)
, N =

(
N ′

5 N ′
6 N ′

7 pN ′
8

N9 N10 N11 N12

)
,

where M ′
8, N

′
8 are (n− s) × n2, M9, N9 are s × n0, M10, N10 are s× (j − n0 − n2)

(so s = rankp(M9 M10 N12)). Take r so that

n− r = rankp

(
M ′

5 M ′
7 N ′

6 +M ′
6Y1 N ′

7 N ′
8

M9 0 M10Y1 0 N12

)
.

Thus using left multiplication from SLn(Z) (leaving the lower s rows fixed), we can
assume that p divides the upper r rows of (M ′

5 M
′
7 N

′
6 +M ′

6Y1 N
′
7 N

′
8), and so

M =

p
2M1 pM2 pM3 M4

pM5 pM6 M7 M8

M9 M10 M11 M12

, N =

N1 N2 pN3 p2N4

N5 N6 N7 pN8

N9 N10 N11 N12


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with M1, N1r × n0. Also, since p divides the upper r rows of N ′
6 +M ′

6Y1, we have
N2 ≡ −M2Y1 (p) and

rankp

(
M5 M7 N6 +M6Y1 N7 N8

M9 0 M10Y1 0 N12

)
= n− r.

Note that we necessarily have rankp(M4 N1 N2) = r; since Y1 is invertible modulo
p and N2 ≡ −M2Y1 (p), we have rankp(M2 M4 N1) = r. Set

(M ′G N ′ tG−1) = X−1
r,s (MX−1

n0,n2
NXn0,n2 +MX−1

n0,n2
Y ).

Hence M ′, N ′ are integral, and with

Y ′ =


Y0 Y2 Y3 0
tY2

tY3

0

,
we have

rankp(M ′ N ′)

= rankp(M ′G N ′ tG−1)

= rankp(M ′G N ′ tG−1 −M ′GY ′)

= rankp

M1 M2 M3 M4 N1 (N2 +M2Y1)/p N3 N4

M5 0 M7 0 0 N6 +M6Y1 N7 N8

M9 0 0 0 0 M10Y1 0 N12



≥ rankp

M1 M2 0 M4 N1 0 0 0

M5 0 M7 0 0 N6 +M6Y1 N7 N8

0 0 0 0 0 M10Y1 0 N12


= n.

So (M ′ N ′) is an integral coprime pair, and

det(MX−1
n0,n2

G−1τ +NXn0,n2
tG+MX−1

n0,n2
Y tG)−k

= pk(s−r) det(M ′τ +N ′)−k.

Now take an index σ′, E ∈ tKr,s\SLn(Z), and set

(M N) = Xr,sE(Mσ′GXn0,n2
tG−1X−1

n0,n2
−M ′GYX−1

n0,n2
),

where M ′ is Mσ′ or (1,−1) ·Mσ′ . We first determine exactly when (M N) is an
integral coprime pair, and then we determine when

(M N) ∈ GLn(Z)(Mσ I)Γ0(N ).
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Recall that G = G1G2 (as described in Proposition 2.1) with G1 varying

over SLn(Z)/Kn0,n2 and G2 =
(
In0

G′

In2

)
with G′ varying over SLn′(Z)/ tK′

j′

where n′ = n − n0 − n2, j′ = j − n0 − n2; also recall that since we can assume
p3|Mσ′ , we have M ≡ 0 (p). So to have (M N) integral and coprime, we need
Xr,sE

tG−1Xn0,n2 integral and invertible modulo p. Since Xn0,n2 and G2 commute,

to have Xr,sE
tG−1Xn0,n2 integral, we need E tG−1

1 =
(

N1 N2 N3
pN4 N5 N6

p2N7 pN8 N9

)
where N1

is r × n0, N9 is s× n2, which means we have rankpN1 = n0, rankpN9 = s. Then

N ≡

N1 pN2 p2N3

N4 N5 pN6

N7 N8 N9

 (p2),

so to have N invertible modulo p, we need rankpN1 = r, rankpN9 = n2, meaning
r = n0, s = n2; we then must have rankpN5 = n−n0−n2 since E tG−1

