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1. Introduction

Automorphic forms appear in almost every area of modern number theory;
Eisenstein series are fundamental examples of automorphic forms. In the case of clas-
sical elliptic modular forms (i.e. holomorphic automorphic forms of integral weight),
Eisenstein series are well-understood: For instance, the Fourier expansions of a “nat-
ural” basis of Eisenstein series have long been known; as well, it has long been known
that the space of Eisenstein series of weight %, level A" and character y has a basis
of simultaneous eigenforms for the Hecke operators {T'(p) : p prime, p { N'}, and
for {T'(p) : p prime} when N is square-free (see, e.g., [9, Chap. IV]). The Fourier
coefficients of these simultaneous eigenforms are (after appropriate normalization)
the Hecke eigenvalues, and are doubly-twisted divisor functions; that is, the mth
Fourier coefficient of such a (normalized) form of weight % is

ZXl )x2(m/d)d* ",

where x1, x2 are Dirichlet characters, reflecting the fact that the Fourier coefficients
of Hecke eigenforms carry number theoretic information.
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In the case of Siegel Eisenstein series, our knowledge is much less complete (for
instance, we have limited knowledge of Fourier coefficients for arbitrary degree,
level, and character). However we do have analogues of some of the classical results
regarding the action of Hecke operators. By studying the abstract Hecke algebra,
Evdokimov [3, 4] and Freitag [5] showed that the space of Siegel modular forms
of arbitrary level and character can be diagonalized with respect to the Hecke
operators associated to primes not dividing the level. These results also show that
the subspace of Siegel Eisenstein series is invariant under these Hecke operators.
Further, in [5] Freitag computed some of the eigenvalues of Siegel Eisenstein series
under the Hecke operator T'(p)™ where p is a prime not dividing the level, and m is
a suitable power. Following his proof of the injectivity of the Hecke operator T'(p)
when p is a prime exactly dividing the level of a space of Siegel modular forms [1], in
[2], Bocherer applied powers of T'(p) to the level 1 Siegel Eisenstein series, obtaining
a basis for the space of Siegel Eisenstein series of level p and trivial character, and
thereby also obtaining Fourier expansions for this basis. In [12], for p any prime,
we applied an explicit set of matrices for T(p), T1(p?), To(p?) directly to a basis for
the subspace of Siegel Eisenstein series of degree 2, square-free level, and arbitrary
character; we then constructed a basis of simultaneous eigenforms and computed all
their eigenvalues. Recently in [8], Klosin used adelic methods to compute the Hecke
eigenvalues (for primes not dividing the level) on the space of Hermitian forms on
U(2,2).

In the current paper, we extend the techniques of [12] to allow arbitrary degree
n, level N, and character y modulo N. In Sec. 3, for each v € Sp,,(Z), we define
a Eisenstein series with character x corresponding to the I'o(AN)-orbit of I'soy. We
identify necessary conditions for one of these series to be non-zero, and in the case
that A is square-free, we show that these conditions are also sufficient (Proposition
3.6). Next we consider square-free level N and arbitrary character y modulo N.
We subscript each element of our basis for this space of Fisenstein series by some
o= (No,...,Ny,) where Ny ---N,, = N. Using an explicit set of matrices giving
the action of T'(q) where ¢ is a prime dividing A/, we directly evaluate the action
of T'(q) on each basis element E,, computing precisely the coefficients in the linear
combination of Eisenstein series that is equal to E,|T(¢) (Theorem 4.1). This allows
us to show that we can (algorithmically) diagonalize the space of Eisenstein series
with respect to {T'(¢) : ¢ prime, g|\'}, obtaining a new basis {E,}, for the space.
With o = (Np,...,N,) and ¢ a prime dividing Ay, we show that

E, | T(q) = Ao (q)E,  with [A,(q)] = "¢ d(d+1)/2

(Corollary 4.3; note that this recovers a result from [2] in the case that A is prime
and x is trivial). Since we must have k > n + 1 for absolute convergence of the
Eisenstein series, this shows we have “multiplicity-one”; that is, for E, #* ]Ep, there
is some prime ¢|\ so that A\,(¢) # A,(¢). Following this, for 1 < j < n, we directly
evaluate the action of T};(¢?) on the original basis elements E, where we still assume
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that ¢ is a prime dividing N (Theorem 4.4). We then compute the T} (¢?)-eigenvalues
for each of the elements in the diagonalized basis (Corollary 4.5).

In Sec. 5, we consider Eisenstein series of arbitrary level A" and arbitrary char-
acter x, and we directly evaluate the action of T'(p), T;(p?) for primes p { N so that
we can explicitly construct a basis of simultaneous eigenforms for these Hecke oper-
ators. To help us diagonalize the space with respect to these operators, we introduce
a group action of Up x Upr on the space of Eisenstein series where Uy = (Z/NZ)*
(Proposition 5.1). Then we use characters ¢ on this group to average Eisenstein
series relative to this group action; by orthogonality of characters, this yields a
basis {E,y} for the space of Eisenstein series, where o indexes our natural basis.
In Corollary 5.3 we show that for any prime p{ N, E, 4|T(p) = Ao,y (p)Eo, where

n

Ao (p) = 1 ()P (™) [ [ (rx(@)p* " + 1);
i=1

here ¢(v,w) = 11 (v)h2(w). In Theorem 5.4 we evaluate the action of T;(p*) on
the natural basis. Theorems 5.2 and 5.4 show that the Hecke operators commute
with the group action of Uy x Un on the space of Eisenstein series; we let R(w)
be the operator corresponding to the action of the group element (1,w). Then
to obtain more attractive eigenvalues, we introduce operators T}(p*) so that the
algebra generated by

{T(p), Tj(p*), R(p) : prime p{ N,1 < j < n}

is the algebra generated by {T'(p),T;(p?), R(p) : prime p{ N, 1 < j < n}, and in
Corollary 5.5, we show E, [T} (p?) = Ao (P *)E, . where

J
o (0%) = By (n, 7)p T2 (o)) [T (wax (p)p* " + 1)
i=1

(here B,(n,j) is the number of j-dimensional subspaces of an n- dimensional space
over Z/pZ). When N is square-free, we show E, , = 0 unless ¢); = H0<d<n XNd and
¥o = Xar, (where 0 = (Np,...,N,)), and then with such 9, Eo|T(p) = Aoy (p)Eq
and EU|TJ((p ) =Niou(P 2)E, (Where E, is as in Corollary 4.3).

Note that when X2 =1, T}(p?) is the operator introduced in [10] and again in
[11] so that (™) (gen L)|Tj(p*) = N;(p 2)9(™) (gen L) where §(™ (gen L) is the averaged
(“genus”) theta series attached to the genus of the lattice L, which is equipped with
a positive definite quadratic form.

As all the arguments herein are valid when considering non-holomorphic Eisen-
stein series in the variables 7 and s (defined in Sec. 3), the results extend immedi-
ately to include these forms (with k replaced by k + s in the formulas).

2. Notation and Hecke Operators

For n € Z4, Sp,,(Z) denotes the group of 2n x 2n integral, symplectic matrices;

we often write these in block form (é D) where A, B,C, D are n X n matrices.
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Subgroups of importance to us include

r A B

oo — 0 D ESpn(Z) )

re A B csp @) det a1
> 0o p) =P ’

FWN) ={yeSp,(Z):v=1 (N)},

To(N) = {(2’ ﬁ) € Sp,(Z) : CEO(N)};

here N € Zy. It is well known that for v = (;; ~),7 = (4 ~') € SPn(Z), we
have 7/ € I'Y v if and only if (M’ N’) € SL,,(Z)(M N) . Suppose (f\(/f ILV) € Sp,,(Z);
then (M N) is a coprime symmetric pair, meaning that M, N are integral, M !N is
symmetric, and for every prime p, rank, (M N) = n, where rank, denotes the rank
over Z/pZ. On the other hand, given any coprime symmetric pair of n x n matrices
(M N), there exists some (3, %) € Sp,(Z). We often write (M, N) = 1 to denote
that a pair of integral matrices (M N) is coprime.
Degree n > 1 Siegel modular forms have as their domain

Hy, ={X+:iY: XY eRL" Y >0},

sym’

where RE:[ denotes the set of symmetric n x n matrices over R, and Y > 0 means
that the quadratic form represented by Y is positive definite. For n, k, N' € Z, and
x a Dirichlet character modulo A, a Siegel modular form of degree n, weight k,
level A/, character x is a holomorphic function f : H, — C (holomorphic in all

variables of 7 € H,,) so that for all (é g) € T'o(N), we have
f((AT+ B)(Cr + D)™ ") = x(det D) det(CT + D)* f (7).

(Note that this generalizes the definition of a classical modular form, except in that
case, where n = 1, we also require

lim (cr +d)~Ff <a7+b) < 00

T—100 cT + d

for all (¢ Z) € SLy(Z).) We use M,(C") (N, x) to denote the space of all such forms.
To define the Hecke operators, fix a prime p. Set I' = T'o(N) and take f €
M;n) (N, x). We define

FIT(p) = p === D/2N " 3() fl6 1,
Y

I )
where § = (""" | ), v varies over

(ST~ ' NI\,
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and for v/ = (é g),

f(N)Y = (dety")*/2 det(CT + D) f((Ar + B)(CT + D)™1).
We define
AT (%) = p/ Y Zx ) £165 ",

where §; = (Xj Xj_l), X;=X;(p)= (" 1,_,)» and 7 varies over

(6,06, " N\

329

To help us describe a set of matrices giving the action of each Hecke operator,

we fix the following notation. For 7, s € Z>q so that r + s < n, let
pI;
Xr,s = Xr,s(p) = I (’I’L X ’I’L)7
1
~1,
p
Kr,s - Kr,s(p) = Xr,sSLn(Z)XEsl N SLTL(Z>7

set X, = X0, Ky = Kyo.

Proposition 2.1. Let p be a prime, f € M,(Cn) (N, x)-
(a) We have
X—l

T -1 t
AT(p) =p"* =02 3" @™ )Y f 1 (G YtGG>
-X,
p

0<r<n G)YY

where, for each r, G varies over SLy,(Z)/K,(p) and Y wvaries over

Y
Ve(p) = {( 0 0) L Yo 1 x 1, varying modulo p}.

Here 227 denotes the set of integral, symmetric n X n matrices.
sym

(b) Forl1l<j<mn,

f|Tj(p2) = pj(k_"_l) Z J no+n2 Z ( no,nz « )
no,n2

no+n2<j G)Y

(Gl YtG>
X .
tG
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Here, for each pair ng,na, G = G1Ga, where Gy varies over SLy,(Z) /Ky .ns (D),

I,
Gy = G
I,

with G" varying over SLy/ (Z)/ 'K, (p) where n' =n —ng — na, j' = j — no — na,
1
ij/ —I»/
K = ( I) SL.(Z) | p’ , N SL,/(Z),

and Y wvaries over Yn, n,(p?), the set of all integral, symmetric n x n matrices

Yo Yo Y3 O

Y, Yi/p 0
ty, 0
0

with Yy no X ng, varying modulo p?, Y1 7' x j', varying modulo p provided p { det Y7,
and Ys,Ys varying modulo p with Y3 ng X na.

Proof. Fix A = Zz1 © - - - ® Zx,, (a reference lattice).

By Lemma 6.2, as G varies over SL,,(Z)/KC,, Q = AGX, varies over all lattices
Q, pA CQ C A with [A: Q] =p". Thus by Proposition 3.1 in [7] and (the proof of)
Theorem 6.1 in [7], claim (1) of the proposition follows.

For Q another lattice on QA, let mult{s.0)(x) be the multiplicity of the value
of x among the invariant factors {A : Q}. By Lemma 6.3, as G varies over
SLn(Z)/Knonz(p); @ = AG1 X0, varies over all lattices Q, pA € Q C ZA,
with multgs.03(1/p) = n2, multir.o1(p) = no. Then with Q@ = Qy © Q1 © Qa,
A= 2Q® 0 &pQs, as G’ varies over SLy/(Z)/ 'K, (p),

G (Ij/ 0) modulo p

varies over all dimension j’ subspaces of € /pQ;. Thus by Proposition 2.1 in [7] and
(the proofs of) Theorems 4.1 and 6.1 in [7], claim (2) of the proposition follows.
O

Remark. For N € Z so that pt A, by Lemma 6.1 we can choose G in the above
proposition so that G = I (M), and since N'Y will vary over a set of representatives
for V() or Yng.ny(p?) as Y does, we can choose Y in the above proposition so that
Y =0 (N’). Also, when p|\/, we have

1 1

-1, -Y
fT(p)=p DXl p™™ p |,
Y I

n
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where Y varies over ), (p), and

oy j(k—n—1) Xt Gt Y'G
FIT, ) = P/ 1;y“:ﬂ ) ()

where G varies over SL,(Z)/K;(p) and Y varies over Y} o(p?).

