RESTRICTING HECKE-SIEGEL OPERATORS
TO JACOBI MODULAR FORMS

LyNnNE H. WALLING

ABSTRACT. We compute the action of Hecke operators TJJ (p?) on Jacobi forms of
“Siegel degree” m and m X m index M, provided 1 < 5 < n —m. We find they
are restrictions of Hecke operators on Siegel modular forms, and we compute their
action on Fourier coefficients. Then we restrict the Hecke-Siegel operators T'(p),
Tj(p?) (n —m < j < n) to Jacobi forms of Siegel degree n, compute their action on
Fourier coefficients and on indices, and produce lifts from Jacobi forms of index M to
Jacobi forms of index M’ where detM|detM’. Finally, we present an explicit choice
of matrices for the action of the Hecke operators on Siegel modular forms, and for
their restrictions to Jacobi modular forms.

§1. INTRODUCTION AND STATEMENT OF RESULTS

In the 1930’s [17], [18], [19] Siegel introduced generalized theta series to study
representations of quadratic forms by a given (positive definite) quadratic form Q.
The variable of such a theta series is a symmetric n x n complex matrix 7 with
37 > 0, meaning that as a quadratic form, J7 is positive definite (this is to ensure
the theta series is analytic). Like the classical theta series, the Siegel theta series
transforms under a congruence subgroup of the symplectic group Sp,, (Z) (note that
Sp1(Z) = SLy(Z)). From this, we have that the Siegel theta series attached to @
has a Fourier series supported on symmetric matrices T', and the Fourier coefficient
¢(T) tells us how many times @ represents 7.

This began the study of functions now called Siegel modular forms, which are
analytic function in the n x n variable 7 (as above) that behave like the Siegel
theta series under the action on 7 by a congruence subgroup of the symplectic
group. Such a modular form F' has a Fourier series; as well, by decomposing the
variable 7 into a 2 x 2 matrix of blocks, we can write F' as a “Fourier-Jacobi” series
where the coefficients are functions of two (matrix) variables. The Fourier-Jacobi
coefficients inherit from F' certain transformation properties under a subgroup of
the congruence subgroup associated to F'.

Jacobi modular forms are functions defined to behave like Fourier-Jacobi co-
efficients of Siegel modular forms under the “Jacobi subgroup” of the symplectic
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group. In the seminal work [5], the authors introduce and study Jacobi modular
forms that map H x C into C; similar to elliptic modular forms, these Jacobi forms
have a weight, as well as another integer parameter called an index. One of the
striking applications of these Jacobi forms is the proof of the Saito-Kurokawa con-
jecture due to Maass, Andrianov, and Zagier, explicitly identifying certain Siegel
modular forms of degree 2 (meaning 7 is 2 x 2) as lifts of integral weight elliptic
modular forms (see [13], [14], [15], [2], [20], or chapter II of [5]). (In an interesting
intermediate step, Jacobi forms are identified with a subspace of the space of half-
integral weight modular forms, which was studied further by Kohnen [10], [11].)
In chapter I of [5], two types of “Hecke operators” are introduced; one of these
changes the index, and it is this that is used to construct the lift of a Jacobi form
to a degree 2 Siegel form.

In [4], Duke and Imamoglu gave a new proof of the Saito-Kurokawa correspon-
dence using L-series and a converse theorem due to Imai [9]; they conjectured
that this correspondence extends (under mild conditions), relating elliptic modular
forms and Siegel modular forms of degree 2n. Then in [8], Ikeda used representa-
tion theory and L-series to prove the Duke-Imamoglu conjecture (see also [12], in
which Kohnen reformulates Ikeda’s formula). Also, Ikeda shows the lift takes Hecke
eigenforms to Hecke eigenforms.

In this paper we return to the study of Jacobi modular forms. In particular,
we consider Hecke operators on Jacobi forms with variables 7, Z where 7 € C™",
Z € C™" with 7 symmetric, &7 > 0; such a Jacobi form has an m x m index M.
We define Hecke maps T/ (p) and T (p*) on Jacobi forms, and analyze their action
on Fourier coefficients. Here we allow 1 < 7 < n where n = r + m; these Hecke
maps are the restrictions of Hecke operators on Siegel modular forms, in the sense
that the action of one of these maps is given by a subset of the matrices giving the
action of the corresponding Hecke-Siegel operator (Propositions 3.1, 4.1, and 4.2).
We find that when j < r then TJJ (p?) is truly an operator on the space of Jacobi
modular forms with index M, but for j > r, TJJ (p?) and T”(p) map Jacobi forms
of index M to Jacobi forms of index M’ where M’ # M. This allows us to build
lifts of Jacobi forms, raising a question this author is currently unable to answer:
Can this lift be used to build a (partial) Fourier series of a Siegel modular form
from the Fourier series of a Jacobi modular form (as done in [5] when r = m = 1)?

We now summarize our results.

As with Siegel modular forms, we can identify the Fourier coefficients of a Jacobi
form f with lattices equipped with quadratic forms: Fixing the rank m lattice A
equipped with the quadratic form given by M, the index of f, we can realize f as
a Fourier series supported on lattices A @ A; we use ca(A) to denote the Fourier
coefficient of f corresponding to A @ A. Then (Theorem 3.2) we find that for
j <r=mn—m, the Ath coefficient of f|T/(p?) is

3 XA OD) pFLalh) ol (A, Q) ea(Q);
Q

here ) varies subject to pA ® A C Qd A C %(A ® A), ejn, E; o are given in

terms of n, 7, and the multiplicities of the invariant factors of Q ® A in A ® A, and
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o A(A, Q) is a sum of incomplete character sums that partially test for divisibility
by p the codimension n — j subspaces of (AGA)N(Q D A)/p(A+ Q2+ A) that are
independent of A (so Q only appears in our sum if the invariant factors of Q @& A
in A ® A include at least n — j factors 1). As in [7], we complete these character
sums by replacing ij] (p?) by TJJ (p?), a simple linear combination of the T}/ (p?),
0 < ¢ < j; then (Corollary 3.3) the Ath coefficient of f|fjf](p2) is

D x(prath) pFialh®) o) \(A,Q) ea()
0

where a; A (A, 2) is the number of totally isotropic codimension n — j subspaces of
(A A)N(Q®A)/p(A+Q+ A) that are independent of A.
When j > n —m, T/ (p*) annihilates f unless

1 1
> 1 M > 1e
Imfﬁ Im—e

is even integral, where £ = j — n + m; similarly, 77 (p) annihilates f unless %M is
even integral (Theorem 4.3). Then, quite similar to [5], we can define lifts of f by

first conjugating M by (pIt ) (t > ¢) and then applying ij] (p?) (j > n—m),

Im—t
or by multiplying M by p and then applying T'(p). In Theorem 4.3 we describe the
Fourier coefficients of f|T(p*) (n —m < j < n) and of f|T”(p); in Corollary 4.4
we discuss lifts.

In [7] we analysed the action of Hecke operators on Siegel modular forms by first
explicitly describing a set of coset representatives giving the action of the Hecke
operators; these matrices are completely determined except for a choice of matrix
G € GL,(Z). The situation here is the same; thus in Propositions 5.1 and 5.2,
we describe how to choose GG to get a complete, non-redundant set of matrices for
each Hecke operator on Siegel modular forms, and in Propositions 5.3 and 5.4 we
describe how to choose G to give us matrices for the corresponding maps on Jacobi
modular forms.