1 is invertible
modulo p. So suppose r = n0, s = n2, and fix G1. Then we have Xr,sE

tG−1
1 X−1

r,s

integral if and only if E tG−1
1 ∈ tKr,s; consequently, (M N) is integral and coprime

if and only if r = n0, s = n2, and E ∈ tKr,s tG1.
To summarize: For any choices of G1 ∈ SLn(Z)/Kn0,n2 , G2 ∈ SLn′(Z)/K′

j′ ,
Y ∈ Yr,s(p2), we have

(M N) = Xr,sE(Mσ′GXn0,n2
tG−1X−1

n0,n2
−M ′GYX−1

n0,n2
)

integral and coprime if and only if r = n0, s = n2, and E ∈ tKr,s tG1. There
are prsβ(n, r)β(n− r, s) choices for G1, β(n− r − s, j − r − s) choices for G2, and
pr(r+1)+r(n−r−s) symp(j − r − s) = pr(n−s+1) symp(j − r − s) choices for Y .

With (M N) integral and coprime, we have χ(M,N) = χ(Xr,sMσ′Xr,s, I), and
arguing as in the proof of Theorem 5.2, we find that

(M N) ∈ GLn(Z)(Mσ I)Γ0(N )

if and only if (Mσ′ I) ∈ GLn(Z)((1, pr−s) · Mσ I)Γ0(N ). Also, E(1,pr−s)·σ =
χ((1, pr−s) ·Mσ, I)Eσ′ . Note also that

β(n, r)β(n− r, s)β(n− r − s, j − r − s)

=
µ(n, r)µ(n− r, s)µ(n− r − s, j − r − s)

µ(r, r)µ(s, s)µ(j − r − s, j − r − s)
µ(j, r + s)
µ(j, r + s)

= β(n, j)β(j, r)β(j − r, s).

For this the theorem follows.

We now choose a different set of generators for the Hecke algebra to obtain more
attractive eigenvalues.
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Definitions. Let p be a prime not dividing N , and fix j, 1 ≤ j ≤ n. As in [7],
we set

T̃j(p2) =
∑

0≤�≤j
χ(pj−�)p(j−�)(k−n−1)βp(n− �, j − �)T�(p2)

where T0(p2) is the identity map. The effect of this averaging is to remove on Y1 the
condition that p � det Y1 (where Y ∈ Yn0,n2(p2) is as described in Proposition 2.1).

For u ∈ UN and γ =
(
I 0
M I

)
∈ Spn(Z), we define

R(u)Eγ = E(1,u)·γ ,

and we extend R(u) linearly to E(n)
k (N , χ), which we know is spanned by all such

Eγ ; by Proposition 5.1, R(u) is well defined. By Theorems 5.2 and 5.4, we see that
R(u) commutes with T (p) and Tj(p2) (p prime, p � N , 1 ≤ j ≤ n). Thus

{T (p), Tj(p2), R(p) : prime p � N , 0 ≤ j ≤ n}
generates a commutative algebra of operators on E(n)

k (N , χ). Set

T ′
j(p

2) =
j∑
i=0

(−1)ipi(i−1)/2βp(n− j + i, i)T̃j−i(p2)R(pi)

where pp ≡ 1 (N ). (Recall that R(u) is defined for any u ∈ Z with (u,N ) = 1, so
R(pi) makes sense.)

Corollary 5.5. We have

Eσ,ψ|T ′
j(p

2) = λ′j;σ,ψ(p2)Eσ,ψ,

where

λ′j;σ,ψ(p2) = βp(n, j)p
(k−n)j+j(j−1)/2χ(pj)

j∏
i=1

(ψ2χ(p)pk−i + 1).

When N is square-free, we have Eσ|T ′
j(p

2) = λ′j;σ(p2)Eσ and Ẽσ|T ′
j(p

2) = λ′j;σ(p2)
Ẽσ where

λ′j;σ(p2) = βp(n, j)p
(k−n)j+j(j−1)/2χ(pj)

j∏
i=1

(χχ2
Nn

(p)pk−i + 1).

