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Abstract. We define Hilbert-Siegel modular forms and Hecke “operators” acting

on them. As with Hilbert modular forms (i.e. with Siegel degree 1), these linear

transformations are not linear operators until we consider a direct product of spaces
of modular forms (with varying groups), modulo natural identifications we can make

between certain spaces. With Hilbert-Siegel forms (i.e. with arbitrary Siegel degree)

we identify several families of natural identifications between certain spaces of mod-
ular forms. We associate the Fourier coefficients of a form in our product space to

even integral lattices, independent of basis and choice of coefficient rings. We then
determine the action of the Hecke operators on these Fourier coefficients, paralleling

the result of Hafner and Walling for Siegel modular forms (where the number field is

the field of rationals).

1. Introduction.

A Siegel modular form F of degree n over the rationals has a Fourier series
supported on even integral symmetric n× n matrices. An even integral symmetric
matrix can be interpreted as the matrix for a quadratic form on an even integral
lattice, relative to some Z-basis for that lattice. Given the transformation property
of F under the symplectic group, the coefficient of F attached to a matrix T is
equal to that attached to the conjugate tGTG where G is any integral change of
basis matrix (with determinant 1 when k, the weight of the modular form, is odd).
Consequently we can rewrite F as a “Fourier series” supported on even integral
lattices, without specifying a basis for each lattice. For each prime p there are
n+ 1 Hecke operators, T (p) and Tj(p2) (1 ≤ j ≤ n) associated to p, n of which are
algebraically independent. In [5] we determined the action of these operators on
the Fourier coefficients of F . In this paper we extend this result to Hilbert-Siegel
modular forms.

With K a totally real number field and P a prime ideal, we mimic the construc-
tion of the classical Hecke operators and construct a linear transformation T (P)
acting on Hilbert modular forms. When P is not principally generated, T (P) maps
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modular forms attached to Γ = SL2(O) (O the ring of integers of K), to forms
attached to the “psuedo-conjugate”(
P 0
0 1

)
Γ
(
P−1 0

0 1

)
=
{(

a b
c d

)
: a, d ∈ O, b ∈ P, c ∈ P−1, ad− bc = 1

}
.

So for T (P) to be a linear operator (meaning its domain and codomain are equal), it
is necessary to consider a (finite) direct product of spaces of modular forms attached
to psuedo-conjuagates of SL2(O). In [7], Shimura defined “Fourier coefficients”
attached to integral ideals of a form in this direct product, and he determined the
action of T (P) on these Fourier coefficients.

In the case of Hilbert-Siegel modular forms, we need to consider a (finite) direct
product of spaces of forms attached to psuedo-conjugates of Spn(O) for the maps
T (P) and Tj(P2) to be linear operators. For a form in this direct product, we define
“Fourier coefficients” attached to even integral lattices, independent of basis and
choices of coefficient rings (note that an O-lattice is not necessarily free, and there
are numerous ways to write it as A1x1 ⊕ · · · ⊕Anxn with the Ai fractional ideals).
Then we determine the action of the Hecke operators on these Fourier coefficients.
When k is odd, we need to impose an orientation on Λ. Thus

F (τ) =
∑
clsΛ

c(Λ)e∗{Λτ}

where clsΛ runs over isometry classes of lattices Λ, and e∗{Λτ} =∑
G exp (πiTr( tGTGτ)); here Λ = A1x1 ⊕ · · · ⊕ Anxn, T =

(
B(xi, xj)

)
where

B is the symmetric bilinear form associated to the quadratic form Q on Λ so
that Q(x) = B(x, x), and G varies over O(Λ)\GLn(Z) when k is even, and over
O+(Λ)\SLn(Z) when k is odd. (Two lattices Λ,Ω are in the same isometry class if
there is an isomorphism from one onto the other that preserves the quadratic form.
Also, O(Λ) is the orthogonal group of Λ.)

We begin by defining symplectic groups Γ(I1, . . . , In;J ) for fractional ideals
Ii,J . We show that the spaces of modular forms associated to Γ(I1, . . . , In;J ) and
Γ(I ′1, . . . , I ′n;J ′) are naturally isomorphic whenever cls(I1 · · · In) = cls(I ′1 · · · I ′n)
and clx+J = clx+J ′. (Here clsI denotes the wide ideal class of I, and clx+J
denotes the strict ideal complex of J . Thus clsI = clsI ′ if I = αI ′ for some α ∈ K,
and clx+J = clx+J ′ if J = αI2J ′ for some fractional ideal I and α � 0.) We
set Mk = ⊗Ii,JMk(Γ(I1, . . . , In;J ))/ ∼ (so we identify spaces that are naturally
isomorphic). Next we attach the Fourier coefficients of (the components of) F
to even integral lattices, independent of the basis and the coefficient rings used
to realize each lattice. (For a full discussion of this, see the discussion preceeding
Proposition 2.2.) In §3 we introduce operators S(Q) attached to fractional ideals Q,
and we decompose Mk as ⊕χMk(χ) where χ varies over ideal class characters, and
F |S(Q) = χ(Q)F for F ∈ Mk(χ). Then in §4 we introduce the Hecke operators
T (P) and Tj(P2), 0 ≤ j ≤ n, and we find coset representatives giving the action of
the operators. When then analyzing the action of the Hecke operators Tj(P2) in
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§5 we encounter incomplete character sums; we complete these by replacing Tj(P2)
with T̃j(P2), a combination of T`(P2), 0 ≤ ` ≤ j. Finally, we show that for ΛJ an
even integral lattice and F ∈Mk(χ), the ΛJ th coefficient of F |T̃j(P2) is∑

PΛ⊆Ω⊆P−1Λ

N(P)Ej(Ω,Λ)χ(P)ej(Ω,Λ)αj(Ω,Λ)cF (ΩJ )

where Ej(Ω,Λ) and ej(Ω,Λ) are given by formulas in terms of the invariant factors
{Ω : Λ}, and αj(Ω,Λ) reflects some geometry of (Ω∩Λ)/P(Ω + Λ). (A formula for
αj(Ω,Λ) is given at the end of §5.) A similar but much simpler argument shows
that the ΛJ th coefficient of F |T (P) is∑

PΛ⊆Ω⊆Λ

N(P)E(Ω,Λ)cF (ΩJP−1
)

(see Theorem 5.2).
In §6 we present a lemma on completing a symmetric coprime pair to a symplectic

matrix. The reader is referred to [6] for basic results on lattices and quadratic forms.
The authors are thankful for the referee’s careful reading.