§2. DEFINITIONS AND NOTATION

Let us begin with a brief discussion of Siegel modular forms and the Jacobi
subgroup. Then we define Jacobi forms, Hecke-Siegel operators, and their analogues
in the Jacobi case.

The degree n symplectic group is

Spn(Z)

:{(é g>€GL2n(Z): AtBﬂctDSymmetriC,AtD—BtC:I}.

This group acts on the Siegel upper half-space
Hpy ={z=X+1iY: X,Y € R™" symmetric, Y >0 }
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by fractional linear transformation:

(Proposition 1.2.1 of [1] shows C7 + D is invertible; also, Y > 0 means that as a
quadratic form, Y is positive definite.)

Siegel modular forms (defined below) are analytic functions on Hj, that trans-
form under Sp,(Z), or under some subgroup of Sp,(Z) that contains a principle
congruence subgroup

D(N) = T (N) = {7 € Spa(Z) : 7= Iy (mod N) }
(N € Z). In this paper we focus on the subgroups

To(N) =T{(N) = {(é g) € Spn(Z): C =0 (mod N) }

Definition. A scalar-valued Siegel modular form of (integral) weight k, degree
n(> 1), level N, and character x is an analytic function F' : H,) — C so that for

A B n
all 4 = (C D) e TV (),
F(yo1)=x(detD) det(Cz + D)* F(z).
(Here y is a Dirichlet character modulo N.) We let Mk(Fén)(N ), X) denote the

complex vector space of all weight k, degree n Siegel modular forms with level N
and character x. We sometimes abuse the notation and write x(v) for x(detD)

where v = (é, g) € Spn(Z).

Note. When n = 1, we need the additional condition that

b
lim (cr 4+ d)™*F <a7’—|— ) < 00

T—100 ct+d

for all <Z Z) € SLy(Z); when n > 1 this condition is automatic by the Koecher

Principle (see Theorems 2.3.1, 2.3.4 of [1]).
To avoid the distraction of the automorphy factor det(Cr + D)*, we introduce
an action of Sp,(Z) on F' : H(,) — C, and more generally, an action of

GSpt(Q) = { (é g) € GLy,(Q): A'B, C 'D symmetric,

A'D—B'C=rl,, TE@+}
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by setting

Fly(z) = F|,~v(z) = (dety)*/?det(CT + D) "F(yo 1)

C D
linear transformation).
Since a Siegel form F is analytic and F(r + B) = F(r) for any symmetric
B € Z™", F has a Fourier series:

F(r) =Y oT)e{TT}

T

for v = (A B) € GSpt(Q) (note that GSp)(Q) acts on Hy,) by fractional

where e{x} = exp(miTr(x)) and T runs over all symmeric, n X n even integral
matrices with T > 0. (7" even integral means 7' has integer entries with even
diagonal entries, and T' > 0 means that the quadratic form defined by T is positive
semi-definite. Note that some authors include a factor of 2 in the definition of
e{x}, and then the matrices T' are half-integral with integral diagonal entries.)
T

Decomposing 7 as ( 7

ty
, ), T € Hip—m), T e H,y, Z € C™"7™, we can also
T

write

F(r) =Y fu(r Z)e{Mr'}

where M runs over m X m, symmetric, even integral matrices, and

fv(m, Z) :];%CM(N,R)G{NT—FWRZ}, cu (N, R) :C(]f\g ;\};)

The functions fj; are called Fourier-Jacobi coefficients; since F' has level N and
character y, the fj; inherit from F' the following transformations: for

A B
- I, O,
Y1 = C D
Om Im

€ Spn(Z) where C =0 (N)

(ie. (é g) e T""™)(N)), we have

fu((Ar +B)(Cr+ D) ', Z(Cr+ D))
= x(detD) det(Ct 4+ D)* e{MZ(CT + D)"'C 'Z} fu(r,2),

and for
L ty
U I, Vv w
72 = In—m _tU € Spn(Z)

I,



6 LYNNE H. WALLING

we have

fu(r,Ur+Z+V)=e{-MUT 'U+2U '2)} f(1,2).
Let Sp; ,.(Z) be the subgroup of Sp, (Z) generated by all such matrices v;,v2 with

A B vV’
v I,, v W

Spi,m(z) = C D U € Spn(Z) ¢,
I,

and for fy; a Fourier-Jacobi coefficient of a level N(> 1) Siegel form F, fy; trans-
forms under T'{(N') = To(N) N Sp;) ., (Z). We call Sp;) . (Z) the Jacobi subgroup of
Spn(Z) for indices of size m x m. (Note that many authors instead use a semi-direct
product of matrices of Sp,_,(Z) and triples (U, V, W) from Z"™"~™ x Z™"~" x
Zgyt, or replacing W by detW, triples from Z™ "™ x Z™"=™ x Z,.)

As a formal mechanism to ease our notation, we identify a function f : H,_,) X
Cmn=m — C and a symmetric m x m matrix M with the function

Fu(z) = f(r, Z)e{M7'}

tz

T .
where 7 = ( o ); given 7 € H,,_,,, Z € C™" ™ we can choose 7’ so that

Z
7 € Hyy), or simply treat 7" as a formal variable. Then we use our definition of the
slash operator | on Siegel forms to induce on f an action of matrices v € Sp;, ,,,(Z),
or more generally, of matrices

A B VvV’
u ¢ v W
tG—l

(A,B,C,D (n—m) x (n —m)) by setting
f|k,M’y(T7 Z)e{M/T} = FM|k7(I)

where M’ = 'GMG.

Definition. Suppose M is a symmetric, even integral m x m matrix, and f :
Hy—m)y x C™"™™ — C is analytic. Then f is a Jacobi modular form of Siegel
degree n, weight k, level NV, character x, and index M if

fh/ = f|k,M7 = X(detD)f

A B VvV
v r v w
C D U

1
notation and write x(v) for x(detD) for v as above. If n — m = 1, we need the

for all v = e TJ(N) = To(N) N Sp; ,.(Z). Again, we abuse
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additional condition that for every v = (CCL Z) € SLy(Z), lim, ;o fI7(7,Z) < 00
a b
where 7 = T d On—1 . (When n—m > 1, the Koecher Principle tells us
0n—1 I,

this condition is automatically satisfied; see [21]). We let My, 2 (TJ (N), x) denote
the complex vector space of Jacobi modular forms with Siegel degree n, weight
k, level N, character x, and index M. (By [21], this space is known to be finite
dimensional.)

As discussed above, a degree n Siegel modular form F' has a Fourier series ex-
pansion supported on symmetric, even integral n x n matrices T' with 7" > 0. We
consider each T to be a quadratic form on a rank n Z-lattice A relative to some
basis for A. As T varies, the pair (A,T) varies over all isometry classes of rank n
lattices with even integral positive semi-definite quadratic forms. Also, the isome-
try class of (A, T) is that of (A, T") if and only if 7" = T'[G] for some G € GL,(7Z)
(here T|G] = 'GTQ). Since F(z[G]) = x(detG) (detG)* F(r) for all G € GL,(Z),
it follows that c(T[G]) = x(detG) (detG)* ¢(T) for all G € GL,(Z), where ¢(T)
denotes the T'th Fourier coefficient of F'. Hence, equipping the lattices A with an
orientation when x(—1) (—1)* # 1, we write ¢(A) = ¢(T) where T is any matrix
representing the quadratic form on A (denoted A ~ T'), and then we have