To describe the Hecke eigenvalues, we make use of the following elementary
functions: Fix m > 0. With r > 0,
r—1

5(m,r) = (51,(7’71,7‘) = H(pmil + 1)7
1=0

wlm,r) = py(m, ) = [[ ™ — 1),
1=0

B(mv 7“) = ﬂp(m7 7“) = :u’(mv 7“)/,[1,(7“, 7“)
(note that 3,(m,r) is the number of r-dimensional subspaces of an m-dimensional
space over Z/pZ). Take §(m,0) = u(m,0) = 1. For r < 0, we take B(m,r) = 0.
As well, we will use the following functions: With p prime, ¢t € Zy, and F = Z/pZ,
let sym,,(¢) be the number of invertible matrices in F%/,, the set of symmetric ¢ x ¢

matrices over F. More generally, let x be a character of square-free modulus N,
with p|N; set

symx(t) = Z Xp(det U),

U€EFm

Ui U,
symx(t — s, s) det ,

where U = (U12 *) € Fil, with Uy of size (t—s)x (t—s) (so symX(t,0) = symX(t)).
Note that as U varies over invertible matrices in Féyﬂm so does U (where UU = I in

F**), we have symX(t) = symX(t); similarly, symX(t — s,s) = symX(t — s, s). Also,

and

take symyx (0) = symX(0,0) = 1. Although we will not use the precise values of these
functions in this work, one can use the theory of quadratic forms over finite fields
to show that for p odd and e = (’71),
pm2+mfcpl(b, b)
wuoé(m —c,m—c)
smpm2u(b, b)
symx (b, c) = pué(m —c,m —c)
P (b, b)
wudé(m —c,m—c)

if b+c=2m and x, =1,

if b4 ¢ = 2m, ngl,andxp;él,

ifb+c=2m+1and x, =1,

0 otherwise,
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and for p = 2,
27 (b, b)
pé(m —c,m—c)

27D pa(b,b) (p(2m —1,2c)
pé(m—1,m—1) \ pud(m—1,¢)

ifb+c=2m+1,

symj (b, c) =

+ ué(m,c)) if b+c=2m.

(Here pp = p,,, 6 = 4,.)

For p prime, M € Z™™, we write rank, M to denote the rank of M over Z/pZ;
we will also refer to this rank as the p-rank of M.

Recall that for y a character modulo N with N' = N"N” so that (N/,N") =1,
we know that y factors uniquely as ya~xa» where xa~ is a character modulo N’
and v is a character modulo N,

In what follows, we will sometimes use the matrices G4 = (
(%

Infl) and vy =

G-

3. Defining Siegel Eisenstein Series

Fix k,n,N' € Z,, x a character modulo N. To define Eisenstein series for I'o(N)
with k even, one can begin by defining a I'(NV)-Eisenstein series

S 1(7))6* where 1(7)] (4 ) = det(cr + D)
= ¢ D

and §* varies so that I'oI'(NV) = ;. ['eod™ (disjoint); then for v € Sp,,(Z), one can
consider

> X(6) 1(7)[6"8,
56

where ¢ varies so that I'aoyTo(N) = s TocI'(NV)vd (disjoint). However, when k is
odd, these sums are not well defined, since with 4 as defined in Sec. 2, we have
v+ € Iy and 1(7)|y+6* = (—=1)*1(7)|6* for any 6* € I'(N). Further, for k even or
odd, the latter sum is not well defined unless x is trivial on any matrix in T'o(N)
that stabilizes ['ooI'(N')7y. Thus we proceed as follows.

Let 6* € I'(W) vary so that

ILTW) = JTL6" (disjoint),
6*
and set
E*(r) = 1(r)[6".
6*

Since 1(7)[d6* = 1(7)|6* for 6 € T'L, E* is well defined. Further, provided k >
n + 1, E*(7) converges absolutely uniformly on subsets {7 € H,, : 37 > Y} for any
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Y eREY with Y > 0, and so E* is analytic (in all variables of 7). So suppose

Sym

k > n+ 1. Now take 3 € Tg(N) so that
N) =TI (V)8 (disjoint),

and for v € Sp,,(Z), set
E, =Y XB)E B+ Y X(:8)E |28
B B

(where 4 is as defined in Sec. 2). Note that

LA ToW) = [ JOLDA B UT LT )7276).
B

Let
It = {3 € To(N) : TET(N)yd' = TLT(A )}

denote the subgroup of T'g(N') that stabilizes T'Z_T'(A)y. Thus with ¢ varying over
I\Lo(N), 8 over D(AM)\I'F, and noting that E*|y+ = (—=1)*E*, we find

EL = (1+x(-1)(=1)") > x(8'6) E*|7d's.

5.6
Since ¢’ € T'fv we have y0'y~! € TLT(N), so E*|7§’ = E*|y. Hence
E, = (1+x(— Zx ") X(0)E* |y
5

Thus E, = 0 if x(—1) # (=1)*, or if y is not trivial on ' Also note that when
N <2, we have v+ € I'(N) and hence E* = E*|y+ = (—=1)"E*; so B, = 0 if N < 2
and k is odd.

Suppose N > 2 or k is even; then

lim E*(r) = #{3" € TL\LLT(W) : 6" € I}

2 N <o,
1 N >2.

Set
1
E,=—F———F.
T2y (V)] Y
Suppose x(—1) = (—1)*, x is trivial on I'f, and suppose still that either A" > 2 or
k is even; we show that E, # 0. We have

Zx 7)6% 6,

where §* varies over TZ\T'{ ['(NV) and § varies over T \T'o(N). We have §*yd7~" €
Io only if TooT'(N)yd = ToI'(NV)7y, and since I'ne = T'l, U 44TL, we have
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§*v6y ! € To only if 6 € TF or 6 € F*’y* y+7y. If § € TF then E*|ydy~! = E*
and by assumption x(§) = 1. If § = By 1yLy~! for some 6 € 1“+ then with our
assumptions,

XO)E* |6y~ = X(7= )E* |y+ = E*.
Thus
lim B (r)ly T = #{07,0: 077077 € T}

(where 0* varies over I \T'{ I'(N), ¢ varies over I'*\I'¢(N\)), and this number is

at least 1. Hence E, # 0. Noting that Ef&,y = (- )kE’ , as 7, varies over a set of

representatives for T'og\Sp,,(Z)/To(N), the non-zero ! are linearly independent.
Thus we have the following proposition.

Proposition 3.1. For v € Sp,,(Z), E, be as defined above.

(a) We have E, # 0 if and only if (1) x(—1) = (=1)*, (2) x is trivial on rf, and

(3) either N> 2 or k is even.
(b) When E., # 0, we have E, (1) = Y sX(8) 1(7)|yd where § € To(N) varies so

that TIATo(N) = Us Thovd (disjoint); equivalently, with v = (‘é g)

Ey ()= Y X(M,N)det(Mr+ N)~*
(M N)
where (M N) are coprime symmetric pairs varying so that
SL(Z)(C D)To(N) = ) SLn( N) (disjoint),
(M N)

and x(M,N) = x(8) for § € To(N) so that (M N) € SL,,(Z)(C D).

(c) With v, varying over a set of representatives for I'sx\Sp,,(Z)/To(N), the non-

zero . form a basis for €,in) (N, x), the space of Eisenstein series of degree m,
weight k, level N, and character x.

Remark. (1) Having fixed representatives {v,} for I'sc\Sp,,(Z)/To(N'), we con-
sider {E,_} to be a “natural” basis for £™ (N, x).
(2) For s € C with k 4+ s > n + 1, we can define a non-holomorphic Eisenstein
series by replacing det(M7 + N)~* by
det(M7 4 N)~*|det(M7 4+ N)|~*.

Then all the arguments and results herein are trivially modified to extend to
these non-holomorphic forms.

The next three propositions describe some useful relations when working with
Eisenstein series; then for A/ square-free, we describe a convenient set of represen-
tatives for I'«o\Sp,,(Z)/To(N') and how to evaluate x(M, N).

Proposition 3.2. Suppose 7,7 € Sp,,(Z) and § € To(N) so that TLT(N)y =
LLT(N)yd. Then Ey = x(6)E,.
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Proof. We have E/ = 237, X(8r)E* |7, where To(N) = U, (V)3 (disjoint).
Thus I'y(N) = 6T'o(N) = U, T(N)IB (recall that I'(N) is a normal subgroup of
Sp,,(Z)); since [Lo(N) : T(N)] < oo, this last union must be disjoint. Thus

Bl =2 X(68)E 708 = 2X(6) > _ X(Br)E* |/ Br = X(0)EL,

h h
Since I‘j/', = oI 071, we have [Co(N) : Fj/',] = [[o(N) : I'¥] and so the proposition
follows. O

Proposition 3.3. Fix N € Z. Suppose (M I), (M’ N'), (M" I) are coprime sym-
metric pairs so that (M" I) = (M’ N') (N) and (M’ N') € SL,,(Z)(M I)T'¢(N).
Then (M" I) e (M'" N"\T'(N) and hence (M" I) € SL,,(Z)(M I)T'o(N).

Proof. Since (M',N’) =1 and N’ =1 (N), we have (WM', N') = 1. Thus there
is some (AI;, ﬁ,,) € Sp,,(Z) with L’ =0 (N), and hence K' = I (N )

(KU R 0\
R SV Mmro1)
thus v € T'(N) and (M"” I) = (M’ N')y € SL,(Z)(M I)T'x(N). O

Proposition 3.4. For~ € Sp,,(Z), there exists some " = (]Vf,, ?) € Sp,,(Z) so that
v € TLY"To(N). Equivalently, for (M N) a coprime symmelric pair, there is some
symmetric M" so that

(M N) € SLn(Z)(M" I)To(N).
Proof. Given v = (5, %),7" = (i %) € Sp,(Z), recall that we have v €
I +"To(WN) if and only if (M” I) € SL,(Z)(M N)I'o(N). By Proposition 3.3,
it suffices to show that there is some (M’ N’) € SL,(Z)(M N)T'o(N) so that
N’ =1 (N); we proceed algorithmically.

Fix a prime ¢ dividing N and take t so that ¢* | N. Using Lemma 6.1, we can
choose Eo, Gy € SL,(Z) so that Eo, Gy = I (N'/q") and EoN ‘Gt = (T ) (¢')
where N; is d x d and invertible modulo ¢ (so d = rank, N'). We can adjust Ey, Go
so that Ny = (* ;) (¢ t) for some a. Similarly, we can choose (i 7) € SLz(Z) so

that (i V) =1 (N/¢), = D) (¢) (where a@ =1 (¢')). Then
€ Lo(N)
-1
and Eo(M N)( )70 = (% 4 o) (¢") with My d x d. By the symmetry

of MIN, M3 =0 ( ; since (M, N) = 1 M4 is invertible modulo ¢. Thus using
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Lemma 6.1 we can find B}, G} € SL,,_4(Z) so that E}, G| =1 (N/q"),
Mj = E1MyG| = (I a’) (¢"), some a'.

Take Fy = (Id Ei)’ G, = (Id Gll). Using the Chinese Remainder Theorem, we can
choose W' so that W' = 0 (N/q") and W’ = ("' _) (¢) where '@ =1 (¢*);
set W= (" ;). Then with

Go G I w
(C D) = B, Ey(M N) 1] o) o 1 )
0 1

we have (C' D) € SL,,(Z)(M N)I't(N), (C D)= (M N) (N/¢'), and D = I (q").
Next, suppose p is another prime dividing N with p” || M. Applying the above
process to the pair (C' D), we obtain a pair (C' D') € SL,(Z)(M N)T'o(N) with
(C"D')y= (M N) (N/(¢'p")) and D' = I (¢*p"). Continuing, we obtain (M’ N’) €
SL,(Z)(M N)I'g(N) with N’ = I (N). Applying Proposition 3.3 completes the
proof. O

Proposition 3.5. Let (M N) be a coprime symmetric pair. There is some sym-
metric matric My, so that (M N) € SL,(Z)(M, I)To(N) and for each prime q
with q || N, we have M, = (Id o) (@) where d = d(q) = rank, M. Thus when N
is square-free and M, is as above, we have (M N) € SL,(Z)(M, I)To(N) if and
only if rank, M = rank, M, for all primes q|N. Further, with N square-free, we
can take M, diagonal, and we have

SLn(Z)(My I)T'o(N) = GLn(Z)(My I)T'o(N).

