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Abstract. We compute the action of Hecke operators T J
j (p2) on Jacobi forms of

“Siegel degree” n and m × m index M , provided 1 ≤ j ≤ n − m. We find they

are restrictions of Hecke operators on Siegel modular forms, and we compute their

action on Fourier coefficients. Then we restrict the Hecke-Siegel operators T (p),
Tj(p2) (n−m < j ≤ n) to Jacobi forms of Siegel degree n, compute their action on

Fourier coefficients and on indices, and produce lifts from Jacobi forms of index M to

Jacobi forms of index M ′ where detM |detM ′. Finally, we present an explicit choice
of matrices for the action of the Hecke operators on Siegel modular forms, and for

their restrictions to Jacobi modular forms.

§1. Introduction and statement of results

In the 1930’s [17], [18], [19] Siegel introduced generalized theta series to study
representations of quadratic forms by a given (positive definite) quadratic form Q.
The variable of such a theta series is a symmetric n × n complex matrix τ with
=τ > 0, meaning that as a quadratic form, =τ is positive definite (this is to ensure
the theta series is analytic). Like the classical theta series, the Siegel theta series
transforms under a congruence subgroup of the symplectic group Spn(Z) (note that
Sp1(Z) = SL2(Z)). From this, we have that the Siegel theta series attached to Q
has a Fourier series supported on symmetric matrices T , and the Fourier coefficient
c(T ) tells us how many times Q represents T .

This began the study of functions now called Siegel modular forms, which are
analytic function in the n × n variable τ (as above) that behave like the Siegel
theta series under the action on τ by a congruence subgroup of the symplectic
group. Such a modular form F has a Fourier series; as well, by decomposing the
variable τ into a 2×2 matrix of blocks, we can write F as a “Fourier-Jacobi” series
where the coefficients are functions of two (matrix) variables. The Fourier-Jacobi
coefficients inherit from F certain transformation properties under a subgroup of
the congruence subgroup associated to F .

Jacobi modular forms are functions defined to behave like Fourier-Jacobi co-
efficients of Siegel modular forms under the “Jacobi subgroup” of the symplectic
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group. In the seminal work [5], the authors introduce and study Jacobi modular
forms that map H×C into C; similar to elliptic modular forms, these Jacobi forms
have a weight, as well as another integer parameter called an index. One of the
striking applications of these Jacobi forms is the proof of the Saito-Kurokawa con-
jecture due to Maass, Andrianov, and Zagier, explicitly identifying certain Siegel
modular forms of degree 2 (meaning τ is 2 × 2) as lifts of integral weight elliptic
modular forms (see [13], [14], [15], [2], [20], or chapter II of [5]). (In an interesting
intermediate step, Jacobi forms are identified with a subspace of the space of half-
integral weight modular forms, which was studied further by Kohnen [10], [11].)
In chapter I of [5], two types of “Hecke operators” are introduced; one of these
changes the index, and it is this that is used to construct the lift of a Jacobi form
to a degree 2 Siegel form.

In [4], Duke and Imamog̀lu gave a new proof of the Saito-Kurokawa correspon-
dence using L-series and a converse theorem due to Imai [9]; they conjectured
that this correspondence extends (under mild conditions), relating elliptic modular
forms and Siegel modular forms of degree 2n. Then in [8], Ikeda used representa-
tion theory and L-series to prove the Duke-Imamog̀lu conjecture (see also [12], in
which Kohnen reformulates Ikeda’s formula). Also, Ikeda shows the lift takes Hecke
eigenforms to Hecke eigenforms.

In this paper we return to the study of Jacobi modular forms. In particular,
we consider Hecke operators on Jacobi forms with variables τ, Z where τ ∈ Cr,r,
Z ∈ Cm,r with τ symmetric, =τ > 0; such a Jacobi form has an m ×m index M .
We define Hecke maps T J(p) and T Jj (p2) on Jacobi forms, and analyze their action
on Fourier coefficients. Here we allow 1 ≤ j ≤ n where n = r + m; these Hecke
maps are the restrictions of Hecke operators on Siegel modular forms, in the sense
that the action of one of these maps is given by a subset of the matrices giving the
action of the corresponding Hecke-Siegel operator (Propositions 3.1, 4.1, and 4.2).
We find that when j ≤ r then T Jj (p2) is truly an operator on the space of Jacobi
modular forms with index M , but for j > r, T Jj (p2) and T J(p) map Jacobi forms
of index M to Jacobi forms of index M ′ where M ′ 6= M . This allows us to build
lifts of Jacobi forms, raising a question this author is currently unable to answer:
Can this lift be used to build a (partial) Fourier series of a Siegel modular form
from the Fourier series of a Jacobi modular form (as done in [5] when r = m = 1)?

We now summarize our results.
As with Siegel modular forms, we can identify the Fourier coefficients of a Jacobi

form f with lattices equipped with quadratic forms: Fixing the rank m lattice ∆
equipped with the quadratic form given by M , the index of f , we can realize f as
a Fourier series supported on lattices Λ ⊕ ∆; we use c∆(Λ) to denote the Fourier
coefficient of f corresponding to Λ ⊕ ∆. Then (Theorem 3.2) we find that for
j ≤ r = n−m, the Λth coefficient of f |T Jj (p2) is∑

Ω

χ(pej,∆(Λ,Ω)) pE
′
j,∆(Λ,Ω) α′j,∆(Λ,Ω) c∆(Ω);

here Ω varies subject to pΛ ⊕ ∆ ⊆ Ω ⊕ ∆ ⊆ 1
p (Λ ⊕ ∆), ej,∆, E′j,∆ are given in

terms of n, j, and the multiplicities of the invariant factors of Ω⊕∆ in Λ⊕∆, and
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α′j,∆(Λ,Ω) is a sum of incomplete character sums that partially test for divisibility
by p the codimension n− j subspaces of (Λ⊕∆)∩ (Ω⊕∆)/p(Λ + Ω + ∆) that are
independent of ∆ (so Ω only appears in our sum if the invariant factors of Ω ⊕∆
in Λ ⊕∆ include at least n − j factors 1). As in [7], we complete these character
sums by replacing T Jj (p2) by T̃ Jj (p2), a simple linear combination of the T J` (p2),
0 ≤ ` ≤ j; then (Corollary 3.3) the Λth coefficient of f |T̃ Jj (p2) is∑

Ω

χ(pej,∆(Λ,Ω)) pEj,∆(Λ,Ω) αj,∆(Λ,Ω) c∆(Ω)

where αj,∆(Λ,Ω) is the number of totally isotropic codimension n− j subspaces of
(Λ⊕∆) ∩ (Ω⊕∆)/p(Λ + Ω + ∆) that are independent of ∆.

When j > n−m, T Jj (p2) annihilates f unless(
1
pI`

Im−`

)
M

(
1
pI`

Im−`

)
is even integral, where ` = j − n + m; similarly, T J(p) annihilates f unless 1

pM is
even integral (Theorem 4.3). Then, quite similar to [5], we can define lifts of f by

first conjugating M by
(
pIt

Im−t

)
(t > `) and then applying T Jj (p2) (j > n−m),

or by multiplying M by p and then applying T (p). In Theorem 4.3 we describe the
Fourier coefficients of f |T Jj (p2) (n −m < j ≤ n) and of f |T J(p); in Corollary 4.4
we discuss lifts.

In [7] we analysed the action of Hecke operators on Siegel modular forms by first
explicitly describing a set of coset representatives giving the action of the Hecke
operators; these matrices are completely determined except for a choice of matrix
G ∈ GLn(Z). The situation here is the same; thus in Propositions 5.1 and 5.2,
we describe how to choose G to get a complete, non-redundant set of matrices for
each Hecke operator on Siegel modular forms, and in Propositions 5.3 and 5.4 we
describe how to choose G to give us matrices for the corresponding maps on Jacobi
modular forms.

§2. Definitions and notation

Let us begin with a brief discussion of Siegel modular forms and the Jacobi
subgroup. Then we define Jacobi forms, Hecke-Siegel operators, and their analogues
in the Jacobi case.

The degree n symplectic group is

Spn(Z)

=
{(

A B
C D

)
∈ GL2n(Z) : A tB, C tD symmetric, A tD −B tC = I

}
.

This group acts on the Siegel upper half-space

H(n) = {τ = X + iY : X,Y ∈ Rn,n symmetric, Y > 0 }
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by fractional linear transformation:(
A B
C D

)
◦ τ = (Aτ +B)(Cτ +D)−1.

(Proposition 1.2.1 of [1] shows Cτ + D is invertible; also, Y > 0 means that as a
quadratic form, Y is positive definite.)

Siegel modular forms (defined below) are analytic functions on H(n) that trans-
form under Spn(Z), or under some subgroup of Spn(Z) that contains a principle
congruence subgroup

Γ(N) = Γ(n)(N) = {γ ∈ Spn(Z) : γ ≡ I2n (mod N) }

(N ∈ Z). In this paper we focus on the subgroups

Γ0(N) = Γ(n)
0 (N) =

{(
A B
C D

)
∈ Spn(Z) : C ≡ 0 (mod N)

}
.