2. Definitions, isomorphisms, and Fourier
coefficients attached to even integral lattices.

Let K be a totally real number field of degree d over Q, and let ∂ denote the
different of K. Let H(n) denote degree n Siegel upper half-space; so

H(n) = {τ = X + iY : X,Y ∈ Rn,n are symmetric, Y > 0 } .

For fractional ideals I1, . . . , In,J , let

Γ(I1, . . . , In;J ) =
{(

A B
C D

)
∈ G2n(K) : A tB,C tD symmetric,

A tD −B tC = uI, u ∈ O+, aij ∈ IiI−1
j ,

bij ∈ IiIjJ ∂−1, cij ∈ (IiIjJ )−1∂, dij ∈ I−1
i Ij

}
.

(Here A = ( aij ), etc.) So with Γ = Γ(O, . . . ,O;O), Γ(I1, . . . , In;J ) corresponds
to the formal conjugate δΓδ−1 where

δ =



J I1

. . .
J In

I−1
1

. . .
I−1
n


.
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Also notice that Γ(I1, . . . , In;J I2) = Γ(I1I, . . . , InI;J ).

Definition. A degree n (n > 1), weight k Hilbert-Siegel modular form for
Γ(I1, . . . , In;J ) is a function f : Hd

(n) → C so that the following two conditions
hold.
(1) f is “analytic on Hd

(n) and at infinity,” meaning that for τ ∈ Hd
(n),

f(τ) =
∑
T

c(T )e{Tτ}

where T runs over symmetric, positive semi-definite n × n matrices. Also,
σ(M) denotes the trace of a matrix M , Tr denotes the trace from K to Q,
and

e{Tτ} = exp(πiσ(Tr(Tτ))).

Here Tr(Tτ) =
∑d
i=1 T

(i)τi, where T (i) is the image of T under the ith em-
bedding of K into R.

(2) For all M ∈ Γ(I1, . . . , In;J ), f |M = f where, for any matrix
(
A B
C D

)
(written in n× n blocks), we define

f |
(
A B
C D

)
(τ)

= det(N(A tD −B tC))k/2 det(N(Cτ +D))−k

f((Aτ +B)(Cτ +D)−1).

Here N denotes the norm from K to Q, extended so that

N(Cτ +D) =
d∏
i=1

C(i)τi +D(i).

Let Mk(Γ(I1, . . . , In;J )) denote the space of Hilbert-Siegel modular forms for
Γ(I1, . . . , In;J ), and let f be a modular form in this space. Since f(τ +B) = f(τ)
for all symmetric B ∈ (IiIjJ ∂−1), ∂ the different of K, we must have e{TB} = 1
for all T ∈ suppf . Note that for T = (tij), B = (bij) symmetric matrices,

σ(TB) =
n∑
i=1

tiibii +
∑

1≤i<j≤n

2tijbij .

Thus for T ∈ suppf , we must have T ∈
(
(IiIjJ )−1

)
with T even, meaning tii ∈

2I−2
i J−1.

Definitions. We define families of isomorphisms between spaces of modular forms
as follows: Fix f ∈Mk(Γ(I1, . . . , In;J )).
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First, for α ∈ K× and 1 ≤ ` ≤ n, let

M =

 I`−1

α−1

In−`

 ,

and define

f |U`(α) = f |
(
M

tM−1

)
.

Since
(
M

tM−1

)
Γ(I ′1, . . . , I ′n;J )

(
M−1

tM

)
= Γ(I1, . . . , In;J ) where

I ′i =
{ Ii if ` 6= i

αI` if ` = i,

U`(α) defines an isomorphism from Mk(Γ(I1, . . . , In;J )) onto
Mk(Γ(I ′1, . . . , I ′n;J )).

For α� 0, define W (α) : Mk(Γ(I1, . . . , In;J )) →Mk(Γ(I1, . . . , In;αJ )) by

f |W (α) = f |
(
α−1In

In

)
.

One easily checks (as we did above for U`(α)) that W (α) is an isomorphism.
For Q a fractional ideal, 1 ≤ ` < n, choose

A ∈
(

Q−1 QI`I−1
`+1

Q−1I−1
` I`+1 Q

)
so that detA = 1 (possible by Strong Approximation; see p. 42 [6]). Let

M =

 I`−1

A
In−`−1

 ,

and define

f |V`(Q) = f |
(
M

tM−1

)
.

Since
(
M

tM−1

)
Γ(I ′1, . . . , I ′n;J )

(
M−1

tM

)
= Γ(I1, . . . , In;J ) where

I ′i =


Ii if i 6= `, `+ 1
QI` if i = `

Q−1I`+1 if i = `+ 1,
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the map V`(α) defines an isomorphism from Mk(Γ(I1, . . . , In;J )) onto
Mk(Γ(I ′1, . . . , I ′n;J )).

For Q a fractional ideal and 1 ≤ ` < j ≤ n, set

V`j(Q) = V`(Q)V`+1(Q) · · ·Vj−1(Q).

Then V`j(Q) defines an isomorphism from Mk(I1, . . . , In;J )) onto
Mk(Γ(I ′1, . . . , I ′n;J )), where

I ′i =


Ii if i 6= `, j

QI` if i = `

Q−1Ij+1 if i = j,
.

Proposition 2.1. The maps U`(α), W (α), V`j(Q) commute and for fixed `, j,
these operators are multiplicative (as functions on fractional ideals).

Proof. The tedious aspect of proving such relations among our isomorphisms is that,
for any of the above listed maps, the domain and codomain differ. Keeping track
of appropriate domains and codomains, and using the matrices we used to define
the actions of these operators, it is then straightforward to verify the operators
commute, remembering that if MN−1 ∈ Γ for any group Γ = Γ(I1, . . . , In;J ),
then f |M = f |N for f ∈Mk(Γ). �

Definition. For f ∈ Mk(Γ(I1, . . . , In;J )), g ∈ Mk(I ′1, . . . , I ′n;J ′)), define the
equivalence relation ∼ by f ∼ g if some composition of the maps Ui,W, Vij takes f
to g. We define

Mk = ⊗Ii,JMk(Γ(I1, . . . , In;J ))/ ∼

where I1, . . . , In,J vary over all fractional ideals. Note that ∼ partitions the
spaces Mk(Γ(I1, . . . , In;J )) according to cls(I1 · · · In), clx+J . Thus Mk ≈
⊗clsI,clx+JMk(Γ(O, . . . ,O, I;J )), clsI runs over all ideal classes and cls+J runs
over all strict ideal class complexes. (J ,J ′ are in the same strict ideal class complex
if J ′ = αI2J for some fractional ideal I and α� 0.)