Proof. First note that if (M N), (M, I) are coprime symmetric pairs with (M N) €
SL,(Z)(M, I)To(N), then rank, M = rank, M, for all primes ¢| N, since elements
of To(N) are of the form (é 5) with C' =0 (N) and thus A invertible modulo A

From Proposition 3.4, we know that there is a symmetric matrix M" so that
(M N) € SL,(Z)(M" I)To(N). Suppose q is prime with g || N let d = d(q) =
ranky M". If d = 0 then set E, = I,, and 7, = I,. Otherwise, using Lemma 6.1, we

can choose E; € SL,(Z) so that E, = I (N/q) and E,M"'E, = (a Tas 0) (9);

choose (; 7) € SLy(Z) so that

YN =g, (U7 =(2 ) @
G 7) (=6

where aa =1 (¢), and set

'E, I 0
Ya = £t Yy z

q
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Set E' = [[,n Eq: v = Il yn Ve Thus E € SLy(Z), v € To(N); set (M N') =
EM"” I)y. So (M" N') = (M, I) (N) for some symmetric M, with M, =
(Id(‘” o) (¢) for all primes ¢ || V. Then by Proposition 3.3, (M N) € SL,(Z) (M, I)
To(N).
Suppose N is square-free; then we can use the Chinese Remainder Theorem to
choose M, diagonal with M, = (Id(f” o) (q) for each prime g|N. Also,
SLn(Z)(My I)Lo(N)

= SLy(Z)(Ms I)To(N) USLy (Z) (Mg I)v£To(N)

= SLn(Z)(My I)To(N) USL,(Z)G+ (M, DTo(N)

= GL.(2)(M, I)To(N).

This proves the proposition. O

Using Proposition 3.5, we fix a set of representatives {7y, = (J\i, ?)} for
T \Sp,,(Z)/To(N) so that when ¢ is a prime with ¢ || A/, we have M, = (Id o) (@)
for some d = d (¢), and when N is square-free, M, is diagonal. Let E, denote E,_.
Proposition 3.6. Suppose that x(—1) = (=1)*, and either N' > 2 or k is even.

(1) Suppose E, # 0 and q is prime so that q || N let d = d(q) = rank, M,. If
0<d<nthenx§:1.

(2) Suppose N is square-free. Then E, # 0 if and only if Xg =1 for all primes q|N'
so that 0 < rank, M, < n.

Proof. (1) Suppose we have a prime ¢ || N with 0 < d < n where d = rank, M,.
Choose u € Z so that ¢ { u, and (using Lemma 6.1) choose (; 7) € SL,(Z) so that

(, D)=IW/gand (; 7)=(" ) (q9) whereuu =1 (g). Set E = <w > m),

Yy z

z

8

Lo 0 1 1—u?

0 In—2 In—l

y w

Thus E € SL,(Z), 6 € To(N), and E(M, I)d = (M, I) (N). So § € I'} , and thus
E,; = Eq|6. We also have Eq |6 = x4(u?)Eq. Since E, # 0, this means x2(u) = 1,
and this holds for all u € Z where ¢ { u. Hence x7 = 1.

(2) Now suppose N is square-free, and that for each prime ¢|A with 0 <
rank, M, < n, we have Xﬁ = 1. To show E, # 0, we need to show x is trivial
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on I'Y . To do this, we show that for all primes g|N, x, is trivial on T} . So take
g=(4 10 e 'Y . Thus there exist § = (tE71 WE) e T4, B € T(N) so that
87,3 = V5. Thus E(M,A M,B + D) = (M, I) (N). Fix a prime ¢|\, and set
d = rank, M,.

When d = 0, we have ED =1 (g), so det D = det E =1 (g) and y,(det D) =1.
When d = n, we have EA = [ = A'D (q), so detD = detE = 1 (g) and
Xq(det D) =1.

Now suppose 0 < d < n. Write

A A Dy D E E
A= 1 2 7 D= 1 2 7 E— 1 2 7
A3 A4 D3 D4 ES E4

where Ay, Dy, By are d X d. Since EM,A = (I‘i o) (q), we have E5(A; As) =0 (q).
Since A is invertible modulo ¢, the rows of (A; As) are linearly independent modulo
g, and hence we must have E3 = 0 (¢), rank, B4 = d, rank, B, = n — d, and

1 =det E = det E; - det B4 (q).
Also, since
Ey(Ar A) = (14 0) (9), FEa(D3 Dy) = (0 In—a) (q),

we have A, D3 = 0 (¢q), Ay = E1 (¢), Dy = E4 (q). Since A'D = I (g), we must
have D1 = *E; (q). Thus we have

det D = det B, - det B4 = (det E1)? (q)
and hence
Xq(det D) = X?](det Ey) =1
Thus with 3 € T'Z, for all primes g|N" we have x,(3) = 1; consequently, by Propo-
sition 3.1, E, # 0. O

Proposition 3.7. Suppose E, # 0, (M N) € SL,(Z)(My I)y where v € To(N),
and fix a prime q so that q || N'. There are Ey, Ey € SL,(Z) so that

BoME; = (Agl 8) (a)

with My invertible modulo q; for any such Ey, E1 we have

_ Ny N-
EyN'E;' = ( 01 Ni) (q)

and x4(7) = xq(det My - det Ny). Further, for any G € GL,(Z), we have
Yo GM, GN) = x,(det G)xy (M, N) = x, (MG, N G).

Proof. By assumption, (M N) = E(M, I)y for some E € SL,(Z). Set d
rankg M,. If d = 0 then N = ED (q) so xq(7) = xq(det N). If d = n then M
EA=E'D™! (q) so x4(7) = xq(det M) (where MM = I (q)).
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Suppose 0 < d < n. By Proposition 3.5, we know rank, M = rank, M, = d, so
there are Ey, Ey € SL,,(Z) so that EgM E, = (Ml 8) (¢) with My dxd and invertible
modulo ¢. Then by the symmetry of M ‘N, we have EgN*E; ! = (]\61 %i) (¢) with
N7 d x d, and Ny invertible modulo ¢ since (M, N) = 1. Set Es = EgF; given the

shape of M, and of EqgME;, we must have Ey = (% E*,,) (¢) with E' d x d and
invertible modulo ¢q. Hence

Eat ) (P ) = Bal0y 1) ( . E) V=0 1y,

2

where

. tE271 El ) EltE/
v = ( E2> 7( tE1_1> elo(N) and M' = ( 0) (q).

Write ~/ (A B) A= (ﬁ; ﬁi% D = (g; gi) where A1, D7 are d x d. Since
(M) = M'A (q), we have Ay = 0 (g), A; invertible modulo g, and M; =
E''E'A; (q). Then since A'D=1 (q), we have D3=0 (q), Ai'Di=1 (q),
Ny=Dy (g). Thus

Xa(7) = xq(7") = X2(E")xq(det M - det Ny)

(where M1 M; = I (q)). Since 0 < d < n and E, # 0, we know from Proposition
3.6 that x2 = 1.

Suppose (M N) = E(M, I)y where E € SL,,(Z), v € T'g(N); take G € GL,(Z).
If det G = 1 then the above argument shows x4(GM, GN) = x4(M, N). Say det G =
—1; then E' = GEG+ € SL,(Z) and

G(M N) = E'Gy(My I)y = E'(Ms v+ (9)-
Hence xq(GM,GN) = xq(v+7) = Xq(—1)xq(M, N). Somewhat similarly,

a-1
(MG~ N'G) = E(M, I)y ( tG)’
so Xq(MG7Y, N'G) = x, (7(G71 tG)) = Xq(7)xq(det G). 0

4. Hecke Operators on Siegel Eisenstein Series of Square-free Level

Throughout this section, we assume N is square-free, y is a character modulo N
so that x(—1) = (—=1)*; further, we assume either N’ > 2 or k is even.

Let o be a “multiplicative partition” of A/, meaning 0 = (Np,...,N,) where
N; € Zy and Ny - -- N,, = N; take M, to be a diagonal n x n matrix so that for each
d, 0 <d < n, we have M, = (Id 0) (N2). By Proposition 3.1, as we vary o, the

matrices 7, = ( Jég %) give us a set of representatives for T'no\Sp,,(Z)/To(N), and
by Proposition 3.5 we have I'7,[0(N) = I'l7,o(N). Thus given any coprime
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symmetric pair (M N), there is a unique multiplicative partition o of N so that
(M N) € SL,(Z)(M, I)To(N).
To ease notation, we write E, to denote E., .

Theorem 4.1. Fiz a prime N and a multiplicative partition
o = (NG, ..o N))

of N/q; let Xq = X4(q) (as defined in Sec. 2). For 0 < d <mn, let cq = (No,...,Ny)
where

N ifi#d,
IV R e

Ny ifi=d.
Then when E,, # 0, we have

Eo,|T(q) = ¢" "D 2x00 0 (aX g Moy, X3 )

n—d

Y g MTEDEG (d 4t t) sym) (1B,
t=0

(with symX(t) as defined in Sec. 2).

Proof. To ease notation further, temporarily write Ey for E,, and Mg for M, ,.
Also, write KCg for Ka(q), Vn for Yn(q), X, for X,(q), B(m,r) for B,(m,r).
By Proposition 2.1, we have
Ea(7)|T(q) = ¢ "2 " X(M,N) det(M7/q+ MY/q+ N)*,
M,N,Y

where SL,,(Z)(M N) varies over SL,,(Z)(Mg I)T'o(N) and Y varies over V,; recall
that we can take Y = 0 (N/q). (Note that in Proposition 2.1, when p|N we have
X(p"~") = 0 unless r = n.) Using left multiplication from SL,(Z) to adjust each
representative (M N), we can assume ¢ divides the lower n — d rows of M. Set

1
(M' N')=X4(M/q MY/q+ N) = EXd(M MY +¢N);

clearly M’, N’ are integral given our assumption that ¢ divides the lower n — d rows
of M. We know that the upper d rows of M are linearly independent modulo ¢, as
are the lower n —d rows of N. Thus (M', N') = 1, and with d’ = rank, M’, we have
d > d. Since ranky, My = rank, M, for all primes ¢'|N'/q, by Proposition 3.5 we
have (M’ N') € SL,,(Z)(My I)To(N). Also, we have

det(M7/q+ MY/q+ N)™% = ¢* det(M'r + N')~*.

Reversing, given (M’ N') € SL,(Z)(Mg I)T'o(N) (with d' > d), we need to
identify the equivalence classes SL,,(Z)(M N) € SL,(Z)(My I)To(N) and Y € Y,
so that

éXd(M MY + N) € SLa(Z)(M' N).
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Equivalently, we need to identify Y € ), and the equivalence classes
SL,(Z)gX ;' E(M’ (N' — M'Y)/q) € SL,(Z)(Mq I)To(N),
where E € SL,,(Z) and (M’ N’) is a coprime symmetric pair. For E € SL,,(Z), we
have Xd_lEXd € SL,,(Z) if and only if E € Kg4; thus we need to identify Y € Y,
and E € K4\SL,(Z) so that
X7 E(M' (N' = M'Y)/q)
is an integral, coprime pair with rank, qXJlEM’ = d (that M N is symmetric is
automatic). For each coprime symmetric pair (M’ N'), let Cq(M’, N') be the set of
all pairs (E,Y") that meet the above criteria (note that C4(M’, N) could be empty);
then
Ea(r)|T(q) = g* "™/ % 7 cg(M',N') det(M'r + N')~*
(M’,N’)
where

caM' Ny => "X(¢X;'EM',X;'E(N' — M'Y)),
E)Y

with the sum over all (E,Y) € Cqy(M', N').
We also know that S,g") (N, x) is equal to

span{(Ct 4+ D)~%: (C' D) coprime, symmetric} N Mgfn)(./\/’, X),

and M}f‘) (N, x) is invariant under the Hecke operators. Hence E4|T'(¢) is again an
Eisenstein series, and so the above discussion shows that

Ea|T(q) = """ D/2N " ¢4(Mar, I)Eqr.
d'>d

Thus we need to compute cq(My, I) for each d’ > d.

Fix d’ > d, and choose E € K4\SL,(Z); note that we can choose E = I (N/q).
With Y € YV, set

(M N)=gX;"E(Mg (I —MgY)/q).

To have rank, M = d, we need the top d rows of My to have g-rank d; by Lemma
6.4(a), the number of such E is ¢*"=4)@(d’,d). Also, since My = (Id’ o) (@),
the upper left d x d’ block of E must have g-rank d; thus using left multipli-

cation from K4, we can assume E = (EO/ V}/) where E' € SLg(Z). (Note that

we can still assume that E = I (N/q).) So fix such E (and thus fix M). Set
’ -1

G=(" piso(“ ) € To(WN). We know that N is integral if and only if
EN'G = X;'(BE'G — EMyG~' - GY 'G) is integral; also, when N is integral,
(M,N) =1if and only if (MG, N'G) = 1. Write E'*E' = (7}, 12), W = (i1}),

i Y2 Y3

GY'G=|Y, Yy Y5,
Yy Y5 Vs
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where F1,Y] are d x d and symmetric, E5, Y, are (d' —d) x (d' —d) (and symmetric),
and Wy is d x (n — d'). We have EMyG~' = (") (¢), so NG is integral if and
only if (Y1 Ya Y3) = (E1 E; W) (q). When NG is integral, we have
(Ev —Y1)/q (E2—Y2)/q (W1-Y3)/q
N'G= 0 B3 — Yy Wy =Ys | (9),
0 0 I

so (MG~ N'G) = 1 if and only if rank,(F3 — Yy) = d’ — d. As Yy varies over
symmetric (d' — d) x (d' — d) matrices modulo ¢, so does E5 — Y. Recall that we
can choose Y = 0 (N/q); thus for E,Y as above, we have My = My (N/q), so

X g(M, N) = X/ (aX g Ma, X7) = X (@XaMa, Xa)
and
Xo(M,N) = x,(MG™',N'G) = x,(det(E3 — Y3)).
Since Y3, Y are unconstrained modulo ¢,
Cd(Md’7 I) _ qd(n—d’)+(n—d/)(d/—d)+(n—d/)(n—d/+1)/Qﬂ(dl7 d) Squx(d/ o d)

(recall Ys is symmetric). Collecting terms and setting ¢t = d’ — d yield the result.
O

To help us diagonalize the space Eisenstein series of square-free level, we put a
partial ordering on {c}, the multiplicative partitions of A/, as follows.