Definition. A scalar-valued Siegel modular form of (integral) weight k, degree
n(> 1), level N , and character χ is an analytic function F : H(n) → C so that for

all γ =
(
A B
C D

)
∈ Γ(n)

0 (N),

F (γ ◦ τ) = χ(detD) det(Cτ +D)k F (τ).

(Here χ is a Dirichlet character modulo N .) We let Mk(Γ(n)
0 (N), χ) denote the

complex vector space of all weight k, degree n Siegel modular forms with level N
and character χ. We sometimes abuse the notation and write χ(γ) for χ(detD)

where γ =
(
A B
C D

)
∈ Spn(Z).

Note. When n = 1, we need the additional condition that

lim
τ→i∞

(cτ + d)−kF
(
aτ + b

cτ + d

)
<∞

for all
(
a b
c d

)
∈ SL2(Z); when n > 1 this condition is automatic by the Koecher

Principle (see Theorems 2.3.1, 2.3.4 of [1]).
To avoid the distraction of the automorphy factor det(Cτ + D)k, we introduce

an action of Spn(Z) on F : H(n) → C, and more generally, an action of

GSp+
n (Q) =

{(
A B
C D

)
∈ GL2n(Q) : A tB, C tD symmetric,

A tD −B tC = rIn, r ∈ Q+

}
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by setting

F |γ(τ) = F |
k
γ(τ) = (detγ)k/2det(Cτ +D)−kF (γ ◦ τ)

for γ =
(
A B
C D

)
∈ GSp+

n (Q) (note that GSp+
n (Q) acts on H(n) by fractional

linear transformation).
Since a Siegel form F is analytic and F (τ + B) = F (τ) for any symmetric

B ∈ Zn,n, F has a Fourier series:

F (τ) =
∑
T

c(T )e{Tτ}

where e{∗} = exp(πiTr(∗)) and T runs over all symmeric, n × n even integral
matrices with T ≥ 0. (T even integral means T has integer entries with even
diagonal entries, and T ≥ 0 means that the quadratic form defined by T is positive
semi-definite. Note that some authors include a factor of 2 in the definition of
e{∗}, and then the matrices T are half-integral with integral diagonal entries.)

Decomposing τ as
(
τ tZ
Z τ ′

)
, τ ∈ H(n−m), τ ′ ∈ H(m), Z ∈ Cm,n−m, we can also

write
F (τ) =

∑
M

fM (τ, Z)e{Mτ ′}

where M runs over m×m, symmetric, even integral matrices, and

fM (τ, Z) =
∑
N,R

cM (N,R)e{Nτ + 2 tRZ}, cM (N,R) = c

(
N tR
R M

)
.

The functions fM are called Fourier-Jacobi coefficients; since F has level N and
character χ, the fM inherit from F the following transformations: for

γ1 =


A B

Im 0m
C D

0m Im

 ∈ Spn(Z) where C ≡ 0 (N)

(i.e.
(
A B
C D

)
∈ Γ(n−m)

0 (N)), we have

fM ((Aτ +B)(Cτ +D)−1, Z(Cτ +D)−1)

= χ(detD) det(Cτ +D)k e{MZ(Cτ +D)−1C tZ} fM (τ, Z),

and for

γ2 =


In−m

tV
U Im V W

In−m −tU
Im

 ∈ Spn(Z)
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we have
fM (τ, Uτ + Z + V ) = e{−M(Uτ tU + 2U tZ)} f(τ, Z).

Let SpJn,m(Z) be the subgroup of Spn(Z) generated by all such matrices γ1, γ2 with
N = 1. So

SpJn,m(Z) =



A B V ′

U Im V W
C D U ′

Im

 ∈ Spn(Z)

 ,

and for fM a Fourier-Jacobi coefficient of a level N(≥ 1) Siegel form F , fM trans-
forms under ΓJ0 (N) = Γ0(N)∩SpJn,m(Z). We call SpJn,m(Z) the Jacobi subgroup of
Spn(Z) for indices of size m×m. (Note that many authors instead use a semi-direct
product of matrices of Spn−m(Z) and triples (U, V,W ) from Zm,n−m × Zm,n−m ×
Zm,msym , or replacing W by detW , triples from Zm,n−m × Zm,n−m × Z.)

As a formal mechanism to ease our notation, we identify a function f : H(n−m)×
Cm,n−m → C and a symmetric m×m matrix M with the function

FM (τ) = f(τ, Z)e{Mτ ′}

where τ =
(
τ tZ
Z τ ′

)
; given τ ∈ Hn−m, Z ∈ Cm,n−m, we can choose τ ′ so that

τ ∈ H(n), or simply treat τ ′ as a formal variable. Then we use our definition of the
slash operator | on Siegel forms to induce on f an action of matrices γ ∈ SpJn,m(Z),
or more generally, of matrices

γ =


A B V ′

U G V W
C D U ′

tG−1

 ∈ GSp+
n (Q)

(A,B,C,D (n−m)× (n−m)) by setting

f |
k,M

γ(τ, Z)e{M ′τ} = FM |kγ(τ)

where M ′ = tGMG.
Definition. Suppose M is a symmetric, even integral m × m matrix, and f :
H(n−m) × Cm,n−m → C is analytic. Then f is a Jacobi modular form of Siegel
degree n, weight k, level N , character χ, and index M if

f |γ = f |
k,M

γ = χ(detD)f

for all γ =


A B V ′

U I V W
C D U ′

I

 ∈ ΓJ0 (N) = Γ0(N) ∩ SpJn,m(Z). Again, we abuse

notation and write χ(γ) for χ(detD) for γ as above. If n − m = 1, we need the
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additional condition that for every γ =
(
a b
c d

)
∈ SL2(Z), limτ→i∞ f |γ̃(τ, Z) <∞

where γ̃ =


a b

In−1 0n−1

c d
0n−1 In−1

. (When n−m > 1, the Koecher Principle tells us

this condition is automatically satisfied; see [21]). We let Mk,M (ΓJ0 (N), χ) denote
the complex vector space of Jacobi modular forms with Siegel degree n, weight
k, level N , character χ, and index M . (By [21], this space is known to be finite
dimensional.)

As discussed above, a degree n Siegel modular form F has a Fourier series ex-
pansion supported on symmetric, even integral n × n matrices T with T ≥ 0. We
consider each T to be a quadratic form on a rank n Z-lattice Λ relative to some
basis for Λ. As T varies, the pair (Λ, T ) varies over all isometry classes of rank n
lattices with even integral positive semi-definite quadratic forms. Also, the isome-
try class of (Λ, T ) is that of (Λ, T ′) if and only if T ′ = T [G] for some G ∈ GLn(Z)
(here T [G] = tGTG). Since F (τ [G]) = χ(detG) (detG)k F (τ) for all G ∈ GLn(Z),
it follows that c(T [G]) = χ(detG) (detG)k c(T ) for all G ∈ GLn(Z), where c(T )
denotes the T th Fourier coefficient of F . Hence, equipping the lattices Λ with an
orientation when χ(−1) (−1)k 6= 1, we write c(Λ) = c(T ) where T is any matrix
representing the quadratic form on Λ (denoted Λ ' T ), and then we have

F (τ) =
∑
clsΛ

c(Λ)e∗{Λτ} where e∗{Λτ} =
∑
G

e{T [G]τ};

here clsΛ varies over all isometry classes of positive semi-definite Z-lattices of rank
n, G varies over O(T )\GLn(Z) if Λ is not oriented, and over O+(T )\SLn(Z) if Λ
is oriented, O(T ) the orthogonal group of T , O+(T ) = O(T ) ∩ SLn(Z). We do
something similar for Jacobi forms: First let

GLJn,m(Z) =
{(

G1 0
U Im

)
∈ GLn(Z)

}
,

SLJn,m(Z) = GLJn,m(Z) ∩ SLn(Z). Then with ∆ a rank m Z-lattice such that
∆ 'M ,

FM (τ) = f(τ, Z)e{Mτ ′} =
∑
Λ

c∆(Λ)e∗M{(Λ⊕∆)τ}

where Λ varies so that Λ ⊕ ∆ varies over all rank n, even integral, positive semi-
definite isometry classes, oriented when χ(−1) (−1)k 6= 1,

e∗M{(Λ⊕∆)τ} =
∑
G

e{T [G]τ}

with Λ⊕∆ ' T =
(
∗ ∗
∗ M

)
, G varying over (O(T )∩GLJn,m(Z))\GLJn,m(Z) when

k is even, and over (O(T ) ∩ SLJn,m(Z))\SLJn,m(Z) when k is odd.
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Now we define Hecke operators T (p), Tj(p2) on Siegel forms and their analogues
T J(p), T Jj (p2) on Jacobi forms (1 ≤ j ≤ n). As we will see, the T Jj (p2) are indeed
operators when j ≤ n−m (meaning they are linear maps taking Mk,M (ΓJ0 (N), χ)
into itself), but T J(p) and T Jj (p2), j > m − n, change the index. First, set Γ =

Γ0(N) = Γ(n)
0 (N). Take 1 ≤ j ≤ n, and set δ =

(
pIn

In

)
, δj =

(
pIj

In−j

)
,

δj =
(
δj

δ−1
j

)
; then set Γ′ = δΓδ−1, Γ′j = δjΓδ

−1
j . For F ∈Mk(Γ, χ), we set

F |T (p) = pn(k−n−1)/2
∑
γ

χ(γ)F |δ−1γ

where γ varies over representatives for (Γ′ ∩ Γ)\Γ; we set

F |Tj(p2) =
∑
γ

χ(γ)F |δ−1
j γ

where γ varies over representatives for (Γ′j ∩ Γ)\Γ. For f ∈ Mk,M (ΓJ , χ), ΓJ =
ΓJ0 (N) = Γ0(N) ∩ SpJn,m(Z), we define

f |T (p) = pn(k−n−1)/2
∑
γ

χ(γ)f |δ−1γ

where γ varies over representatives for (Γ′ ∩ ΓJ)\ΓJ , and

f |T Jj (p2) =
∑
γ

χ(γ)f |δ−1
j γ

where γ varies over representatives for (Γ′j ∩ ΓJ)\ΓJ .