Let I1, . . . , Ih represent the ideal classes, J1, . . . ,Jm the strict ideal com-
plexes. Then for F ∈ Mk, F is represented by any (. . . , fij , . . . ) where fij ∈
Mk(Γ(I ′1, . . . , I ′n;J ′)), I ′1 · · · I ′n ∈ clsIi, J ′ ∈ clx+Jj .

Given an element F ∈ Mk, we can associate the Fourier coefficients of F with
lattices equipped with positive semi-definite, even integral quadratic forms as de-
scribed below.

First note the following. Say f ∈ Mk(Γ(I1, . . . , In;J )) is a component of a
chosen representative for F . So the support of f lies in

(
(IiIjJ )−1

)
. For T ∈

suppf , consider T as defining a quadratic form Q on Ox1 ⊕ · · · ⊕ Oxn (recall that
T is symmetric and even, meaning the ith diagonal entry of T lies in 2I−2

i J−1).
Thus with Λ = I1x1⊕· · ·⊕Inxn, Q(Λ) ⊆ 2J−1. If αO = J then the scaled lattice
Λα is even integral, meaning αQ(Λ) ⊆ 2O. When J is not principal, we abuse
notation and language and refer to ΛJ as an even integral lattice. We agree to
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identify ΛI
2

with IΛ since locally everywhere these are identified (paralleling the
fact that Γ(I1, . . . , In; I2J ) = Γ(II1, . . . , IIn;J )).

Not every lattice is a free O-module, and given a lattice Λ, there are many ways
to choose fractional ideals Ij and vectors xj so that Λ = I1x1⊕· · ·⊕Inxn. Say we
have

Λ = I1x1 ⊕ · · · ⊕ Inxn = I ′1y1 ⊕ · · · ⊕ I ′nyn,

yj =
∑
i aijxi. Then by 81:8 [6], I1 · · · In = I ′1 · · · I ′n · det(aij).

The Invariant Factor Theorem (81:11 [6]) says that given lattices Λ,Ω on
a (non-zero) space V , there are vectors x1, . . . , xn ∈ V and fractional ideals
I1, . . . , In,A1, . . . ,An so that

Λ = I1x1 ⊕ · · · ⊕ Inxn,
Ω = I1A1x1 ⊕ · · · ⊕ InAnxn,

and Ai|Ai+1 (1 ≤ i < n); the Ai are unique and called the invariant factors of Ω
in Λ. We use {Λ : Ω} to refer to these invariant factors, and we write {Λ : Ω} =
(A1, . . . ,An).

When analyzing the action of Hecke operators on Fourier coefficients, we sum
over lattices Λ where PΛ ⊆ Ω ⊆ P−1Λ, P a prime ideal and Λ a fixed reference
lattice of rank n. By the Invariant Factor Theorem, we have sublattices Λi so that

Λ = Λ0 ⊕ Λ1 ⊕ Λ2,

Ω = PΛ0 ⊕ Λ1 ⊕ P−1Λ2.

So for instance, r0 = rankΛ0 is the multiplicity of P among the invariant factors
{Λ : Ω}, denoted r0 = mult{Λ:Ω}(P).

We will also need to consider (ΛJ ∩ ΩJ )/P(ΛJ + ΩJ ) ≈ ΛJ1 /PΛJ1 . We will
only be considering even integral ΛJ . Thus Q induces a quadratic form 1

2αQ on
ΛJ1 /PΛJ1 defined by

1
2
αQ(x+ PΛ1) =

1
2
αQ(x) + P ∈ O/P

where α ∈ K has been fixed so that αOP = JOP . Since Q(Λ1) ⊆ 2J−1, this gives
us a quadratic form on the O/P-space ΛJ1 /PΛJ1 . Note that the structure of the
quadratic space ΛJ1 /PΛJ1 is independent of the choice of α.
Defninition. Let f ∈ Mk. Given any even integral positive semi-defnite lattice
ΛJ with Λ = I1x1 ⊕ · · · ⊕ Inxn, we set

c(ΛJ ) = cF (ΛJ ) = cf (T ) ·N(I1 · · · In)kN(J )nk/2

where f ∈ Mk(Γ(I1, . . . , In;J )) is a representative of the component of F corre-
sponding to cls(I1 · · · In), clx+J , and T = (B(xi, xj) ) . If k is odd, we assume Λ
is also equipped with an orientation.
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Proposition 2.2. The “Fourier coefficient” c(ΛJ ) is well-defined.

Proof. First, suppose we also have Λ′ = I1y1 ⊕ · · · ⊕ Inyn, and Λ = Λ′. Take
M = (αij) so that

(y1 . . . yn) = (x1 . . . xn)M.

Hence (B(yi, yj)) = tMTM (recall T = (B(xi, xj))). Note that

Ijyj =
∑
i

αijIjxi ⊆ Λ,

so αij ∈ IiI−1
j . Also, since volΛ = volΛ′, it follows that detM ∈ O×. (Recall that

if k is odd then Λ has an orientation, and detM must also be totally positive.)

Thus
(
M

tM−1

)
∈ Γ(I1, . . . , In;J ), and so

f = f |
(
M

tM−1

)
.

Hence

f(τ) =
∑
T

cf (T )e{Tτ}

= N(detM)k
∑
T

cf (T )e{TMτ tM}

=
∑
T

cf (T )e{ tMTMτ}

(recall that detM is a unit, and that if k is odd, a totally positive unit). Thus
cf ( tMTM) = N(detM)k cf (T ) = cf (T ), and so

c(ΛJ ) = cf (T )N(I1 · · · In)kN(J )nk/2

= cf ( tMTM)N(I1 · · · In)kN(J )nk/2 = c(Λ′J ).

Thus the definition of c(ΛJ ) is independent of the choice of basis relative to the
coefficient ideals I1, . . . , In and the scaling ideal J (so here I1, . . . , In and J are
fixed).