F(r) =) c(A)e*{Ar} where e*{A7} =) " e{T[G]r};

clsA G

here clsA varies over all isometry classes of positive semi-definite Z-lattices of rank
n, G varies over O(T)\GL,(Z) if A is not oriented, and over O (T)\SL,(Z) if A
is oriented, O(T) the orthogonal group of T, O (T) = O(T) N SL,(Z). We do
something similar for Jacobi forms: First let

GLY,(Z) = {(%} I?ﬂ) E GLn(Z)},

m(Z) = GL; ,.(Z) N SLy(Z). Then with A a rank m Z-lattice such that

L n
M,

A

R s«

Fa(r) = f(r, Z)e{M7'} = Y ea(A)ej {(A® A)r)
A

where A varies so that A @ A varies over all rank n, even integral, positive semi-
definite isometry classes, oriented when x(—1) (—1)% # 1,

ey {(A@A)T} =) e{T[G]r}

G

with A @A ~T = (i ]\*4), G varying over (O(T)NGL] ,, (Z))\GL; ,,(Z) when

k is even, and over (O(T) N SLy . (Z))\SL; . (Z) when k is odd.
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Now we define Hecke operators T'(p), Tj(p?) on Siegel forms and their analogues
T7(p), T} (p*) on Jacobi forms (1 < j < n). As we will see, the T} (p?) are indeed
operators when j < n —m (meaning they are linear maps taking My, pr (T (N), x)
into itself), but T (p) and TJJ(pQ), j > m — n, change the index. First, set I' =

[o(N) = F(()n)(N). Take 1 < j < n, and set § = (pIn [n)’ 0j = (plj In—j) ’

5. = <5j 5;1); then set IV = éf‘é_l, I‘; _ éjFéj_l. For F € My (T, x), we set

FIT(p) = p"t==D/2 3" 5(7)Pls 'y
Y

where ~y varies over representatives for (I N T')\I'; we set
FIT;(p*) = > _X(F|s; 'y
B!

where ~ varies over representatives for (I; N)\I'. For f € My m(I7,x), I'V =

LJ(N) =TLo(N)NSp; . (Z), we define

fIT(p) = p =02 N "x(y) Flo My
Y

where + varies over representatives for (I' N T'/)\T'/, and

AT (%) = x(n)flo; "y

where ~y varies over representatives for (I; N T/)\T'"7.

Proposition 2.1. Say f € My (TJ(N),x). Then for 1 < j < n—m and p
prime, f|T] (p*) € My (TJ(N),x). Forn—m < j<n, set{=j—n+m and

1 1
=1y =1y
[\/Z = p /\4 P .
J ( Im—é) ( Im—€> ’

if M; is even integral then f|TJJ(p2) € My, T(N), x). If %M is even integral
then fIT7(p) € My nyp(T3 (N), X)-

Remark. In Theorem 4.3 we will prove that if j > n—m and Mj is not even integral,
thenf|TJ‘-] (p?) = 0, and that if %M is not even integral then f|T”(p) = 0.

Proof. Since det(Ct + D)% and v o 7 are rational functions in the entries of 7,
and f is analytic, f|T7 (p®) and f|T”(p) are analytic. Just as with elliptic modular
forms, these maps preserve the analyticity at the cusps when n —m = 1.

We now show f |TJJ (p?) and f|T”(p) transform as claimed.
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Set F(r) = f(7, Z)e{M7'}; suppose first that j < n —m. For v/ € I, NI and
v = éj’y’éj_l, we have

Flo; ' = Fg; = x(n)FIg; " = x()FIg;
so f|T] (p?) is well-defined. Also, for {7} a set of representatives for (I'; N T/)\T'/

and 7' € I'Y, we know {77/} is also a set of coset representatives for (I; N\I'/)\I'/,
and so

T ") (7, Z)e{M 7"} = FIT] (p°) 14 (1)
=> X(v) Fl8; 41 (1)

xX(Y)Y x(v) Flé; ' (7)
=x(y") FIT} (p°)(z)
x(Y') fIT5 (0°) (7, Z)e{ M 7'}

Consequently, when 7 < n —m, f |T]f] (p?) transforms under I'/ with character Y,
weight k£ and index M.
Now say j > n —m; as with j <n —m, f|TJJ(p2) is well-defined. However,

FIT] (0*)(z) = fIT} (0°)(7, Z)e{M'T"}.

Consequently, when j > n —m, f|T J-J (p?) transforms under I'’ with weight k,
character y, and index M’.
Similarly, f|T7(p) is well-defined, and

FITY (p)(2) = FIT7 () (7, Z)e {}jM} ;

so f|T”7(p) transforms under I'/ with weight k, character y, and index %M . O

§3. HECKE-JACOBI OPERATORS

We first find a set of matrices giving the action of T/ (p?) on f € My a (L5 (N), x)
when M is m x m, and j < n —m (Proposition 3.1); these matrices are uniquely
determined up to certain choices of G € G, ,,(Z) (defined in the preceding section).
Then we analyse the action of T (p?) on the Fourier coefficients of f (Theorem
3.2). The formulas in Theorem 3.2 involve incomplete character sums, so as in [7],
we complete these by replacing TJJ (p?) by a weighted average of T/ (p?), £ < j; in
Corollary 3.3 we describe the action on Fourier coefficients of the modified operators.



10 LYNNE H. WALLING

Proposition 3.1. Let f € My n(T{(N), x) where M is mxm, T (N) C Sp,(Z),
and let p be a prime; fix j so that 1 < j < n—m. Let A, A be fized reference lattices

of ranks n — m, m respectively.
(a) If pt N then

e = 3 wdenjae) s (P ) (97 )

(2,A1,Y)

where 2, A1 vary subject to

PAGACQBAC L(AaA),

3

and Ay is a codimension n — j subspace of (A ® A)N (LD A)/p(A+ Q+ A) that
is independent of A. Here

I

is an n X n matriz, and G = G(Q, A1) € GL;, , . (Z) so that

Org
QoA=(A®A)GD 5, Ay =(ADA)G I, :
0
also,
Yo 'Y 0 Y3
| pYa Y1

Y= 0

Y3

is integral with Yy symmetric, ro X ro, varying modulo p?, Y1 symmetric, ri X ri
varying modulo p with p 1 detYy, Yo r1 X 1o varying modulo p, Y3 (n—j) X rg varying
modulo p.

(b) If p|N then

TS (%)

> X(detG) f!éj‘l(I 1;) <G1 tG)

(Q,Y)

where Q wvaries so that for some G = G(Q) € GL; . (Z), Q& A = (A ® A)G0;,

_ (Yo
and Y = <Y3

(n —j) X j, varying modulo p.

t
Y3> is integral with Yo symmetric, j X j, varying modulo p?, Y3
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Proof. We will write rank, A to denote the rank of the matrix A over Z/pZ; simi-
larly, we will write span,A to denote the Z/pZ-span of the columns of the matrix
A. The proof parallels that of Proposition 2.1 of [7].
(a) First suppose p { N. Choose M € I'/ and let M; denote the top j rows of
M. So
M; = (A, A'|B,B)

where A, B are j x (n—m), A’ is a j x m matrix of zeros, B’ is j x m. Now we choose
G{) € GLy—n(Z) so that AG = (Ap,pA1) where Ag is j X o with rank, Ay = 7o,

