HECKE OPERATORS ON HILBERT-SIEGEL MODULAR FORMS

SUZANNE CAULK AND LYNNE H. WALLING

ABSTRACT. We define Hilbert-Siegel modular forms and Hecke “operators” acting
on them. As with Hilbert modular forms (i.e. with Siegel degree 1), these linear
transformations are not linear operators until we consider a direct product of spaces
of modular forms (with varying groups), modulo natural identifications we can make
between certain spaces. With Hilbert-Siegel forms (i.e. with arbitrary Siegel degree)
we identify several families of natural identifications between certain spaces of mod-
ular forms. We associate the Fourier coefficients of a form in our product space to
even integral lattices, independent of basis and choice of coefficient rings. We then
determine the action of the Hecke operators on these Fourier coefficients, paralleling
the result of Hafner and Walling for Siegel modular forms (where the number field is
the field of rationals).

1. INTRODUCTION.

A Siegel modular form F' of degree n over the rationals has a Fourier series
supported on even integral symmetric n X n matrices. An even integral symmetric
matrix can be interpreted as the matrix for a quadratic form on an even integral
lattice, relative to some Z-basis for that lattice. Given the transformation property
of F' under the symplectic group, the coefficient of F' attached to a matrix T is
equal to that attached to the conjugate ‘GT'G where G is any integral change of
basis matrix (with determinant 1 when k, the weight of the modular form, is odd).
Consequently we can rewrite F' as a “Fourier series” supported on even integral
lattices, without specifying a basis for each lattice. For each prime p there are
n + 1 Hecke operators, T'(p) and T;(p?) (1 < j < n) associated to p, n of which are
algebraically independent. In [5] we determined the action of these operators on
the Fourier coefficients of F'. In this paper we extend this result to Hilbert-Siegel
modular forms.

With K a totally real number field and P a prime ideal, we mimic the construc-
tion of the classical Hecke operators and construct a linear transformation 7'(P)
acting on Hilbert modular forms. When P is not principally generated, T'(P) maps
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modular forms attached to I' = SLy(O) (O the ring of integers of K), to forms
attached to the “psuedo-conjugate”

P 0 7)_1 0 o a b . -1 o
(O 1)F( 0 1)_{<c d).a,de@,bEP,CEP ,ad—bc-l}.

So for T'(P) to be a linear operator (meaning its domain and codomain are equal), it
is necessary to consider a (finite) direct product of spaces of modular forms attached
to psuedo-conjuagates of SLy(O). In [7], Shimura defined “Fourier coefficients”
attached to integral ideals of a form in this direct product, and he determined the
action of T'(P) on these Fourier coefficients.

In the case of Hilbert-Siegel modular forms, we need to consider a (finite) direct
product of spaces of forms attached to psuedo-conjugates of Sp, (O) for the maps
T(P) and T;(P?) to be linear operators. For a form in this direct product, we define
“Fourier coefficients” attached to even integral lattices, independent of basis and
choices of coefficient rings (note that an O-lattice is not necessarily free, and there
are numerous ways to write it as Az @ - - - ® A, x,, with the A; fractional ideals).
Then we determine the action of the Hecke operators on these Fourier coefficients.
When k is odd, we need to impose an orientation on A. Thus

F(r) =) c(A)e*{Ar}

clsA

where clsA runs over isometry classes of lattices A, and e*{A7} =
S cexp (miTr( *GTGT)); here A = Ay @ - ® Apxpn, T = (B(zi,2;)) where
B is the symmetric bilinear form associated to the quadratic form @ on A so
that Q(z) = B(z,x), and G varies over O(A)\GL,(Z) when k is even, and over
OT(A)\SL,(Z) when k is odd. (Two lattices A, are in the same isometry class if
there is an isomorphism from one onto the other that preserves the quadratic form.
Also, O(A) is the orthogonal group of A.)

We begin by defining symplectic groups I'(Z1,... ,Z,;J) for fractional ideals
Z;, J. We show that the spaces of modular forms associated to I'(Z1, ... ,Z,,; J) and
0(Zy,...,Z/; J") are naturally isomorphic whenever cls(Z; ---Z,,) = cls(Z] ---Z})
and clxtJ = clxtJ’. (Here clsZ denotes the wide ideal class of Z, and clx*J
denotes the strict ideal complex of 7. Thus clsZ = clsZ’ if Z = oZ’ for some o € K,
and clxtJ = clxTJ' if J = aZ?J’ for some fractional ideal Z and o > 0.) We
set My = @7, gMi(D(Z1, ... ,Zy;TJ))/ ~ (so we identify spaces that are naturally
isomorphic). Next we attach the Fourier coefficients of (the components of) F'
to even integral lattices, independent of the basis and the coefficient rings used
to realize each lattice. (For a full discussion of this, see the discussion preceeding
Proposition 2.2.) In §3 we introduce operators S(Q) attached to fractional ideals Q,
and we decompose My, as @, My (x) where x varies over ideal class characters, and
F|S(Q) = x(Q)F for F € My(x). Then in §4 we introduce the Hecke operators
T(P) and T;(P?), 0 < j < n, and we find coset representatives giving the action of
the operators. When then analyzing the action of the Hecke operators T};(P?) in
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§5 we encounter incomplete character sums; we complete these by replacing Tj (P?)
with T (P?), a combination of Ty(P?), 0 < ¢ < j. Finally, we show that for A7 an
even integral lattice and F' € My (x), the AZth coefficient of F|T;(P?) is

S NP)YEON(P) Ny (Q, A)ep(27)
PACQCP-1A

where E; (€2, A) and e;(£2, A) are given by formulas in terms of the invariant factors
{Q: A}, and o (Q, A) reflects some geometry of (2N A)/P(Q2+ A). (A formula for
a; (€, A) is given at the end of §5.) A similar but much simpler argument shows
that the A7 th coefficient of F|T(P) is

> N(P)FENep@7P )
PACQCA

(see Theorem 5.2).
In §6 we present a lemma on completing a symmetric coprime pair to a symplectic
matrix. The reader is referred to [6] for basic results on lattices and quadratic forms.
The authors are thankful for the referee’s careful reading.

2. DEFINITIONS, ISOMORPHISMS, AND FOURIER
COEFFICIENTS ATTACHED TO EVEN INTEGRAL LATTICES.

Let K be a totally real number field of degree d over Q, and let 0 denote the
different of K. Let H,) denote degree n Siegel upper half-space; so

Hpy ={7=X+iY: X, Y € R™" are symmetric, Y >0 }.
For fractional ideals 71, ... ,Z,,J, let

DZy,..., Ty J) = { (é g) € G2,(K): A'B,C 'D symmetric,

A'D-B'C=ul, ue O, a;; € T,T; ',

bij € Iinja_l, Cij € (Iinj)_la, dij c Ii_llj }

(Here A = (a;j ), etc.) So with I' =I'(0,... ,0;0), I'(T4, ... ,Z,; J) corresponds
to the formal conjugate dI'6 ™! where

JI

IS9
I
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Also notice that I'(Zy, ... ,Z,; JI?) = (T Z,... . T,T; J).

Definition. A degree n (n > 1), weight k Hilbert-Siegel modular form for
[(Zy,...,Z,;J) is a function f : Hfln) — C so that the following two conditions
hold.

(1) fis “analytic on H?n) and at infinity,

2

meaning that for 7 € H?n),

f(r) = eD)e{Tr}

T

where T runs over symmetric, positive semi-definite n x n matrices. Also,
o(M) denotes the trace of a matrix M, Tr denotes the trace from K to Q,
and
e{T1} = exp(mio(Tr(T7))).

Here Tr(T7) = Y%, TW7;, where T is the image of T under the ith em-
bedding of K into R.

(2) For all M € T'(Z4,...,Z,;TJ), fIM = f where, for any matrix (él, g)
(written in n x n blocks), we define

= det(N(A'D — B 'C))¥/?det(N(Cr + D))~*

f((Ar+ B)(Ct +D)™1).