Proposition 2.1. Say f ∈ Mk,M (ΓJ0 (N), χ). Then for 1 ≤ j ≤ n − m and p
prime, f |T Jj (p2) ∈Mk,M (ΓJ0 (N), χ). For n−m < j ≤ n, set ` = j − n+m and

Mj =
(

1
pI`

Im−`

)
M

(
1
pI`

Im−`

)
;

if Mj is even integral then f |T Jj (p2) ∈ Mk,Mj
(ΓJ0 (N), χ). If 1

pM is even integral
then f |T J(p) ∈Mk.M/p(ΓJ0 (N), χ).

Remark. In Theorem 4.3 we will prove that if j > n−m and Mj is not even integral,
thenf |T Jj (p2) = 0, and that if 1

pM is not even integral then f |T J(p) = 0.

Proof. Since det(Cτ + D)−k and γ ◦ τ are rational functions in the entries of τ ,
and f is analytic, f |T Jj (p2) and f |T J(p) are analytic. Just as with elliptic modular
forms, these maps preserve the analyticity at the cusps when n−m = 1.

We now show f |T Jj (p2) and f |T J(p) transform as claimed.
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Set F (τ) = f(τ, Z)e{Mτ ′}; suppose first that j ≤ n−m. For γ′ ∈ Γ′j ∩ ΓJ and
γ = δjγ

′δ−1
j , we have

F |δ−1
j |γ′ = F |γ|δ−1

j = χ(γ)F |δ−1
j = χ(γ′)F |δ−1

j ;

so f |T Jj (p2) is well-defined. Also, for {γ} a set of representatives for (Γ′j ∩ ΓJ)\ΓJ
and γ′ ∈ ΓJ , we know {γγ′} is also a set of coset representatives for (Γ′j ∩ ΓJ)\ΓJ ,
and so

f |T Jj (p2)|γ′(τ, Z)e{Mτ ′} = F |T Jj (p2)|γ′(τ)

=
∑
γ

χ(γ) F |δ−1
j γ|γ′(τ)

= χ(γ′)
∑
γ

χ(γγ′) F |δ−1
j γγ′(τ)

= χ(γ′) F |T Jj (p2)(τ)

= χ(γ′) f |T Jj (p2)(τ, Z)e{Mτ ′}.

Consequently, when j ≤ n −m, f |T Jj (p2) transforms under ΓJ with character χ,
weight k and index M .

Now say j > n−m; as with j ≤ n−m, f |T Jj (p2) is well-defined. However,

F |T Jj (p2)(τ) = f |T Jj (p2)(τ, Z)e{M ′τ ′}.

Consequently, when j > n − m, f |T Jj (p2) transforms under ΓJ with weight k,
character χ, and index M ′.

Similarly, f |T J(p) is well-defined, and

F |T J(p)(τ) = f |T J(p)(τ, Z)e
{

1
p
Mτ ′

}
;

so f |T J(p) transforms under ΓJ with weight k, character χ, and index 1
pM . �

§3. Hecke-Jacobi operators

We first find a set of matrices giving the action of T Jj (p2) on f ∈Mk,M (ΓJ0 (N), χ)
when M is m ×m, and j ≤ n −m (Proposition 3.1); these matrices are uniquely
determined up to certain choices of G ∈ GJn,m(Z) (defined in the preceding section).
Then we analyse the action of T Jj (p2) on the Fourier coefficients of f (Theorem
3.2). The formulas in Theorem 3.2 involve incomplete character sums, so as in [7],
we complete these by replacing T Jj (p2) by a weighted average of T J` (p2), ` ≤ j; in
Corollary 3.3 we describe the action on Fourier coefficients of the modified operators.
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Proposition 3.1. Let f ∈Mk,M (ΓJ0 (N), χ) where M is m×m, ΓJ0 (N) ⊆ Spn(Z),
and let p be a prime; fix j so that 1 ≤ j ≤ n−m. Let Λ,∆ be fixed reference lattices
of ranks n−m,m respectively.

(a) If p - N then

f |T Jj (p2) =
∑

(Ω,Λ1,Y )

χ(detD/detG) f |δ−1
j

(
D Y

D−1

)(
G−1

tG

)

where Ω,Λ1 vary subject to

pΛ⊕∆ ⊆ Ω⊕∆ ⊆ 1
p

(Λ⊕∆),

and Λ1 is a codimension n − j subspace of (Λ ⊕∆) ∩ (Ω ⊕∆)/p(Λ + Ω + ∆) that
is independent of ∆. Here

D = D(Ω) =


Ir0

pIr1
p2Ir2

In−j


is an n× n matrix, and G = G(Ω,Λ1) ∈ GLJn,m(Z) so that

Ω⊕∆ = (Λ⊕∆)GD−1δj , Λ1 = (Λ⊕∆)G

 0r0
Ir1

0

 ;

also,

Y =


Y0

tY2 0 tY3

pY2 Y1

0
Y3


is integral with Y0 symmetric, r0 × r0, varying modulo p2, Y1 symmetric, r1 × r1

varying modulo p with p - detY1, Y2 r1×r0 varying modulo p, Y3 (n−j)×r0 varying
modulo p.

(b) If p|N then

f |T Jj (p2) =
∑

(Ω,Y )

χ(detG) f |δ−1
j

(
I Y

I

)(
G−1

tG

)

where Ω varies so that for some G = G(Ω) ∈ GLJn,m(Z), Ω ⊕ ∆ = (Λ ⊕ ∆)Gδj ,

and Y =
(
Y0

tY3

Y3

)
is integral with Y0 symmetric, j × j, varying modulo p2, Y3

(n− j)× j, varying modulo p.
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Proof. We will write rankpA to denote the rank of the matrix A over Z/pZ; simi-
larly, we will write spanpA to denote the Z/pZ-span of the columns of the matrix
A. The proof parallels that of Proposition 2.1 of [7].

(a) First suppose p - N . Choose M ∈ ΓJ and let Mj denote the top j rows of
M . So

Mj = (A,A′|B,B′)

where A,B are j×(n−m), A′ is a j×m matrix of zeros, B′ is j×m. Now we choose
G′0 ∈ GLn−m(Z) so that AG′0 = (A0, pA1) where A0 is j × r0 with rankpA0 = r0,

and A1 is integral. Set G0 =
(
G′0

Im

)
; then

(A,A′|B,B′)
(
G0

tG−1
0

)
= (A0, pA1, A

′|B0, B1, B
′)

where B0 is j× r0. Since (A,B) are the top j rows of a matrix in Spn−m(Z), so are
(A0, pA1|B0, B1) and thus by Lemma 7.2 of [7], B0 ⊆ spanpA0 and rankp(A0, B1) =
j. Hence B′ ⊆ spanp(A0, B1), so we choose an m× (n−m− r0) (integral) matrix
W0 so that B′′ = B1W0 +B′ ⊆ spanpA0. Also, choose G′1 ∈ GLn−m−r0(Z) so that
B1G

′
1 = (B′1, B3) with B′1 of size j×(j−r0), rankp(A0, B

′
1) = j, and B3 ⊆ spanpA0.

Set

tG−1
1 =

 Ir0
G′1 W0

Im

 Ir0
G′1

Im

 ;

then

(A0, pA1, A
′|B0, B1, B

′)
(
G1

tG−1
1

)
= (A0, pA

′
1, pA3, A

′|B0, B
′
1, B3, B

′′)

where A′1, B
′
1 are j × (j − r0), A3, B3 are j × (n− j −m), and B3, B

′′ ⊆ spanpA0.
Now choose a permutation matrix E so that

(A0, A
′
1)
(
Ir0

E

)
= (A0, A

′′
1 , A2)

with A′′1 of size j×r1, A2 of size j×r2, and rankp(A0, A
′
1) = rankp(A0, A

′′
1) = r0+r1.

