

**RESTRICTING HECKE-SIEGEL OPERATORS
TO JACOBI MODULAR FORMS: ERRATA**

LYNNE H. WALLING

In Proposition 3.1, the conditions given on $\Omega \oplus \Delta$ mean that in addition to $\Omega \oplus \Delta$ varying over distinct isometry classes such that

$$p\Lambda \oplus \Delta \subseteq \Omega \oplus \Delta \subseteq \frac{1}{p}(\Lambda \oplus \Delta),$$

we actually must have some Λ' so that $\Lambda' \oplus \Delta = \Lambda \oplus \Delta$ and $p\Lambda' \subseteq \Omega \subseteq \frac{1}{p}\Lambda'$. So these conditions on $\Omega \oplus \Delta$ apply to Theorem 3.2 as well. Similarly, in Proposition 4.1 and Theorem 4.2, $\Omega \oplus \Delta$ varies over distinct isometry classes so that for some Λ' , we have $\Lambda' \oplus \Delta' = \Lambda \oplus \Delta'$ and $p\Lambda' \subseteq \Omega \subseteq \frac{1}{p}\Lambda'$.

For Corollary 3.3, $\tilde{T}_j^J(p^2)$ should be defined as

$$\tilde{T}_j^J(p^2) = p^{j(k-n-1)} \sum_{0 \leq \ell \leq j} \chi(p^{j-\ell}) p^{m(j-\ell)} \beta(n-m-\ell, j-\ell) T_\ell^J(p^2).$$

(This is because, with

$$V \oplus \overline{\Delta} = (\Lambda \oplus \Delta) \cap (\Omega \oplus \Delta) / p(\Lambda + \Omega + \Delta)$$

of dimension $n-r$, and U a subspace of $V \oplus \overline{\Delta}$ with dimension $\ell-r$ and U independent of $\overline{\Delta}$, the number of ways to extend U to a dimension $j-r$ subspace W of $V \oplus \overline{\Delta}$, with W independent of $\overline{\Delta}$, is $p^{m(j-\ell)} \beta(n-m-\ell, j-\ell)$.)

L.H. WALLING, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRISTOL, BRISTOL BS8 1TW, ENGLAND
E-mail address: l.walling@bristol.ac.uk

1991 *Mathematics Subject Classification.* 11F41.

Key words and phrases. Jacobi modular forms; Siegel modular forms; Hecke operators; lifts.

Typeset by $\mathcal{AM}\mathcal{S}$ -TEX