Here N denotes the norm from K to Q, extended so that

d
N(Cr+D)=][C"7+ DY,

=1

Let My (I'(Zy,...,Z,;J)) denote the space of Hilbert-Siegel modular forms for
I(Zy,...,7,;J), and let f be a modular form in this space. Since f(7+ B) = f(7)
for all symmetric B € (Z,Z;J07'), 0 the different of K, we must have e{T' B} = 1
for all T' € suppf. Note that for T'= (¢;;), B = (b;;) symmetric matrices,

O'(TB) = zn:t”b” + Z 2t¢jbij.
=1

1<i<j<n

Thus for T' € suppf, we must have T € ((Iiljj)_l) with T" even, meaning t;; €
2172 g1

Definitions. We define families of isomorphisms between spaces of modular forms
as follows: Fix f € Mp(T'(Z1,... ,Z.;T)).
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First, for « € K* and 1 </ < n, let

and define
fode) =1 (M ).

. M /
Since ( tM_1>F(I{,--- ,In;j)<

I’—{L if 044
Yl azy ifl=1,

—1
M tM):I‘(Il,...,In;j) where

Ue(a)  defines an  isomorphism  from  My(T(Zy,...,Z,;J)) onto
For a > 0, define W(«) : My (T'(Z1, ... ,Zn; T)) = Mp(T(Zy,... ,Zy;aT)) by

= ().

One easily checks (as we did above for Uy(a)) that W («) is an isomorphism.
For Q a fractional ideal, 1 < ¢ < n, choose

Q! o7,Z,, )
Ae £+l
( Q7,7 Q

so that det A =1 (possible by Strong Approximation; see p. 42 [6]). Let

and define
FIVi(Q) = f] (M tM_1> -

. M M1
Since ( tMA)F(I{,...,Z;;j)( tM) =1(Z1,...,Z,;J) where
Z; ifi#£0,0+1

Q_lz-g_’_l lf'l:‘e—i‘l,
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the map Vjy(a) defines an isomorphism from Mg(I'(Z4,...,Z,;J)) onto
For Q a fractional ideal and 1 < ¢/ < 5 < n, set

Vi (Q) = Vi(Q)Ver1(Q) - - - Vi1 (Q).

Then Vp;(Q) defines an isomorphism from My(Zy,...,Z,;J)) onto
M (D(ZY, ..., Z,;T)), where

7, it
7= o7, iti=1
Q‘11j+1 if 4 =7,

Proposition 2.1. The maps Up(a), W(a), Vi;(Q) commute and for fized ¢,j,
these operators are multiplicative (as functions on fractional ideals).

Proof. The tedious aspect of proving such relations among our isomorphisms is that,
for any of the above listed maps, the domain and codomain differ. Keeping track
of appropriate domains and codomains, and using the matrices we used to define
the actions of these operators, it is then straightforward to verify the operators
commute, remembering that if MN~! € T for any group I' = I'(Z1,... ,Z,; J),
then f|M = f|N for f € My('). O

Definition. For f € My (T(Zy,...,Z,; 7)), g € Mi(Z,... ,Z};T")), define the
equivalence relation ~ by f ~ g if some composition of the maps U;, W, V;; takes f
to g. We define

My =@, gMe(L(Th, ..., Zp; T))/ ~

where 71,...,Z,,J vary over all fractional ideals. Note that ~ partitions the
spaces My (T'(Zy,...,Z,;J)) according to cls(Zy---Z,), cIxtJ. Thus My =~
Qeist clx+ 7 ME(L(O, ... ,0,7;7)), clsZ runs over all ideal classes and cls* 7 runs
over all strict ideal class complexes. (7, J’ are in the same strict ideal class complex
if 7' = aZ?J for some fractional ideal Z and o >> 0.)

Let Zi,...,Z; represent the ideal classes, [Ji,...,Jm the strict ideal com-
plexes. Then for F' € My, F is represented by any (..., fij,...) where f;; €
M(T(Zy,... I, T), Iy -+ I, € clsZ;, J' € clx™ T

Given an element F' € My, we can associate the Fourier coefficients of F' with
lattices equipped with positive semi-definite, even integral quadratic forms as de-
scribed below.

First note the following. Say f € Myg(I'(Zy,...,Z,;J)) is a component of a
chosen representative for F'. So the support of f lies in ((L-Ijj )_1). For T €
suppf, consider T" as defining a quadratic form @ on Oz @ - - - ® Ox,, (recall that
T is symmetric and even, meaning the ith diagonal entry of T' lies in 27, 27 -,
Thus with A =Z121® - - - & L2, Q(A) C 27t If a® = J then the scaled lattice
A® is even integral, meaning a@(A) C 20. When J is not principal, we abuse
notation and language and refer to A7 as an even integral lattice. We agree to
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identify A" with TA since locally everywhere these are identified (paralleling the
fact that T'(Zy,... ,Z,;22T) =T (Z11,... , I1,; J)).

Not every lattice is a free O-module, and given a lattice A, there are many ways
to choose fractional ideals Z; and vectors x; so that A = 7121 ®--- ® I, x,. Say we
have

A=T1x1 & ®Lyxy =L15 © - B L Yn,

Y = Ez Qi ;. Then by 81:8 [6], Il N 'In = I{ c 1-1/1 : det(aij).

The Invariant Factor Theorem (81:11 [6]) says that given lattices A, on
a (non-zero) space V, there are vectors xy,...,x, € V and fractional ideals
Ty, In, Ay, ..., A, so that

A :Ile1 D--- @ann7
Q= I1.A1£C1 ®--- @In-Anxn7

and A;|A;+1 (1 < i < n); the A; are unique and called the invariant factors of Q
in A. We use {A : Q} to refer to these invariant factors, and we write {A : Q} =

<A17 cee ;An)-

When analyzing the action of Hecke operators on Fourier coefficients, we sum
over lattices A where PA C Q C P~!A, P a prime ideal and A a fixed reference
lattice of rank n. By the Invariant Factor Theorem, we have sublattices A; so that

A=Ag DA D Ao,
Q=PAy DA, &P 'As.

So for instance, ro = rankA( is the multiplicity of P among the invariant factors
{A : Q}, denoted 79 = mult{s.01(P).

We will also need to consider (A7 N Q7)/P(A7 + Q) ~ AY /PAY. We will
only be considering even integral AZ. Thus Q induces a quadratic form %aQ on
AY /PAY defined by

%a@(:c +PA) = %QQ(Q:) +PeO/P

where o € K has been fixed so that aOp = JOp. Since Q(A;) C 27 1, this gives
us a quadratic form on the O/P-space Ay /PA{. Note that the structure of the
quadratic space A‘17 / PA{ is independent of the choice of «.

Defninition. Let f € Mj. Given any even integral positive semi-defnite lattice
A with A=Tix1 ® - B Lz, We set

c(AT) = cp(AT) = cf(T) - N(Ty -~ To)"N(J)"™*/?
where f € My(I'(Zy,...,Z,;J)) is a representative of the component of F' corre-

sponding to cls(Z; - -+ Z,,), cIx™ 7, and T = ( B(z;,z;) ). If k is odd, we assume A
is also equipped with an orientation.
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Proposition 2.2. The “Fourier coefficient” c¢(A7) is well-defined.

Proof. First, suppose we also have A’ = Zyy; & --- & Z,yn, and A = A’. Take
M = («a;;) so that
(yl---yn) = (iL'lLIJ'n)M

Hence (B(yi,yj)) = "MTM (recall T = (B(x;,x;))). Note that

ijj = Zaijljxi Q A,

SO (uj € L-Z;l. Also, since volA = volA’, it follows that det M € O*. (Recall that
if k is odd then A has an orientation, and det M must also be totally positive.)