Now choose X0, X1 so that

A0X0 +A′′1X1 ≡ A2 (mod p),

and set

G2 =

 Ir0
E

In−j

 , G3 =


Ir0 X0

Ir1 X1

Ir2
In−j

 .
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Then with G = G0G1G2G3, we have
(
G

tG−1

)
∈ ΓJ and so M

(
G

tG−1

)
∈

ΓJ with top j rows

(A0, pA
′′
1 , p

2A2, pA3, A
′|B0, B

′′
1 , B2, B3, B

′′)

where B′′1 is j × r1, B2 is j × (j − r0 − r1).
Next, choose r0×r0 (integral) Y ′0 so that A0Y

′
0−B0 ≡ 0 (mod p), and (n−j)×j

(integral) Y3 so that A0
tY3 − (B3, B

′′) ≡ 0 (mod p) (note that Y ′0 , Y3 are uniquely

determined modulo p). Since M
(
G

tG−1

)
∈ ΓJ , we know A0

tB0 is symmetric,

so we can choose Y ′0 to be symmetric. Then

M

(
G

tG−1

)(
In −W

In

)
∈ ΓJ where W =

Y0 0 tY3

0
Y3

 ;

with pB′0 = B0−A0Y
′
0 and pB′′′ = B′′−A0

tY3, we have (B′0, B
′′
1 ) ⊆ spanp(A0, A

′′
1)

by Lemma 7.2 of [7]. Thus we can choose a symmetric (integral) (r0 +r1)×(r0 +r1)

matrix W ′ =
(
Y ′′0

tY2

Y2 Y1

)
so that

(A0, A
′′
1)W ′ − (B′0, B

′′
1 ) ≡ 0 (mod p);

note that the matrices Y ′′0 , Y1, Y2 are uniquely determined modulo p. Set Y0 =
Y ′0 + pY ′′0 ; then with

Y =


Y0

tY2 0 tY3

pY2 Y1

0
Y3

 , D =


Ir0

pIr1
p2Ir2

In−j

 ,

we have

(A0, pA
′′
1 , p

2A2, pA3, A
′|B0, B

′′
1 , B2, B3, B

′′)
(
D−1 −tY

D

)
= (A0, A

′′
1 , A2, pA3, A

′|p2B′′0 , p
2B′′′1 , p

2B2, pB
′
3, pB

′′′).

Although we will see that with X =
(
D Y

D−1

)
, X

(
G−1

tG

)
gives the

action of the coset of M , it is clear that X 6∈ ΓJ unless D = I. However, (D′, NY ′)
is a symmetric coprime pair, where

D′ =

 Ir0
pIr1

p2Ir2

 , Y ′ =

 Y0
tY2 0

pY2 Y1 0
0 0 Ir2

 .
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(A pair (R,S) of j×j matrices is a symmetric coprime pair if R tS is symmetric, and
G(R,S) integral implies G is integral; by Lemma 2.1.17 of [1], a pair (R,S) of j× j
matrices is symmetric and coprime exactly when (U, V ) is the bottom row of blocks
of an element of Spj(Z), or equivalently, (S,R) is the top row of blocks of an element

of Spn(Z).) Thus there exist matrices U ′, V ′ so that
(

D′ Y ′

NU ′ V ′

)
∈ Spj(Z), and

with

Ỹ =
(
Y ′ tY3

Y3

)
, U =

(
U ′

0n−j

)
, V =

(
V ′ U ′ tY3

In−j

)
,

we have X ′ =
(

D Ỹ
NU V

)
∈ ΓJ . Also, by Lemma 7.1 of [7], M(X ′)−1 ∈ Γ′j ∩ ΓJ ,

and hence X ′ represents the coset of M . One easily verifies that δ−1
j X ′ = X ′′δ−1

j X

where X ′′ ∈ ΓJ and χ(X ′′) = 1. Thus

χ(X ′) f |δ−1
j X ′ = χ(detV ) f |δ−1

j X = χ(detD) f |δ−1
j X.

This shows that for j ≤ n−m, p - N ,

f |T Jj (p2) =
∑

(G,D,Y )

χ(detD)f |δ−1
j

(
D Y

D−1

)(
G−1

tG

)
where (G,D, Y ) varies over the triples constructed above. These triples constitute
a subset of the triples constructed in [7] for determining the action of Tj(p2) on
Siegel modular forms; in that case we showed that the triples (G,D, Y ) are in one-
to-one correspondence with triples (Ω,Λ1, Y ) where Ω varies over all lattices such
that pΛ ⊆ Ω ⊆ 1

pΛ, Λ is a fixed rank n reference lattice, and Λ1 varies over all
codimension n − j subspaces of Λ ∩ Ω/p(Λ + Ω). While the choice of G is not
uniquely determined by a coset, the pair (Ω,Λ1) is, and G = G(Ω,Λ1) can be any
element of GLn(Z) so that

Ω = ΛGD−1δj , Λ1 = ΛG

 0r0
Ir1

0

 .

In the Jacobi case, we replace Λ by Λ ⊕ ∆ where Λ has rank n − m, ∆ rank m;
then the role of Λ3 is played by Λ3⊕∆, and the triples (G,D, Y ) constructed above
correspond to triples (Ω,Λ1, Y ) where Ω varies so that pΛ⊕∆ ⊆ Ω⊕∆ ⊆ 1

p (Λ⊕∆),
and Λ1 varies over all codimension n− j subspaces of

(Λ⊕∆) ∩ (Ω⊕∆)/p(Λ + Ω + ∆)

that are independent of ∆. Here G ∈ GLJn,m(Z) so that

Ω⊕∆ = (Λ⊕∆)GD−1δj , Λ1 = (Λ⊕∆)G

 0r0
Ir1

0

 .
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The proposition now follows for p - N .
(b) Now consider the case that p|N ; again take M ∈ ΓJ and let Mj denote its top

j rows. As before, Mj = (A,A′|B,B′) where A,B are j×n−m, and A′ is a j×m
matrix of zeros. Since M ∈ ΓJ = ΓJ0 (N), the upper left (n−m)× (n−m) block of
M must have Z/pZ-rank n−m, and so rankpA is maximal, meaning rankpA = j.
Thus we can find G0 ∈ GLn−m(Z) so that AG0 = (A0, pA3) where A0 is j× j (and

A3 is integral). Then with G =
(
G0

Im

)
,

(A,A′|B,B′)
(
G

tG−1

)
= (A0, pA3, A

′|B0, B3, B
′)

where B0 is j × j, A3, B3 are j × (n−m− j), and since rankpA0 = j, B0, B3, B
′ ⊆

spanpA0. Choose symmetric j × j Y ′0 and (n − j) × j Y3 so that A0Y
′
0 − B0 ≡

0 (mod p), A0
tY3 − (B3, B

′) ≡ 0 (mod p). (So Y ′0 , Y3 are uniquely determined
modulo p.) Then with pB′0 = −A0Y

′
0 + B0, choose Y ′′0 so that A0Y

′′
0 − B′0 ≡

0 (mod p) (so Y ′′0 is uniquely determined modulo p); set Y0 = Y ′0 + pY ′′0 , Y =(
Y0

tY3

Y3

)
. Then

(A0, pA3, A
′|B0, B3, B

′)
(
I −Y

I

)
= (A0, pA3, A

′|p2B′′0 , pB
′
3pB

′′)

where B′′0 is j × j. Thus
(
I Y

I

)(
G−1

tG

)
represents the coset of M ; the

proposition now follows for the case p|N . �

We now apply these coset representatives to a Jacobi form to determine the
action of the Hecke-Jacobi operators on Fourier coefficients.

Theorem 3.2. Let f ∈ Mk,M (ΓJ0 (N), χ) where M is m ×m, ΓJ0 (N) ⊆ Spn(Z),
and let p be prime. Let c∆(Λ) denote the Λth coefficient of f . Choose 1 ≤ j ≤ n−m,
and p prime. The Λth coefficient of f |T Jj (p2) is∑

Ω

χ(pj+r2−r0) pE
′
j,∆(Λ,Ω) α′j,∆(Λ,Ω) c∆(Ω);

here Ω varies so that for some Λ′ with Λ′ ⊕∆ = Λ ⊕∆, we have pΛ′ ⊆ Ω ⊆ 1
pΛ′.

Also, r0 is the multiplicity of p in {Λ ⊕∆ : Ω ⊕∆}, r2 the multiplicity of 1
p , and

E′j,∆(Λ,Ω) = k(r2 − r0) + r0(n− r2 + 1). Also,

α′j,∆(Λ,Ω) =
∑
Λ1

α′(Λ1)

where Λ1 varies over all codimension n−j subspaces of (Λ⊕∆)∩(Ω⊕∆)/p(Λ+Ω+∆)
that are independent of ∆, and with T1 an r1 × r1 symmetric matrix giving the



RESTRICTING HECKE-SIEGEL OPERATORS TO JACOBI MODULAR FORMS 15

quadratic form on Λ1, α′(Λ1) =
∑
Y1

e{T1Y1/p} where Y1 varies over all (integral)
r1 × r1 symmetric matrices modulo p with p - detY1.

Remark. When p|N this simplifies to give us that the Λth coefficient of f |T Jj (p2)
is

pj(n+1−k)
∑
Ω

c∆(Ω)

where Ω varies subject to pΛ⊕∆ ⊆ Ω⊕∆ ⊆ Λ⊕∆ with [Λ⊕∆ : Ω⊕∆] = pj .