Next, fix J and suppose Λ = I1x1 ⊕ · · · ⊕ Inxn = I ′1y′1 ⊕ · · · ⊕ I ′ny′n. Then by
81:8 of [6], I ′1 · · · I ′n ∈ cls(I1 · · · In). Thus, as we have seen, Mk(Γ(I1, . . . , In;J )) '
Mk(Γ(I ′1, . . . , I ′n;J )) via an appropriate composition of the maps Ui, Vij ; the action
of this composition is given by

f 7→ f ′ = f |
(
M

tM−1

)
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where M ∈
(
IiI−1

j

)
and (detM)I ′1 · · · I ′n = I1 · · · In. Also,

f ′(τ) = N(detM)kf(Mτ tM) = N(detM)k
∑
T

cf (T )e{ tMTMτ},

so cf ′(tMTM) = N(detM)kcf (T ). Set (y1 . . . yn) = (x1 . . . xn)M ; thus Oy1⊕· · ·⊕
Oyn ' tMTM. We claim that with Λ′ = I ′1y1⊕· · ·⊕I ′nyn, Λ′ = Λ. We know that
writing M as (αij),

yj =
n∑
i=1

αijxi ∈ (I ′j)−1(I1x1 ⊕ · · · ⊕ Inxn)

and so Λ′ ⊆ Λ. Since norm(Λ) = (I1 · · · In)2 · detT = (I ′1 · · · I ′n)2 · det(tMTM) =
norm(Λ′), we have Λ′ = Λ. So

c(Λ′J ) = cf ′( tMTM) N(I ′1 · · · I ′n)k N(J )nk/2

= cf (T ) N(detM)k N(I ′1 · · · I ′n)k N(J )nk/2

= cf (T ) N(I1 · · · In)k N(J )nk/2

= c(ΛJ ).

Thus by our assumption, I ′1y1 ⊕ · · · ⊕ I ′nyn = I ′1y′1 ⊕ · · · ⊕ I ′ny′n, which reduces
the problem to the preceeding case. Hence our definition of c(ΛJ ) is independent
of the choice of classes I1, . . . , In so that cls(I1 · · · In) is as prescribed (so here
cls(I1 · · · In),J are fixed).

Finally, suppose J ′ ∈ clx+J . Thus J ′ = αI2J for some fractional ideal I and
some α� 0. Say Λ = I1x1⊕· · ·⊕Inxn. We have agreed previously to identify ΛI

2

and IΛ, so that cf (ΛαI
2J ) = cf (IΛαJ ), whether we think of f as associated to

Γ(I1, . . . , In;αI2J ) or to Γ(II1, . . . , IIn;αJ ) (remember, these are two names for
the same group). So suppose J ′ = αJ , α� 0. We know Mk(Γ(I1, . . . , In;J )) '
Mk(Γ(I1, . . . , In;αJ )) via

f 7→ f ′ = f |
(
α−1I

I

)
.

Thus

f ′(τ) = N(α)−nk/2 f(α−1τ) = N(α)−nk/2
∑
T

cf (T )e{α−1Tτ}.

Consequently cf ′(α−1T ) = N(α)−nk/2 cf (T ). Set Λ′ = I1x1⊕ · · ·⊕Inxn equipped
with the quadratic form α−1T (so (Λ′)αJ is an integral lattice). Then we have

c(ΛJ ) = cf (T ) N(I1 · · · In)k N(J )nk/2

= cf ′(α−1T ) N(I1 · · · In)k N(αJ )nk/2

= c((Λ′)αJ ).

Thus the definition of c(ΛJ ) is also independent of the choice of the representative
for clx+J . �
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3. Eigenspaces.

The Vi(Q) operators are lifts of the Hilbert modular form operators that Eichler
called V (Q−1) [3] and Shimura called S(Q) [7]. We now introduce another lift of
these operators, and following Shimura [7] (where n = 1), we decompose Mk into
eigenspaces for these new operators.

Definition. Let Q be a fractional ideal, and choose(
a b
c d

)
∈
(

Q Q−1I2
`J ∂−1

QI−2
` J−1∂ Q−1

)
with ad− bc = 1. Set

M =


I`−1 0`−1

a b
In−` 0

0`−1 I`−1

c d
0 In−`

 .

Then MΓ(I1, . . . , In;J )M−1 = Γ(I ′1, . . . , I ′n;J ) where

I ′j =
{
Ij if j 6= `,
Q−1I` if j = `.

Thus S`(Q) : Mk(Γ(I1, . . . , In;J )) → Mk(Γ(I ′1, . . . , I ′n;J )) is an isomorphism
where we define

f |S`(Q) = f |M.

Proposition 3.1. With Q,P fractional ideals and α ∈ K×, S`(Q) commutes with
Ui(α), W (α), and Vij(P). Further, Si(Q)Vij(Q) = Sj(Q) and Ui(α−1)Si(Q) =
Si(αQ).

Proof. Keeping in mind the various domains for different incarnations of our func-
tions, it’s easy to show S`(Q) commutes with Ui(α),W (α).

To show S`(Q), Vij(P) commute, it suffices to show S`(Q), Vi(P) commute (recall
how Vij is defined). When ` 6= i, i+1, it is easy to see the matrices giving the actions
of S`(Q), Vi(P) commute. As we explain below, we can reduce our attention to the
case n = 2.

Suppose ` = i or i+ 1; for the sake of clarity, let us first look at the case where
i = 1, ` = 1 or 2. Then the action of each operator is given by a matrix of the form

A B
I 0

C D
0 I


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where A,B,C,D are 2× 2 matrices. Since the product of such matrices (and their
inverses) is again of this form, it suffices to restrict our attention to the submatrices(
A B
C D

)
.

First consider n = 2, i = ` = 1. Choose(
a b
c d

)
∈
(

Q QP2I2
1J ∂−1

(QI2
1J )−1∂ Q−1

)
so that ad− bc = 1. Choose

A ∈
(

P−1 PQI1I−1
2

P−1I−1
1 I2 P

)
so that detA = 1. (Note that these choices are possible, even when Q = P.) Then

M =


a b

1 0
c d

0 1


gives the action of both

S1(Q) : Mk(Γ(QI1, I2;J )) →Mk(Γ(I1, I2;J ))

and
S1(Q) : Mk(Γ(PQI1,P−1I2;J )) →Mk(Γ(PI1,P−1I2;J )).

Similarly, N =
(
A

tA−1

)
gives the action of both

V1(Q) : Mk(Γ(QI1, I2;J )) →Mk(Γ(PQI1,P−1I2;J ))

and
V1(Q) : Mk(Γ(I1, I2;J )) →Mk(Γ(PI1,P−1I2;J )).

A simple (but tiresome) check shows MNM−1N−1 ∈ Γ(QI1, I2;J ), which
implies that S1(Q), V1(P) commute when n = 2. For general n, we have
S1(Q)V1(P)S1(Q−1)V1(P−1) represented by a matrix of the form

M ′ =


A B

I 0
C D

0 I


where

(
A B
C D

)
∈ Γ(QI1, I2;J ). Thus M ′ ∈ Γ(QI1, I2, . . . , In;J ), and

S1(Q), V1(P) commute for general n. Similarly, S2(Q), V1(P) commute for n = 2,
and thus for general n.
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For general n, `, i with ` = i or i+1, the matrices giving the action of S`(Q), Vi(P)
are of the form 

Ii−1 0i−1

A B
I 0

0i−1 Ii−1

C D
0 I

 ,

where A,B,C,D are 2 × 2 matrices. So again the problem reduces to showing
S`(Q), Vi(P) (` = i or i+ 1) commute when n = 2 (which we have done).