Thus (M tM_1> el(Ty,...,Z,;J), and so

f:f‘(M tM—l)'

Hence

(recall that det M is a unit, and that if k£ is odd, a totally positive unit). Thus
cp( 'MTM) = N(det M)* c¢(T) = c¢(T), and so

C(AJ) = Cf(T)N(Il .. In)kN<j)nk/2
= Cf( tMTM)N(Il .. _’Z'n)kN(j)nk‘/2 _ C(A/J),

Thus the definition of ¢(A7) is independent of the choice of basis relative to the
coefficient ideals 71, ... ,Z, and the scaling ideal J (so here Zy,... ,Z,, and J are
fixed).

Next, fix J and suppose A = Zyx1 @ -+ ® Lpx,, = Z1yy @ -+ @ Z)y,,. Then by
81:8 of [6], Z7 - --Z], € cls(Zy - - - Z,,). Thus, as we have seen, My (I'(Z4,... ,Z,; J)) ~
My(I(Z1,... ,7); J)) via an appropriate composition of the maps U;, V;;; the action
of this composition is given by
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where M € (Z,Z; ') and (det M)I} ---I}, =Ty - - - I,,. Also,

f'(r) = N(det M)* f(Mr 'M) = N(det M)* > " cp(T)e{ "MTMr},
T
socp (*MTM) = N(det M)kcf(T). Set (y1...Yn) = (x1...25)M; thus Oy; &---
Oy, ~ "MTM. We claim that with A’ = Zjy; &--- &L y,, A’ = A. We know that
writing M as (a;),

Yj = Z OG5 € (IJ’-)_l(lel D--- @Iniﬁn)
=1

and so A’ C A. Since norm(A) = (Zy-+-Z,)? -det T = (Z} - - - Z})? - det CMTM) =
norm(A’), we have A’ = A. So

o(N) = ep(PMTM) N(Z, - T,)F N(T)™
= cf(T) N(det M)* N(I7---T,,)" N(T)"/?
= ep(T) N(T; -+ T} N(T)™
= c(AY).

Thus by our assumption, Zjy1 @ - -+ ® Z,yn = Z1y) © -+ © Ly, which reduces
the problem to the preceeding case. Hence our definition of ¢(AY) is independent
of the choice of classes Z1,...,Z, so that cls(Z;---Z,) is as prescribed (so here
cls(Zy -+ 7,), J are fixed).

Finally, suppose J' € clxT 7. Thus J’ = aZ?J for some fractional ideal Z and
some a > 0. Say A =Z1x1 P+ - - DI,x,. We have agreed previously to identify AT
and ZA, so that cf(AO‘IQJ) = ¢f(ZA*7), whether we think of f as associated to
[(Z1,...,Zn;0Z?J) or to U(ZZy,. .. ,Z1,; aJ) (remember, these are two names for
the same group). So suppose J' = aJ, a > 0. We know My (I'(Zy,... ,Z,;T)) =~
M(T(Zy, ..., Zy;T)) via

, a 1T
per=n ().

f'(r) = N(@)™"™2 fa~'r) = N(a) ™" Y " ep(T)efa™' T}

Thus

Consequently ¢z (a1T) = N(a)~"*/2 ¢;(T). Set N = Tyx1 @ - - - ® L, 7, equipped
with the quadratic form a=!'T (so (A’)*7 is an integral lattice). Then we have

c(AJ) =cf(T) N(Z - 'In)k N(j)nk/Q
= Cf/(oz_lT) ]\f(_’Z'1 .. .In)k N(Ozj)”k/Q
= c((A)*).

Thus the definition of ¢(A7) is also independent of the choice of the representative
for clxt 7. O
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3. EIGENSPACES.

The V;(Q) operators are lifts of the Hilbert modular form operators that Eichler
called V(Q71) [3] and Shimura called S(Q) [7]. We now introduce another lift of
these operators, and following Shimura [7] (where n = 1), we decompose M}, into
eigenspaces for these new operators.

Definition. Let O be a fractional ideal, and choose

a b Q O 172707}
c d Q7,277 10 Q!

with ad — bc = 1. Set

0 In—é
Then MT(Zy,... ,Zy; )M~ =T(Zy,... , I/; J) where

I,:{Ij if £ 0,
J Q-17, ifj=".

Thus S¢(Q) : My(L'(Th,...,Zn;TJ)) — Mp(T(Z1,... ,7);J)) is an isomorphism
where we define

f1Se(Q) = fIM.

Proposition 3.1. With Q,P fractional ideals and oo € K*, Sy(Q) commutes with
Ui(a), W(a), and Vi;(P). Further, S;(Q)Vi;(Q) = S;(Q) and U;(a™1)S;(Q) =

Proof. Keeping in mind the various domains for different incarnations of our func-
tions, it’s easy to show Sy(Q) commutes with U;(a), W (a).

To show S¢(Q), V;;(P) commute, it suffices to show S¢(Q), V;(P) commute (recall
how Vj; is defined). When ¢ # 4,141, it is easy to see the matrices giving the actions
of S¢(Q), V;(P) commute. As we explain below, we can reduce our attention to the
case n = 2.

Suppose ¢ =i or i + 1; for the sake of clarity, let us first look at the case where
1 =1, =1 or 2. Then the action of each operator is given by a matrix of the form

A B

C D
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where A, B,C, D are 2 x 2 matrices. Since the product of such matrices (and their
inverses) is again of this form, it suffices to restrict our attention to the submatrices

(e p)

First consider n =2, ¢ = ¢ = 1. Choose

a b o) QP21279~
c d (QT2.7)18 o1

so that ad — bc = 1. Choose

2 POT, T,
Ae (P—11;122 P

so that det A = 1. (Note that these choices are possible, even when Q@ = P.) Then

gives the action of both

51(Q) : My (I'(Q1h, 12; T)) — Mi(I'(Z1,12; J))

and

S1(Q) : Mp(T(PQT, P 10, J)) — My(T(PLy, P~ T2, 7).

Similarly, N = (A ‘ A_l) gives the action of both

Vi(Q) : My(D(QT1,75; T ) — My (T(PQL1, P12 J))
and
Vi(Q) : My(D(T1,T2; J)) — My(D(PIy, P~ 1y 7).

A simple (but tiresome) check shows MNM-N~1 € T'(QZI;,T»;J), which
implies that S1(Q),Vi(P) commute when n = 2. For general n, we have
S1(Q)V1(P)S1(Q 1 V4 (P~1) represented by a matrix of the form

A B
, I 0
M= C D
0 I
A B ,
where c p) € Q71,Z5; ). Thus M’ € T'(QL1,Zs,...,Z,;J), and

S51(Q), V1 (P) commute for general n. Similarly, S2(Q), V;1(P) commute for n = 2,
and thus for general n.
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For general n, ¢, i with £ = i or i+1, the matrices giving the action of S¢(Q), V;(P)

are of the form
Ii 0i—1

0 1

where A, B,C, D are 2 x 2 matrices. So again the problem reduces to showing
Se(Q),Vi(P) (¢ =i or i+ 1) commute when n = 2 (which we have done).

To see that S;(Q)V;;(Q) = S;(Q), it again suffices to consider j = ¢ + 1. First,
fix a group I' =T'(Z4,... ,Z,; J). From our definitions, we have a product of three
matrices giving the action of S;(Q)V;(Q)S;+1(Q 1) on My(T). One easily verifies
that the conditions on these matrices ensure the product for S;(Q)V;(Q)S;11(Q71)
lies in T'. Finally, one verifies U;(a™1)S;(Q) = S;(«Q) by matrix multiplication. [J

This shows that the Sy(Q) act on My, where, for F' € My, F ~ (..., fi,...),
F|Se(Q) ~ (..., filSe(Q),...). It also shows that S;(Q),5;(Q) are equivalent on
M, and so we simply refer to this operator on My, as S(Q). Furthermore, on My,
S(Q) = S(aQ) for all @ € K*; since we also know S(x) is multiplicative, the map
clsZ — S(Z) gives a group action of the ideal class group on M.