Proof. Set F (τ) = f(τ, Z)e{Mτ ′} where τ =
(
τ tZ
Z τ ′

)
. We will see that the

Λ⊕∆th coefficient of F |T Jj (p2) is built out of Ω⊕∆th coefficients of F where each
Ω⊕∆ is even integral and

Ω⊕∆ = (Λ⊕∆)GD−1δj with D =


Ir0

pIr1
p2Ir2

In−j


and G ∈ GLJn,m(Z) (or G ∈ SLJn,m(Z) if k is odd); the sum on Y for this choice of
G and D gives us a character sum to test whether Λ ⊕∆ is even integral. (When
p|N , r1 = r2 = 0.)

Write F (τ) =
∑
T c(T )e{Tτ} where T =

(
N tR
R M

)
∈ Zn,n (symmetric). With

c(N,R) = c(T ), we can write

f(τ, Z) =
∑
N,R

c(N,R)e{Nτ + 2 tRZ}.

First consider p - N . Then

F (τ)|T Jj (p2) =
∑

T
(Ω,Λ′1,Y )

χ(detD)det(δ−1
j D)kc(T )e{T [δ−1

j DG−1]τ}e{Tδ−1
j Y Dδ−1

j }

where Ω,Λ1, Y vary as in Proposition 3.1, D =


Ir0

pIr1
p2Ir2

In−j

 G =

G(Ω,Λ′1) ∈ GLJn,m(Z) so that

Ω⊕∆ = (Λ⊕∆)GD−1δj ,

and

Λ1 = (Λ⊕∆)G

 0r0
Ir1

0

 .
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Identify T as the matrix for an even integral quadratic form on Ω⊕∆, relative to
some ordered bases (y1, . . . , yn−m), (yn−m+1, . . . , yn) for Ω,∆ (resp.). Using this
basis for Ω, write Ω = Ω0 ⊕ Ω1 ⊕ Ω2 ⊕ Ω3 where rankΩi = ri and r3 = n −m − j
(so Ω0 = Zy1⊕ · · · ⊕Zyr0 , etc.). Then T [δ−1

j DG−1] is the matrix for the quadratic
form on Λ⊕∆ = (Ω⊕∆)δ−1

j DG−1 = ( 1
pΩ0 ⊕Ω1 ⊕ pΩ2 ⊕Ω3 ⊕∆)G−1. Note that

since G ∈ GLn(Z), T [δ−1
j DG−1] is even integral if and only if T [δ−1

j D] is. Also,
e{Tδ−1

j Y Dδ−1
j } = e{T [δ−1

j D]D−1Y }. Recall that Y is built from the matrices
Y0, Y1, Y2, Y3, so we can split the sum on Y into a product of sums on the Yi. The
sum on Y0 is a complete character sum modulo p2, and this sum tests whether the
quadratic form on 1

pΩ0 is integral, yielding a contribution of pr0(r0+1) or 0. The
sums on Y2, Y3 test whether the bilinear form between 1

pΩ0 and Ω1 ⊕ Ω3 ⊕ ∆ is
integral, yielding a contribution of pr0(r1+n−j) = pr0(n−r0−r2) or 0. The sum on Y1

is an incomplete character sum since p - detY1; this sum yields

α′(Ω1) =
∑
Y1

p-detY1

e
{

1
p
T1Y1

}

where Ω1 ' T1. Thus we can restrict our attention to those T,D,G where T ′ =
T [δ−1

j DG−1] is integral.
Making a change of variables, we now identify T as the matrix for a quadratic

form on Λ⊕∆, and T [GD−1δj ] as the matrix for a quadratic form on Ω⊕∆. Thus

F (τ)|T Jj (p2) =
∑
T,G,D

χ(detD)pE
′
j,∆(Λ,Ω)α′(Λ1)cF (T [GD−1δj ])e{Tτ}

where Λ ⊕ ∆ ' T , Ω ⊕ ∆ = (Λ ⊕ ∆)GD−1δj = pΛ0 ⊕ Λ1 ⊕ 1
pΛ2 ⊕ Λ3 ⊕ ∆, and

E′j,∆(Λ,Ω) = k(−j+ r1 + 2r2) + r0(r0 + r1 +n− j+ 1) = k(r2− r0) + r0(n− r2 + 1)
(since j = r0 +r1 +r2). As discussed in the proof of Proposition 3.1, for each choice
of Ω we have various G, one for each choice of Λ1 (which is the same as Ω1 in the
previous paragraph); Λ1 varies so that in the quotient (Λ⊕∆)∩(Ω⊕∆)/p(Λ+Ω+∆),
Λ1 varies over all codimension n− j subspaces independent of ∆. Thus with

α′j,∆(Λ,Ω) =
∑
Λ1

α′(Λ1),

we have

F (τ)|T Jj (p2) =
∑
T

c′j(T )e{Tτ} =
∑
N,R

c′j

((
N tR
R M

))
e{Nτ + 2 tRZ}e{Mτ ′}

where
c′j(T ) =

∑
Ω

pE
′
j,∆(Λ,Ω)α′j,∆(Λ,Ω)cF (T [GD−1δj ]),
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Ω varying as described in Proposition 3.1. Since we have identified Λ ⊕∆ with T
and Ω⊕∆ with T [GD−1δj ], this yields the result when p - N .

Now consider p|N . Then

F (τ)|T Jj (p2) =
∑

T
(Ω,Y )

detδ−kj cF (T ) e{T [δ−1
j G−1]τ} e{Tδ−1

j Y δ−1
j }

where Y,G = G(Ω) vary as in Proposition 3.1. So the analysis is similar to the case
p - N , but simpler; adapting the argument for p - N easily yields the result. �

In the above analysis we encounter incomplete character sums when p - N . We
can complete these by replacing the operator T Jj (p2) by

T̃ Jj (p2) = pj(k−n−1)
∑

0≤`≤j

χ(pj−`)pm(j−`)β(n−m− `, j − `)T J` (p2)

where β(s, r) =
∏r−1
i=0

ps−i−1
pr−i−1 , which is the number of r-dimensional subspaces of

an s-dimensional space over Z/pZ. Thus, with V, V ′ vector spaces over Z/pZ,
dimV = n − m − r, dimV ′ = m, and U a dimension ` − r subspace of V ⊕ V ′
that is independent of V ′, the number of ways to extend U to a dimension j − r
subspace of V ⊕ V ′ that is independent of V ′ is pm(j−`)β(n −m − `, j − `). Then
almost exactly as shown in Theorem 4.1 of [7] (see also Proposition 5.1 [3]), we get

Corollary 3.3. Let f ∈Mk,M (ΓJ0 (N), χ), and let c∆(Λ) denote the Λth coefficient
of f . Let p be a prime so that p - N . Then for 1 ≤ j ≤ n−m, the Λth coefficient
of f |T̃ Jj (p2) is ∑

Ω

χ(pj+r2−r0) pEj,∆(Λ,Ω) αj,∆(Λ,Ω) c∆(Ω);

here Ω varies subject to pΛ ⊕ ∆ ⊆ Ω ⊕ ∆ ⊆ 1
p (Λ ⊕ ∆), r0 is the multiplicity of

p in {Λ ⊕ ∆ : Ω ⊕ ∆}, r2 the multiplicity of 1
p , r1 = j − r0 − r2, Ej,∆(Λ,Ω) =

k(r2− r0 + j) + r0(n− r2 + 1) + r1(r1 + 1)/2− j(n+ 1), and αj(Λ,Ω) is the number
of totally isotropic, codimension n−j subspaces Λ1 of (Λ⊕∆)∩(Ω⊕∆)/p(Λ+Ω+∆)
that are independent of ∆.

§4. Index-changing Hecke maps

In this section we consider T Jj (p2) where n − m < j ≤ n, as well as T J(p).
Proposition 2.1 shows that the operators considered in this section change the
index of the Jacobi form, and so our algorithm for finding coset representatives
giving the action of these operators is similar, but not identical to the algorithm of
Proposition 3.1.
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Proposition 4.1. Let f ∈Mk,M (ΓJ0 (N), χ) where M is m×m, ΓJ0 (N) ⊆ Spn(Z),
and let p be prime; fix j so that n−m < j ≤ n. Let Λ,∆ be fixed reference lattices

of ranks n −m,m respectively. Fix a basis for ∆, and set ∆′ = ∆
(

1
pI`

In−j

)
where ` = j − n+m.

(a) If p - N then

f |T Jj (p2) =
∑

(Ω,Λ1,Y )

χ(detD/detG) f |δ−1
j

(
D Y

D−1

)(
G−1

tG

)

where Ω varies subject to

pΛ⊕∆ ⊆ Ω⊕∆ ⊆ 1
p

(Λ⊕∆′),

so that for some Λ′ with Λ′ ⊕∆′ = Λ⊕∆′, we have pΛ′ ⊆ Ω ⊆ 1
pΛ′, and Λ1 varies

over all codimension n− j subspaces of (Λ⊕∆′)∩ (Ω⊕∆)/p(Λ + Ω + ∆′) that are
independent of ∆

′
. Here

D = D(Ω) =


Ir0

pIr1
p2Ir2

Im


and G = G(Ω,Λ1) ∈ GLJn,m(Z) so that

Ω⊕∆ = (Λ⊕∆′)GD−1δj , Λ1 = (Λ⊕∆′)G

 0r0
Ir1

0

 ;

also,

Y =


Y0 Y2 W1 Y3

p tY2 Y1 p tW2

0
tW1 W2 W0 W3
tY3

tW3


is integral with Y0 symmetric, r0 × r0, varying modulo p2, W0 symmetric, ` × `,
varying modulo p2, W1 r0 × `, varying modulo p2, Y1 symmetric, r1 × r1, varying
modulo p so that p - detY1, Y2 r0 × r1, varying modulo p, Y3 r0 × (n − j), varying
modulo p, W3 `× (n− j), varying modulo p.