Proof. Write β(m, r) for βp(m, r). Using Theorem 5.4, averaging over v, w ∈ UN
(and replacing w by wpr−s inside the sum on r, s in the formula of Theorem 5.4),
we get Eσ,ψ|T̃j(p2) = λ̃j;σ,ψ(p2)Eσ,ψ where

λ̃j;σ,ψ(p2) =
∑
�,r,s

χ(pj+s−r)ψ2(ps−r)pj(k−n−1)+r(n+1)+k(s−r)

·β(n, �)β(n− �, j − �)β(�, r)β(�− r, s) symp(�− r − s),
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where 0 ≤ � ≤ j, 0 ≤ r + s ≤ �, or equivalently, 0 ≤ r + s ≤ j, r + s ≤ � ≤ j. We
make the change of variables � �→ j − � and use that

β(n, j − �)β(n− j + �, �)β(j − �, r)β(j − �− r, s)
µ(j, �)
µ(j, �)

= β(n, j)β(j, r)β(j − r, s)β(j − r − s, �)

= β(n, j)β(j, r)β(j − r, s)β(j − r − s, j − �− r − s).

Now we make the change of variable � �→ j − �− r − s, we get

λ̃j;σ,ψ(p2) = β(n, j)
∑

0≤r+s≤j
χ(pj+s−r)ψ2(ps−r)pj(k−n−1)+r(n+1)+k(s−r)

·β(j, r)β(j − r, s) ·
∑

0≤�≤j−r−s
β(j − r − s, �) symp(�).

By Lemma 6.7, the sum on � is p(j−r−s)(j−r−s+1)/2.

We have Eσ,ψ|R(pi) = ψ2(pi)Eσ,ψ . Thus Eσ,ψ|T ′
j(p

2) = λ′j;σ,ψ(p2)Eσ,ψ where

λ′j;σ,ψ(p2)

=
∑
i,r,s

(−1)ipi(i−1)/2β(n− j + i, i)ψ2(p
i)χ(pj−i+s−r)ψ2(ps−r)

· p(j−i−r)(k−n−1)+ks+(j−i−r−s)(j−i−r−s+1)/2

β(n, j − i)β(j − i, r)β(j − i− r, s),

where 0 ≤ i ≤ j, 0 ≤ r ≤ j − i, 0 ≤ s ≤ j − i − r. Making the change of variable
r �→ j − i− r we get

λ′j;σ,ψ(p2) =
∑
i,r,s

(−1)ipi(i−1)/2χ(pr+s)ψ2(ps+r−j)pr(k−n−1)+ks+(r−s)(r−s+1)/2

·β(n− j + i, i)β(n, j − i)β(j − i, j − i− r)β(r, s),

where 0 ≤ i ≤ j, 0 ≤ r ≤ j − i, 0 ≤ s ≤ r, or equivalently, 0 ≤ r ≤ j, 0 ≤ i ≤ j − r,
0 ≤ s ≤ r. Note that

β(n− j + i, i)β(n, j − i)β(j − i, r)
µ(j, i)
µ(j, i)

= β(n, j)β(j, r)β(j − r, i).

Also, using the relation β(m, r) = prβ(m− 1, r) + β(m− 1, r − 1), we get

j−r∑
i=0

(−1)ipi(i−1)/2β(j − r, i) =

{
1 if j = r,

0 otherwise.
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Hence λ′j;σ,ψ(p2) = χ(pj)pj(k−n−1)+j(j+1)/2β(n, j)S(j, k − j) where

S(j, y) =
j∑
s=0

pys+s(s−1)/2χψ1(ps)β(j, s).

Using the identity β(m, s) = psβ(m− 1, s) + β(m− 1, s− 1), we have

S(j, k − j) = (χψ2(p)pk−j + 1)S(j − 1, k − j + 1)

=
j∏
i=1

(χψ2(p)pk−i + 1),

proving the corollary.

6. Lemmas

Lemma 6.1. Suppose N ′,N ′′ ∈ Z+ with (N ′,N ′′) = 1.

(a) Given any E′ ∈ SLn(Z), there is some E ∈ SLn(Z) so that E ≡ E′ (N ′) and
E ≡ I (N ′′).

(b) Suppose γ ∈ Γ0(N ′). Then there is some γ′ ∈ Γ0(N ′) so that γ′ ≡ γ (N ′) and
γ′ ≡ I (N ′′).