Proposition 3.2. M = @&, My (x) where x varies over all characters of the ideal
class group, and

Mi(x) ={F € My : F|S(Q) =x(Q)F for all Q }.

Proof. First notice that My (x) N My(¢) = {0} if x # 1. To prove this take
F € Mi(x) N Mg(¢). Then x(Q)F = F|S(Q) = ¢(Q)F for all Q. Since x # 1
there is a @ such that x(Q) # ¥(Q). Therefore F' = 0.

1 e—_
For v an ideal class character, let G = 7 Z W(Z) F|S(Z) where h is the class

clsZ
number of K. Note that

{ h if clsZ = clsO,

ZGw— Z Zw F|S(Z) = F since ZE(Z)—
P

Cls - otherwise.

Thus F' =3, Gy.
Next notice that

| =

Gy|S(Q 1) FIS(D)I5(Q)

h

1

EZ ) F|S(ZQ)
Is7

$(Q)> W(ZQ) FIS(IQ)

clsZ
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Thus Gy € My (v), and hence F € @&, My (x). O

4. HECKE OPERATORS.

We begin by defining the Hecke operators. Then we show that they act on each
M (x). After this, we describe how to find a set of coset representatives giving
the action of the operators. Finally, in the next section we analyze the action of
the operators on Fourier coefficients attached to even integral lattices, proving our
main theorem.

Definition. Let P a prime ideal; set I' = F(Il, oIy J) and TV =
I'(Zy1,...,Z,;PJ). We define the Hecke operator T(P) : My (") — My(T") by

FIT(P) = N(P)"*"""0/2 % [ Fly

~

where v runs over a complete set of coset representatives for (I NI")\I'. Note that
IV is the formal conjugate of T' by the matrix § = (PI” I ) When K = Q, we
define T'(p) on My(I') b

fIT(p) = p"*== 02N " fls 1y
Y

where v runs over a complete set of coset representatives for (I"NT)\I', IV = §T'6 1,

5= (P I I>' (This normalization of T'(p) is standard, and as with the standard

normalization of the degree 1 Hecke operator T'(p), the purpose of the normalization
is to force the coefficient to be 1 on the “lead” term in the expression for the Ath
coefficient of F|T(p).)

Now fix 1 < j < n; let I'; = I'(PZy,... , PZj, Zjy1,- .. ,Zyn; J). We define the
Hecke operators T;(P?) : My(T';) — M(T) by

F|T;(P?) = Z Fly

where « runs over a complete set of coset representatives for (I'; N T)\T".
Note that I'; is the formal conjugate of I' by diag(P1}, I,,—;, P11, I,,—;). When
K = Q, P = pZ, we define T;(P?) = Tj(p*) on My(T) b

fIT;(P?) = Zfra o

where § = diag(pl;, I),— iy 17, 1,,—;), TV = 8T671, and v runs over a complete set of
coset representatives for (I" ND\L. (We mtroduce a normalization later.)
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Proposition 4.1. The operators T(P),T;(P?) commute with U; (), W (), Vie(Q),
and S;(Q) where o, f € K* with 8 > 0, and Q is a fractional ideal. Thus T(P),
T;(P?) act on My(x) (as defined in Proposition 5.2).

Proof. To show T};(P?) commutes with the V;,(Q), it suffices to show it commutes

with V;(Q). Take .
-1 ;T
Ae ( _1Q —1 ’ QP)
1, 1,97 P Q
with det A = 1, and set

, PL; ifi<jy,
T =
! Z;  otherwise.
Then with
i1
A
Al:: In 1—1

In—i—l
M gives the action of V;(Q) : Mg(T') — My (M T M) and of V;(Q) : My(I") —
M (M~ M) (note that these are the appropriate codomains). Now let {v}
be a complete set of coset representatives for (I N T)\I'. Thus {M~1yM} is a
complete set of coset representatives for (M ~'I"M N M~TM)\M~'TM. Hence
for f € My (I),

FIT (PHV; ZfMM

= Zf|M|M‘1'yM

>
= [IVi(QT;(P?).
Similarly, to show 7};(P?) commutes with ;(Q), choose

a b, ) Q- 172P2 79!
c d QZZ;QJ7_18 22—1

so that ad—bc = 1. Then <CCL b) lifts to a matrix M so that M gives the action of

d
Si(Q) : My(T) — My (M *1FM) and of S;(Q) : My(I") — My (M~'T'M). Thus
fIT;(P?)S meM
= Zf!M_llM‘lvM
>
= f1Si(Q)T;(P?).

Similar but simpler arguments show that 7} (P?) commutes with U;(a), W (), and
that T'(P) commutes with V;(Q), S;(Q),U (04) w(g). O
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Proposition 4.2. For f' € My(I'), we have

P = Y f’|5(j)(ﬂ)<1 ?) (C_l tc)‘

QA.,Y

Here Q varies over all lattices such that PA C Q C P~1A, Ay varies over all codi-
mension n—j subspaces of QNA/P(Q+A), C = C(Q, Ar). Withrg = mult .01 (P),
my = multir.0y(O0), i =m1 —n+j, p € P~ — Q fized,

ro+71 J

S(j)(Q):< 11 SZ-(P)>< 1T SZ-(PQ)>,
i:7“0+1 i:T0+T1+1

Wo Wy 0 Ws

Wy Wi

0

tWS

with Y € (L,Z;J0~ '), Wy varying modulo P?, Wy, Wa, W3 varying modulo P with
P not dividing det Wy . (Recall that O is the different of K.) Here Wy is 1o X ro and
symmetric, W1 is r1 X r1 and symmetric, Wy is 7o X r1, W3 is rg X (n — j).

Y =

Proof. Let P be a prime ideal, and fix j, 1 < j < n. We essentially follow the
algorithm presented in [5] to find a set of coset representatives giving the action of

T;(P?) : Mp(T(PZy,. .. ,\ PLj i1y s In; T)) — Me(D(Zy, ... . Tn; T)).

For convenience, we will take Z; = O for 1 <i < 5, Z; = O for j < 1 < n; also, we
take Z = Z,, and JO~! to be integral ideals relatively prime to P (recall that the
equivalence class of My (T') is determined by clsZ, clst 7, and 9 is the different of K).
Note that this allows us to choose y relatively prime to Z; ---Z,J0~ ' = ZJ0~!.
Choose M € I'(O, ... ,0,1;J), and let M; = (A|B) denote the top j rows of
M with A, B j x n matrices. Let A = Opx1 & --- ® Opx, be a reference lattice.
Step 1. Let
Qo = ker(A — A(A) mod POp)

where A = (a7 -+ - a,) and A — A(A) mod POp denotes the map that takes z; to @,
(which is a 1 x j matrix with entries in Op/POp). Note that the ro = rankpA(A)
is at most j since A is a j X n matrix.

We claim there is a matrix

o = acy (71

0 (mod P).

First, write A = (ay...a,) and consider the rank modulo POp of (a;...ay,).
Let 1 be an (n — 1) x (n — 1) invertible matrix (i.e. a change of basis matrix) so
that

o1 e I'(0,...,0,7;J) such that

) and (A|B) (C tC’_1> = (A'|B’) with af,... ,a], =

I?’L—T’o

(a1...an)E1 = (a}...a))
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/

with ai,...,a;, linearly independent modulo POp and a; ; = --- = aj,_ ;| =
Eq
0 (mod POp). Note that G; = tpt e I'0O,...,0,7; 7). If a, is
1
in the span modulo POp of ay,...,a; , then there is a matrix E, = 4 1(

such that (a}...al,_jan)FEy = (da}...al,) where a,, = 0 (mod POp); note that

Go = (E2 tE_1> eI(0,...,0,7; J) and we take Cy to be G1G3. If ro =n—1
2

then we are now done, regardless of whether a,, is in the span (modulo POp) of
Ay e s Ay

So suppose g < n — 1 (and thus a},_; = 0 (mod POp)) and a,, is not in the
span (modulo POp) of ai,... ,a; .