(b) If p|N then

f |T Jj (p2) =
∑

(Ω,Y )

χ(detG) f |δ−1
j

(
I Y

I

)(
G−1

tG

)
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where Ω varies so that for some G = G(Ω) ∈ GLJn,m(Z), Ω ⊕ ∆ = (Λ ⊕ ∆′)Gδj,

and Y =
(
Y0

tY3

Y3

)
is integral with Y0 symmetric, j × j, varying modulo p2, Y3

(n− j)× j, varying modulo p.

Proof. Take M ∈ ΓJ = ΓJ0 (N) and let Mj denote the top j rows of M . So

Mj = (A,A′0, A
′|B,B′0, B′)

where A,B are j × (n−m), A′0, B
′
0 are j × `, ` = j − n+m, A′, B′ are j × (n− j),

A′0 =
(

0
I`

)
, and A′ is a matrix of zeros. ChooseG′0 ∈ GLJj,`(Z) so that (A,A′0)G′0 =

(A0, pA1, A
′
0) where A0 is j × (r0 − `) and rankp(A0, A

′
0) = r0. So (A0, A

′
0) plays

the role played by A0 in Proposition 3.1. Then essentially following the proof
of Proposition 3.1 (with the added inconvenience that A0, A

′
0 are typically not

adjacent) yields the result. �

Proposition 4.2. Let f ∈Mk,M (ΓJ0 (N), χ) where M is m×m, ΓJ0 (N) ⊆ Spn(Z),
and let p be prime. Let Λ,∆ be fixed reference lattices of ranks n−m,m respectively.

(a) If p - N then

f |T J(p) = pn(k−n−1)/2
∑

(Ω,Y )

χ(detD/detG)f |δ
(
D Y

D−1

)(
G−1

tG

)

where Ω varies subject to

Λ⊕∆ ⊆ Ω⊕∆ ⊆ 1
p

(Λ⊕∆).

Here

D = D(Ω) =

 Ir
pIn−r−m

Im


and G = G(Ω) ∈ GLJn,m(Z) so that Ω⊕∆ = (Λ⊕∆)GD−1; also,

Y =

W0 0 tW2

0 0 0
W2 0 W1


is n× n and integral with W0 symmetric, r × r, varying modulo p, W1 symmetric,
m×m, varying modulo p, and W2 m× r, varying modulo p.

(b) If p|N then

f |T J(p) = pn(k−n−1)/2
∑
Y

χ(detG)f |δ−1

(
I Y

I

)(
G−1

tG

)
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where Y is symmetric, n× n, varying modulo p.

Proof. Take γ ∈ ΓJ = ΓJ0 (N). Then the top n rows of γ are (A,A′|B,B′) where

A,B are n × (n −m), A′, B′ are n ×m, and A′ =
(

0
Im

)
. Note that if p|N then

we necessarily have rankp(A,A′) = n.
Choose G ∈ GLJn,m(Z) so that (A,A′)G = (A0, pA1, A

′) with A0 of size n × r,
rankp(A0, A

′) = r +m. Write

(A,A′|B,B′)
(
G

tG−1

)
= (A0, pA1, A

′|B0, B1, B
′)

where B0 is n×r. By Lemma 7.2 of [7], (B0, B
′) ⊆ spanp(A0, A

′), so we can choose
symmetric (r +m)× (r +m) matrix W so that

(A0, A
′)W ≡ −(B0, B

′) (mod p).

Decompose W as W =
(
W0

tW2

W2 W1

)
where W0 is r× r, W1 is m×m; define n×n

matrices

Y =

W0
tW2

0
W2 W1

 , D =

 Ir
pIn−r−m

Im

 .

Then we have

(A,A′|B,B′)
(
G

tG−1

)(
D−1 Y

D

)
= (A0, A1, A

′|pB′0, pB1, pB
′′).

While the choice of G is by no means uniquely determined by γ, the correspond-
ing lattice Ω⊕∆ is, as p(Ω⊕∆) = p(Λ⊕∆)GD−1 is the kernel of the homomorphism
that takes the ith basis vector of Λ⊕∆ to the ith column of (A,A′) modulo p.

While
(
D − tY

D−1

)
6∈ ΓJ0 (N) when D 6= I, just as explained in the proof of

Proposition 3.1, (
D − tY

D−1

)(
G−1

tG

)
gives the action of γ.

Note that when p|N , rankp(A,A′) = n and hence r = n−m and D = I. �

Now we evaluate the action of the Hecke maps on Fourier coefficients.

Theorem 4.3. Let p be prime, and take f ∈ Mk,M (ΓJ0 (N), χ), and let c∆(Ω)
denote the Ωth coefficient of f where Ω denotes a lattice of rank n−m, ∆ a (fixed)
lattice of rank m.
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(a) Fix j so that n−m < j ≤ n; let ` = n−j−m and set ∆′ = ∆
(

1
pI`

In−j

)
.

Then if M ′ = M

[(
1
pI`

In−j

)]
is not even integral, f |T Jj (p2) = 0; otherwise,

the Λth coefficient of f |T Jj (p2) is∑
Ω

χ(pj+r2−r0)pE
′
j,∆(Λ,Ω)α′j,∆(Λ,Ω)c∆(Ω)

where Ω varies subject to pΛ ⊕∆ ⊆ Ω ⊕∆ ⊆ 1
p (Λ ⊕∆′) so that for some Λ′ with

Λ′ ⊕∆′ = Λ⊕∆′, we have pΛ′ ⊆ Ω ⊆ 1
pΛ′. Also,

α′j,∆(Λ,Ω) =
∑
Λ1

α′(Λ1)

with Λ
′
1 varying over all codimension n− j subspaces of (Λ⊕∆′)∩ (Ω⊕∆)/p(Λ +

Ω + ∆′) that are independent of ∆
′
; here α′(Λ1) is as in Theorem 3.2. Also, with

r0 + ` the multiplicity of p in {Λ⊕∆′ : Ω⊕∆}, r2 the multiplicity of 1
p , we have

E′j,∆(Λ,Ω) = k(r2 − r0 − `) + (r0 + `)(n− r2 + 1).

(b) The Λth coefficient of f |T J(p) is 0 if 1
pM is not even integral; otherwise, it

is ∑
Ω

χ(pn−m−r)pE∆(Λ,Ω)c∆(Ω)

where Ω varies subject to Λ⊕∆ ⊆ Ω⊕∆ ⊆ 1
p (Λ⊕∆),

[
1
p (Λ⊕∆) : Ω⊕∆

]
= pr+m,

and E∆(Λ,Ω) = k(n−m− r) + (r +m)(r +m+ 1)/2− n(n+ 1)/2.

Proof. Set F (τ) = f(τ, Z)e{M ′τ ′} where τ =
(
τ tZ
Z τ ′

)
.

(a) The Λ ⊕∆′th coefficient of F |T Jj (p2) is built out of Ω ⊕∆th coefficients of
F where each Ω⊕∆ is even integral and

Ω⊕∆ = (Λ⊕∆′)GD−1δj with D =


Ir0

pIr1
p2Ir2

Im


and G ∈ GLJn,m(Z). The argument now follows that of the proof for Proposition
3.2, and so is left to the reader.

(b) With G,D, Y varying as in Proposition 4.2,

F |T J(p)(τ)

= p−n(n+1)/2
∑
T,G,D

χ(detD) (detD)k c(T ) e
{

1
p
T [DG−1]τ

}∑
Y

{
1
p
TY tD

}
.
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Identify T as the matrix for an even integral lattice on Ω ⊕ ∆, and let Λ ⊕ ∆ =
(Ω ⊕ ∆)DG−1. Thus Λ ⊕ ∆ ' T [DG−1], and (Λ ⊕ ∆)1/p ' 1

pT [DG−1]. So the
sum on Y tests whether 1

pT [D] is even integral, or equivalently, whether 1
pT [DG−1]

is even integral. Hence the coefficient of F |T J(p) attached to (Λ ⊕ ∆)1/p is 0 if
(Λ⊕∆)1/p is not even integral, and otherwise it is as claimed in the theorem. �

As in [5], we can first shift Z, thereby changing the index, and then apply a
Hecke map that changes the index, lifting a Jacobi modular form from index M to
index M ′′ where detM |detM ′′.

Corollary 4.4. Let f ∈Mk,M (ΓJ0 (N), χ).
(a) Take j so that n −m < j ≤ n, and take s ≥ ` = j − n + m. Define g by

g(τ, Z) = f(τ,
(
pIs

Im−s

)
Z). Then g|T Jj (p2) ∈Mk,M ′′(ΓJ0 (N), χ) where

M ′′ = M

 I`
pIs−`

Im−s

 .
If s = ` then g|T Jj (p2) is a multiple of f |T Jn−m(p2).