Proof. (a) Choose y, z ∈ Z so that yN ′′ + zN ′ = 1. Thus (yN ′′, zN ′) = 1, so

there are w, x ∈ Z so that wz(N ′)2 − xy(N ′′)2 = 1. Hence G0 =
(
wN ′ xN ′′

yN ′′ zN ′

)
∈

SL2(Z) with G0 ≡ I (N ′′), G0 ≡
(

0 −1
1 0

)
(N ′). For b ∈ Z, G1 =

(
1 byN ′′

0 1

)
, G2 =(

1 0
byN ′′ 1

)
, we have G1, G2 ∈ SL2(Z) with G1, G2 ≡ I (N ′′), G1 ≡

(
1 b
0 1

)
(N ′),

G2 ≡
(

1 0
b 1

)
(N ′). Also, for a ∈ Z so that q � a, take c ∈ Z so that c ≡ 1 (N ′′),

c ≡ a(N ′). Thus (c,N ′N ′′) = 1 so there are u, v ∈ Z so that cu − (N ′N ′′)2v = 1.

Set G3 =
(

c N ′N ′′

vN ′N ′′ u

)
. So G3 ∈ SL2(Z), G3 ≡ I (N ′′), G3 ≡

(
c 0
0 c

)
(N ′) (where

cc ≡ 1 (N ′)). For any d, 0 ≤ d ≤ n− 2, the map

G �→

Id G

In−d−2


is an embedding of SL2(Z) into SLn(Z). Thus we have matrices that allow us to
perform “local” elementary row and column operations modulo N ′ within SLn(Z).
Hence, given some E′ ∈ SLn(Z), there are G,G′ ∈ SLn(Z) so that G,G′ ≡ I (N ′′)
and GE′G′ ≡ I (N ′); hence with E = (G′G)−1, we have E ∈ SLn(Z) with E ≡
I (N ′′), E ≡ E′(N ′).

(b) Write γ =
(A B
C D

)
; so C ≡ 0 (N ′). Set a = detA; since A tD ≡ I (N ′), we

can choose a ∈ Z so that aa ≡ 1 (N ′). So we can choose G ∈ SLn(Z) so that G ≡(a
I

)
A (N ′), G ≡ I (N ′′).We knowA tB is symmetric; setW = N ′′N ′′

G−1
(a

I

)
B
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where N ′′N ′′ ≡ 1 (N ′). Now take
(w x
y z

) ∈ SL2(Z) so that
(w x
y z

) ≡ (a
a

)
(N ′)

and
(w x
y z

) ≡ I (N ′′). Set

γ′ =


w x

In−1 0

y z

0 In−1


(
G GW

0 tG−1

)
;

so γ′ ∈ Γ0(N ′), γ ≡ γ (N ′), and γ′ ≡ I (N ′′).

Lemma 6.2. Let Λ = Zx1 ⊕ · · · ⊕ Zxn; fix a prime q and let Kd = Kd(q). The
elements of SLn(Z)/Kd are in one-to-one correspondence with lattices Ω where
qΛ ⊆ Ω ⊆ Λ and [Λ : Ω] = qd. The correspondence is given as follows: For GKd ∈
SLn(Z)/Kd, Ω is the lattice with basis

(x1 · · · xn)G

(
qId

I

)
.

Further, the number of such Ω is β(n, r).

Proof. Given G ∈ SLn(Z), we map G to the sublattice of Λ with basis

(x1 . . . xn)G

(
qId

I

)
.

Clearly each Ω described in the lemma can be obtained this way. Further, for H ∈
SLn(Z),

(x1 . . . xn)GH

(
qId

I

)
is also a basis for Ω if and only if H ∈ Kd. Also, each such Ω corresponds to a
dimension n− r subspace of Λ/qΛ, of which there are β(n, n− r) = β(n, r).

For d, r≥ 0, d+ r≤n, let Kd,r(q) be the subspace of SLn(Z) consisting of matri-
ces G1 B1 B2

C1 G2 B3

C2 C3 G3

,
where G1 is d× d, G3 is r × r, B1, B3 ≡ 0 (q), B2 ≡ 0 (q2).