To see that Si(Q)Vij(Q) = Sj(Q), it again suffices to consider j = i + 1. First,
fix a group Γ = Γ(I1, . . . , In;J ). From our definitions, we have a product of three
matrices giving the action of Si(Q)Vi(Q)Si+1(Q−1) on Mk(Γ). One easily verifies
that the conditions on these matrices ensure the product for Si(Q)Vi(Q)Si+1(Q−1)
lies in Γ. Finally, one verifies Ui(α−1)Si(Q) = Si(αQ) by matrix multiplication. �

This shows that the S`(Q) act on Mk, where, for F ∈ Mk, F ∼ (. . . , fi, . . . ),
F |S`(Q) ∼ (. . . , fi|S`(Q), . . . ). It also shows that Si(Q), Sj(Q) are equivalent on
Mk, and so we simply refer to this operator on Mk as S(Q). Furthermore, on Mk,
S(Q) = S(αQ) for all α ∈ K×; since we also know S(∗) is multiplicative, the map
clsI 7→ S(I) gives a group action of the ideal class group on Mk.

Proposition 3.2. Mk = ⊕χMk(χ) where χ varies over all characters of the ideal
class group, and

Mk(χ) = {F ∈Mk : F |S(Q) = χ(Q)F for all Q }.

Proof. First notice that Mk(χ) ∩ Mk(ψ) = {0} if χ 6= ψ. To prove this take
F ∈ Mk(χ) ∩Mk(ψ). Then χ(Q)F = F |S(Q) = ψ(Q)F for all Q. Since χ 6= ψ
there is a Q such that χ(Q) 6= ψ(Q). Therefore F = 0.

For ψ an ideal class character, let Gψ =
1
h

∑
clsI

ψ(I) F |S(I) where h is the class

number of K. Note that∑
ψ

Gψ =
1
h

∑
clsI

∑
ψ

ψ(I)

F |S(I) = F since
∑
ψ

ψ(I) =
{
h if clsI = clsO,
0 otherwise.

Thus F =
∑
ψ Gψ.

Next notice that

Gψ|S(Q) =
1
h

∑
clsI

ψ(I) F |S(I)|S(Q)

=
1
h

∑
clsI

ψ(I) F |S(IQ)

=
1
h
ψ(Q)

∑
clsI

ψ(IQ) F |S(IQ)

= ψ(Q) Gψ.
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Thus Gψ ∈Mk(ψ), and hence F ∈ ⊕χMk(χ). �

4. Hecke operators.

We begin by defining the Hecke operators. Then we show that they act on each
Mk(χ). After this, we describe how to find a set of coset representatives giving
the action of the operators. Finally, in the next section we analyze the action of
the operators on Fourier coefficients attached to even integral lattices, proving our
main theorem.

Definition. Let P a prime ideal; set Γ = Γ(I1, . . . , In;J ) and Γ′ =
Γ(I1, . . . , In;PJ ). We define the Hecke operator T (P) : Mk(Γ′) →Mk(Γ) by

F |T (P) = N(P)n(k−n−1)/2
∑
γ

F |γ

where γ runs over a complete set of coset representatives for (Γ′ ∩Γ)\Γ. Note that

Γ′ is the formal conjugate of Γ by the matrix δ =
(
PIn

In

)
. When K = Q, we

define T (p) on Mk(Γ) by

f |T (p) = pn(k−n−1)/2
∑
γ

f |δ−1γ

where γ runs over a complete set of coset representatives for (Γ′∩Γ)\Γ, Γ′ = δΓδ−1,

δ =
(
pI

I

)
. (This normalization of T (p) is standard, and as with the standard

normalization of the degree 1 Hecke operator T (p), the purpose of the normalization
is to force the coefficient to be 1 on the “lead” term in the expression for the Λth
coefficient of F |T (p).)

Now fix 1 ≤ j ≤ n; let Γ′j = Γ(PI1, . . . ,PIj , Ij+1, . . . , In;J ). We define the
Hecke operators Tj(P2) : Mk(Γ′j) →Mk(Γ) by

F |Tj(P2) =
∑
γ

F |γ

where γ runs over a complete set of coset representatives for (Γ′j ∩ Γ)\Γ.
Note that Γ′j is the formal conjugate of Γ by diag(PIj , In−j ,P−1Ij , In−j). When

K = Q, P = pZ, we define Tj(P2) = Tj(p2) on Mk(Γ) by

f |Tj(P2) =
∑
γ

f |δ−1γ

where δ = diag(pIj , In−j , 1
pIj , In−j), Γ′ = δΓδ−1, and γ runs over a complete set of

coset representatives for (Γ′ ∩ Γ)\Γ. (We introduce a normalization later.)
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Proposition 4.1. The operators T (P), Tj(P2) commute with Ui(α),W (β), Vi`(Q),
and Si(Q) where α, β ∈ K× with β � 0, and Q is a fractional ideal. Thus T (P),
Tj(P2) act on Mk(χ) (as defined in Proposition 3.2).

Proof. To show Tj(P2) commutes with the Vi`(Q), it suffices to show it commutes
with Vi(Q). Take

A ∈
(

Q−1 IiI−1
j QP

I−1
i IjQ−1P Q

)
with detA = 1, and set

I ′i =
{ PIi if i ≤ j,
Ii otherwise.

Then with

M =


Ii−1

A
In−i−1

Ii−1
tA−1

In−i−1

 ,

M gives the action of Vi(Q) : Mk(Γ) →Mk(M−1ΓM) and of Vi(Q) : Mk(Γ′) →
Mk(M−1Γ′M) (note that these are the appropriate codomains). Now let {γ}
be a complete set of coset representatives for (Γ′ ∩ Γ)\Γ. Thus {M−1γM} is a
complete set of coset representatives for (M−1Γ′M ∩M−1ΓM)\M−1ΓM . Hence
for f ∈Mk(Γ′),

f |Tj(P2)Vi(Q) =
∑
γ

f |γ|M

=
∑
γ

f |M |M−1γM

= f |Vi(Q)Tj(P2).