Choose n € Z71,p € T such that n = p = 1 (mod P) and choose v € P
such that (v,np) = 1. Thus there are [3 € so that av — pnB =

Then with F3 = ! o nﬂ), (a}...al,_ja,)E3 = (a}...a),_5all_jal’) with
p v

a’”_, = a, (mod P), a!/ = 0 (mod P). Note that G = <E3 tE3,_1> €

ro,...,0,7;J). Let E4 be the permutation matrix that permutes columns rg

Ea tE4_1) el(O,...,0,T;J) and (a; ...a,)G1G3Gy =

(ay...a;,_1a,0...0) (mod P). Hence in this case we take Cy = G1G3Gy.

and n —1; then G4 = (

Thus there is a matrix Cy and integer ry such that (CO ¢ 0_1) €
0
ro,...,0,7;J) and Qy = ACy (PITO I > Then with renewed nota-
n—ro

tion, M, (CO tC'_l) has the form (ay,...,an|b1,...,b,) = (Ag41|B), A1 =
0

0 (mod P).

Note that while Cy is not uniquely determined, €} is.

Step 2. First note that Lemma 7.2 of [5] easily generalizes to number fields,
where we “permute” b, and b, as we “permuted” a; and a, in the preceeding
paragraph. Thus with

C
Mj( 0 tc,o_l):(A|B):(a1,...,an|b1,...,bn),

where by,...,b,, are in the span mod POp of ay,...,a,,, and the rank mod

POp of (a,...,arybrg+1,...,by) is j. Thus for some C = (Iro E) with

(C tc—l) € I(0,...,0,T;7J), we have (A|B) (C to—l) — (A'|B') with

a; = a; for i < rp, and j the rank mod POp of (a1,...,ary, by 11,---,05). We
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want to accomplish the above rearrangement, as well as replacing b;. 41>--- by, with
vectors in the span mod POp of ay, ... ,a,,; we want to identify these modifications
with a uniquely determined lattice.

From Step 1 we have A = Ag® A1, Qo = PA¢®A; with Ay uniquely determined
modulo PA. This corresponds to a splitting A# = A, @ A} of the (formal) dual of
A, where Aj is orthogonal to A; and A is orthogonal to Ag. (So

and the basis {y1,... ,yn} is dual to {z1,... ,z,}.)
Let V be the Op/POp-space consisting of all j x 1 matrices, and let U be the

subspace spanned by ay, ... ,a,,. Let

Q) =ker(A* — A (B) mod POp — V/U),

where A# — A#(B) corresponds to y; — b;, and the map into V/U is the canonical
S : : I
projection map. Thus as in Step 1, we can find a matrix C = ( ro E) SO

that to-1) € ro,...,0,7;7) and (A|B) (C io-1) = (A'|B’") with
by = bos - -+, by, = bry, b1, 0, in the span mod POp of ag, ... ,ar,. Also, setting
C, =CoC,
I,
Q) = A* tort Pl _y, ;

I

A# = A# PCTH = Ay @ AL, @ Ay with rankA, = j — rg and AL @ A4 uniquely
determined modulo PA#. Correspondingly,

Qo = AC, (PL"O 7 ) .
n—ro

Note that A = AC; = Ay ® Ay @ A3. Set

PI,,
Q1 = AC, Loy, = PAo & Ay ® PAs.
PlL,_;

Since A @ A} are uniquely determined modulo PA#, A, is uniquely determined
modulo PA.
Step 3. Write

C
M; ( ! tcl) = (a1 an|by---by) = (ApA1A3|B1B2B3)
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where j is the rank modulo POp of (A4y, B1), A1, A3 =0 (mod POp), and By, Bs
are in the (column) span modulo POp of Ay. We want to modify A; to be of the
form (A}, AS) where A, =0 (mod P20p). Recall that we have
A=A ® Ay ® As, Q1 =PAo® Az & PA3,
with rankAy = rg,rankAy = j — rg. Renewing our notation, let (z1,...,z,) be a
basis corresponding to this decompositon of A.
Recall we have fixed 4 € P~ — O so that p is relatively prime to ZJ797!; set
PQs = ker(21 — Q1 (nA) mod POp)

where Q1 — Q(nA) denotes the map taking z; to pa;, so u1(A) mod POp
is spanned by ai,...,Gr,, WGry+1,--. ,pa; with a@q,...,a,, linearly independent
modulo POp (recall a; ~ 0 (mod POp) for i > j). Thus

Py =P?Ao ® PA1 & Ay & PA3

where As is uniquely determined modulo P€2;. As in the previous steps, we can

I,
find a matrix C' = E such that (C tC_l) e0,...,0,7; 7J)
I,
and
P21,
PQy = AC Pl
I,
PI,_;
Correspondingly, (A|B) <C to-1 = (ApA}A3As|ByB{ByB3) with A} =

0 (mod POp), Ay = 0 (mod P?Op), and ay,... T 1 PN 17 AR |1
early independent modulo POp where r; = rankA; ( and so A} is j x r1). Let
C(Q,A1) =CyCh.

Step 4. Write Mj (CZ tC_l > = (Ao, Al, AQ,A3|B(), Bl, BQ, B3) So Al, Ag =

2
0 (mod POp), A2 = 0 (mod P?Op), and the columns of (Ag, uA;) are linearly
independent modulo POp. Also, By, Bs are in the column span modulo POp of

Ap.
Since By, By are in spanpAp, we can solve

A()YO/ = _BO (Il’lOd PO’P), AOY3 = —B3 (HlOd PO']D)

Note that as B *A is symmetric and Ay, A2, A3 = 0 (mod POp), By tAq is sym-
metric modulo POp. Also, since Ay has full rank modulo P, there is some ma-

/ /
trix £ € GL;(Op) such that EAy = </(1) ) . Writing EBy = (g,,) , We see
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B" = 0 (mod POp) since E(By ‘Ag) 'E is symmetric modulo POp. Thus Y]
is the unique solution modulo P to A’Y] = —B’ (mod POp); since (A’)~! B’ is
symmetric modulo POp, we can choose Yy to be symmetric.

Let

(Ao, A1, Ag, A3|By, B, By, BY)

I Yo 0 0 Y3
I 0
I 0
I tY-

= (Ao, A1, Az, A3| By, B1, Ba, B3) Ig )
I
Il
I

Bj), B, = 0 (mod POp). Then just as we argued about Y, there is a unique modulo
POp symmetric solution Y’ to

(Ao, pA1)Y" = —(u(By + Az 'Y3), B1) (mod POp).

Y] Y-
! 0 2
Decompose Y' as (th Y,
Yo =Y] +0Yy.
Note that since rankp(Ag,B1) = 79 + r1, we have rankp(B; + AgYy) =
rankp By = rq. Since —puA; Y1 = B1+AY2 (mod POp), we must have det Y; € OF.
W0 W Wo Wy 0 Ws

) ; choose § € P so that du = 1 (mod P) and set

t
Take Y =| 0 I = VOV2 W I to be a symmetric ma-
th th

trix in (Z,Z;J01) with Wy = Yy (mod P?Op) and W; = Y; (mod POp) for
i=1,2,3.
Then

1Y

(Ao, A1, As, A3|By, B, Ba, B3) (0 7

) — (Ao, Av, As, As| B B, By, BY)

with B =0 (mod P20p), B, = By (mod P20p), B}, B =0 (mod POp).
Let C = C(, A1). Also, identifying S;(P) with a matrix giving its action, let

s<ﬂ'><ﬂ>=(mﬁl &(P))( I si<7>2>>.

i:7“0+1 i:T0+T1+1

We see that, with renewed notation,

C I'Y _
M] ( tC—l) ( I > S 1<Q) = (A07A17A27A3|B()7B17B27B3)
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with A3, B3 = 0 (mod POp), By, By, B =0 (P?Op).