/
and A, is integral. Set Gy = (GO 7 ); then

Go

A,A’B,B’( _
(AAIB.BY (7

) = (A07pA17A/‘B07B17B/)

where By is j X 1¢. Since (A, B) are the top j rows of a matrix in Sp,,_,,(Z), so are
(Ao, pA1|Bo, By) and thus by Lemma 7.2 of [7], By C span, Ag and rank,(Ag, B1) =
j. Hence B’ C span,, (Ao, By), so we choose an m X (n —m — 1) (integral) matrix
Wy so that B” = BiWy + B’ C span,, 4o. Also, choose G} € GLy—pm—ry(Z) so that
B1G' = (B1, B3) with By of size j x (j —ro), rank, (Ao, By) = j, and B3 C span, Ag.
Set
I, I,
tart = G, Wy G} ;
I, I,

then

G1

(AOvalvAl‘BO;BLB/) ( ) = (A07pA,17pA3aA/’BO7BiaB3aBH)

where A}, By are j x (j — o), A3, Bg are j x (n — j —m), and Bz, B" C span,, 4.
Now choose a permutation matrix E so that

IT‘U /
o) (" ;) = (Ao, 4t )

with Af of size jxry, Ay of size j X7y, and rank,(Ag, A}) = rank,(Ag, AY) = ro+r1.
Now choose X, X7 so that

AgXo + A7 X, = Ay (mod p),

and set

G

I
g

&
I
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Then with G = GyG1G2G3, we have (G tG_1> €T/ and so M (G tG_l) €

I'’ with top j rows
(AO,pAlll,p2A27pA37A/|B07B1/7B27BS,B//)

where BY is j X 1, By is j X (j —rg — r1).
Next, choose 79 x ¢ (integral) Yy so that AgYy — By = 0 (mod p), and (n—j) x j
(integral) Y3 so that Ay'Y3 — (Bs, B”) =0 (mod p) (note that Y{, Y5 are uniquely

determined modulo p). Since M e I'/, we know Ag ¢ By is symmetric,

tG—l
so we can choose Yj to be symmetric. Then

Yo 0 'Y

M G 1 L =W €T’ where W= | 0 ;
G I,
Y3

with pBj, = By — AgY] and pB"" = B” — Ay 'Y3, we have (B}, BY) C span,, (Ao, A7)
by Lemma 7.2 of [7]. Thus we can choose a symmetric (integral) (ro+71) X (1o +71)

1 t
matrix W' = (? }}//2> so that
2 1
(Ao, AT)W' — (By, BY) = 0 (mod p);

note that the matrices Yy, Y7, Y2 are uniquely determined modulo p. Set Yy =
Yy + pYy'; then with

Yo Yo 0 Y3 I,
_ | Y2 1 _ plr
L P= P, ’
Y3 Infj

we have

-1t
(Ao,pAlll,p2A2,pA3, A/’Bﬂv B:/llv B2> B37 B//) (D DY>

= (A07 Allla AQapA37 Allp2B(l)/7p2BiH;p2B2apBil’,apB/”)'

~1
Although we will see that with X = (D D}il >, X (G tG) gives the
action of the coset of M, it is clear that X ¢ I'/ unless D = I. However, (D', NY”)
is a symmetric coprime pair, where

I, Yo Yy 0
D' = pl, ,Y'=|[pYa V7 0
p’1 o 0 0 I,
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(A pair (R, S) of j x j matrices is a symmetric coprime pair if R*S is symmetric, and
G(R, S) integral implies G is integral; by Lemma 2.1.17 of [1], a pair (R, S) of j X j
matrices is symmetric and coprime exactly when (U, V') is the bottom row of blocks
of an element of Sp;(Z), or equivalently, (S, R) is the top row of blocks of an element

/ /
of Sp,(Z).) Thus there exist matrices U’, V' so that (]\?U’ }‘;,) € Sp;(Z), and

Wlth /7t / / /It
- (Y 'Y, (U (VU Y,
P ) (T ) (D)

D Y
NU V
and hence X’ represents the coset of M. One easily verifies that éj_lX F=X" Qj_lX
where X” € TV and x(X”) = 1. Thus

we have X' = ( ) € IT'7. Also, by Lemma 7.1 of [7], M(X')"! € I NI/,

X(X') fl8; X" =x(detV) f|07'X = x(detD) f|6;"X.

This shows that for j <n —m, pf N,

e = Y X(detD)f\éj‘l(D Dﬂ)(G_l tG)

(G,D,Y)

where (G, D,Y’) varies over the triples constructed above. These triples constitute
a subset of the triples constructed in [7] for determining the action of T}(p?) on
Siegel modular forms; in that case we showed that the triples (G, D,Y) are in one-
to-one correspondence with triples (2, A1,Y") where Q varies over all lattices such
that pA C Q C %A, A is a fixed rank n reference lattice, and A; varies over all
codimension n — j subspaces of A N Q/p(A + Q). While the choice of G is not
uniquely determined by a coset, the pair (2, A1) is, and G = G(2, A1) can be any
element of GL,(Z) so that

Org
Q0 =AGD '5;, Ay = AG I,

0

In the Jacobi case, we replace A by A & A where A has rank n — m, A rank m;
then the role of A3 is played by A3 @ A, and the triples (G, D,Y") constructed above
correspond to triples (€2, A1,Y) where Q varies so that pA®@A C QdA C %(A@A),

and Ay varies over all codimension n — j subspaces of

A A)N Qe A)/p(A+ Q2+ A)
that are independent of A. Here G € GL;, ,,(Z) so that

()
QoA =(A®A)GD 6, Ay = (ADA)G I,

1
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The proposition now follows for p{ N.

(b) Now consider the case that p|N; again take M € I'’ and let M; denote its top
j rows. As before, M; = (A, A'|B, B') where A, B are j xn—m, and A" isa j xm
matrix of zeros. Since M € I'Y = T'J(NN), the upper left (n —m) x (n —m) block of
M must have Z/pZ-rank n — m, and so rank,A is maximal, meaning rank,A = j.
Thus we can find Gy € GL,,_,(Z) so that AGy = (Ag, pA3) where Ag is j x j (and

As is integral). Then with G = <G0 ).

! G / /
(A7A |B7B/) ( tG—1> = (AOva?nA |BO;B37B )

where By is j X j, As, Bg are j x (n —m — j), and since rank, Ay = j, By, Bs, B’ C
span,, Ag. Choose symmetric j x j Y§ and (n — j) x j Y3 so that AgYy — By =
0 (mod p), Ag *Y3 — (B3, B’) = 0 (mod p). (So Yy,Y3 are uniquely determined
modulo p.) Then with pB) = —AyY] + By, choose Y§' so that AyYy — B} =
0 (mod p) (so Yy is uniquely determined modulo p); set Yy = Yy + pYy, YV =

Yo 'Ys
(Y3 ) . Then

(A07pA37A/|BﬂaB3aB/) (I _I}/> = (A()apA?)?Al|p2B(l)lapBépBH)

1Y
I
proposition now follows for the case p|N. O

—1
where B{ is j x j. Thus ) (G . G) represents the coset of M; the

We now apply these coset representatives to a Jacobi form to determine the
action of the Hecke-Jacobi operators on Fourier coefficients.

Theorem 3.2. Let f € My (T{(N),x) where M is m x m, T§(N) C Sp,(Z),
and let p be prime. Let ca(A) denote the Ath coefficient of f. Choose1 < j < n—m,
and p prime. The Ath coefficient of f|T} (p?) is

S x(pTHreTr) pEia ) af (A, Q) ea(9);
Q

here  wvaries so that for some A" with ' ® A = A @® A, we have pA' C Q C %A’.
Also, ro is the multiplicity of p in {A ® A : Q& A}, ro the multiplicity of %, and
E;-’A(A, Q) = k(ro —ro) +ro(n —ro+1). Also,

o a(h,2) = S a'(A)
Ay

where Ay varies over all codimension n—j subspaces of (A®A)N(QDA)/p(A+Q+A)
that are independent of A, and with Ty an ri X ri symmetric matrix giving the
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quadratic form on Ay, o/ (A1) = ) y. e{T1Y1/p} where Y1 varies over all (integral)
r1 X 11 symmetric matrices modulo p with p{ detY;.