Similarly, to show Tj(P2) commutes with Si(Q), choose(
a b
c d

)
∈
(

Q Q−1I2
i P2J ∂−1

QI−2
i J−1∂ Q−1

)
so that ad−bc = 1. Then

(
a b
c d

)
lifts to a matrix M so that M gives the action of

Si(Q) : Mk(Γ) →Mk(M−1ΓM) and of Si(Q) : Mk(Γ′) →Mk(M−1Γ′M). Thus

f |Tj(P2)Si(Q) =
∑
γ

f |γ|M

=
∑
γ

f |M−1|M−1γM

= f |Si(Q)Tj(P2).

Similar but simpler arguments show that Tj(P2) commutes with Ui(α),W (β), and
that T (P) commutes with Vi(Q), Si(Q), Ui(α),W (β). �
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Proposition 4.2. For f ′ ∈Mk(Γ′), we have

f ′|Tj(P2) =
∑

Ω,Λ1,Y

f ′|S(j)(Ω)
(
I Y

I

)(
C−1

tC

)
.

Here Ω varies over all lattices such that PΛ ⊆ Ω ⊆ P−1Λ, Λ1 varies over all codi-
mension n−j subspaces of Ω∩Λ/P(Ω+Λ), C = C(Ω,Λ1). With r0 = mult{Λ:Ω}(P),
m1 = mult{Λ:Ω}(O), r1 = m1 − n+ j, µ ∈ P−1 − Ω fixed,

S(j)(Ω) =

(
r0+r1∏
i=r0+1

Si(P)

)(
j∏

i=r0+r1+1

Si(P2)

)
,

Y =


W0 W2 0 W3
tW2 µW1

0
tW3


with Y ∈ (IiIjJ ∂−1), W0 varying modulo P2, W1,W2,W3 varying modulo P with
P not dividing detW1. (Recall that ∂ is the different of K.) Here W0 is r0× r0 and
symmetric, W1 is r1 × r1 and symmetric, W2 is r0 × r1, W3 is r0 × (n− j).

Proof. Let P be a prime ideal, and fix j, 1 ≤ j ≤ n. We essentially follow the
algorithm presented in [5] to find a set of coset representatives giving the action of

Tj(P2) : Mk(Γ(PI1, . . . ,PIj , Ij+1, . . . , In;J )) →Mk(Γ(I1, . . . , In;J )).

For convenience, we will take Ii = O for 1 ≤ i ≤ j, Ii = O for j < i < n; also, we
take I = In and J ∂−1 to be integral ideals relatively prime to P (recall that the
equivalence class ofMk(Γ) is determined by clsI, cls+J , and ∂ is the different of K).
Note that this allows us to choose µ relatively prime to I1 · · · InJ ∂−1 = IJ ∂−1.

Choose M ∈ Γ(O, . . . ,O, I;J ), and let Mj = (A|B) denote the top j rows of
M with A,B j × n matrices. Let Λ = OPx1 ⊕ · · · ⊕ OPxn be a reference lattice.

Step 1. Let
Ω0 = ker(Λ → Λ(A) mod POP)

where A = (a1 · · · an) and Λ → Λ(A) mod POP denotes the map that takes xi to ai
(which is a 1× j matrix with entries in OP/POP). Note that the r0 = rankPΛ(A)
is at most j since A is a j × n matrix.

We claim there is a matrix
(
C

tC−1

)
∈ Γ(O, . . . ,O, I;J ) such that

Ω0 = ΛC0

(
PIr0

In−r0

)
and (A|B)

(
C

tC−1

)
= (A′|B′) with a′1, . . . , a

′
n ≡

0 (mod P).
First, write A = (a1 . . . an) and consider the rank modulo POP of (a1 . . . an).

Let E1 be an (n− 1)× (n− 1) invertible matrix (i.e. a change of basis matrix) so
that

(a1 . . . an)E1 = (a′1 . . . a
′
n)
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with a′1, . . . , a
′
r0 linearly independent modulo POP and a′r0+1 ≡ · · · ≡ a′n−1 ≡

0 (mod POP). Note that G1 =

E1
tE−1

1

1

 ∈ Γ(O, . . . ,O, I;J ). If an is

in the span modulo POP of a′1, . . . , a
′
r0 , then there is a matrix E2 =

(
I ∗

1

)
such that (a′1 . . . a

′
n−1an)E2 = (a′1 . . . a

′
n) where a′n ≡ 0 (mod POP); note that

G2 =
(
E2

tE−1
2

)
∈ Γ(O, . . . ,O, I;J ) and we take C0 to be G1G2. If r0 = n−1

then we are now done, regardless of whether an is in the span (modulo POP) of
a′1, . . . , a

′
r0 .

So suppose r0 < n − 1 (and thus a′n−1 ≡ 0 (mod POP)) and an is not in the
span (modulo POP) of a′1, . . . , a

′
r0−1.

Choose η ∈ I−1, ρ ∈ I such that η ≡ ρ ≡ 1 (mod P) and choose ν ∈ P
such that (ν, ηρ) = 1. Thus there are α, β ∈ O so that αν − ρηβ = 1.

Then with E3 =

(
I

α ηβ
ρ ν

)
, (a′1 . . . a

′
n−1an)E3 = (a′1 . . . a

′
n−2a

′′
n−1a

′′
n) with

a′′n−1 ≡ an (mod P), a′′n ≡ 0 (mod P). Note that G3 =
(
E3

tE−1
3

)
∈

Γ(O, . . . ,O, I;J ). Let E4 be the permutation matrix that permutes columns r0

and n−1; then G4 =
(
E4

tE−1
4

)
∈ Γ(O, . . . ,O, I;J ) and (a1 . . . an)G1G3G4 ≡

(a′1 . . . a
′
r0−1an0 . . . 0) (mod P). Hence in this case we take C0 = G1G3G4.

Thus there is a matrix C0 and integer r0 such that
(
C0

tC−1
0

)
∈

Γ(O, . . . ,O, I;J ) and Ω0 = ΛC0

(
PIr0

In−r0

)
. Then with renewed nota-

tion, Mj

(
C0

tC−1
0

)
has the form (a1, . . . , an|b1, . . . , bn) = (A0A1|B), A1 ≡

0 (mod P).
Note that while C0 is not uniquely determined, Ω0 is.
Step 2. First note that Lemma 7.2 of [5] easily generalizes to number fields,

where we “permute” b` and bn as we “permuted” a′r0 and an in the preceeding
paragraph. Thus with

Mj

(
C0

tC−1
0

)
= (A|B) = (a1, . . . , an|b1, . . . , bn),

where b1, . . . , br0 are in the span mod POP of a1, . . . , ar0 , and the rank mod

POP of (a1, . . . , ar0 , br0+1, . . . , bn) is j. Thus for some C =
(
Ir0

E

)
with(

C
tC−1

)
∈ Γ(O, . . . ,O, I;J ), we have (A|B)

(
C

tC−1

)
= (A′|B′) with

a′i = ai for i ≤ r0, and j the rank mod POP of (a1, . . . , ar0 , b
′
r0+1, . . . , b

′
j). We
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want to accomplish the above rearrangement, as well as replacing b′j+1, . . . , b
′
n with

vectors in the span mod POP of a1, . . . , ar0 ; we want to identify these modifications
with a uniquely determined lattice.