Lemma 6.3. Let Λ = Zx1 ⊕ · · · ⊕ Zxn; fix a prime q and let Kd,r = Kd,r(q).
For Ω a sublattice of Λ containing q2Λ, let mi denote the multiplicity of qi among
the invariant factors {Λ : Ω}. Then the elements of SLn(Z)/Kd,r are in one-to-one
correspondence with sublattices Ω of Λ containing q2Λ with m0 = r and m2 = d. The
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correspondence is given as follows: For G ∈ SLn(Z)/Kd,r, Ω is the lattice with basis

(x1 . . . xn)G

q
2Id

qI

Ir

.
Further, there are qdrβ(n, d)β(n− d, r) such Ω.

Proof. Given G ∈ SLn(Z), we map G to the sublattice of Λ with basis

(x1 . . . xn)G

q
2Id

qI

Ir

.
Clearly each Ω described in the lemma can be obtained this way. Further, for H ∈
SLn(Z),

(x1 . . . xn)GH

q
2Id

qI

Ir


is also a basis for Ω if and only if H ∈ Kd,r.

On the other hand, given such Ω, we have Ω = q2Λ0 ⊕ qΛ1 ⊕ Λ2 where Λ =
Λ0⊕Λ1⊕Λ2 with rankΛ0 = d, rankΛ2 = r. We can construct all such Ω as follows.
First let ∆ be the preimage in Λ of a dimension n − d subspace of Λ/qΛ; there
are β(n, n − d) = β(n, d) such subspaces. Then let Ω be the preimage in ∆ of a
dimension r subspace of ∆/q∆ that is independent of qΛ; there are qdrβ(n− d, r)
choices. Since ∆ = 1

qΩ∩Λ, a different choice in step 1 or step 2 of this construction
yields a different lattice Ω.

Remark. Let Λ = Zx1 ⊕ · · · ⊕Zxn, Λ# = Zy1 ⊕ · · · ⊕Zyn where (y1 . . . yn) is the
basis dual to (x1 . . . xn). Then for G ∈ SLn(Z), the basis dual to (x1 . . . xn)G
is (y1 . . . yn) tG−1; thus the elements of SLn(Z)/Kd(q) are in one-to-one corre-
spondence with subspaces Fy′1 ⊕ · · · ⊕ Fy′d ⊆ Λ#/qΛ# . Similarly, the elements
of SLn(Z)/Kd,r(q) are in one-to-one correspondence with sublattices Ω′ where
q2Λ# ⊆ Ω′ ⊆ Λ# and

(y1 . . . yn) tG−1

Id qI

q2Ir


is a basis for Ω′.

Lemma 6.4. Fix a prime q; suppose M ′ ∈ Zn,n with d′ = rankqM ′. Let K=Kd(q),
Km,r = Km,r(q), β(m, r) = βq(m, r).

(a) For 0 ≤ d ≤ d′, there are qd(n−d
′)β(d′, d) choices for E ∈ Kd\SLn(Z) so that

the top d rows of EM ′ are linearly independent modulo q.
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(b) For r,m, s ≥ 0 so that d′ − r ≤ m+ s ≤ d′, there are

β(n− d′, n− r −m− s)β(d′,m+ s)β(m+ s,m)qm(n+r−d′)+s(r+m+s−d′)

choices for E ∈ Km,r\SLn(Z) so that the q-rank of the top m rows of EM ′ is
m and the q-rank of the top n− r rows of EM ′ is m+ s.

Proof. (a) Take E0 ∈ SLn(Z) so that q divides the lower n− d′ rows of E0M
′; as

E varies over a set of representatives for Kd\SLn(Z), so does EE0. Thus we may
as well assume that q divides the lower n− d′ rows of M ′. We know by Lemma 6.2
and the remark preceding this lemma that each E ∈ Kd\SLn(Z) corresponds to a
sublattice Ω = Fy1 ⊕ · · · ⊕ Fyn of Λ = Fx1 ⊕ · · · ⊕ Fxn with [Λ : Ω] = qn−d, where

y1

...

yn

 =

(
Id

qIn−d

)
E


x1

...

xn

.
Thus rankq

(Id

qIn−d

)
EM ′ = d if and only if E is chosen so that Fy1 ⊕ · · · ⊕Fyd is

independent of Fxd′+1 ⊕ · · · ⊕ Fxn; there are β(d′, d)qd(n−d
′) such subspaces.