Remark. When p|N this simplifies to give us that the Ath coefficient of f|T7 (p)
is
pj(n—|—l—lc) Z CA(Q)
Q

where  varies subject to pA A C QO ACAGA with [AGDA: QD A] =p/.

t
Proof. Set F(r) = f(1,Z)e{M7'} where 7 = (2 TZ’

A @ Ath coefficient of F|T} (p?) is built out of Q& Ath coefficients of F where each
Q & A is even integral and

). We will see that the

Qe A=(A®A)GD™; with D= Py,
In_;
and G € GL; ,,(Z) (or G € SL; ,(Z) if k is odd); the sum on Y for this choice of

G and D gives us a character sum to test whether A @ A is even integral. (When
p|N, r1 =ry=0.)

Write F(7) = Y pc(T)e{T1} where T = <
¢(N,R) = ¢(T), we can write

N 'R

n M) € Z™" (symmetric). With

f(r.Z)=> ¢(N,R)e{Nt+2'RZ}.
N,R

First consider p{ N. Then

F(z)\TJJ(pQ): Z X(detD)det(5j_1D)kc(T)e{T[(Sj_lDG_l]z}e{Téj_IYD(SJ._l}

T
(2,07,Y)

I,

0

where €2, A1,Y vary as in Proposition 3.1, D =

G(Q,A}) € GL] ,,(Z) so that
Q@ A= (A A)GD 5,

and
Org

A= (A& A)G I,

1
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Identify T' as the matrix for an even integral quadratic form on Q@ A, relative to
some ordered bases (y1,... ,Yn—m), (Yn—m+1s---,Yn) for Q; A (resp.). Usmg this
basis for €2, write Q = 69 0 @ Qs ® Q3 where rank); =r; and rs =n—m —J
(so Qo = Zy1 © - -+ & Zyr,, etc.). Then T[6; ' DG~ is the matrix for the quadratic

formon A A = (Q &) A) 5 1DG1 ( Qo ® Q1 D pQy ® N3 ® A)GL. Note that
since G € GLn(Z), T); 1DG 1'is even integral if and only if T[(sj_lD] is. Also,
e{T(Sj_lYDéj_l} = e{T[ 'D]D='Y}. Recall that Y is built from the matrices
Yo, Y1, Y5, Y3, so we can spht the sum on Y into a product of sums on the Y;. The

sum on Yj is a complete character sum modulo p?, and this sum tests whether the
quadratic form on %QO is integral, yielding a contribution of p™("o+1) or 0. The

sums on Yo, Y3 test whether the bilinear form between %QO and Q1 ® Q3 @ A is

integral, yielding a contribution of pro(r1+n=i) = pro(n=ro=r2) or (0. The sum on Y;
is an incomplete character sum since p { detY7; this sum yields

)= Y e{%TlYl}

Y1
ptdetYy

where €7 ~ T7. Thus we can restrict our attention to those T', D, G where T' =
T[éj_lDG_l] is integral.

Making a change of variables, we now identify 7" as the matrix for a quadratic
form on A® A, and T[GD~'4;] as the matrix for a quadratic form on Q& A. Thus

F()IT] (p%) = > x(detD)p"sa™D o/ (Ay)ep (TIGD ™ 5])e{TT}
T,G,D

where A@ A ~T, Q®A = (A®A)GD 15, = pAo® A1 & %AQ@Ag@A, and
B AN Q) = k(=j+r1+2r2) +ro(ro+7r1+n—j+1) =k(ra—ro) +ro(n—r2+1)
(since j = ro+r1+72). As discussed in the proof of Proposition 3.1, for each choice
of  we have various GG, one for each choice of A; (which is the same as ; in the
previous paragraph); A; varies so that in the quotient (A@A)N(QSA)/p(A+Q+A),
A, varies over all codimension n — j subspaces independent of A. Thus with

o A(A, Q) = Za (A1),

we have
O (%) = 3 ¢ (Te{Tr} = Z ((N R))e{NT—l—QtRZ}e{MT’}

where /
(T) =) pFrabDaf \ (A, Q)er(T[GD™55]),
Q
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Q) varying as described in Proposition 3.1. Since we have identified A & A with T
and Q& A with T[GD~14;], this yields the result when p{ N.
Now consider p|N. Then

F(z)|T{ (p* Z detd; * cp(T) {T[6; G} e{T6; Y5 '}

(Q Y)

where Y, G = G(Q2) vary as in Proposition 3.1. So the analysis is similar to the case
p1 N, but simpler; adapting the argument for p{ N easily yields the result. O

In the above analysis we encounter incomplete character sums when p{ N. We
can complete these by replacing the operator ij] (p?) by

T/ (p?) =p "D > x (@ I8 —m — £, — 0T (p*)
0<¢<j

where [(s,r) = H;.:Ol gi:—:j, which is the number of r-dimensional subspaces of
an s-dimensional space over Z/pZ. Thus, with V|V’ vector spaces over Z/pZ,
dimV =n—m —r, dimV’ = m, and U a dimension ¢ — r subspace of V & V'’
that is independent of V', the number of ways to extend U to a dimension j — r
subspace of V @ V' that is independent of V” is p™U=93(n —m — £, — £). Then

almost exactly as shown in Theorem 4.1 of [7] (see also Proposition 5.1 [3]), we get

Corollary 3.3. Let f € My (T (N), x), and let ca(A) denote the Ath coefficient
of f.NLet p be a prime so that pt N. Then for 1 < j < n —m, the Ath coefficient
of FITY (p?) is

S X pFra ) o A (A, Q) ea();

Q

here Q0 wvaries subject to pA & A C QH A C ]—1)(A @ A), ro is the multiplicity of
pin {ND A : QD A}, ro the multiplicity of %, ro=7—10—r2, Eja(AQ) =
k(ro—ro+j)+ro(n—ra+1)+ri(r1+1)/2—j(n+1), and a;(A, Q) is the number
of totally isotropic, codimension n—j subspaces A1 of (AGA)N(NBA)/p(A+Q+A)
that are independent of A.

§4. INDEX-CHANGING HECKE MAPS

In this section we consider T]J (p?) where n —m < j < n, as well as T7(p).
Proposition 2.1 shows that the operators considered in this section change the
index of the Jacobi form, and so our algorithm for finding coset representatives
giving the action of these operators is similar, but not identical to the algorithm of
Proposition 3.1.
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Proposition 4.1. Let f € Mgy (T (N), x) where M is mxm, T (N) C Sp,(Z),
and let p be prime; fir j so thatn —m < j <n. Let A, A be fixed reference lattices
1
. . =1
of ranks n — m,m respectively. Fix a basis for A, and set A" = A (P ¢ 7 )
n—j

where £ = j —n + m.
(a) If pt N then

FIT (p?) = Z x(detD/ detG) f!é]-‘l(D D}il)(G_l tG)
(2,A1,Y)

where ) varies subject to

PAGACOQDAC L(AD A,
p

so that for some A with A" ® A" = A® A/, we have pA’ C Q C %A’, and Ay varies
over all codimension n — j subspaces of (A @A) N (NS A)/p(A+Q+ A') that are
independent of N Here

I,
plr
D=D(Q) = E
( ) p2[r2
Ip,
and G = G(Q,Ay) € GL; . (Z) so that
0y
QoA=AaA)GD S, Ay = (Ao A)G I, ;
0
also,
Yo Y5 Wi Ys3
p'Y, Yi p "Wo
Y = 0
Wy W Wo W3
Y3 tWs

is integral with Yy symmetric, ro X ro, varying modulo p?, Wy symmetric, £ x ¢,
varying modulo p*, W1 1o x £, varying modulo p?, Y1 symmetric, 1 X r1, varying
modulo p so that p t detYy, Yo ro X 11, varying modulo p, Y3 ro X (n — j), varying
modulo p, W3 £ x (n — j), varying modulo p.