Definition. Let o, o be multiplicative partitions of A/, and let ¢ be a prime dividing
N. We write o < a (¢) if rank, M, < rank, My, o = « (q) if rank, M, = rank, M,,
and o0 < « (q) if rank, M, < rank, M,. For Q|N, we write ¢ < a (Q) if rank, M, <
rank, M, for all primes ¢|Q, ¢ = « (Q) if rank, M, = rank, M, for all primes ¢|@Q,
o < a (Q) if ranky M, < rank, M, for all primes ¢|Q,

We first determine how to find eigenforms for T'(q).

Corollary 4.2. Suppose o is a multiplicative partition of N so that E, # 0, and
let q be a prime dividing N'. For partitions « of N with o = o (N'/q), a > o (q),
there are aq,q(q) € C so that

Eo- + Z aa,a(q) Ea
a=oc (N/q)
a>o (q)

is an eigenform for T(q), and aso(q) # 0 only if either (1) xq =1, or (2) x2 =1
and rank, M, —rank, M, is even. With such as,o and d = rank, My, the eigenvalue

of Es + Za:o‘ (N /q) Qo,a (Q) E. is

a>o (q)
Ao (C]) = qkdid(ddkl)/zX/\/’/q (quMaa Xd)a
where qg =1 (N/q).
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Proof. By Lemma 6.6 sym)(t) = 0 if and only if (1) xq =1, or (2) x2 =1 and ¢
is even. Thus by Theorem 4.1, the subspace

span{E,:a =0 (N/q),a >0 (¢),E, # 0, and either (1) x4 =1,
or (2) X? =1 and rank, M, — rank, M, is even}

is invariant under T'(¢q), and the matrix for T'(q) on this subspace basis (ordered
with rank, M, increasing) is upper triangular with diagonal entries A, (g). Then
the standard process of diagonalizing an upper triangular matrix yields the
result. O

We now diagonalize the space of Eisenstein series with respect to
{T'(q) : g prime, ¢|N'}
and obtain a multiplicity-one result for the Eisenstein series of square-free level.
Corollary 4.3. Suppose o a multiplicative partition of N so that E, # 0. For a
prime g|N and o a multiplicative partition of N with o > o (N), set ay.o(q) =1 if
a =0 (q), and otherwise set as.o(q) = a, a(q) where p is a multiplicative partition

of N with p=a (N/q), p=0 (q), and a,«(q) is as in Corollary 4.2. For Q|N and
a>o (Q), set

Then with

for every prime [N we have Eo|T(q) = Ao (q)Es (where \y(q) is as in Corol-
lary 4.2). Further, for o # p (N), there is some prime q|N  so that Ao (q) # A,(q)-

Proof. Fix a prime ¢|N. For a, 3 multiplicative partitions of A" with a > o (N),
B=a (N/q), and 8 = 0o (¢q), we have a, o(N) = ar3(N/q)as,a(q). Thus, varying
B,a so that B3>0 (N/q), B=0 (q), « =3 (N/q), a > 3 (q), we have

E; = ass(N/Q) Y asa(g)E
B «
By Corollary 4.2,

Zaﬂa a‘T _)‘ﬁ Zaﬁa

So to show E,|T(q) = As(q)Es, we need to show that As(q) = Ao (q) for any 3 so
that 3 > o (N/q), B = o (¢), and a, 3(N/q) # 0. Equivalently, we need to show
that for 8> o (N'/q), 8 =0 (¢q) with as g(N/q) # 0, we have

Xq (@XaMp, Xa) = Xq (@XaMs, Xa)
for all primes ¢'|N/q (where qg =1 (N/q)).
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Let d = rank, M,, and fix 8 so that 3 > o (N'/q), B = 0 (q), and a, g(N'/q) # 0.

Let ¢’ be a prime dividing N'/q. If 8 = o (¢’), then Mg = M, (¢') and so

Xq (@XaMp, Xa) = Xq (@XaMo, Xa).
So suppose 8 > o (¢'). Since a, (N /q) # 0, by Corollary 5.3 we either have
X¢ = 1, or Xg/ = 1 with rank, Mg, rank, M, of the same parity. Consequently
(using Proposition 3.7),

Xq (@XaMp, Xa) = X¢ (GXaMo, Xa).
Hence E,|T(q) = Ao (q)E,, proving the first part of the corollary.

To prove the second part, suppose now that o # p (A). Thus for some prime
q|N, we have d = rank, M, # rank, M, = d’'. Then

Aalg)] = g2 2 DI (g

b

since 0 < d,d <nand k >n+1. O

Now we evaluate the action of 7;(¢?) on E,. Note that since the Hecke operators
commute, the multiplicity-one result of Corollary 4.3 tells us that each Eg is an
eigenform for T;(¢%) (1 < j < n), and in fact for T'(p), T;(p*) (1 < j < n) for any
prime p. So we could simply do enough computation to find the eigenvalue \;,, (¢?),
but we take just a bit more effort and give a complete description of E,|T;(q?).
Then in Corollary 4.5 we simplify our expressions for the T;(¢?)-eigenvalues.

Theorem 4.4. Assume N is square-free, and fix a prime q|N. For o a multiplica-
tive partition of N'/q and 0 < d < n, let E,, be the level N Eisenstein series as in
Theorem 4.1; suppose E,, # 0. Then for 0 < j <mn,

n—d
E,, |Tj (q2) = Z Aj (d, t)EO'd+t’
t=0

where
Aj(d,t) = qU=D4t N2 E (d 4 t,t)

Jj o Jj—di ds

i(dsdy,ds,dg )~ —1 -1 -1
DD Y R (X M, X X X
d1:0d5:0d8:0

By (d,d1)B,(t,d5)By(n —d —t,dy +n —d—j — ds)
Byt —ds, dg) symy (t — ds — dg) symy(ds, ds),
r=j—d; —ds+ds, and
a;(d;dy,ds, ds) = (k — d)(2d; +ds — dg) + di(dy —ds — j — 1)
+ds(j — ds) — ds(ds + 1)/2 + ds(ds + 1) /2.
(Here symX (b, c) is as defined in Sec. 2.) Thus E,,|T;(q%) = A;(d,0)E,,.
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Proof. As in the proof of Theorem 4.1, temporarily write Eg for E,, and Mg
for Mad/' Let ICT,S — ’Cr,s(q)7 yj,O — yj,O(q2)7 XT,S = Xr,s(q)a ﬂ(mﬂn) = /Bq(m77n)7

p(m,r) = :U’q(mvr)'
Xt G' Y'G
X; ta )’

By Proposition 2.1,
where G varies over SL,,(Z)/K;, Y over Y o; recall that we can take G = I (N/q)
and Y =0 (N/q). So

Eq(7)|T;(¢%)
=* N (M, N)det(MX;'GHr + MX 'Y 'G+ NX;PG)
G,Y,M,N

(where SL,,(Z)(M N) varies over SL,,(Z)(Mg I)To(N)).
Take (M N) € SL,,(Z)(My I)T'o(N). Let d;i be the g-rank of the first j columns
of M (so dy < j); using left-multiplication from SL,,(Z), we can adjust our choice of

E4|T;(¢%) = ¢/ "~ 1)21&1

M,y Mo
representative to assume M = (qM§ My where M is di x j (so rank, M1 = dy),
qM5 qM5

My is dg X (n — j) with rank, My = ds = d — d;. Correspondingly, write N =
N1 N

(Ns N4) where Ny is dy x j and Ny is dy x (n— 7). Take r so that rank, (%z ]\?é) =
Ni Ng

n — dg — 7; so adjusting our choice of representative, we can assume

qMs qMg Ns N6>

M M} N N§) =
(gM5 qMg N5 Ng) <q2M7 gMs N; gNg

where Mg, Ng are (n —d —r) X (n — j) and rank, (?\2 ?Vﬁ) =n —dy — r. Note that
since (M, N) = 1, we must have rank, N; = r. Then
My gMa ¢*Ni gqN»
Xy (M ) X! Ms My gN3 Ny
o X;) | Ms ¢Ms qNs Ng
M, Mg N; Ng

has g-rank n. Hence for any Y € Y;,

X! G! Y'G
(M' N') = X4, ,(M N) |’
X; 0 ‘G

is a coprime symmetric pair with rank, M’ = d 4 ¢ for some ¢ > 0. Note that
det(M'r + N')7F = ¢ K= det (M X 'G 17 + MX;'Y'G + NX;'G)~*
As discussed in the proof of Theorem 4.1, we have

Ed‘T Z Cd Md’ Ed’
d'=d
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for some cq(My) € C. So reversing, suppose d > d and Ey # 0. To com-
pute cq(Mg), we need to identify the equivalence classes SL,(Z)(M N) €
SL,(Z)(Mgq I)To(N) and Y € V; 0, G € SL,(Z)/K; so that

Xt G' Y@
X4, (M N) ( J X'> ( . ‘G ) € SL,(Z) (Mg I).

Equivalently, we need to identify Y € V;o, G € SL,(Z)/K; and the equivalence
classes

. (G —GY) (Xj
SLa(Z)X ;! E(My I)

tG—1 X;

1) c SLn(Z)(Md I)Fo(/\/)7

where E € SLy(Z). For E € SL,(Z), we have X, ! EXg, , € SL,(Z) if and only if
E € K4, r, so we only need to consider E € Kg, ,\SL, (Z). Thus we need to consider
all £, G,Y so that with

G —GY)\ (X,
(MN):Xd‘lE(Md/I)< . )( ’ _),
1,7 G—l X] 1

M, N are integral with (M, N) = 1 and rank, M = d (that M 'N is symmetric is
automatic). Note that since we can take E,G =1 (N/q) and Y =0 (N/q) and we
know Mg = My (N'/q), for such (M N) we have

X/\//q(M7 N) = X/\/’/q(Xdil}TMde’ del%Tinl)'

For E,G € SL,(Z), write

M1 M2 Nl N2
EMyG=| M, M,|, E'G'=]|N, N[,
M7 Mg N7 NS

where My, N7 are dy x j, M7, N7 are r X j. Then

M, Ms/q
M= qM; M
¢*M7;  qMs

So to have M integral, we need My = 0 (¢), and to have rank, M = d,

we need rank, (Agl 1\24) = d. So suppose these conditions are met. We have
Y = (tr‘]/ ‘g) where U is j x j and symmetric; to have N integral, we need

Ny = MU+ M3tV (¢?), No = M1V (q), and N} = MU + M, 'V (q). We are sup-
posing that rank,(M; My N1 No) = di and My = 0 (g), so we can solve these first
two congruences only if rank, M; = d;. So supposing this condition is met, we have
M>/q in the column span of M; modulo g, so we must have rank, M} = ds where
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dy = d — d;. Then adjusting £ using left multiplication from Ky, ,, and adjusting
G using right multiplication from /C;, we can assume

M, M,

EMyG = My My ,
Ms Mg
My Mg

where My is dy x (n—j) with rank, My = d4 and Mg = 0 (¢); further, we can assume
M; = (A A;) where A} has dy columns when i is odd, d4 columns when i is even,
AL =0 (¢?) for i # 1,4, and A; = 0 (¢°) for i < 4. Correspondingly, split N} as
(%2), N} as (%‘;) where N3, Ny have dy rows, and split N; as (B} B;) where B! has
dy columns when i is odd, d4 columns when 7 is even. Split U as (t[lez gﬁ) where Uy

is di x dy, and split V as (j 1?) where V is di x ds. Then MU = A1 (U1 Uz) (),
MV = AL (Vi Vo) (q), My'V = Ay ('V1 'V3) (). So to have N integral, we need to
choose Uy, Us, V1, Vs, V3 so that

(By By) = A\(Uy U2) (¢%), (By Ba) = A1(Vi V) (@), Bs=A,'Vs (q).