(b) Let Λ = Zx1 ⊕ · · · ⊕Zxn, and let Λ( tM ′)mod q denote the subspace of Fn,1

obtained by replacing each xi by column i of tM ′ modulo q. We know that each
element E ∈ Km,r\SLn(Z) corresponds to a lattice Ω = Λ0 ⊕ qΛ1 ⊕ q2Λ2 with basis

(x1 . . . xn) tE

Im qI

q2Ir

.
We want to choose Ω so that, with ∆ = 1

qΩ ∩ Λ = Λ0 ⊕ Λ1 ⊕ qΛ2, the map
Λ �→ Λ( tM ′)mod q takes Ω to a dimension m subspace and ∆ to a dimension m+s

subspace. Let mi = rankΛi.
Given Ω a sublattice of Λ containing q2Λ and with m0 = m, m2 = r, Ω deter-

mines a unique dimension n− r sublattice ∆ = 1
qΩ ∩ Λ of Λ/qΛ, and then with ∆

the preimage of ∆ in Λ, and Ω determines a unique dimension m sublattice Ω of
∆/q∆. Thus we can build all Ω corresponding to Km,r\SLn(Z) by first choosing a
dimension n − r subspace ∆ of Λ/qΛ; then the preimage of ∆ is ∆ = ∆1 ⊕ qΛ2

where Λ2 has rank r and Λ = ∆1 ⊕ Λ2. Then in ∆/q∆, we choose a dimension m

subspace Ω that is independent of qΛ = qΛ2; then the preimage of Ω in ∆ is Ω.
So each Ω corresponds to a (unique) dimension n − r subspace ∆ of Λ/qΛ, and a
(unique) dimension m subspace of ∆/q∆.

We know d′ = dim Λ( tM ′)mod q, so Λ = W ⊕R where

R = ker(Λ �→ Λ( tM ′)mod q).

So in Λ/qΛ, dimR = n − d′. We choose ∆ of dimension n − r in Λ/qΛ so that
dim ∆ ∩R = n− r −m− s. Thus there are

β(n− d′, n− r −m− s)β(d′,m+ s)q(m+s)(m+s+r−d′)
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choices for ∆ so that Λ �→ Λ( tM ′)mod q takes ∆ to a dimension m + s subspace.
Then ∆/q∆ = U ⊕ R

′
where dimU = m + s and R′ ⊆ R + qΛ. We choose Ω of

dimension m and independent of R
′
; so we have β(m+ s,m)qm(n−m−s) choices for

Ω ⊆ ∆ so that Λ �→ Λ( tM ′)mod q takes Ω to a dimension m subspace.

Lemma 6.5. Fix a prime q and write β(m, r) for βq(m, r). Suppose (M ′ N ′) is
an n× n coprime symmetric pair such that

M ′ ≡


A1 0 0 0

0 C 0 0

0 0 0 0

0 0 C′ 0

 (q)

with A1 d1 × d1, C (d4 + d5) × (d4 + d5), C′ (d7 + d8) × (d7 + d8), and A1, C, C
′

invertible modulo q. (So with d′ = rankqM ′, we have d′ = d1 + d4 + d5 + d7 + d8.)
Suppose also that d1 + d5 + d7 ≤ j ≤ n− d4− d8, and set r = j− d1− d5 + d8. Then
there are

β(d4 + d5, d4)β(d7 + d8, d8)q(d4+d8)(j−d1−d5)−d7d8

choices for G ∈ SLn(Z)/Kj so that, writing

M ′G =

M1 M2

M3 M4

M5 M6

, N ′ tG−1 =

N1 N2

N3 N4

N5 N6


with M1, N1 d1×j, M5, N5 r×j, we have rankqM1 = d1, M2 ≡ 0 (q), rankqM4 = d4,

rankq
(M4
M6

)
= d4 + d8, rankq

(M1
M3

)
= d1 + d5, the lower n− r − d1 − d4 − d5 rows of

N3 are 0 modulo q, and the upper r − d7 − d8 rows of N5 have q-rank r − d7 − d8.