(b) If p|N then

ot = 3wy 15t (1) (97 )

(QY)
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where Q varies so that for some G = G(Q) € GL; . (Z), Qd A = (A & A')Gd;,

_ (Yo
and Y = <Y3

(n —j) X j, varying modulo p.

Proof. Take M € T/ =TJ(N) and let M; denote the top j rows of M. So

t
YS) is integral with Yo symmetric, j x j, varying modulo p?, Y3

M; = (A, A, A'|B, B}, B)

where A, B are j X (n—m), Ay, By are j x , { = j—n+m, A’ B" are j x (n — j),
Ay = ?e , and A’ is a matrix of zeros. Choose Gy € GLJ,(Z) so that (A, Ay)Gfy =
(Ao, pAi, Aj) where Ay is j x (19 — £) and rank, (Ao, Ay) = ro. So (Ao, 4p) plays
the role played by Ay in Proposition 3.1. Then essentially following the proof

of Proposition 3.1 (with the added inconvenience that Ay, A are typically not
adjacent) yields the result. [J

Proposition 4.2. Let f € Mgy (T (N), x) where M is mxm, T{(N) C Sp,(Z),
and let p be prime. Let A, A be fixed reference lattices of ranks n—m, m respectively.
(a) If pt N then

) =2 Y sgaenjaeciia (P )L ) (97 )

(Q,Y)

where ) varies subject to

ABACQBAC (AmA).
p
Here
I,
D = D(Q) = pIn—r—m

Iy,
and G = G(Q) € GL;) ,,(Z) so that Q® A = (A A)GD™; also,

Wo 0 "Wy
Y= 0 0 0
Wy 0 Wy

18 n X n and integral with Wy symmetric, r X r, varying modulo p, Wy symmetric,
m X m, varying modulo p, and Wo m X r, varying modulo p.

(b) If p|N then

1
) =y e e (U7 ) (T )



20 LYNNE H. WALLING

where Y 1s symmetric, n X n, varying modulo p.
Proof. Take v € T/ = T'J(IN). Then the top n rows of v are (A, A’|B, B") where

A,B are n X (n—m), A’, B’ are n x m, and A" = <IO > Note that if p| N then
we necessarily have rank, (A4, A") = n.

Choose G € GL; ,,(Z) so that (A, A")G = (Ao, pA1, A") with Ag of size n x r,
rank, (Ao, A’) = r +m. Write

G
418,54 1) = Copids, 180, B, B)

where By is n x r. By Lemma 7.2 of [7], (Bo, B") C span,, (Ao, A), so we can choose
symmetric (r +m) x (r +m) matrix W so that

(Ag, A YW = —(By, B') (mod p).
Wy Wy i .
Decompose W as W = where Wy is r x r, W7 is m x m; define n x n
Wy Wi
matrices
Wo Wy I,
Y = 0 , D= 2 —
Wy Wi I,

Then we have
G D1 Y
s (G ) (P D) = Clo s Al 108"

While the choice of G is by no means uniquely determined by =, the correspond-
ing lattice Q®A is, as p(QBA) = p(ABA)GD ™! is the kernel of the homomorphism
that takes the ith basis vector of A @ A to the ith column of (A, A’) modulo p.

_t
While D Y) ¢ TJ(N) when D # I, just as explained in the proof of

D—l
D -ty Gt
D! tG
gives the action of ~.

Note that when p|N, rank,(A, A’) =n and hence r =n —m and D =1. O

Proposition 3.1,

Now we evaluate the action of the Hecke maps on Fourier coefficients.

Theorem 4.3. Let p be prime, and take f € My (T (N),x), and let ca(Q)
denote the Qth coefficient of f where Q2 denotes a lattice of rank n—m, A a (fized)
lattice of rank m.
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1
(a) Fiz j so thatn—m < j <n;let{ =n—j—m and set A’ = A (pIe 7 )
n—j
1
Then if M' = M {( bl I, >] is not even integral, f|TJJ(p2) = 0; otherwise,
the Ath coefficient of fIT; (p?) is

> x@trrro)pTia Dol L (A, Q)ea(Q)
Q

where Q varies subject to pA A C Qd A C %(A @ A’) so that for some N with
NoA =Ad A, we have pA’ C Q C ]%A’. Also,

o a(A, Q) =3 a'(A)

Ay

with Kll varying over all codimenﬁ?n n — j subspaces of (A®A)YN(QDA)/p(A+
Q + A’) that are independent of A'; here o' (Ay) is as in Theorem 3.2. Also, with
ro + ¢ the multiplicity of p in {A & A" : Q& A}, ro the multiplicity of 1%, we have

;,A(A7Q) =k(ro—ro—40)+ (ro+£)(n—rg +1).

(b) The Ath coefficient of f|T7(p) is 0 if %M is not even integral; otherwise, it

> x(pr T pPa e en ()
Q

where ) varies subject to A A C QB A C %(A@A), [ (A A): Q@A] = prtm.

1
and EA(A,Q) =k(n—m —r) + (r—l—m)(r+m+1)/2p—n(n+1)/2.

18

zZ 7
(a) The A @ A’th coefficient of F|T (p®) is built out of Q & Ath coefficients of
F where each Q2 & A is even integral and

Proof. Set F(r) = f(7,Z)e{M’'t"} where T = (T tZ).

I,
QoA =(AeA)GD™Y; with D = plr,

and G € GL;{’m(Z). The argument now follows that of the proof for Proposition
3.2, and so is left to the reader.
(b) With G, D,Y varying as in Proposition 4.2,

F|T7 (p)(z)

=p ""TD/2 N " y(detD) (detD)* ¢(T) e {%T[DG‘H:} >

T,G,D
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Identify T as the matrix for an even integral lattice on 2 ® A, and let A ® A =
(Q® A)DG™'. Thus A ® A ~ T[DG™'], and (A ® A)Y/P ~ LT[DG™']. So the
sum on Y tests whether %T[D] is even integral, or equivalently, whether %T[DGil]

is even integral. Hence the coefficient of F|T7(p) attached to (A @ A)/P is 0 if
(A @ A)'/P is not even integral, and otherwise it is as claimed in the theorem. [J

As in [5], we can first shift Z, thereby changing the index, and then apply a
Hecke map that changes the index, lifting a Jacobi modular form from index M to
index M" where det M |detM".