Then by the symmetry of EMy 'E, we have B}'A} = A}'B} (q), so we have
B} = A} 'V; (q). By symmetry, we also have

Bé tA/l = Ay tBl + Ag th = As tUQ tAll + Aﬁt‘/Q tAll (q2),
Bg'AL = As'Bs = A5V ' Al (q),
BI7 tA/l = A7 tBl + Ag tBQ = A7tU2 tAll + Agt‘/g tAll (q)

So to have N integral, we also need to choose Us so that Bs = A5Us (¢), and then
the lower n — d rows of N are congruent modulo ¢ to

0 (Bs—AsUs—As'Va)/qg 0 Bg— A5V,
0 Br—AUs—As'Vy 0 0 '

Further refining our choices for F, G using Kq4, », K;, we can assume

A — as 0 0 ( 2) A — 0 0 ( 2)
5 = 0 qa% 0 q ), 6 — 0 qa,‘a q ),
0 0 O 0
A7=10 0 a7 | (¢9), As=]10 0] (g9),
0 0 O asg

where «; is d; x d; and invertible modulo ¢, of is (n—d—7r—ds) X (j —dy —ds — d7),
and af is (n —d —r —ds) X (n— j — d4 — dg); here the top r — d7 — dg and bottom
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dg rows of A7 are 0 modulo q. Correspondingly, write

By — B1 B 53, Be — Y2 ,
Bs Bs Be Y3 Va4

51 (52 53 €1 €2
Br =04 05 06|, Bs=|es e
57 (58 59 €5 €6

By symmetry and the invertibility of as, a7, ag modulo ¢, we have that G4, s, 73,
01, 03, €1 = 0 (g), the bottom n —d — r — ds rows of B, B, and the top r —d7 —ds
rows of Bh, Bf are 0 modulo g. Then since E'G~! is invertible, we know that

rank, (?25 M =n-d.

Write
M1 p2 M3 v V2
Us= |2 pa ps|, Va=|vs wl,
‘s tus  pe Vs Vs

where 1 is ds X ds, g is d7 X d7, vy is ds X ds, vs is dy X dg. To have Bs = AsUs (q),
we need (01 B2 B3) = as(u1 p2 ps3) (q), and 85 = 0 (¢) (and hence ~4 is invertible
modulo ¢). When these conditions are met, we must have rank, v4 =n—d—r—ds,
and by symmetry,

Satas =ar'Bs = artuztas (q).
Then to have (M, N) =1, we need
B ((35 — AsUs — Ag'Vi) /q

Bg — A5V}
a Br — A7Us — Ag'Vy

q(Bs — A7Vy)
to have g-rank n — d. Note that modulo ¢, the matrix B is congruent to

(Br —asp1)/q (B2 —asp2)/q (B3 —asps)/q Y1 —asvr Y2 — asve

0 * * 0 Y4
0 O 0 0 0
0 85 — az tus 06 — Qur g 0 0
d7 —ag 'ty 0 — ag s d9 — ag g 0 0

Since E*G~! is invertible, and given that 34, 5, 8¢, v3 and the lower n—d—r—ds
rows of Bf, By are 0 modulo ¢, we must have rank, v4 = n —d —r — ds. To have B
invertible modulo g, we need rank, do = 7 — d7y — dg. Given the sizes of 7y, d2, this
requires

n—d—r—d5§n—j—d4—d8 and T—d7—d8Sj—d1—d5—d7,

so this requires 7 = j — dy — d5 + dg (in which case 74, 02 are square, and hence
invertible modulo ¢).



Int. J. Number Theory 2017.13:325-370. Downloaded from www.worldscientific.com
by UNIVERSITY OF BRISTOL on 08/08/17. For personal use only.

Hecke operators on Siegel Fisenstein series 349
Choose (n — d) x (n — d) permutation matrices Py, P» so that

Qa5

asg

P A9 p, = 0 (q)
1A7 As 2 = q),

Q7

Br 7 2 B3 [P

(57 €5 €6 (59 58

Bas 3 v B Bs

(54 €3 €4 (56 55

Bs B
p( " %P
B- By

51 €1 €2 53 52
(So Py corresponds to the permutation (2 3 5), P» to the permutation (2 5 3 4).)

Thus (still supposing that $5 = 0 (¢), and that -4, d2 are invertible modulo ¢), we
have that P; BPs is congruent modulo ¢ to

(Br —aspm)/g 1 —asvi ya—asve (O3 — 045#3)/61 (B2 — a5 — M2)/CI

o7 —agty 0 0 dg — agtug dg — ag s
0 0 Va4 * *
0 0 0 06 — Qu7 g 65 — oz s
0 0 0 0 O

(B1 —asp1)/q 1 — asvi
0

57— cn s ) and dg — a7 g

Hence B is invertible modulo ¢ if and only if <

are invertible modulo ¢. Note that by the symmetry of My, we know that (¢ —

t (B1 —asp1)"as /g (v1 — asv1) fas
arpg) far and < (87 — cvs '1n) tors o

To compute x(M, N), recall that we can (and do) assume that F,G = I (N /q),
Y =0 (N/q), and we know that My = My (N/q); so

> are symmetric modulo q.

X (M N = g (X g, Ma X, X, LX)
To help compute Xq(M, N), let Gy be the n x n permutation matrix so that

A0 0 0
e LR W
PEL= g 0 A 4| Y

0 0 Ay Ag
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Setting Fy = (Id P1>7 Gy = <Id P2>7 and remembering that {P~! = P for a
permutation matrix P, we have
Xq(det ElGng)Xq(M, N)
= Xq(ElMGlGQ, ElNGlGQ)
= X, (det A7 - det A - det a5 - det a7 - det ag)xq(det v4 - det d2)
-« Loy —as) ta
" Xq (det ((51 si)fas/g - (n 1) 8) - det(dg — arpug) toz7>.

(57 — Qg tyl)tOé5 0
Also, since xq(Mgr,I) =1, we have

Xq (det F1G1 Gz)
= Xq(E1 My G1Go, E1G1G2)
=X, (det A} - det A} - det a5 - det a7 - det ag) xq(det vy - det d3).

To summarize: Given (M’ N') with rank, M’ = d’, and given choices for dy, ds =
d—dy,ds,dr,ds =d —d—ds—dr andr =j—d; —ds +dsg (Wlth di +ds +d7r <7,
dy+ds < n—j), to be able to choose FE, G,Y so that M, N are integral and coprime
with rank, M = d, we need to choose E € g4, »\SL,(Z) so that the g-rank of the
upper d; rows of EM’ is dy, and the g-rank of the upper n — r rows of EM’' is
d 4 ds (where ds < j — dy; note this is only possible when d’ —d — ds < r). By
Lemma 6.4(b), we have

B(d,d+ds)B(n—d,n—r—d—ds)B(d+ds,di)
. q(d+d5)(7“+d+d57d/)+d1 (’I’L*d*ds,)

choices for E. Modifying E using left multiplication from Kg4, ,, we can assume the
upper d + ds rows of EMy have g-rank d + ds. We need to choose G € SL,,(Z)/K;

to meet various conditions (as detailed in the preceding discussion); choosing G €
SL,(Z) so that

M,

EMd/Go =

0
C
0 (9)
0

o O O O

0 c’

where My is dy x dy, C' is (d4 + d5) X (d4 + d5), C' is (d7 + dg) X (d7 + dg) and
My, C,C" are invertible modulo ¢, Lemma 6.5 describes the conditions that

E(My 1) (G t(;l)
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must meet, where G = GG’ € SL,,(Z)/K; (note that as G’ varies over SL,,(Z)/K;,
so does GG). By Lemma 6.5, we have

B(ds + ds, dy)B(d7 + ds, dg)q 4+ Hds) U =di=ds) ~duds

choices for G. Then with further adjustments to F using left multiplication from
Ka,,» and to G using right multiplication from K; (as described above), using nota-
tion as above and writing p; = pj + quj, we have that uj, us, pj are uniquely
determined modulo ¢, p4, 15 are unconstrained modulo ¢2, and Y, wy, pug, va, vs,
vy, V5, Vg are unconstrained modulo g. Let F = Z/qZ; as pf, v1, ug vary modulo g,

((51 —asp)tas/q (v — asp) tOés)

(57 — Qg tyl)tOé5 0

. . C Dy _.
varies over elements in Fd3fds:957ds of the form (i, ) with C' ds x ds, and (66 —
arpg) tar varies over Fg;;ffﬁ Hence as we vary Y subject to these constraints, we
have

> xg(Xg L EMeGXy, X E('GT = My GY) X
Y
— q(]fdl)(nfdl7d4+1)7d5(j7d1+d8+1)7d7(d7+1)/2 Symz((dS, dS) Sym?;(dﬂ.
This yields a formula for A;(d,t); to simplify this formula, note that B(m,s) =
B(m,m — s), so
B(d1 + ds + ds, dl)ﬂ(d/7 dy + dy + ds5)B(ds + ds, dy)
_ p(d+ds,dy)p(d+t,t —ds)p(d — dv + ds, ds) p(t,ds)
l‘l’(dlﬂdl)lu’(t_d57t_d5)iu'(d5ad5) ,U:(t,dg;)
o ll’(d + t7 dl + t)ﬂ(t7 d5)
p(di, di)p(t, t)p(ds, ds)
w(t, t)p(dy, di)p(ds, ds)
= B(d +1t,t)B(d, d1)B(t, ds),
where t = d' — d. We have the constraints that r = j —dy — ds + ds, d = dy + dg,
t=ds+dr+dg,di+ds+dr <j,ds+dg <n—j,and dg < d5. Taking 0 < d; < 7,

0<ds <j—di,and 0 < dg < ds, a summand in the final formula for A4;(d,t) is 0
if the other constraints on the d; are not met. O

Corollary 4.5. Let o be a multiplicative partiti0n~of N, and suppose Eo # 0.
Then for a prime qIN and d = rank, My, we have E|Tj(q?) = Nj;o(¢*)Es where
N} = Ni/(q,N;) and
J
Nia (@) = @1y BRI (0P )xy, (P98, (d, 0B, (n — d,j — ).
=0
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Proof. Since T'(q) and Tj (¢*) commute, by Corollary 4.3 and Theorem 4.4, we
know that E, is an eigenform for T;(¢?) with eigenvalue A;(d,0). By Theorem 4.4,
using ¢ in place of dy, and noting that B(m,r) = B(m, m — r), we have

A (dO _q]dzq (2k—2d+0—j— 1)XN/q(XIJ [M X Xﬁjl [X_l)
(=0

Note that (Xj qu) is congruent modulo A'/q to an element of Sp,,(Z). Thus

Y/\//q(XﬁJ [M X Xﬁ Jl [X_l) = YN/q(XZjl_gManz_jl z)X/\/’/q( j)-
Then we use Propositions 3.6 and 3.7 to evaluate X /,(X, eMc,d,X[] 0)- O

5. Hecke Operators on Eisenstein Series of Arbitrary Level

Fix V' € Z, and x a character modulo A. Assume that & > n+ 1, y(—1) = (=1),
and that either A > 2 or k is even. Let {’yg = ( I\/L ?)} be a set of representatives
for T \Sp,,(Z)/To(N) so that when N is square-free, JC\IL, is as in Proposition 3.5,
and let E, = E,,

To more easily describe the action of Hecke operators on E,, we define an action
of Uy x Uy on Eisenstein series where Uy = (Z/NZ)*. Toward this, we have the

following proposition.

Proposition 5.1. Suppose v = (AI/[ ?) € Sp,(Z), v,w € Z with (vw, J\/) =
set (v,w)- M =v(* JM(" ;) and (v,w) -~y = ((U wI) v D). With o' =v (N),
w' = w (N), we have (v, w')-y € (v, w) AT (N); hence By ).y = E(UIM/)W. Further,
suppose ' = (]é/ ?) € Sp,(Z) so that E = E./. Then E, ).y = Ey ).y, 50 we
have an action of the group Un X Unr on

{IEL, Ty = (]\14 ?) ESpn(Z)}.

E(wyo = | Xn, @) ] Xn, @) | Eo.
0<d<n

When N is square-free,

where we write B, for B, —and E(, .o for By w).y, with v, chosen as in Sec. 4.