However, while the matrices for S;(P~2) lie in T, the matrices for S;(P~!) do
not. We remedy this as follows.

For ro < i < rg + r1, choose o; € P71, 3; € PI2JO7!, ~; € P_lfi_zj_lﬁ SO
that ;0 — 3;7; = 1 and for any prime Q # P dividing §, @ does not divide f;.
(Recall that our choice of § ensures § € P — P2) Set a = diag(...,q;,...), an
r1 X 71 matrix; define 3, in an analogous fashion. So

12
[y

[
>,
~

gives the action of H:it;jrl Si(P71).
Now consider

(I —,UIW1) (% 5@]) — (Q_lllwll QSIW1> (mod P).

We find that b _5 IW1 is a coprime symmetric right-hand pair for
D(Zrot1, -+ 5 Lrg ey J) (277 X 277 matrices). Thus by Lemma 6.1, there exist ma-
trices U,V so that
U B+W
(V B+ 1) ET(Tro i1, 2 Trgsnss I)-
Hence
IT’() 07’0
U B—W;
1 I 0
X = 0., I, el,
Vv ol
0 1
Wy Wy Wi
and with Y/ = [ ‘W, and
twé
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we have MjN_l = (A(),Al,AQ,A3|B0,Bl,BQ,B3) with Ag,Bg =0 (HlOd POP),
By, B1, Ba = 0 (mod P?0Op). Thus by an easy generalization of Lemma 7.1 of [5],
MN~1eI'NnI'. Also, since

I —B+Wi\ (U B-W1\ _ (I 0 |
(_7 _Q ) (V N ol ) o (V’ I) EF(I;'(H—l?"' 71.1/"04—7“’17\7);

v =riso (1) (C7 ) o

Proposition 4.3. For f' € My (T'(Zy,... ,Z,;PJ)), we have
I Yo
_ n(k—n—1)/2 I 0 Cc-1
FIT(P) = NP2 S ps(@) I

QYo

we have

and Yy € (ZiIgja_l) varies over symmetric v X r matrices modulo P and C' varies

as in Proposition 4.2. Here r = mult{x.qy(P) and S(Q) = [, Si(P).
Proof. To find coset representatives for T'(P), take M € I'(Zy,...,Z,;J); write

M = (é’ g) Let Q = ker(A — A(A) (mod P)), and choose C' = C(2) so
PI

that Q = AC " I ) . Thus (A’B)C = (AOA1|BQBl), Al =0 (mod PO’]D),
rankp Ay = r where Ag is n xr, and By € spanpAy. Choose symmetric Y with ¢, ¢-

entry in Z;,Z, 707! such that AqYy = By (mod POp). Then with Y = <YO ,UI>,

C I -Y _ n
(A|B) ( to-1 7 ) S~H(Q) = (A’|B’) where S(Q) = [I;—,41 Si(P) and
B" =0 (mod POp). As before, choose diagonal (n —r) x (n — ) matrices a, 3, v

I, 0,
so that the action of S(Q) is given by 0 & I s . Then
Y ol
1 0 1 -Y 1 0
I -Y a 81 I 0 a+ puy B+l
1 0 I - 1 0 1
ol ol 1 0l ol

_ B—pol\ .

Here 8 = 0 (mod POp), rankp (8 + pdl) = n —r. Thus | = 5T is a sym-

metric coprime right-hand pair for I'(Z, 41, ... ,Z,; J), hence there are U, V so that
I 0
U B+ ol ' : U B+ pdl or  —p
0 7 eI'(Zy,...,Z,;J). Since (V 5T g €
v Wy
D(Zrs1,... ,Zn; PT) we get the result as claimed. O
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5. EVALUATING THE ACTION OF THE HECKE OPERATORS.

When evaluating the action of the operators Tj(P?), we encounter incomplete
character sums. To complete these, we define modified operators as follows.

Definition. For P a prime ideal and 1 < j < n, define
Ti(P?) = N(PY/ =0 % 7 (0 — £,5 — 0)Sera(P) -+ 8;(P)Lu(P?).
0<e<j
We will also need the following rather technical result.

Proposition 5.1. Let T} be a symmetric r1 X r1 matric whose i, l-entry lies in
(Zro+iZrg+eT) ™", and whose ith diagonal entry lies in 27, +Zj ﬁ:v peP1-0.
With W wvarying over all symmetric r1 X r1 matrices modulo P with v, l-entry in

IT0+7LIT0+€\78_1;
Z e{phW} = Z Z e{uTAU}

0<m<r] AU

where for each m, A wvaries over dimension m subspaces of A1, A ~ Tx (mod P),
and U varies over all m x m symmetric matrices modulo P.

Proof. For a moment, let’s fix W. Since W is symmetric, we can view it as
the matrix of a quadratic form on an r] dimensional O/P space V = L/PL,

L= (I or1Y1 @D IroJrhyh)j_ 2. (When P is dyadic, let W define an integral
quadratic form on

1
(OPI 0+1y1 ©---D Op 0+T1yrl)j 8’

and let V = L/PL, a quadratic space over Op/POp ~ O/P. We use §93 of [6]
to understand the structure of L and thereby of V.) The radical of this space is
uniquely defined, so for some G € GL,, (O),

(WG = (U 0) (mod P)

where U is m x m with rankpU = m. (So VG~ = J @ radV where J is a regular
space whose isometry class is uniquely determined by V', and J ~ U.)
So

e{aT\ W} = e{aT, 'G (U 0) &)

— o{a(GT, 'G) (U 0)}
— of{aSU}

where GT, 'G = (f :), S an m x m matrix. Here we take A to be a rank

n lattice as in the previous section, and we equip A with a quadratic form such
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that A ~ T; thus with A; as in the previous section, we have Ay ~ T}, and

A = A G (Igl ) ~ S. So S corresponds to an m-dimensional subspace A of

the O/P-space A;. Thus each W gives rise to (at least one) pair (A,U), A an
m-dimenstional subspace of Ay, U an m x m integral symmetric matrix of rank m
modulo P.

With T still fixed, fix m, 0 < m < r;. We now define a map ¢ from all pairs
(A,U) as above to symmetric r; x r; matrices W. Here A is an m-dimensional
subspace of A;, and U is an integral symmetric m x m matrix with rankpU = m.

For each such A we fix some G = Ga € GL,,(O) so that A = A; ‘G <I(7)"> We
_ (U
define (A, U) = *G 0 G.

We first show that the image of ¢ consists of all symmetric r; X r; matrices W
modulo P with rankpW = m. Then we show that ¢ is injective.
As shown above, given any W in the codomain of ¢,

W = tG<U

where U is m x m, m = rankpU, and G € GL,, (O).

o) G (mod P)

Take A = Ay G (Ig” . So A is an m-dimensional subspace of A;, and thus
tG (I(’)” ) and ‘Ga (I(’)” ) each map a basis for A; to a basis for A. Hence with
(z1,...,2,) a basis for Ay, (z1,...,2,) 'G = (Y1, ,Yr,), (X1, ,2r,) ‘GaA =
(21,20, ), we must have (y1,... ,ym) = (21,... ,2m) ‘C (mod P) for some C €

t
GL,(0). Thus (x1,...,2,) ‘G = (z1,... ,2,) 'Ga ( OC :), meaning ‘G =
t(C %
'
Ga 0 =

Hence modulo P,

W= tG(U O)G: tGA( toc i) (U 0) (f (:)GA:@(Z, ‘cUe),

Thus ¢ is surjective.
Now we show ¢ is injective. Say

W = p(A1,Up) = p(Ag,Us) (mod P).

Thus with G; = Ga,, we have

W= fc;l(Ul O)Glz tGQ(UQ 0)G2 (mod P).
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So with G = G»G7 Y,

Uy _ ot~ U2
(5 )=ro(® ) omir
Since the columns of U; are linearly independent modulo P, we must have G =

(C 2) (mod P).