From Step 1 we have Λ = Λ0⊕∆1, Ω0 = PΛ0⊕∆1 with ∆1 uniquely determined
modulo PΛ. This corresponds to a splitting Λ# = Λ′0 ⊕ Λ′1 of the (formal) dual of
Λ, where Λ′0 is orthogonal to ∆1 and Λ′1 is orthogonal to Λ0. (So

Λ# = OPy1 ⊕ · · · ⊕ OPyn

and the basis {y1, . . . , yn} is dual to {x1, . . . , xn}.)
Let V be the OP/POP -space consisting of all j × 1 matrices, and let U be the

subspace spanned by a1, . . . , ar0 . Let

Ω′
1 = ker(Λ# → Λ#(B) mod POP → V/U),

where Λ# → Λ#(B) corresponds to yi 7→ bi, and the map into V/U is the canonical

projection map. Thus as in Step 1, we can find a matrix C =
(
Ir0

E

)
so

that
(
C

tC−1

)
∈ Γ(O, . . . ,O, I;J ) and (A|B)

(
C

tC−1

)
= (A′|B′) with

b′0 = b0, . . . , b
′
r0 = br0 , b

′
j+1, b

′
n in the span mod POP of a0, . . . , ar0 . Also, setting

C1 = C0C,

Ω′
1 = Λ# tC−1

1

 Ir0
PIj−r0

In−j

 ;

Λ# = Λ# tC−1
1 = Λ′0 ⊕ Λ′2 ⊕ Λ′3 with rankΛ′2 = j − r0 and Λ′0 ⊕ Λ′3 uniquely

determined modulo PΛ#. Correspondingly,

Ω0 = ΛC1

(
PIr0

In−r0

)
.

Note that Λ = ΛC1 = Λ0 ⊕∆2 ⊕ Λ3. Set

Ω1 = ΛC1

PIr0 Ij−r0
PIn−j

 = PΛ0 ⊕∆2 ⊕ PΛ3.

Since Λ′0 ⊕ Λ′3 are uniquely determined modulo PΛ#, ∆2 is uniquely determined
modulo PΛ.

Step 3. Write

Mj

(
C1

tC−1
1

)
= (a1 · · · an|b1 · · · bn) = (A0A1A3|B1B2B3)
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where j is the rank modulo POP of (A0, B1), A1, A3 ≡ 0 (mod POP), and B0, B3

are in the (column) span modulo POP of A0. We want to modify A1 to be of the
form (A′1, A

′
2) where A′2 ≡ 0 (mod P2OP). Recall that we have

Λ = Λ0 ⊕∆2 ⊕ Λ3, Ω1 = PΛ0 ⊕∆2 ⊕ PΛ3,

with rankΛ0 = r0, rank∆2 = j − r0. Renewing our notation, let (x1, . . . , xn) be a
basis corresponding to this decompositon of Λ.

Recall we have fixed µ ∈ P−1 −O so that µ is relatively prime to IJ ∂−1; set

PΩ2 = ker(Ω1 → Ω1(µA) mod POP)

where Ω1 → Ω1(µA) denotes the map taking xi to µai, so µΩ1(A) mod POP
is spanned by a1, . . . , ar0 , µar0+1, . . . , µaj with a1, . . . , ar0 linearly independent
modulo POP (recall ai ' 0 (mod POP) for i > j). Thus

PΩ2 = P2Λ0 ⊕ PΛ1 ⊕ Λ2 ⊕ PΛ3

where Λ2 is uniquely determined modulo PΩ1. As in the previous steps, we can

find a matrix C =

 Ir0
E

In−j

 such that
(
C

tC−1

)
∈ Γ(O, . . . ,O, I;J )

and

PΩ2 = ΛC


P2Ir0

PIr1
Ir2

PIn−j

 .

Correspondingly, (A|B)
(
C

tC−1

)
= (A0A

′
1A2A3|B0B

′
1B2B3) with A′1 ≡

0 (mod POP), A2 ≡ 0 (mod P2OP), and a1, . . . , ar0 , µa
′
r0+1, . . . , µa

′
r0+r1 lin-

early independent modulo POP where r1 = rankΛ1 ( and so A′1 is j × r1). Let
C(Ω,Λ1) = C0C1.

Step 4. Write Mj

(
C2

tC−1
2

)
= (A0, A1, A2, A3|B0, B1, B2, B3). So A1, A3 ≡

0 (mod POP), A2 ≡ 0 (mod P2OP), and the columns of (A0, µA1) are linearly
independent modulo POP . Also, B0, B3 are in the column span modulo POP of
A0.

Since B0, B1 are in spanPA0, we can solve

A0Y
′
0 ≡ −B0 (mod POP), A0Y3 ≡ −B3 (mod POP).

Note that as B tA is symmetric and A1, A2, A3 ≡ 0 (mod POP), B0
tA0 is sym-

metric modulo POP . Also, since A0 has full rank modulo P, there is some ma-

trix E ∈ GLj(OP) such that EA0 =
(
A′

0

)
. Writing EB0 =

(
B′

B′′

)
, we see
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B′′ ≡ 0 (mod POP) since E(B0
tA0) tE is symmetric modulo POP . Thus Y ′

0

is the unique solution modulo P to A′Y ′
0 ≡ −B′ (mod POP); since (A′)−1 B′ is

symmetric modulo POP , we can choose Y ′
0 to be symmetric.

Let

(A0, A1, A2, A3|B′
0, B1, B2, B

′
3)

= (A0, A1, A2, A3|B0, B1, B2, B3)



I Y0 0 0 Y3

I 0
I 0

I tY3

I
I

I
I


,

B′
0, B

′
3 ≡ 0 (mod POP). Then just as we argued about Y ′

0 , there is a unique modulo
POP symmetric solution Y ′ to

(A0, µA1)Y ′ ≡ −(µ(B′
0 +A3

tY3), B1) (mod POP).

Decompose Y ′ as
(
Y ′′

0 Y2
tY2 Y1

)
; choose δ ∈ P so that δµ ≡ 1 (mod P) and set

Y0 = Y ′
0 + δY ′′

0 .
Note that since rankP(A0, B1) = r0 + r1, we have rankP(B1 + A0Y0) =

rankPB1 = r1. Since −µA1Y1 ≡ B1+A0Y2 (mod POP), we must have detY1 ∈ O×
P .