Proof. Takey,v', v, w,v’,w’ as in the statement of the proposition. By Proposition
3.5 we have (v, w') -y € (v,w) - yT'(N), so by Proposition 3.2 we have E, )., =
Eor w)y-

Now, given the assumption sthat E, = E,,, there is some G € GL,(Z),
§ = (g g) € To(N) so that G(M 1)§ = (M’ I) and x(det G- det D) = 1. By

Lemma 6.1, there is some ¢’ = (é; gi) € To(N) so that & =6 (N), & =1 (v); set
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5" = (U‘g, BLI)//U> (so 8" € Ty (N)). Since SL,,(Z) maps onto SL,, (Z/NZ), we can

find E € SL,,(Z) so that

EE(w-detG >G<w )(N);
I I

set G = (detG I) E. Take (; ) € SLa(Z) so that

ros w 0
C)-( 2w

and set

(so B € Ty(N)). Then
sG'((v,w) - M 1)B716"3 = ((v,w) - M" 1)) (N),

so ((v,w)- M’ I)) € GLn(Z)((v,w)- M I))To(N). Since x(3716"8) = x(det D) and
x(det G’) = x(det G), by Proposition 3.2 we have E(, ).y = E(y, ).~/

Now suppose N is square-free. For all primes ¢|\, we have rank, (v, w) - M =
rank, M, so ((v,w) - M, I) € SL,, (M, I)Tx(N). Fix a prime ¢|N and take d =
rank, M,. Thus by Proposition 3.5, we have E(, ... = x((v,w) - My, I)Ey. If d =0
then xq((v,w) - My, I) = x4(0,1) = 1. If 0 < d < n then

’UU)2

Xq(('l),’ll)) 'MU7I) :Xq UId—l 7I :Yq(UdUP)»

0

and since x7 = 1, X, (viw?) =x,(v?). If d = n then xq((v,w) - My, I) = X, (v"w?).
O

Suppose E, # 0. We have (1,—1) - v» = v£7oV+, and I‘ail),% = 'yil“j/'gwi,
so x is trivial on F?’l 1), and hence E1,_1)., # 0. With To(NV) = Us F?’l 1)
(disjoint), left multiplication by v+ gives us I'o(N) = ;' 740 (disjoint). Then

E1,-1)0 Y X(O)E |7+Y7+]0
)

= X(v£) Y X(O)E* |70 |76
5
=E,.
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If (1,-1)- M, I) = E(M, I)y for some E € SL,(Z) and v € Ty(N), then by
Proposition 3.2 we have E(; _1)., = x(7)Eo, so from above we must have x(v) = 1.
Thus if (M N) € SL,(Z)(M, I)y and (M N) € SL,(Z)((1,-1) - M, I)y" for
7',7" € To(N), we have x(v') = x(v").

So with x(M,N) = x(v) where (M N) € SL,(Z)(M, I)y or (M N) €
SL,(Z)((1,-1) - M, I)y for v € SL,(Z), x(M,N) is well defined. Also, E, =
%(EU +E@1,-1).0), a fact we will use in the proofs of Theorems 5.2 and 5.4.

Theorem 5.2. Suppose E, # 0; fix a prime pt N and p so that pp =1 (N). Then

E,|T(p) = Z X(pnfr)pk(nfr)*(N—T)(n+r+1)/2ﬂp(n7 r) Epp)o-
r=0
Proof. Write K, for KC;.(p), X, for X,.(p), B(m,r) for B,(m,7).
When E,s # 0, set

( I 0)( I 0)
6= .
—MUI I (p]_j)SMgl I

So 6 € I'(NV), and hence by Proposition 3.2, E, = E,_;. Thus we may replace 7/
by 7,0 (effectively, we may assume p3|M,).
Now, by Proposition 2.1, we have

Eq (7)[T(p) = p*" " 0/2 N " x (0" ")x(M, N)

(M N)
r,G,Y

det(pM X, '\G7'r + pM X, 'Y G+ NX,.'G) ",

Here SL,,(Z)(M N) varies over SL,(Z)(M, I)T'o(N), 0 < r < n, and for each r,
G varies over SL,,(Z)/K,, Y varies over Y, (p); recall that since p { N, we can take
G=1W),Y =0 N). Write M = (M! M}), N = (N] N}) with M/, N| n x r,
and let s = rank,(M{ Nj). We can use left multiplication from SL,,(Z) to adjust
our representative (M N) to assume that

My M. N N.
M- pM;y 2 CN= 1 PN ,
Mz My N3 Ny
where M3, N3 are s x r; so rank,(Ms N4) = s, and rank, (M Ni) = n — s since
rank,(M N) = n. Set
(M'G N'"'G™Y) = X' (pMX ' NX, +pMX,'Y);

SO

rank, (M’ N') = rank,(pX, ' . MX, ' X, ' NX,)

I My M N1 Ny
= ran
"A\Ms; pMy, pNs; N,

:’[’L’
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and hence (M', N’) = 1. Note that
det(M'T + N')™%F = pF(=9) det (pM X7 G~ 17 + pM X'V 'G + N X, 'G)~*.
We know

1
E.|T(p) = 5(1@0 +Eq,—1).0)|T(p)

% > oo (Bor + E1,—1).07)
for some ¢, € C. So to compute ¢, for any given o', we first identify those
r,s,G,Y and
SL,(Z)(M N) € GL,(Z)(My I)To(N)
so that
XL (pMX 'GP NX, "G+ pM X, 'Y IG)
€ SL,,(Z)(M, I) USL,(Z)((1,—-1) - M, I).

Equivalently, we identify r, s, G,Y and SL,,(Z)-equivalence classes
1 1
SL.(Z)X,,—sF (—M’GXT (f(;l - —M’GY) Xrl)
p p

that lie in GL,,(Z)(M, I)T'o(N), where M" = M, or (1,—1)- My, and E € SL,,(Z).
Note that we only need to consider E € 'K, _s\SL,(Z), as SL,(Z)X,,_sE =
SL,(Z) X, _s if and only if E € 'K, _g; note also that we can take E = I (N).

Take M’ = M, or (1,—1) - M, (some ¢’). Recall that we can assume p3|M,,
so with

(M N)=X,_F <1M’GX, (tc:l - 1M’GY) Xﬂ),
p p

we have M =0 (p), and we have N integral with rank, N = nif and only if n—s =r
and F'G~! € 'K, (independent of the choice of Y'). We know there are p"("+1)/2
choices for Y, and by Lemma 6.2, 3(n,r) choices for G. Also, with n — s = r and
E € 'K.'G, we have (M N) = (3 X, M'X, I) (N). So when

(;—)XTM’XT I) € GLn(Z)(M, I)T'o(N),

we get a contribution of
Y(ﬁXT‘MO'/XT’a I)X(pn—r)pk(n—r)+(r—n)(r+n+1)/2ﬁ(n, ’I“)

toward ¢, s (and a contribution of 0 otherwise).
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To determine when (%X,M’XT I) € GL,(Z)(My, I)To(N), take E’ € SL,,(Z),
v € To(N); then take E” € SL,,(Z), v' € To(N) so that E” = I (p), E” = E' (N),
v =1 (p),y =+ (N). Then set E/. = X, 'E"X,,

x, , (X
r = p 5
& Xfl 7 Xr

so Ej. € SLy(Z), 7 € To(N). Then (1X,M'X, I) is equal to E'(M, I)y or to
E'((1,-1) - M, I)y if and only if
pX, !

(M' 1) = BLX7 (0, ) ( «

)% (N)

or

pX, !

(M'I) = B|G+ X (M, f)( )ww (N

X
Hence using Proposition 3.3, we have (3 X, M'X, I) € GL,(Z)(M, I)To(N) if and
only if (M’ I) € GL,(Z)(pX, *M, X' I)['x(N). Note that when r > 0, we can

find G, € SL,,(Z) so that G, = (p plr_1 ) (N), and then
I

tGT
Gr(pX, Mo X, 1) ( G_l) = ((0.7) - My 1) ().

Thus (%XTM’XT I) € GL,(Z)(M, I)T'g (N) if and only if
(M' I) € GLn(Z)((p,P") - Mo I)Tg (N).

Also, by Proposition 3.2, we have X(7.)E;» = E(,5r).0. Therefore Eq|T(p) =
E:L:O X(pn—r)pk'(n—r)+(r—n)(r+n+1)/QE(pJ_JT).[” as claimed. O

Definition. Let Uy = (Z/NZ)*, ¢ € Um/\f, the character group of Uy X Uys.
Set

Ea,w = Z E(v7w)E(v,w)-a~
v, wEUN
Below we will show that when non-zero, E, ,;, is an eigenform for all T'(p), T;(p?),
p prime not dividing A/. Note that by orthogonality of characters,
span{E,.c :u € Un X Un'} = span{E, 4 : ¢ € Z/{mj\[}.

Also, we have ¥(v,w) = 91(v)ha(w) where 11,19 are characters on Upy; using
Proposition 5.1, when N is square-free we have

Eoy = Z (v, w) H YNd(Ud) Y, (w?)Eq,

v, wEUN 0<d<n
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50 Eyy = 0 unless E, # 0 and ¢1 = [J_4ep Xr,» Y2 = Xar, where Ny is the
product of all primes ¢|A so that rank, M, = d.

Corollary 5.3. Suppose B, # 0, and let p be a prime with p { N. Let ¢ be a
character on Un X Unr; so Y(v,w) = 1 (v)he(w) where 1,12 are characters on
Upn. Then Eo y|T(p) = Aoy (p)Eq,y where

Ao (P) = ) - [ ex )™ +1).
=1

When N square-free, Eq|T(p) = Ao (p)Ey and Eq|T(p) = Ay (p)Eos where By is as
in Corollary 4.3 and

M) =TT v ) TTO pE 1),

0<d<n i=1

Proof. Write 3(m,r) for 3,(m,r). As in the proof of Theorem 5.2, we can assume
p3| M. Identify p~! with p where pp =1 (V).
With v, w varying over Uy and r varying so that 0 < r < n, we have

(p) = prntD2 57 e (0, w)x (") E T2 B (0, 1) By )0

Making the change of variables v — pv and w — p"w, we get

E k)

Eou|T(p) = 91 (p)x(p")p*" " T/28(n, k) Ey

where
szx —kr+r( T+1)/2ﬂ( )

Using that B(n,r) =p"B(n —1,r) + B(n — 1,7 — 1), we find that

S(”? k) = (wQX(]_j)pl_k + I)S(n - 1’ k— 1)

szx h )

n
_ ¢2X(]_7n)p_nk+n(n+l)/2 H(%X(p)pk_i +1).
i=1
Now suppose N is square-free. With ¢ = [], <d<n le\/d and 1o = Yifn7 we
have B,y = [Un|? - Eo; recalling that xn, = Xy, for 0 < d < n (see Proposi-
tion 3.6), the above result gives us E,|T'(p) = A\ (p)Es, as claimed. We also have
Eo = > oo 7% ag,oEq With as, = 1; since the Hecke operators commute, the

multiplicity-one result of Corollary 4.3 tells us ]EU = A (p)]EU. O
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Theorem 5.4. With p a prime not dividing N,

Eo|T;(p%) = Bp(n,j) DY x(p?~7H)pttmrte)==nns

-
'6P(j’ r)ﬁp(j —,5) Symp(j -r- S)E(l,ps‘r)v

(where sym,,(t) is the number of invertible, symmetric t x t matrices modulo p).

Proof. To a large extent, we follow the line of reasoning in the proof of Theorem
5.2. We write K. s for K, 5(p), X;. s for X 5(p), B(m, ) for B,(m, 7).

As discussed at the beginning of the proof of Theorem 5.2, we can modify our
representatives (M, I) to assume p*|M, . By Proposition 2.1, we have

Eq (7)|T5(p%) = Y x(@/ "0t ")x(M, N)p/ ==

det(MX, L G lr+ MX, L YIG+ NXpyn, 'G)7F,

no,n2 no,n2
where SL,,(Z)(M N) varies over SL,,(Z)(M, I)T'o(N), ng, n2 € Z>( vary subject to
no+ne < j, G € SLy(Z)/Kngnss Y € Yng.ns (P?); note that we can assume that Y =
0 (N) and, using Lemma 6.1, that G = I (N). Given (M N) € SL,,(Z) (M, I)T'x(N)
and
Yo Yo Y;3 O

t
Y Yi/p 0 )
Y = th 0 S yno,nz (p )7
0

we decompose M, N into 3 x 4 block matrices as follows. First, write M =
(Mg Miy Miy Mi,), N = (Ng Niy Ni; Niy) where Mg, Ng are n X no, Mj,, Nig
are n X (j —ng —ng), and Miy, Nq, are n X ny. Let s = rank, (Mg M{, Ni,); using
left multiplication from SL,,(Z), we can assume
Ao (PMsopMg Mz Mg o (Ng Ny NpoopNg
My My My M)’ No Nig Nii Nio)’

where M§, N} are (n — s) X na, Mg, Ny are s X ng, My, N1g are s x (j — ng — n2)
(so s = rank, (Mg Mio Ni2)). Take r so that

n—r:rankp<Mé Mz N+ MgYy N7 Né).