Corollary 4.4. Let f € My p(TJ(N),x).
(a) Take j so that n —m < j < n, and take s > { = j —n+ m. Define g by

9(r, 2) = f(r, (pls ) Z). Then g|T} (p*) € My (Tg(N), x) where

Im—s

by
M" = M ol

Im—s

If s = £ then g|T7 (p®) is a multiple of f|T,]_,,.(p?).
(b) Define h by h(r,Z) = f(r,pZ). Then h|T’(p) is a Jacobi form with index
pM.
T 'Z
Proof. Let F(r) = f(7,Z)e{M7'} where 7 = (Z = ) .
(a) Set

In—m

Vs = pls ;
then

6o = r (7 )@

S

_ i, (pIs Im_s)Z)e{ ')
— g(r. Z)e{M', 7}

where M’ = M {(plt

under

I )} . So G transforms with weight k and character y

-1

Y J [ Vs J J

§ I _ oI =Tg(N),
< %> ( %1) o (V)

so g € My a(T7, x). Hence by Proposition 2.1, ¢|T7 (p?) € My p (T7, x).
) J )
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Now suppose s = £ (so M"” = M). Then with v running through a set of
representatives for (I'; NI'/)\I'/, we have

pMGIT () =) F| (% %1> 051y =D _Fld; .
” vy

Also, (T, NT7) € (T, _,,, NT'); consequently,

FI(T )16 = kP 8)

S

where k = [, _, NT7: N r7].
(b) We have

H@ = e ()@

f(r.pZ)e{p*M7'}
h(t, Z)e{p* M, T}.

So H transforms with weight k& and character x under

—1
it J [ Tm J J
m I _ oIV =Tg(N),
( %> ( 7m1> o ()

so h € My 2 (D7, x). Hence by Proposition 2.1, h|T” (p) € My, (T7, x). O

Remark. For Cy € GL,,(Z), C = (In_m C >, and F(1) = f(r,Z)e{M1'} as
0
above,

FI(C ot ) @ =1t CozpelMIColr').

so f| (C . C’_l) is a Jacobi form with index M[Cy]. Hence the above corollary

can be used to construct from f Jacobi forms of various indices M", det M |detM" .

§5. EXPLICIT CHOICES OF MATRICES FOR THE
HECKE-SIEGEL OPERATORS AND THEIR RESTRICTIONS

As discussed earlier, in Propositions 2.1 and 3.1 of [7] we described a set of
matrices giving the action of the Hecke operators on Siegel modular forms; these
matrices are explicitly given except for a particular choice of the change of basis
matrices G(€2, A1), G(£2). Here we construct explicit choices for these G, and then
give a description of the matrices G' corresponding to the restrictions of the Hecke
operators to Jacobi modular forms.
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We first introduce some notation. Fix j,n, 1 < j < n. For (nonnegative) integers
ro, T2 With 7o + 79 < j and 11 = j — 9 — 12, we call P a partition of type (rg,72)
for (n,j) if P is an ordered partition

({dla"' 7d7“0}a{bla"' 7b7'1}7{a17"' 7ar2}7{cla"' 7Cn—j})

of {1,2,... ,n}. (Note that if some r; = 0 or n — j = 0, a set in the partition could
be empty.) Given a partition P of type (rg,r2) for (nj), we let Gp(j) € GL,(Z)
consist of all matrices G = (G, G1, G2, G3) constructed as follows. Gy is the n x rg
matrix with s, t-entry 1 if s = d;, and 0 otherwise. G is an n X r; matrix with
s, t-entry (s where g = 1 if s = by, B = 01if s < by or s = a; (some i) or s = b;
(some i # t), and otherwise s € {0,1,...,p —1}. G% is an n X r9 matrix with
s, t-entry as; where ag = 1if s = ay, agy = 0if s < a4 or s = a; (some i # t),
and otherwise ag; € {0,1,...,p — 1}. GY is an n X ro matrix with s,t-entry pg
where pg; € {0,1,... ,p— 1} if s > a; and s = d; (some i), and otherwise pg; = 0.
Gy = G4+ pGY. Gs3is an n X (n — j) matrix with s, t-entry vy where v5 = 1 if
s=ct Vst € {0,1,...,p— 1} if s > ¢; and s = d; (some i), and otherwise 5 = 0.

Note that (Go, G1, G5, G3) is a (column) permutation of an integral lower trian-
gular matrix with 1’s on the diagonal, and thus is an element of GL,,(Z). Also, it
is easy to see that there is an elementary matrix E so that

(Go, G1,G4,G3)E = (Go, G1, G4 + pGy, G3) = G,

and so G € GL,(Z).
We let G, r,(j) = UpGp(j) where P varies over all partitions of type (79, rz2) for
(n,j), and we set

. pl,,
DT07T2 (j) =

where 11 = j —rg — 72.

Proposition 5.1. Let p be prime, and j an integer so that 1 < j <n. Let A be a
fixed reference lattice of rank n.

(a) If p + N, the pairs (2, A1) in Proposition 2.1 of [7] are in one-to-one
correspondence with the pairs (D,G) where, for some non-negative ro,re so that
ro+r2<j, D=D ,(j) and G € G, »,(j), via the correspondence

0y
Q=AGD '5;, Ay = A I,

1

where ry = j — 1o — Ta.
(b) If p|N then we only need those (2, A1) corresponding to ro = j, 12 = 0.
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Proof. (a) In Proposition 2.1 of [7], © varies subject to pA C Q C %A, and A,
is a codimension n — j subspace of A N Q/p(A + Q). Here we construct all pairs
(2, A1), simultaneously constructing G. It is then evident that the pairs (€2, A;)
are in one-to-one correspondence with the elements of Uy, 4r,<jGro,r, (J)-

Notice that when pA C Q C %A, the Invariant Factor Theorem (81:11 of [16])
tells us we have compatible decompositions:

A=Ay DA D A,

1
Q=pAo® A © EAQ-

On the other hand, given A, such an  is determined by Q' = Ay + pA and (pA] &
Ao) +pQ'. Also, in ANQ/p(A+Q), Ay = 0, so A; can be chosen so that in Q' /pSY’,

Ay CpAj CpA.
So to begin our construction of Q, A; and G = G(2,A;), in A/pA we choose a
dimension o subspace C ; let (71,...,7,,) be a basis for C'. Each U, is a linear

combination over Z/pZ of the Z;; by adjusting the ¥, we can assume

—/ — —
Vy = Tq, + § QgL g

s>ay

where ay, ... ,a,, and distinct and @y = 0 if s = a; (some ¢ # t). Let ag €
{0,1,... ,p — 1} be a preimage of @;.

Now let € be the preimage in A of C.nQ /P we will construct a dimension
n — ro subspace C so that dim(C NpA) = n — ry — 7y, distiguishing a dimension 7
subspace pA; of C NpA. We begin by choosing pA; to be a dimension r; subspace
of pA; let pug, ... , piiy, be a basis for pA;. Since pz,, = 0 in Q' /p§Y, we can adjust
the pu; so that

DU = PTo, + »_ By PTs
s>by

where by, ... b, are distinct, by # a; (any i), and 3,, = 0 if s = a; (some i) or
s =0b; (some i #t). Let B¢ € {0,1,... ,p— 1} be a preimage of 3,,.