Proof. Let V = Fx1 ⊕ · · · ⊕ Fxn. We know by Lemma 6.2 that the elements
G ∈ SLn(Z)/Kj are in one-to-one correspondence with the subspaces W = Fx′j+1 ⊕
· · · ⊕ Fx′n where (x′1 . . . x′n) = (x1 . . . xn)G. We translate the lemma’s criteria
on G to criteria on W , and then count such W .

Let V # = Fy1 ⊕ · · · ⊕ Fyn be the dual space for V ; so for G ∈ SLn(F),
(y1 . . . yn) tG−1 is the basis dual to (x1 . . . xn)G. Let V (M ′) denote the sub-
space of Fn,1 obtained by replacing each xi by the ith column of M ′ modulo q. We
split V as V1 ⊕V2 ⊕V3 ⊕V4 as follows. Let (a1 . . . an) denote (the columns of) the
top d1 + d4 + d5 rows of M ′, (g1 . . . gn) the top d1 rows of M ′; set

V4 = ker(V �→ V (M ′)),

V3 ⊕ V4 = ker(V �→ V (a1 . . . an)),

V2 ⊕ V3 ⊕ V4 = ker(V �→ V (g1 . . . gn)).

(So dimV4 = n− d′, dimV3 = d7 + d8, dimV2 = d4 + d5, dimV1 = d1.) Thus with
W determined by G as above, M ′G meets the criteria of the lemma if and only if
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the map V �→ V (g1 . . . gn) takes W to a dimension 0 subspace, V �→ V (a1 . . . an)
takes W to a dimension d4 subspace, V �→ V (M ′) takes W to a dimension d4 + d8

subspace.
This splitting V = V1 ⊕ V2 ⊕ V3 ⊕ V4 corresponds to a splitting V # = V ′

1 ⊕
V ′

2 ⊕ V ′
3 ⊕ V ′

4 where V ′
1 , V ′

1 ⊕ V ′
2 , V ′

1 ⊕ V ′
2 ⊕ V ′

3 are uniquely determined (recall that
V ⊥

4 = V ′
1 ⊕V ′

2 ⊕V ′
3 , etc.). Let (b1 . . . bn) be rows d1 +d4+d5 +1 through n−d7−d8

of N ′, (c1 . . . cn) be rows d1 + d4 + d5 + 1 through n− r of N ′.
With U ′ = W⊥ ⊆ V #, N ′ tG−1 meets the criteria of the lemma if and only if

the map V # �→ V #(c1 . . . cn) takes U ′ to a dimension 0 subspace, and V # �→
V #(b1 . . . bn) takes U ′ to a dimension r − d7 − d8 subspace.

Now we construct and count all dimension n− j subspaces W of V so that the
above criteria for W and W⊥ is met.

We know by the symmetry of M ′ tN ′ that

V ′
1 ⊕ V ′

2 ⊕ V ′
3 = ker(V # �→ V #(b1 . . . bn));

so ker
(
V # �→ V #(c1 . . . cn)

)
= V ′

1⊕V ′
2⊕V ′

3⊕U ′
4, with U ′

4 ⊆ V ′
4 . We need to choose

W so that under the map V # �→ V #(N ′), U ′ = W⊥ is mapped to a dimension 0
subspace. Equivalently, we need U ′ ⊆ V ′

1⊕V ′
2⊕V ′

3⊕U ′
4, which meansW4 ⊆W where

W4 = (V ′
1⊕V ′

2⊕V ′
3⊕U ′

4)
⊥ ⊆ V4. (So we can split V4 = U4⊕W4.) Since (M ′, N ′) = 1,

(b1 . . . bn) ≡ (0 D) (q) where D is (n − d′) × (n − d′) with rankqD = n − d′. So
V # �→ V #(b1 . . . bn) automatically takes U ′

4 to a subspace of dimension r−d7−d8.
Since (M ′, N ′) = 1, we also know rankq(c1 . . . cn) = n− j − d4 − d8. Hence

dim ker(V # �→ V #(c1 . . . cn)) = r + d1 + d4 + d5,

so dimU ′
4 = r − d7 − d8; thus dimW4 = dimV4 − dimU ′

4 = n− j − d4 − d8.