Mg 0 M10Y1 0 N12
Thus using left multiplication from SL, (Z) (leaving the lower s rows fixed), we can
assume that p divides the upper r rows of (M} M} N+ MY, N7 Ng§), and so
p*My pMsy pMz M, N1 Ny pN3 p*N,
M =1 pMs pMg M; Mg |, N=|Ns Ns Nz pNg
My My My Mo Ng Nig Niiz Nip
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with My, Nir x ng. Also, since p divides the upper r rows of N} + M{Y1, we have
N2 = —M2Y1 (p) and

Ms My N+ MgYr N7 Ng
rank,, =n-r.
Mg 0 M10Y1 O N12

Note that we necessarily have rank, (M4 N; N3) = r; since Y; is invertible modulo
p and Ny = —M>Y; (p), we have rank,(My My Ny) =r. Set
(M'GN'G™") =X} (MX,) ., NXpgn, + MX, Y.

no,n2 no,n2

Hence M’, N’ are integral, and with

Yo Y2 Y3 O
v — RE
ty, ’
0
we have
rank, (M’ N')

= rank,(M'G N''G™1)
= rank,(M'G N"'G™' — M'GY")
My My Mz My Ny (Ny+MyYi)/p Nz Ny

:rankp M5 0 M7 0 0 N6+M6Y1 N7 Ng
Mg 0 0 0 0 Mloyl 0 N12

My My 0 My Ny 0 0 0
Z rankp M5 0 M7 0 0 N6+M6Y1 N7 Ng
0 0 0 0 0 MioY1 0 N

=n.
So (M’ N') is an integral coprime pair, and
det(MX, !, .G '+ NXpyn, "G+ MX, ! YIG)™F
= p*=) det(M'7 + N')7F.
Now take an index o', E € 'K, s\SL,(Z), and set

(M N) =X, E(MyGXpymy ‘G'X;1 —MGYX;!, ),

no,n2 no,n2

where M’ is My or (1,—1) - M,. We first determine exactly when (M N) is an
integral coprime pair, and then we determine when

(M N) € GLn(Z)(My I)Lo(N).
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Recall that G = G1G2 (as described in Proposition 2.1) with G; varying
I
over SL,(Z)/Knym, and Go = ( e , with G’ varying over SL,/(Z)/ K,
ng

where n’ = n —ng — na, j/ = j — ng — ng; also recall that since we can assume

p®| My, we have M = 0 (p). So to have (M N) integral and coprime, we need

X, s tG‘anmn2 integral and invertible modulo p. Since X, », and G2 commute,
Ny No N3

to have X, (E*G~'X,, ,, integral, we need E'G;* = (pM Ns Ne) where NV;
p>N; pNs No

is r X ng, Ny is s X ng, which means we have rank, Ni = ng, rank, Ng = s. Then
2
Ny pNz p*Ns

N=|N, Ns pNs | ®),
N; Ng N

so to have N invertible modulo p, we need rank, N1 = r, rank, Ny = ny, meaning
T = ng, s = ny; we then must have rank, N5 = n—ng—nq since &/ tGl_1 is invertible
modulo p. So suppose 7 = ng, § = no, and fix G;. Then we have Xr,sEtGl_ngsl
integral if and only if E*G]* € 'K, ,; consequently, (M N) is integral and coprime
if and only if r = ng, s = nq, and F € t’Cns tG,.

To summarize: For any choices of Gi € SL,(Z)/Kngnys Go € SLu/(Z)/K),
Y € Y,.5(p?), we have

(M N)=X, ;E(MyGXpyny ‘G'X ' —MGYX, ' )

no,n2 no,n2

integral and coprime if and only if 7 = ng, s = ny, and E € 'K, ‘Gy. There
are p"*B(n,r)B(n — r, s) choices for Gy, B(n —r — s,j —r — s) choices for Ga, and
prrttr(n—r—s) sym,(j —r —s) = pr(n—stl) sym,(j —r — s) choices for Y.

With (M N) integral and coprime, we have X(M, N) = X(X, s My X, 5, I), and
arguing as in the proof of Theorem 5.2, we find that

(M N) € GLn(Z)(My I)I'o(N)

if and only if (My I) € GL,(Z)((1,p"*) - My I)To(N). Also, Ey pr-s)., =
xX((1,p" %) - M,, I)E, . Note also that
ﬁ(n,r)ﬁ(n—ns)ﬂ(n -r-= 87j -r—= S)

_ ur)pn—rs)pn —r—s,j—r—s) p(j,r + )
pulr,mp(s,s)u(j—r—s,j—r—s) p(j,r+s)

= /8(77‘7])/8(]7 T)B(] - ’I",S).

For this the theorem follows. O

We now choose a different set of generators for the Hecke algebra to obtain more
attractive eigenvalues.
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Definitions. Let p be a prime not dividing N, and fix j, 1 < j < n. As in [7],
we set

T;(p*) = Y x( plU=0% =08 (n—,j - O)Tu(p?)

0<e<;j
where Ty(p?) is the identity map. The effect of this averaging is to remove on Y; the
condition that p{detY; (where Y € Yy, n, (p?) is as described in Proposition 2.1).
For uw € Uy and v = <AI4 ?) € Sp,,(Z), we define

R(u)Ey = B4,

and we extend R(u) linearly to 8,&") (N, x), which we know is spanned by all such
E.; by Proposition 5.1, R(u) is well defined. By Theorems 5.2 and 5.4, we see that
R(u) commutes with T'(p) and T;(p?) (p prime, pt N, 1 < j <n). Thus

{T(p), Tj(p*). R(p) : prime pt N, 0 < j <n}
generates a commutative algebra of operators on 5,2”) (N, x)- Set
D E0PTIEB (0 — 4 i, )T () R(D)
=0
where pp = 1 (N). (Recall that R(u) is defined for any u € Z with (u,N') =1, so
R(p') makes sense.)

Sl

)
=

[\

~—
|

Corollary 5.5. We have

Eoy|Tj(p?) = Ny (0*)Er s,

where
J
;;U,w(ﬁ) 5 (n, ])p(k n)j+i(i—1) /2 H (a2 x(p —i +1).
i=1

When N is square-free, we have B, |Tj(p*) = N, (p*)Eo and EU\T;(pQ) =N, (p?)
IEU where

J

X (1) = B, (1, pp 90D/ (1) TT O, ()6 + 1)

=1

Proof. Write B(m,r) for B,(m,r). Using Theorem 5.4, averaging over v,w € Uy
(and replacing w by wp"~* inside the sum on r, s in the formula of Theorem 5.4),
we get E,. '(pz) = )\j;gﬁw(pz)ng where

ZX j+s— r p —r)pj(k—n—1)+r(n+1)+k(s—r)

Jaw

l,r,s

ﬁ(n7€)/6(n - 67] - 6)/6(& ’/‘)ﬁ(ﬂ - 5) Symp(g -—r—= S)a
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where 0 < ¢ < j, 0<r+s</{ orequivalently, 0 <r+s<j r+s</{<j We
make the change of variables ¢ — j — ¢ and use that

Bn,J —OB(n —j+ LOBG ~£.1BG — € —rs) s

=B(n,j)BU,7)B(G —1,8)B( —r —s,{)
= ,8(71,]),8(],7‘),8(] _T78)B(j —r—3s] —l—r- 8)

Now we make the change of variable ¢ — j — ¢ —r — s, we get

Niow (%) = B(n,5) Y X (pt)pl B ARG
0<rTs<;

BGIBG—rs)- Y B~ s, 0)symy(L).

0<t<j—r—s
By Lemma 6.7, the sum on ¢ is pU—"=9)U—r=s+1)/2,
We have Eq | R(p') = 5 (p")Eo,y. Thus E, 4 |T}(p*) = N, ,,(0*)Eq,y where
;’;a,w(pz)

=S () D2 B(0 — 4 i, )y (0 ) (T ) (0T

©,7,S

. p(j—i—r)(k—n—1)+ks+(j—i—r—s)(j—i—r—s+1)/2

B(nu] _Z)B(] —Z',T),B(j —Z'—’I“,S),

where 0 <1< j,0<r<j—1,0<s<j—1i—r. Making the change of variable
r—j—1i—1r we get

;’;a,w (p2) _ Z(_l)ipi(ifl)/2x(pr+s)¢2 (ps+r7j)pr(kfnf1)+ks+(rfs)(rfs+1)/2

ﬁ(n_]+l7l)/6(na] _Z)ﬁ(] _i7.j —i—T‘)ﬂ(T,S),

where 0 <i<j,0<r<j—1,0<s<r orequivalently, 0 <r <j, 0<i<j—r,
0 < s < r. Note that

~—

w(j,i
(j.i

,B(TL _j +Z,Z)/B(n7] _l)/B(] _7;770)
= /8(n7])ﬂ(]770)ﬂ(] —T,i).

Also, using the relation B(m,r) =p"B(m — 1,7) + B(m — 1,7 — 1), we get

T

i o 1 ifj=r,
D (0P IRE(G — i) = { ’

=0 0 otherwise.
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Hence N,

o (D7) = X7/ DHIGTN/2 B (n, 5)S (4, k — j) where

j
S(iy) =Y pr e 2y (p°) B, 5).-

s=0

Using the identity 8(m,s) = p*B(m —1,s) + B(m — 1, s — 1), we have
SGrk = 3) = (o)™ + 1)S(G = 1k —j +1)

= H(Wz(p)p’“‘i +1),

proving the corollary. O

6. Lemmas

Lemma 6.1. Suppose N', N € Z, with (N",N"") = 1.

(a) Given any E' € SL,(Z), there is some E € SL,(Z) so that E = E' (N”) and
E=1(WN").

(b) Suppose v € To(N"). Then there is some 7' € To(N') so that v' =~ (N') and
v =1 (N").

Proof. (a) Choose y,z € Z so that yN” + 2N’ = 1. Thus (yN”,zN") = 1, so

there are w,z € Z so that wz(N")? — zy(N”)? = 1. Hence Gy = (;”jofli 2%7)

SLo(Z) with Go = I (N"), Go = (‘f ‘01) (N). For b€ Z, Gy = (3 byf”'), Gy —
(byb,, 2)7 we have G1,Gs € SLa(Z) with G1,Gs = I (N), Gy = (3 I;) (N),

Gy = (11) ?) (N7). Also, for a € Z so that q { a, take ¢ € Z so that ¢ = 1 (N"),
¢ = a(N"). Thus (¢, N'N"") = 1 so there are u,v € Z so that cu — (N'N"")?v = 1.
Set Gs = ( o VN ) So G € SLa(Z), Gs = I (N"), G = (g g) (M) (where
cc=1(N")). For any d, 0 < d < n — 2, the map
14
Gr— G
]ﬁ7d72

is an embedding of SLa(Z) into SL,,(Z). Thus we have matrices that allow us to
perform “local” elementary row and column operations modulo A/ within SL,,(Z).
Hence, given some E’ € SL,(Z), there are G, G’ € SL,(Z) so that G,G' =1 (N")
and GE'G' = I (N'); hence with E = (G'G)~!, we have E € SL,(Z) with E =
I (N, E=FE'N").

(b) Write v = (5 5); 50 C =0 (N). Set a = det A; since A'D = I (N”), we
can choose @ € Z so that aa = 1 (N). So we can choose G € SL,(Z) so that G =
— —// a
(* JAWN),G=1I(N"). Weknow A'B is symmetric; set W = N"N G~1(* )B
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where NN = 1 (V). Now take (3 %) €SLy(Z) so that () 7) = (“ ) (V)
and (;) 7) =1 (N”). Set

w T
, I o | (¢ ow
T y z (O tG_1> ;
0 I
soy €ToWN"),y=~v N'),and ¢y =1 (N). O

Lemma 6.2. Let A = Zx1 @ -+ @© Zzy; fix a prime q and let Kq = Kq(g). The
elements of SLy(Z)/Kq are in one-to-one correspondence with lattices Q where
gA C Q C A and [A : Q] = q?. The correspondence is given as follows: For GKg4 €
SL,(Z)/Ka, 2 is the lattice with basis

(1 -+ zp)G (qld I).

Further, the number of such Q is B(n,r).

Proof. Given G € SL,(Z), we map G to the sublattice of A with basis

qlq

Clearly each € described in the lemma can be obtained this way. Further, for H €

SL.(Z),
qlg
(z1 ... xn)GH< I)

is also a basis for Q if and only if H € K4. Also, each such Q corresponds to a
dimension n — r subspace of A/gA, of which there are B(n,n —r) = B(n,r). m|

For d,r >0, d+1r <n, let Kq,(¢) be the subspace of SL,,(Z) consisting of matri-
ces

G1 By By
Ci1 Gp B3|,
Cy C3 G

where G is d x d, Gz is 7 x r, B1, B3 =0 (q), B2 =0 (¢?).

Lemma 6.3. Let A = Zz1 & -+ ® Zzy; fir a prime ¢ and let Kqr = Kar(q).
For Q a sublattice of A containing ¢>A, let m; denote the multiplicity of ¢¢ among
the invariant factors {A : Q}. Then the elements of SL,(Z)/Kar are in one-to-one
correspondence with sublattices Q0 of A containing ¢ A with mg = r and mo = d. The
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correspondence is given as follows: For G € SLy,(Z)/Ka,r, S is the lattice with basis
¢*la
(1 ... )G ql
I,
Further, there are q*"B(n,d)B(n — d,r) such Q.