(b) Define h by h(τ, Z) = f(τ, pZ). Then h|T J(p) is a Jacobi form with index
pM .

Proof. Let F (τ) = f(τ, Z)e{Mτ ′} where τ =
(
τ tZ
Z τ ′

)
.

(a) Set

γs =

 In−m
pIs

Im−s

 ;

then

G(τ) = p−ks F |
(
γs

γ−1
s

)
(τ)

= f(τ,
(
pIs

Im−s

)
Z)e{M ′τ ′}

= g(τ, Z)e{M ′, τ}

where M ′ = M

[(
pIt

Im−s

)]
. So G transforms with weight k and character χ

under (
γ−1
s

γs

)
ΓJ
(
γs

γ−1
s

)
⊇ ΓJ = ΓJ0 (N),

so g ∈Mk,M ′(ΓJ , χ). Hence by Proposition 2.1, g|T Jj (p2) ∈Mk,M ′′(ΓJ , χ).
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Now suppose s = ` (so M ′′ = M). Then with γ running through a set of
representatives for (Γ′j ∩ ΓJ)\ΓJ , we have

p−k`G|T Jj (p2) =
∑
γ

F |
(
γs

γ−1
s

)
|δ−1
j γ =

∑
γ

F |δ−1
j γ.

Also, (Γ′j ∩ ΓJ) ⊆ (Γ′n−m ∩ ΓJ); consequently,

F |
(
γs

γ−1
s

)
|T Jj (p2) = κF |T Jn−m(p2)

where κ = [Γ′n−m ∩ ΓJ : Γ′j ∩ ΓJ ].
(b) We have

H(τ) = p−km F |
(
γm

γ−1
m

)
(τ)

= f(τ, pZ)e{p2Mτ ′}
= h(τ, Z)e{p2M, τ}.

So H transforms with weight k and character χ under(
γ−1
m

γm

)
ΓJ
(
γm

γ−1
m

)
⊇ ΓJ = ΓJ0 (N),

so h ∈Mk,p2M (ΓJ , χ). Hence by Proposition 2.1, h|T J(p) ∈Mk,pM (ΓJ , χ). �

Remark. For C0 ∈ GLm(Z), C =
(
In−m

C0

)
, and F (τ) = f(τ, Z)e{Mτ ′} as

above,

F |
(
C

tC−1

)
(τ) = f(τ, tC0Z)e{M [C0]τ ′},

so f |
(
C

tC−1

)
is a Jacobi form with index M [C0]. Hence the above corollary

can be used to construct from f Jacobi forms of various indices M ′′, detM |detM ′′.

§5. Explicit choices of matrices for the
Hecke-Siegel operators and their restrictions

As discussed earlier, in Propositions 2.1 and 3.1 of [7] we described a set of
matrices giving the action of the Hecke operators on Siegel modular forms; these
matrices are explicitly given except for a particular choice of the change of basis
matrices G(Ω,Λ1), G(Ω). Here we construct explicit choices for these G, and then
give a description of the matrices G corresponding to the restrictions of the Hecke
operators to Jacobi modular forms.
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We first introduce some notation. Fix j, n, 1 ≤ j ≤ n. For (nonnegative) integers
r0, r2 with r0 + r2 ≤ j and r1 = j − r0 − r2, we call P a partition of type (r0, r2)
for (n, j) if P is an ordered partition

({d1, . . . , dr0}, {b1, . . . , br1}, {a1, . . . , ar2}, {c1, · · · , cn−j})

of {1, 2, . . . , n}. (Note that if some ri = 0 or n− j = 0, a set in the partition could
be empty.) Given a partition P of type (r0, r2) for (nj), we let GP(j) ⊆ GLn(Z)
consist of all matrices G = (G0, G1, G2, G3) constructed as follows. G0 is the n×r0

matrix with s, t-entry 1 if s = dt, and 0 otherwise. G1 is an n × r1 matrix with
s, t-entry βst where βst = 1 if s = bt, βst = 0 if s < bt or s = ai (some i) or s = bi
(some i 6= t), and otherwise βst ∈ {0, 1, . . . , p − 1}. G′2 is an n × r2 matrix with
s, t-entry αst where αst = 1 if s = at, αst = 0 if s < at or s = ai (some i 6= t),
and otherwise αst ∈ {0, 1, . . . , p − 1}. G′′2 is an n × r2 matrix with s, t-entry ρst
where ρst ∈ {0, 1, . . . , p− 1} if s > at and s = di (some i), and otherwise ρst = 0.
G2 = G′2 + pG′′2 . G3 is an n × (n − j) matrix with s, t-entry γst where γst = 1 if
s = ct, γst ∈ {0, 1, . . . , p− 1} if s > ct and s = di (some i), and otherwise γst = 0.

Note that (G0, G1, G
′
2, G3) is a (column) permutation of an integral lower trian-

gular matrix with 1’s on the diagonal, and thus is an element of GLn(Z). Also, it
is easy to see that there is an elementary matrix E so that

(G0, G1, G
′
2, G3)E = (G0, G1, G

′
2 + pG′′2 , G3) = G,

and so G ∈ GLn(Z).
We let Gr0,r2(j) = ∪PGP(j) where P varies over all partitions of type (r0, r2) for

(n, j), and we set

Dr0,r2(j) =


Ir0

pIr1
p2Ir2

In−j


where r1 = j − r0 − r2.

Proposition 5.1. Let p be prime, and j an integer so that 1 ≤ j ≤ n. Let Λ be a
fixed reference lattice of rank n.

(a) If p - N , the pairs (Ω,Λ1) in Proposition 2.1 of [7] are in one-to-one
correspondence with the pairs (D,G) where, for some non-negative r0, r2 so that
r0 + r2 ≤ j, D = Dr0,r2(j) and G ∈ Gr0,r2(j), via the correspondence

Ω = ΛGD−1δj , Λ1 = Λ

 0r0
Ir1

0


where r1 = j − r0 − r2.

(b) If p|N then we only need those (Ω,Λ1) corresponding to r0 = j, r2 = 0.
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Proof. (a) In Proposition 2.1 of [7], Ω varies subject to pΛ ⊆ Ω ⊆ 1
pΛ, and Λ1

is a codimension n − j subspace of Λ ∩ Ω/p(Λ + Ω). Here we construct all pairs
(Ω,Λ1), simultaneously constructing G. It is then evident that the pairs (Ω,Λ1)
are in one-to-one correspondence with the elements of ∪r0+r2≤jGr0,r2(j).

Notice that when pΛ ⊆ Ω ⊆ 1
pΛ, the Invariant Factor Theorem (81:11 of [16])

tells us we have compatible decompositions:

Λ = Λ0 ⊕ Λ′1 ⊕ Λ2,

Ω = pΛ0 ⊕ Λ′1 ⊕
1
p

Λ2.

On the other hand, given Λ, such an Ω is determined by Ω′ = Λ2 + pΛ and (pΛ′1 ⊕
Λ2) + pΩ′. Also, in Λ∩Ω/p(Λ + Ω), Λ2 = 0, so Λ1 can be chosen so that in Ω′/pΩ′,
Λ1 ⊆ pΛ′1 ⊆ pΛ.

So to begin our construction of Ω,Λ1 and G = G(Ω,Λ1), in Λ/pΛ we choose a
dimension r2 subspace C

′
; let (v′1, . . . , v

′
r2) be a basis for C

′
. Each v′t is a linear

combination over Z/pZ of the xi; by adjusting the v′t we can assume

v′t = xat +
∑
s>at

αstxs

where a1, . . . , ar2 and distinct and αst = 0 if s = ai (some i 6= t). Let αst ∈
{0, 1, . . . , p− 1} be a preimage of αst.

Now let Ω′ be the preimage in Λ of C
′
. In Ω′/pΩ′ we will construct a dimension

n− r0 subspace C so that dim(C ∩ pΛ) = n− r0 − r2, distiguishing a dimension r1

subspace pΛ1 of C ∩ pΛ. We begin by choosing pΛ1 to be a dimension r1 subspace
of pΛ; let pu1, . . . , pur1 be a basis for pΛ1. Since pxai = 0 in Ω′/pΩ′, we can adjust
the put so that

put = pxbt
+
∑
s>bt

βstpxs

where b1, . . . , br1 are distinct, bt 6= ai (any i), and βst = 0 if s = ai (some i) or
s = bi (some i 6= t). Let βst ∈ {0, 1, . . . , p− 1} be a preimage of βst.