*

Now we compare A, Ay; we will find that A; = Ay, so G = G5 and hence
U; = Us (mod P). With notation as before, we have

Y15 5 Ym) = (T2, Tpr) gen ( 0 ),
(215 s 2m) = (w1, 20 tGy (Igl)
= (:L‘l,... 7xr’1) tGl tG<I(7)n

Thus given our knowledge of G, we see that (y1,...,ym) = (21,...,2m) 'C, and
hence Ay = Ay. Thus G; = Gs, and consequently U; = Us (mod P). Therefore ¢
is injective. [

We can now prove our main result. In the remark following the proof we demon-
strate how to compute the geometric term (€2, A).

Theorem 5.2. Let F' € My (x) where x is a character of the ideal class group and
M(x) is as defined in Proposition 3.2.

(1) The A7 th coefficient of F|Tj(772) is

S NP)YEAD(P) A Day(Q, A)ep ()
PACQCP-1A

where Ej(A, Q) = k(ro — 1o+ 7) +1o(ro +m1 + 1) +r1(r1 +1)/2 — j(n + 1),
ej (A, Q) =2ro+7r1 =ro—ro+7, and (2, A) is the number of totally isotropic
codimension n — j subspaces of QN A/P(Q + A). Here ro = multyy.03(P),
my = multip.01(0), 11 =my —n+j, and ro = multgpy.oy3(P1).

(2) The A7 th coefficient of F|T(P) is

ST NP (P T ep(@P )
PACQCA

where r = multgy.0y(O) and E(Q,A) =k(n —r)+r(r+1)/2—n(n+1)/2.
Proof. Take fractional ideals Z1,... ,Z,,J and " € My(T(Zy,...,Z.;T)),

, {PL it i<,
T =



HECKE OPERATORS ON HILBERT-SIEGEL MODULAR FORMS 25

In the preceeding proposition, consider the subsum where we fix a choice of €:
1Y c! ot 1Y Cc—!
S rise (T ) e (U ) (O )
ALY ALY

where f” is the component of F' corresponding to the group I'(ZY{,... ,Z//; J),

Y n

PL,  if1<i <,
I/ =<¢ P, ifrg+r <i<j,

Z; otherwise.

Set my; = r; +n — j. Expanding f” as a Fourier series supported on even T €
(Z/7)T)~ 1), we find that for fixed Ay,

(T ) e
- ;cf,, (T)e{TC~'r 'C~1} Eyje{TY}

> cp(Te{TC 7 IO

Z e{T()WO} e{ILLT1W1} e{TgWQ} e{T3W3}
Wo,W1,Wa,W3

TO T2 * T3
Ty, T
where T = *2 *1 : ¥ . Ty and Wy are symmetric ry X rg matrices with

t
T3 % % %

To even, the i, f-entry of Wy in Z,Z,J0~!. Thus the sum on Wy (Tp fixed) is a

complete character sum, yielding N (P) "o+ if Ty = 0 (mod P), and 0 otherwise.

Similarly, the sums on W5, W3 are complete character sums. So

{ N(P)rotrotmit) 57, e{uliWh} i T € (LiZeT) ™),

otherwise.

Z e{TY} =

Y

With (B(z;, 1)) = tC7'TC™ take A = Ty @ -+ @ Z,7,. Then the sum on
Wy, Wa, W3 is nonzero if and only if A7 is even integral.

Let (y1...yn) = (z1...2,)C and set Q = Z{11 @- - -®Z) yp,. Then (B(y;,ye)) =T
and cpn (T)N(ZY - - TN ()% = cp(Q7).

Note that when ¢y ge(py(T) is contributing to the A7 th coefficient of f|T};(P?) €
My(T(Zy, ..., T; TJ)), it gets normalized by N(Z;...Z,)*N(J)™/?; when it is
determining a coefficient of f|S*(P) € M), I ~ I(P~*T1,1s,... ,Z,; J), it
gets normalized by N(P)~*N(Z,...T,)*N(J)"*/2.
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So the contribution from f” to the A7 th Fourier coefficient of f'|T;(P?) is

N('p)j(k—n—l)-f-?“o(?“o-f—ml+1)X(7))27"2+7"/1 Z N(P)k@rg—l—rl)cF(QJ) Z G{MTA1W1}
Q,Al Wl

where § varies subject to PA € Q C P~1A, multys.01(P~1) = ro, multyp.0)(P) =
r9, A1 a codimension n— j subspace of Q; ~ QNA/P(Q+A), and W, varies modulo
P with i, l-entry in Z,Z,J0~ 1, P fdet W1. Here Ta, = (B(Zroti, Tro1e)) is 11 X 71
where Ay = Z 41%rg+1 D -+ ® Lrgpry Trg+ry - 1 T} is also a matrix associated to
Ay then there is a change of basis matrix G whose %, f-entry lies in 7,7, ! 5o that
'GT|G = Ta,. Thus e{uT{W1} = e{uTn,(GW; *G)}; as W varies over invertible
matrices modulo P, so does GW; ‘G. Thus the sum on W is independent of the
choice of matrix associated to Aj. N

We complete the character sum on W; by replacing 7};(P?) with Tj(P?), then
apply Proposition 5.1, where we consider ) ,;, e{aT1W} with W varying over all
symmetric 1 X r1 integral matrices modulo P.

Notice that for 0 < ¢ < j,

Ser1(P) - S;(PYT(P?) : Mp(T(Zy, ..., Th: T)) — M(T(Zh, ..., Tos ).

Also notice that the number of dimension r; = mq—n+j lattices Ay containing some
dimension m; —n-+/¢ lattice A is the number of ways to extend A to a j-dimensional
subspace of Q1 (where Q = Qy © Q1 © Qa, A = PQy & Q; & P~1Qs). Extending
A is equivalent to choosing a j — £ dimensional subspace of an n — ¢ space (here
dim Q; = my). So the number of A; containing A is S(n—¥,j—¥) = Bp(n—~,5—1).

Note that the coefficient of f’\fj(P2) associated to AY = (Tyz; © -+ @
Tnx,)? carries a normalizing factor of N(Z---Z,)*N(J)™*/2, while the coeffi-
cient of f'|SU)(P) associated to Q7 = (TVy; @ --- ® Iy, )Y carries a factor of
N(P)Fro=r2) N(T; - - - T,,)* N(J)™*/2. Hence, contributing to ¢(AY) we have

N(']))k(TQ—T0+j)+T0(7“0+m1+1)+7“1 (7"1+1)/2—j(n+1)x(7)>2?"2—7"0 Z C(Qj)
A

where AY varies over all totally isotropic codimension n — j sublattices of A7 N
07 /P(A7 + Q7). Summing over all Q, PA C Q C P~A, yields (1).

The proof of (2) is quite similar to the proof of (1), but much simpler, and so

we leave it to the reader. O

Remark. As discussed above Proposition 2.2, A‘17 /PA{ is a quadratic space over
O/P. By 8§42 of [6] (for results about quadratic spaces over fields of characteristic
2, see, for example, §5 of [9]), AY /PAY = R L W L H! where R = radAyY /PAY,
(1) (1) denotes a hyperbolic plane. With U = R 1 W,
Lemma 1.6 of [8] and Lemma 4.1 of [9] tell us that the number of /-dimensional
totally isotropic subspaces of A‘17 / PA{ is

pe(A/PAT) = ¢ b(d +t — L+ a+ 1,0)8(t a)pr-a(U)

W is anisotropic, and H ~
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where ¢ = N(P), d = dimU, §(m,r) = [[;Zy(¢™ " + 1), B(m,7) = [}y (q™ " -
1)/(¢""" = 1), and 0 < a < £. (Note that Lemma 1.6 of [8] is proved for a qua-
dratic space over Z/pZ, but the argument is valid over all finite fields. When the
characteristic is 2, we replace ) by %Q; we present a full discussion of this case
in §5 of [9].) Also, since U = R | W with R totally isotropic and W anisotropic,
any totally isotropic subspace of U is a subspace of R. Thus ¢y_,(U) = B(r,f — a)
where r = dim R. (So d = dimU = r + dim W, and since W is anisotropic, dim W
is 0, 1, or 2 by 62:1b of [6] for ¢ odd, and by, e.g., Proposition 5.1 of [9] for g even.)
Hence
a;(QA) =Y "5 d 4t + a+1,a)B(ta)B(r, L — a)

where 0 <a </l l=7r1 —n+j.