We need dimW = n − j, and we need V �→ V (a1 . . . an) to take W to a
dimension d4 subspace. Thus W must be of the form W2 ⊕W3 ⊕W4 where W3 ⊕
W4 ⊆ ker

(
V �→ V (a1 . . . an)

)
= V3 ⊕ V4, dimW3 ⊕W4 = n − j − d4, and W2

is independent of V3 ⊕ V4. Since we need V �→ V (M ′) to take W to a dimension
d4 + d8 subspace, we must have W3 independent of ker

(
V �→ V (M ′)

)
= V4. So

we extend W4 to W3 ⊕W4 where dimW3 = d8 with W3 independent of V4; thus
we have β(d7 + d8, d8)qd8(j−d1−d5−d7) choices for W3. Then we extend W3 ⊕W4 to
W2 ⊕W3 ⊕W4 where dimW2 = d4 and W2 is independent of V3 ⊕V4; thus we have
β(d4 + d5, d4)qd4(j−d1−d5) choices for W2.

Lemma 6.6. Suppose N is square-free, χ is a character modulo N , and q is a
prime dividing N . Set F = Z/qZ and

symχ
q (t) =

∑
U∈F

t,t
sym

χq(detU).

Then symχ
q (t) �= 0 if and only if either (1) χq = 1, or (2) χ2

q = 1 and t is even.

Proof. Say q = 2. Then χq = 1 (since N is square-free), so symχ
q (t) is the number

of invertible, symmetric t× t matrices modulo 2; clearly this is non-zero.
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So suppose q is odd. Set J =
(ω

It−1

)
where ω is not a square in F. We

know GLt(F) acts by conjugation on the subset of invertible elements of Ft,tsym;
the orbits are represented by I and J . Note that for U ∈ F t,tsym, U is in the orbit of
I (respectively, the orbit of J) if and only if, for some α ∈ F×, we have detU = α2

(respectively, detU = α2ω); also, given α ∈ F×, the number of U ∈ Ft,tsym with
detU = α2 (respectively, with detU = α2ω) is the number of U ∈ Ft,tsym with
detU = 1 (respectively, with detU = ω). With o(U) the order of the stabilizer of
U , we know o(U) = o(U ′) when U,U ′ are in the same orbit. Hence

symχ
q (t) =

2
q − 1

· #GLt(F)
o(I)

· 1
2

∑
α∈F×

χq(α2)

+
2

q − 1
· #GLt(F)

o(J)
· 1
2

∑
α∈F×

χq(α2ω)

=
#GLt(F)
q − 1

(
1
o(I)

+
χq(ω)
o(J)

) ∑
α∈F×

χ2
q(α).

Thus symχ
q (t) = 0 if χ2

q �= 1. Suppose χ2
q = 1; then χq(ω) = −1 if and only if χq �= 1.

Also, by the theory of quadratic forms over finite fields (see, for instance, [6]), we
know o(I) = o(J) if and only if t is odd, so the lemma follows.

Lemma 6.7. For p prime, t ∈ Z+, we have
∑t

�=0 βp(t, �) symp(�) = pt(t+1)/2.

Proof. Let F = Z/pZ; take V = Fx1 ⊕ · · · ⊕ Fxt. For each t − �-dimensional
subspace R of V , fix GR ∈ GLt(F) so that R = Fy�+1 ⊕ · · · ⊕ Fyt where
(y1 · · · yt) = (x1 · · · xt)GR. Take Q ∈ Ft,tsym so that rankQ = �. Let (V,Q)
denote the quadratic space with Q the quadratic form on V relative to the basis
(x1 · · · xt). By the uniqueness of the radical of V (with respect to Q), there exists
a unique R so that tGRQGR =

(U 0
0 0

)
where U ∈ F�,�sym with U invertible, and there

are symp(�) possibilities for U (depending on Q). Hence Ft,tsym is partitioned into
sets {Q : rankQ = �}, 0 ≤ � ≤ t, and given �, {Q : rankQ = �} is partitioned into
sets {Q : tGRQGR =

(U 0
0 0

)}, R varying over dimension t − � subspaces of V , of
which there are βp(t, t− �) = βp(t, �), U varying over invertible elements on F�,�sym,
of which there are symp(�). From this the lemma follows.
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