Now extend pΛ1 to a dimension n−r0−r2 subspace pΛ′1 of pΛ in Ω′/pΩ′. Extend
(pu1, . . . , pur1) to a basis

(pu1, . . . , pur1 , pw1, . . . , pwn−j)

for pΛ′1 so that
pwt = pxct

+
∑
s>ct

γstpxs,

where c1, . . . , cn−j are distinct, ct 6= ai, bi (any i), and γst = 0 if s = ai (some i),
or s = bi (some i 6= t). Let γst ∈ {0, 1, . . . , p− 1} be a preimage of γst.
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Now we extend pΛ′1 to a dimension n − r0 space C so that the dimension of
C ∩ pΛ is n− r0 − r2 = r1 + n− j, and we extend (pu1, . . . , pw1, . . . ) to a basis

(pu1, . . . , pur1 , pw1, . . . , pwn−j , pv1, . . . , pvr2)

for C. Taking d1, . . . , dr0 so that

({d1, . . . , dr0}, {b1, . . . , br1}, {a1, . . . , ar2}, {c1, . . . , cn−j})

is a partition of {1, . . . , n}, we can take

vt = v′t +
r0∑
m=1

δmtpxdm

for some δmt; let δmt ∈ {0, 1, . . . , p− 1} be a preimage of δmt.
Now let pΩ be the preimage in Ω′ of C. So with

ut = xbt +
∑
s>bt

βstxs (1 ≤ t ≤ r1),

vt = xat
+
∑
s>at

αstxs + p
∑
m

δmtxdm
(1 ≤ t ≤ r2),

wt = xct
+
∑
s>ct

γstxs (1 ≤ t ≤ n− j),

the vectors

(pxd1 , . . . , pxdr0
, u1, . . . , ur1 ,

1
p
v1, . . . ,

1
p
vr2 , w1, . . . , wn−j)

form a basis for Ω, and (u1, . . . , ur1) is a basis for Λ1 in Λ ∩ Ω/p(Λ + Ω).
(b) When p|N , we necessarily have r1 = r2 = 0 and r0 = j, since the upper left

block of a matrix in Γ(n)
0 (N) necessarily has rank n over Z/pZ, and so its top j

rows have rank j over Z/pZ. �

We follow a similar procedure to construct matrices giving the action of T (p) on
Mk(Γ(n)

0 (N), χ): For 0 ≤ r ≤ n, we let Gr be the set of matrices G constructed as
follows. Let ({d1, . . . , dr}, {a1, . . . , an−r}) be an ordered partition of {1, 2, . . . , n}.
G0 is the n × r matrix whose s, t-entry is 1 if s = dt, and 0 otherwise. G1 is an
n×(n−r) matrix whose s, t-entry is αst where αst is 1 if s = at, αst = 0 if s < at or
s = ai (some i 6= t), and αst ∈ {0, 1, . . . , p−1} otherwise. G = (G0, G1) ∈ GLn(Z).

Let Dr =
(
Ir

pIn−r

)
.
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Proposition 5.2. Let p be prime, and Λ a fixed reference lattice of rank n.
(a) If p - N , the lattices Ω in Proposition 3.1 of [7] are in one-to-one corre-

spondence with the pairs (D,G) where, for some non-negative r ≤ n, D = Dr and
G ∈ Gr, via the correspondence

Ω = pΛGD−1.

(b) If p|N then we only need those Ω corresponding to r = n.

Proof. Note that in Proposition 4.2, we used the lattice Ω⊕∆, corresponding not
to Ω, but rather to 1

pΩ from Proposition 3.1 of [7].
(a) Using Proposition 3.1 of [7], we only need to show that as G varies over Gr,

Ω = pΛGD−1
r varies once over all lattices Ω where pΛ ⊆ Ω ⊆ Λ, [Λ : Ω] = pr. So,

similar to the proof of Proposition 5.1, we construct all the Ω as well as a specific
basis for each Ω.

Let C be a dimension n − r subspace of Λ/pΛ. Choose a basis v1, . . . , vn−r so
that

vt = xat
+
∑
s>at

αstxs

where a1, . . . , an−r are distinct, αst = 0 if s = ai (some i 6= t); for each αst, take
a preimage αst ∈ {0, 1, . . . , p − 1}. Then with ({d1, . . . , dr}, {a1, . . . , a + n− r})
an ordered partition of {1, 2, . . . , n} and G constructed according to our recipe
preceding this proposition, we have Ω = ΛGpD−1

r .
(b) When p|N , we necessarily have r = n since the upper left block of any matrix

in Γ = Γ(n)
0 (N) has rank n over Z/pZ. �

Now we consider the Jacobi case; thus the role played by Λ in the Siegel case is
now played by Λ⊕∆ where Λ has rank n−m and ∆ has rank m.

Suppose first j ≤ n − m. We let GJr0,r2(j,m) be the matrices of Gr0,r2(j) that
satisfy the additional conditions (i) ct = j + t for t > n − j −m, and (ii) γst = 0
for s 6= ct, t > n− j −m. Then GJr1,r2(j,m) is the subset of Gr0,r2(j) consisting of
those G that fix the basis for ∆ under right multiplication of Λ⊕∆ by G.

Now suppose j > n −m. Let ` = n − j −m, and relative to the fixed basis for
∆, write ∆ = ∆0 ⊕∆1 where ∆0 has rank `. With ∆′0 = 1

p∆0, ∆′ = ∆′0 ⊕∆1, we
need G so that

Ω⊕∆ = (Λ⊕∆′)GD−1
r0,r2δj = pΛ0 ⊕ Λ1 ⊕ pΛ2 ⊕ p∆′0 ⊕∆1

(ri = rankZΛi). Since Λ0,∆′0 are not adjacent, we need to modify how we construct
G. (The G we construct will be permutations of a subset of those G of Proposition
5.1.) So with P ′ = {(d1, . . . , dr0), (b1, . . . , br1), (a1, . . . , ar2)} an ordered partition
of {1, 2, . . . , n − m}, we let GJr0,r2(j,m) consist of all matrices G constructed as
follows. G0 is the n× r0 matrix with s, t-entry 1 if s = dt, and 0 otherwise. G1 is
an n × r1 matrix with s, t-entry βst where βst = 1 if s = bt, βst = 0 if s < bt or
s = ai (some i) or s = bi (some i 6= t), and otherwise βst ∈ {0, 1, . . . , p− 1}. G′2 is
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an n × r2 matrix with s, t-entry αst where αst = 1 if s = at, αst = 0 if s < at or
s = ai (some i 6= t), and otherwise αst ∈ {0, 1, . . . , p− 1}. G′′2 is an n× r2 matrix
with s, t-entry ρst where ρst ∈ {0, 1, . . . , p− 1} if s > at and either s = di (some i)
or n−m < s ≤ j; otherwise ρst = 0. G2 = G′2 + pG′′2 , and G3 is the n×m matrix(

0
Im

)
. Set G = (G0, G1, G2, G3) ∈ GLJn,m(Z). Also, let

Dr0,r2(j,m) =


Ir0

pIr1
p2Ir2

I ′m


where m′ = max(n− j,m).

Then Propositions 3.1, 4.1, and 5.1 immediately gives us the following.

Proposition 5.3. Let p be prime, and j an integer so that 1 ≤ j ≤ n. Let Λ,∆ be
a fixed reference lattices of ranks n−m,m respectively. If j ≤ n−m, set ∆′ = ∆;

if j > n−m, set ∆′ = ∆
(

1
pI`

Im−`

)
where ` = n− j −m.

(a) If p - N , the pairs (Ω,Λ1) in Propositions 3.1 and 4.1 are in one-to-one
correspondence with the pairs (D,G) where, for some non-negative r0, r2 so that
r0 + r2 ≤ j′ = min(j, n − m), D = Dr0,r2(j,m) and G ∈ GJr0,r2(j,m), via the
correspondence

Ω⊕∆ = (Λ⊕∆′)GD−1δj , Λ1 = (Λ⊕∆′)

 0r0
Ir1

0


where r1 = j′ − r0 − r2.

(b) If p|N then we only need those (Ω,Λ1) corresponding to r0 = j′, r2 = 0.

Finally, for 0 ≤ r ≤ n−m, we let GJr (m) be the set of matrices G constructed as
follows. Let ({d1, . . . , dr}, {a1, . . . , an−r}) be an ordered partition of {1, 2, . . . , n−
m}. G0 is the n × r matrix whose s, t-entry is 1 if s = dt, and 0 otherwise. G1

is a matrix whose s, t-entry is αst where αst is 1 if s = at, αst = 0 if s < at or
s = ai (some i 6= t), and αst ∈ {0, 1, . . . , p− 1} otherwise. G2 is the n× n matrix(

0
Im

)
, and G = (G0, G1, G2). Also, let Dr(m) =

 Ir
pIn−m−r

Im

. Then

by Propositions 4.1 and 4.2, we have the following.

Proposition 5.4. Let p be prime, n a positive integer, and Λ,∆ a fixed reference
lattices of rank n−m,m respectively.

(a) If p - N , the lattices Ω in Proposition 4.2 are in one-to-one correspondence
with the pairs (D,G) where, for some non-negative r ≤ n − m, D = Dr(m) and
G ∈ GJr (m), via the correspondence

Ω⊕∆ = (Λ⊕∆)GD−1.

(b) If p|N then we only need those Ω corresponding to r = n.



RESTRICTING HECKE-SIEGEL OPERATORS TO JACOBI MODULAR FORMS 29

References

1. A.N. Andrianov, Quadratic Forms and Hecke Operators, Grundlehren Math. Wiss., Vol. 286,

Springer-Verlag, 1987.
2. A.N. Andrianov, Modular descent and the Saito-Kurokawa conjecture, Inv. Math 53 (1979),

267-280.
3. S. Caulk, L.H. Walling, Hecke operators on Hilbert-Siegel modular forms, Int. J. Number

Theory 3 (2007), 391–420.
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