6. LEMMA ON SYMMETRIC COPRIME PAIRS.

Definition. We say a pair of matrices (C, D) is a symmetric coprime lower pair
for I'(Zy,... ,Z,; J) if:

(a) C 'D is symmetric;

(b) Ce J10(Z,'1; "), D € (T, 'Ty);

(c) for all prime ideals P,

CY)\l

A
' . atp
rankp . (C,D) aA;! =n

ot

n

where aOp = ja_lop, NOp =Z7,0p.

Since I'(Zy,... ,Z,; J) = T(0O,... ,0,Z;J) when T € cls(Z; - - - Z,,), the follow-
ing technical lemma focuses on I'(O,... ,0,Z;J), but the conclusion (c) is valid
for T(Zy, ..., Zp; J).

Corresponding definitions and results hold for symmetric coprime upper, right-
hand, and left-hand pairs for T'(Z, ... ,Z,; J).

Lemma 6.1. Let 7,7 be fractional ideals; set

R C Y LA P

Say C e J 18( I_l)O’ ( I_1>,D€< I_1>(’)’ ( I) are a

symmetric coprime lower pair for T'(O,... 0,1, 7).
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(a) Let Q be a prime ideal, and choose \ € I, a € JO ! such that
ordg\ = ordgZ, ordgar = ordgJO~1. Then there is some E € G so that
a (I )\) CE (I )\) = (Cy,0) (mod Q) where Cy is nxr with rankgCy = 7.

(b) There is a matriz M € T'(O,...,0,Z;J) so that (C|D)M = (C'|D’) with
det C’,det D" # 0 and ((J0~')"I*det C’,det D’) = 1.

(¢) There are n x n matrices A, B so that (é g) el0,...,0,7; 7).

Proof. 1t suffices to establish the claims for I'(O, ... ,O,P; J) where P is a prime
ideal in cIsZ. Choose o € JO~* so that ordga = ordg J9~! whenever ordg JO~1 #
0. Choose A € P —P?, p€ P~ — O so that A\u =1 (mod P).

(a) Let C = « (I )\) C ([ )\) = (¢;...¢,) (so ¢ is the ith column of C).
Then there is some E' € GL,,—1(O) so that
(c1---cp1)E = (Cp,0) (mod P)

/
where C)) is n x v/, ' = rankp(c, ...c,_1). So Ey = (E 1) € g, and

a(I A)CEl(I A):(?*Elz(qg,o,gn)(mod7>).

First suppose ¢, € spanpCj. Thus there exist v1,...,7. € O so that Cjy =

Y1 I ,ul
—¢,, (mod P) where y = | : |.Let E=FE I . Then
Ir 1
I Y
1 1 ~ 1 - 1
« CFE =CFE _ 1
(o)) =en () ) ()

=ca (" ) [ |

= (C{,0) (mod P),

[
N
~
=
>
N——
=
@)
o,
3

proving (a) in the case ¢,, € spanpCj).

So suppose ¢,, & spanpC{. If ' =n — 1 then we are done, as then rankpé =n
and we can take £ = I. So let us also suppose v’ < n — 1. Choose § € P so
that for all primes Q|u), Q /0. Thus (u),d) = 1, so there are u,v € O so that

1
vé—uu)\zl.ThusE2:< v opun | €@, and
A

5
a<l A)CElEQ(I A) 5E1-<I M)E2<I A) (mod P)
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where ¢, = ¢, fori<n—1, ¢, ; =¢, (mod P) and ¢/, =0 (mod P).

Let E3: < 1

n—1. So E = FE1EyE3 € G, and (a) is proved.
(b) Let A= (JO0 )" -I? -detC CO. Take \€ Z,ne€ I, ac Jo, ue g 1o
so that An = av =1 (mod Q).

Case 1: Say det D # 0, det D ¢ O*. Part (a) says there exists some E € G so

that
(1 )er (")) =0 o)

with Cy n x r, rankgCy = r. Thus (E tE_l) el(0,...,0,7; J), and

be a permutation matrix that interchanges columns r’ and

(I A)<O\D><E tE—l) " e 1| = 0P Dy mod Q)
U

here Dy C spangCy (since C' 'D is symmetric; see the proof of Lemma 7.2 in [5]),
and thus rankg (Cy| D7) = n.

SetW:,u(I 7I> <Or In—r) (I n);hence

E I 0
v (% ) (1 9) <t om0

Also, with (C’'|D’) = (C|D)Mg, det D" = det D and

al

I P a
(" )@ ;
ol I

_ (1 E a I
i 1 1

n

(mod Q).

Thus rankg« (I /\) C’ (I )\) = n, and hence Q J(JO~')"Z? det C".

Only finitely many prime ideals Q divide det D, so repeating this process for all
such Q yields a pair (C'|D") = (C|D)M, M € T'(O,... ,0,Z;7),det C',det D" # 0,
and ((JO~1)"Z%det C’,det D) = 1.

Case 2: Say det D € O*. If det C' # 0 then we are done; so suppose det C' = 0.
Then let Q be any prime ideal; following the algorithm in Case 1, we produce
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Mg e I'(0O,...,0,1;J) so that with (C'|D") = (C|D)Mg, we have det D’ = det D
and Q fdet C’ (so det C’ # 0). This completes this case.
Case 3: Say det D = 0. Choose a prime Q; with A\, 7, o, i as in Case 1, we know

there is some E € G so that
al
I FE A
( )\) (C|D) ( tE—l) “ I = (0070|D07D1) (mOd Q)
n

with rankg(Co|D1) = n, Dy C spangCy. Thus for some Y € O™", rankg(CpY +
Dg, D1) = n. Note that Y is uniquely determined modulo Q, and that Cy Dy is
symmetric modulo Q. Since CpY ‘Cy = — Dy ‘Cy (mod Q), we can choose Y to be

symmetric in O™".
; I Y 1 .
vee () a) ()

Set
/
hence M = (E tE_1> (I i) e I'0O,...,0,7; 7). Thus with (C'|D") =
(C|D)M, we have
al
<I )\> (C/|D/) ai = (Co,O‘COY—f—Do,Dl) (HlOd Q)
n

Hence rankg (I )\) D’ (I 77) =n, so @ fdet D’ (and thus det D’ # 0). This

reduces this situation to one of the previous cases.
(¢c) Set K = detD; choose A\ € A so that (k,A\) = 1, and n € O
so that n = k~! (mod \) (this is possible by the Chinese Remainder The-

orem). Since C € j_lé?(l I_l)(’)"’"(l Z_l)’ we have \ 'C~1 ¢

Jal(I I) O”’”<I I)'Also, Al = 1), s0

B=(nk—1) tc=te g0t (I I) o (I I) )

(Note that locally everywhere: C € J~19 (I I_1> Co (I I‘l) , Cop € O™,

—1\n — — I n,n I
det Co = (FJO~1)"Z? det C; hence C~! € detlcojé? ! ( I) o™ ( I) )
Set A = nr 'D7'. We have k = detD, n € O, so nx ‘D! ¢
I e A B\ . . .
( I) @ < I_1> . Thus <C D) is a candidate for I'(O,... ,0,Z; 7).
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To see this matrix indeed lies in this group, first note that A *D — B 'C = I,
and by assumption, C D is symmetric. Finally, substituting for A and B, we get
AtB =nk(ns—1) tD71C7 Y since 'D71C~1 = (C' D)~ is symmetric, so is A ¢B.

O

10.
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