Proof. Given G € SL,(Z), we map G to the sublattice of A with basis
¢*Ia
(r1 ... )G ql
1,
Clearly each ) described in the lemma can be obtained this way. Further, for H €
SL,.(Z),
*la
(1 ... zp)GH ql
I
is also a basis for (2 if and only if H € Kg,,.
On the other hand, given such 2, we have Q = ¢?A¢ ® gA; ® Ay where A =

Ao DA D As with rank Ag = d, rank Ao = r. We can construct all such Q as follows.
First let A be the preimage in A of a dimension n — d subspace of A/gA; there
are B(n,n —d) = B(n,d) such subspaces. Then let {2 be the preimage in A of a
dimension r subspace of A/qA that is independent of gA; there are ¢¥"3(n — d,r)
choices. Since A = %Q N A, a different choice in step 1 or step 2 of this construction
yields a different lattice Q. |

Remark. Let A = Zx1 @ -+ @ Zxy,, A = Zy; & - - - © Zy,, where (y1 ... yn) is the
basis dual to (z1 ... zp). Then for G € SL,(Z), the basis dual to (z; ... 2,)G
is (y1 ... yn)'G™1; thus the elements of SL,(Z)/K4(q) are in one-to-one corre-
spondence with subspaces Fy; & --- & Fy/, C A# /qA# . Similarly, the elements
of SL,(Z)/Ka4,(q) are in one-to-one correspondence with sublattices € where
@PA#F C Q' C A# and
14
(yl ce yn) tG_l qI
@I,
is a basis for V.
Lemma 6.4. Fiz a prime q; suppose M’ € Z"" with d’ = rank, M'. Let K=-K4(q),
’Cm,r = Km.,T(Q); ﬁ(m,r) = ﬂq(mar)-

(a) For 0 < d < d', there are ¢®™=4)3(d’ d) choices for E € K4\SLn(Z) so that
the top d rows of EM' are linearly independent modulo q.
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(b) Forr,m,s >0 so that d —r <m+s <d, there are
Bn—d,n—r—m—s)B(d,m+s)B(m+s,m)gntr—d)tslrimts—d)

choices for E € Ky, ;\SL,(Z) so that the g-rank of the top m rows of EM' is
m and the g-rank of the top n —r rows of EM' is m + s.

Proof. (a) Take Ey € SL,(Z) so that ¢ divides the lower n — d’ rows of EoM’; as
E varies over a set of representatives for Kz\SL,,(Z), so does EEy. Thus we may
as well assume that ¢ divides the lower n — d’ rows of M'. We know by Lemma 6.2
and the remark preceding this lemma that each E € IC4\SL,,(Z) corresponds to a
sublattice Q =Fy; @ -+ @ Fy,, of A =Fz; & --- @ Fx,, with [A: Q] = ¢"~ ¢, where

Y1 Z1

1
qIn—d

Yn T

Thus rank, (Id qIn,d)EM/ = d if and only if F is chosen so that Fy; & --- @ Fyg is
independent of Fagry1 P - - - @ Fa,,; there are B(d’, d)qd("’d/) such subspaces.

(b) Let A = Za1 @ - - - ® Za,,, and let A(*M’) mod q denote the subspace of F™!
obtained by replacing each z; by column 4 of ‘M’ modulo ¢q. We know that each
element E € K, \SL,(Z) corresponds to a lattice Q = Ay @ gA1 & ¢? Ay with basis

Im

We want to choose € so that, with A = %Q NA = Ayg® A & qAs, the map
A — A(*M’)mod q takes € to a dimension m subspace and A to a dimension m + s
subspace. Let m; = rank A;.

Given € a sublattice of A containing ¢?A and with mg = m, ms = r, Q deter-
mines a unique dimension n — r sublattice A = %Q N A of A/gA, and then with A

the preimage of A in A, and  determines a unique dimension m sublattice £ of
A/qA. Thus we can build all Q corresponding to K, -\SL,(Z) by first choosing a
dimension n — r subspace A of A/gA; then the preimage of A is A = A; @ gA,
where Ay has rank r and A = A; @ Ay. Then in A/gA, we choose a dimension m
subspace ) that is independent of gA = gAs; then the preimage of Q in A is Q.
So each € corresponds to a (unique) dimension n — r subspace A of A/gA, and a
(unique) dimension m subspace of A/gA.
We know d’ = dim A(*M’)mod q, so A = W @& R where

R =ker(A — A(*M")mod q).

So in A/gA, dimR = n — d’. We choose A of dimension n — 7 in A/gA so that
dimANR=n—1r—m—s. Thus there are

Bn—d ,n—r—m—s)B(d,m+ s)gmts)mtstr=d)
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choices for A so that A — A(*M’)mod g takes A to a dimension m + s subspace.
Then A/gA = U@ R where dimU = m + s and R/ C R+ gA. We choose Q of
dimension m and independent of ﬁl; so we have B(m + s, m)q™ ™™ choices for
Q C A so that A — A(*M’) mod q takes Q to a dimension m subspace. m|

Lemma 6.5. Fiz a prime q and write 3(m,r) for B,(m,r). Suppose (M' N') is
an n X n coprime symmetric pair such that

A0 0 0
| ¢ o

0 0 0 0

0 0 C 0

with A1 dl X dl, C (d4 + d5) X (d4 + d5), C/ (d7 + dg) X (d7 + dg), and Al,C, C/
invertible modulo q. (So with d' = rank, M', we have d' = dy + d4 + ds + d7 + ds.)
Suppose also that dy +ds+d7 < j <n—dy—ds, and setr = j—dy —ds+ds. Then
there are

Blds + ds, dg)B(dy + dg, dg)q 40— =ds) ~drds
choices for G € SL,(Z)/K; so that, writing

My Mo N1 N
MG=|M;s M|, NG '=[N; Ny
Ms Mg N5 Ng

with My, Ny dyxj, Ms, N5 rxj, we have rank, My = di, My =0 (q), ranky My = da,
rank, (%‘;) = dy + dg, rank, (%;) =dy + ds, the lower n —r —dy — dy — d5 rows of
N3 are 0 modulo q, and the upper r — d7 — dg rows of N5 have q-rank r — d7 — dg.

Proof. Let V = Fxy & --- & Fz,,. We know by Lemma 6.2 that the elements
G € SL,(Z)/K; are in one-to-one correspondence with the subspaces W = Fa’ | &
- @ Fa! where (2} ... 2)) = (x1 ... z,)G. We translate the lemma’s criteria
on (G to criteria on W, and then count such W.

Let V# = Fy, @ --- @ Fy, be the dual space for V; so for G € SL,(F),
(y1 ... yn) G~ is the basis dual to (z; ... x,)G. Let V(M’) denote the sub-
space of F™! obtained by replacing each x; by the ith column of M’ modulo q. We
split V as Vi @ Vo @ V3 @V, as follows. Let (a1 ... ay,) denote (the columns of) the
top dy + d4 + ds rows of M, (g1 ... gn) the top di rows of M'; set

Vi =ker(V — V(M')),
Vs@ Vi =ker(Vi—V(ar ... ay)),
Vo@Va@Vy=ker(V = V(gL ... gn))

(So dimVy =n —d, dim V3 = d7 + dg, dim Vo = d4 + d5, dim V; = d;.) Thus with
W determined by G as above, M'G meets the criteria of the lemma if and only if
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the map V +— V(g1 ... gn) takes W to a dimension 0 subspace, V — V(ay ... ay)
takes W to a dimension dy subspace, V +— V(M') takes W to a dimension dy + dg
subspace.

This splitting V = V; @ Vo @ V3 @ Vj corresponds to a splitting V# = V/ @
Vy @ V4§ @ V] where V{, V] @V, V] ® VJ @& V4 are uniquely determined (recall that
Vit =V/eVie Vi, etc.). Let (b1 ... by,) be rows dy +dy+ds5+1 through n—d7 —ds
of N’, (¢1 ... ¢p) be rows dy + dy + ds + 1 through n — r of N'.

With U’ = W+ C V# N’'G~! meets the criteria of the lemma if and only if
the map V# — V#(c; ... ¢,) takes U’ to a dimension 0 subspace, and V#
V#(by ... by) takes U’ to a dimension r — dy — dg subspace.

Now we construct and count all dimension n — j subspaces W of V' so that the
above criteria for W and W+ is met.

We know by the symmetry of M’ *N' that

VieVie Vi =kea(VF = V#b ... by));

soker (V# = V#(c1 ... ¢,)) = /@ V3@ V{aUj, with U; C V/. We need to choose
W so that under the map V# + V#(N'), U’ = W+ is mapped to a dimension 0
subspace. Equivalently, we need U’ C V/ @V, ®Vy ®UJ, which means Wy C W where
Wy = (VieVyaViaU))*t C V,. (So we can split Vy = Uy&W,.) Since (M', N') = 1,
(b1 ... by) = (0 D) (q¢) where D is (n — d') x (n — d’) with rank, D = n — d’. So
V# - V#(bl ... by) automatically takes U} to a subspace of dimension r —d; —ds.
Since (M’,N’) =1, we also know rank,(¢1 ... ¢,) =n —j — dy — ds. Hence

dimker(V# = V#(cy ... ¢y)) =7 +dy +dy + ds,

so dimUj = r — dy — dg; thus dim Wy = dim Vy — dimU; = n — j — d4 — ds.

We need dimW = n — j, and we need V +— V(a; ... a,) to take W to a
dimension d, subspace. Thus W must be of the form Wy & W3 & W, where W3 &
Wy C ker(V — Viay ... an)) =V3 Vs, dmWs & Wy =n—j —dg, and Wy
is independent of V3 & V4. Since we need V +— V(M’) to take W to a dimension
d4 + dg subspace, we must have W3 independent of ker (V — V(M’)) = V4. So
we extend Wy to W3 & Wy where dim W3 = dg with W3 independent of Vj; thus
we have B(d7 + ds, dg)qu(j’dl’dt”*d” choices for W3. Then we extend W3 @ Wy to
Wy & W3 & Wy where dim Wy = dy and Ws is independent of V3 & Vy; thus we have
B(dy + ds, d4)qd4(j*d1’d5) choices for Ws. O

Lemma 6.6. Suppose N is square-free, x is a character modulo N, and q is a
prime dwiding N'. Set ¥ = Z/qZ and

symy(t) = Z Xq(detU).
UeFLt,
Then sym(t) # 0 if and only if either (1) xq =1, or (2) x?, =1 and t is even.

Proof. Say ¢ = 2. Then y, = 1 (since \V is square-free), so symX(t) is the number
of invertible, symmetric ¢ x ¢ matrices modulo 2; clearly this is non-zero.
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So suppose ¢ is odd. Set J = (w It—l) where w is not a square in F. We

know GL(F) acts by conjugation on the subset of invertible elements of FL/ ;

the orbits are represented by I and J. Note that for U € F4!,, U is in the orbit of
I (respectively, the orbit of J) if and only if, for some a € F*, we have det U = a?
(respectively, det U = o’w); also, given a € F*, the number of U € F&r, with
detU = o (respectively, with detU = a’w) is the number of U € FL}, with
det U = 1 (respectively, with det U = w). With o(U) the order of the stabilizer of
U, we know o(U) = o(U’) when U, U’ are in the same orbit. Hence

2 #GL(F) 1 S o)

sym¥(f) = —— T

g—1 o(I) 2

HPET R e PR
CHGLE) (1)) o,
= (o O(J))%F‘qu( )

Thus sym) (¢) = 0 if x? # 1. Suppose xZ = 1; then y,(w) = —1 if and only if x4 # 1.
Also, by the theory of quadratic forms over finite fields (see, for instance, [6]), we
know o(I) = o(J) if and only if ¢ is odd, so the lemma follows. m|

Lemma 6.7. For p prime, t € Z, we have 3" ,_, B,(t, £) sym, (¢) = p't+1)/2,

Proof. Let F = Z/pZ; take V = Fay & --- & Fay. For each ¢t — (-dimensional
subspace R of V, fix Gg € GL4(F) so that R = Fypp1 @ --- @& Fy, where
(yi -+ ) = (11 -+ 2)Gr. Take Q € FY so that rank@Q = /. Let (V,Q)
denote the quadratic space with @ the quadratic form on V relative to the basis
(z1 -+ 2¢). By the uniqueness of the radical of V' (with respect to @), there exists
a unique R so that *GrQGRr = (OU 8) where U € F§Y, with U invertible, and there
are sym,,(¢) possibilities for U (depending on Q). Hence F}, is partitioned into
sets {@ : rank @ = ¢}, 0 < £ < t, and given ¢, {Q : rank @ = ¢} is partitioned into
sets {Q : 'GrQGR = (U 0)}, R varying over dimension t — £ subspaces of V, of

0 0
which there are 8,(t,t — £) = B,(t,£), U varying over invertible elements on F§’,,
of which there are sym,,(¢). From this the lemma follows. |
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