Now extend pA; to a dimension n—rq—ry subspace pA] of pA in ' /pQY’. Extend
(puq, ... ,Pu,,) to a basis

(pUt, ... ,PlUr,, PWT, ... ,DWr—j)

for pA) so that
PW; = PTe, + > 7/ DTs,

s>cCy

where ¢, ... ,c,—; are distinct, ¢; # a;,b; (any i), and 7,, = 0 if s = a; (some i),
or s =b; (some i #t). Let v5 € {0,1,...,p— 1} be a preimage of 7.
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Now we extend pA} to a dimension n — ry space C so that the dimension of
CnNnpAisn—rog—ry=r;+n—j, and we extend (pug, ... ,pws,...) to a basis

(pulv"' y PUypy, PWT, - - apwn—jJWl?"' apvrg)
for C. Taking dy,... ,d,, so that

({dl,... ,dTO},{bl,... ,brl},{al,... ,a,,z},{cl,... ;Cn—j})

is a partition of {1,... ,n}, we can take

Ut = @; + Z Smtpfl?dm

m=1

for some &,,¢; let 0,y € {0,1,... ,p — 1} be a preimage of &,,;.
Now let pQ) be the preimage in Q' of C. So with

up =y, + Y Baws (1<t <),

S>bt

Ut = Tq, + Z QstTs +p25mtxdm (1 <t<rs),
s>aq m

wt:xct"f’ Z’Vstxs (1 StSn_J)a
s>ct

the vectors
1 1
(pmdla"' 7pxdT07u17"' 7u7‘175@17"' 7];1}7”271017"' 7wn—j)

form a basis for Q, and (s, ... ,q,,) is a basis for A; in AN Q/p(A + Q).
(b) When p|N, we necessarily have r; = ro = 0 and rg = j, since the upper left

block of a matrix in I‘(()n)(N ) necessarily has rank n over Z/pZ, and so its top j
rows have rank j over Z/pZ. O

We follow a similar procedure to construct matrices giving the action of 7'(p) on
Mk(F(()n)(N), X): For 0 <r < n, we let G, be the set of matrices G constructed as
follows. Let ({d1,...,d},{a1,... ,an—,}) be an ordered partition of {1,2,... ,n}.
Gy is the n x r matrix whose s, t-entry is 1 if s = d;, and 0 otherwise. G is an
n X (n—r) matrix whose s, t-entry is a;; where agy is 1if s = a4, age = 0if s < a4 or
s =a; (some i #t), and ag € {0,1,... ,p—1} otherwise. G = (Go,G1) € GL,(Z).

I,
Let D, = ( ol )
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Proposition 5.2. Let p be prime, and A a fized reference lattice of rank n.

(a) If p + N, the lattices Q2 in Proposition 3.1 of [7] are in one-to-one corre-
spondence with the pairs (D,G) where, for some non-negative r < n, D = D, and
G € G, via the correspondence

Q = pAGDL,

(b) If p|N then we only need those Q corresponding to r = n.

Proof. Note that in Proposition 4.2, we used the lattice 2 @ A, corresponding not
to €, but rather to %Q from Proposition 3.1 of [7].

(a) Using Proposition 3.1 of [7], we only need to show that as G varies over G,,
Q = pAGD; ! varies once over all lattices Q2 where pA CQ C A, [A: Q] = p". So,
similar to the proof of Proposition 5.1, we construct all the €2 as well as a specific
basis for each €.

Let C be a dimension n — r subspace of A/pA. Choose a basis ¥1,... ,T,_, S0
that
Ty =Ta, + Y Cuills
s>at
where ay, ... ,a,_, are distinct, @g = 0 if s = a; (some i # t); for each @, take
a preimage ag € {0,1,...,p —1}. Then with ({dy,...,d,},{a1,... ,a+n—r})
an ordered partition of {1,2,... ,n} and G constructed according to our recipe

preceding this proposition, we have Q = AGpD; L.
(b) When p|N, we necessarily have r = n since the upper left block of any matrix
inl'= F(()n)(N) has rank n over Z/pZ. O

Now we consider the Jacobi case; thus the role played by A in the Siegel case is
now played by A ® A where A has rank n — m and A has rank m.

Suppose first j < n —m. We let G . (j,m) be the matrices of Gy, r,(j) that
satisfy the additional conditions (i) ¢; = j+t fort > n—j —m, and (ii) 75+ = 0
for s # ¢, t >n—j—m. Then G/ . (j,m) is the subset of G, ,,(j) consisting of
those G that fix the basis for A under right multiplication of A & A by G.

Now suppose j > n —m. Let £ =n — j — m, and relative to the fixed basis for
A, write A = Ag @ A; where Ag has rank /. With A} = %AQ, A=A @ Ay, we

need G so that

QoA =(A®A)GD, ', 6; =pAo ® Ay & pAy ® pAY & Ay
(r; = rankzA;). Since Ag, Aj are not adjacent, we need to modify how we construct
G. (The G we construct will be permutations of a subset of those G of Proposition
5.1.) So with P’ = {(d1,... ,d,), (b1,... by ), (a1,... ,a.,)} an ordered partition
of {1,2,...,n —m}, we let G/ _ (j,m) consist of all matrices G constructed as
follows. Gy is the n x ry matrix with s, t-entry 1 if s = d;, and 0 otherwise. Gy is
an n X r; matrix with s, t-entry (s where B = 1 if s = by, B = 0 if s < b; or

s = a; (some i) or s = b; (some i # t), and otherwise G5 € {0,1,... ,p— 1}. G is
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an n X ro matrix with s, t-entry ag where ag = 1 if s = a4, age = 0 if s < a; or
s = a; (some i # t), and otherwise agy € {0,1,... ,p—1}. GY is an n X ro matrix
with s, t-entry ps; where pg € {0,1,...,p— 1} if s > a; and either s = d; (some 1)
orn—m < s < j; otherwise pgy = 0. Gy = G + pGY, and G5 is the n x m matrix

(IO ) Set G = (Go, G1,Gs, Gg) € GLi,m(Z) Also, let

DT07r2 (]7 m) =

where m’ = max(n — j,m).
Then Propositions 3.1, 4.1, and 5.1 immediately gives us the following.

Proposition 5.3. Let p be prime, and j an integer so that 1 < j < n. Let A, A be
a fized reference lattices of ranks n — m,m respectively. If j < n —m, set A" = A;

1
@'fj>n—m,setA’:A(PI€ 7 )whereﬁzn—j—m.
m—~{

(a) If p + N, the pairs (2, A1) in Propositions 3.1 and 4.1 are in one-to-one
correspondence with the pairs (D,G) where, for some non-negative ro,T2 so that
ro+7r2 < j/ = min(j,n —m), D = Dy (j,m) and G € G . (j,m), via the
correspondence

Ory
QdA=(AdA)YGD 6, Ay = (A A) I,

1

where 11 = j' —rg — ra.
(b) If p|N then we only need those (2, A1) corresponding to ro = j', ro = 0.

Finally, for 0 < r < n—m, we let G/ (m) be the set of matrices G constructed as
follows. Let ({d1,...,d.},{a1,...,an—,}) be an ordered partition of {1,2,... ,n—
m}. Gy is the n x r matrix whose s, t-entry is 1 if s = d;, and 0 otherwise. Gy
is a matrix whose s,t-entry is as where ag is 1 if s = a4, age = 0if s < a4 or
s =a; (some i #t), and ag € {0,1,...,p— 1} otherwise. G is the n X n matrix

I,
( IO ) and G = (Go, Gr,Gs). Also, let D, (m) — A . Then

m

I,
by Propositions 4.1 and 4.2, we have the following.

Proposition 5.4. Let p be prime, n a positive integer, and A, A a fized reference
lattices of rank n — m,m respectively.

(a) If pt N, the lattices Q2 in Proposition 4.2 are in one-to-one correspondence
with the pairs (D, G) where, for some non-negative r < n —m, D = D,(m) and
G € GJ(m), via the correspondence

QoA =(AA)GD ",
b) If p| N then we only need those ) corresponding to r = n.
(b) If p| y D g
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