Take Y =

 W 0 W3

0 I
tW3

 =


W0 W2 0 W3
tW2 µW1

0 I
tW3

 to be a symmetric ma-

trix in
(
IiIjJ ∂−1

)
with W0 ≡ Y0 (mod P2OP) and Wi ≡ Yi (mod POP) for

i = 1, 2, 3.
Then

(A0, A1, A2, A3|B0, B1, B2, B3)
(
I Y
0 I

)
= (A0, A1, A2, A3|B′′

0 , B
′
1, B

′
2, B

′
3)

with B′′
0 ≡ 0 (mod P2OP), B′

2 ≡ B2 (mod P2OP), B′
1, B

′
3 ≡ 0 (mod POP).

Let C = C(Ω,Λ1). Also, identifying Si(P) with a matrix giving its action, let

S(j)(Ω) =

(
r0+r1∏
i=r0+1

Si(P)

)(
j∏

i=r0+r1+1

Si(P2)

)
.

We see that, with renewed notation,

Mj

(
C

tC−1

)(
I Y

I

)
S−1(Ω) = (A0, A1, A2, A3|B0, B1, B2, B3)
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with A3, B3 ≡ 0 (mod POP), B0, B1, B2 ≡ 0 (P2OP).
However, while the matrices for Si(P−2) lie in Γ, the matrices for Si(P−1) do

not. We remedy this as follows.
For r0 < i ≤ r0 + r1, choose αi ∈ P−1, βi ∈ PI2

i J ∂−1, γi ∈ P−1I−2
i J−1∂ so

that αiδ − βiγi = 1 and for any prime Q 6= P dividing δ, Q does not divide βi.
(Recall that our choice of δ ensures δ ∈ P − P2.) Set α = diag(. . . , αi, . . . ), an
r1 × r1 matrix; define β, γ in an analogous fashion. So


Ir0 0r0

α β
I 0

0r0 Ir0
γ δI

0 I


gives the action of

∏r0+r1
i=r0+1 Si(P−1).

Now consider(
I −µW1

I

)(
α β
γ δI

)
≡
(
α− µW1γ β −W1

γ δI

)
(mod P).

We find that
(
β −W1

δI

)
is a coprime symmetric right-hand pair for

Γ(Ir0+1, . . . , Ir0+r′1 ;J ) (2r′1 × 2r′1 matrices). Thus by Lemma 6.1, there exist ma-
trices U, V so that (

U β + δW1

V δI

)
∈ Γ(Ir0+1, . . . , Ir0+r′1 ;J ).

Hence

X−1 =


Ir0 0r0

U β −W1

I 0
0r0 Ir0

V δI
0 I

 ∈ Γ,

and with Y ′ =

 W1 W2 W ′
3

tW2
tW ′

3

 and

N−1 =
(
C

tC−1

)(
I −Y ′

I

)
X−1

 j∏
i=r0+r′1+1

Si(P−2)

 ,
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we have MjN
−1 = (A0, A1, A2, A3|B0, B1, B2, B3) with A3, B3 ≡ 0 (mod POP),

B0, B1, B2 ≡ 0 (mod P2OP). Thus by an easy generalization of Lemma 7.1 of [5],
MN−1 ∈ Γ ∩ Γ′. Also, since(

δI −β +W1

−γ α

)(
U β −W1

V δI

)
=
(
I 0
V ′ I

)
∈ Γ(I ′r0+1, . . . , I ′r0+r′1 ;J ),

we have

f ′|N = f ′|S(Ω)
(
I −Y

I

)(
C−1

tC

)
. �

Proposition 4.3. For f ′ ∈Mk(Γ(I1, . . . , In;PJ )), we have

f ′|T (P) = N(P)n(k−n−1)/2
∑
Ω,Y0

f ′|S(Ω)


I Y0

I 0
I

I

(C−1

tC

)

and Y0 ∈ (IiI`J ∂−1) varies over symmetric r× r matrices modulo P and C varies
as in Proposition 4.2. Here r = mult{Λ:Ω}(P) and S(Ω) =

∏n
i=r+1 Si(P).

Proof. To find coset representatives for T (P), take M ∈ Γ(I1, . . . , In;J ); write

M =
(
A B
C D

)
. Let Ω = ker(Λ 7→ Λ(A) (mod P)), and choose C = C(Ω) so

that Ω = ΛC
(
PIr

In−r

)
. Thus (A|B)C = (A0A1|B0B1), A1 ≡ 0 (mod POP),

rankPA0 = r where A0 is n×r, and B0 ∈ spanPA0. Choose symmetric Y0 with i, `-

entry in IiI`J ∂−1 such that A0Y0 ≡ B0 (mod POP). Then with Y =
(
Y0

µI

)
,

(A|B)
(
C

tC−1

)(
I −Y

I

)
S−1(Ω) = (A′|B′) where S(Ω) =

∏n
i=r+1 Si(P) and

B′ ≡ 0 (mod POP). As before, choose diagonal (n− r)× (n− r) matrices α, β, γ

so that the action of S(Ω) is given by


Ir 0r

α β
0r Ir

γ δI

 . Then

(
I −Y

I

)
I 0

α β
0 I

γ δI

 =


I −Y

I 0
I

I



I 0

α+ µγ β + δI
0 I

γ δI

 .

Here β ≡ 0 (mod POP), rankP(β + µδI) = n − r. Thus
(
β − µδI
δI

)
is a sym-

metric coprime right-hand pair for Γ(Ir+1, . . . , In;J ), hence there are U, V so that
I 0

U β + µδI
0 I

V δI

 ∈ Γ(I1, . . . , In;J ). Since
(
U β + µδI
V δI

)(
δI −β
−γ α

)
∈

Γ(Ir+1, . . . , In;PJ ) we get the result as claimed. �
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5. Evaluating the action of the Hecke operators.

When evaluating the action of the operators Tj(P2), we encounter incomplete
character sums. To complete these, we define modified operators as follows.
Definition. For P a prime ideal and 1 ≤ j ≤ n, define

T̃j(P2) = N(P)j(k−n−1)
∑

0≤`≤j

β(n− `, j − `)S`+1(P) · · ·Sj(P)T`(P2).

We will also need the following rather technical result.

Proposition 5.1. Let T1 be a symmetric r1 × r1 matrix whose i, `-entry lies in
(Ir0+iIr0+`J )−1, and whose ith diagonal entry lies in 2I−2

r0+i
J−1; fix µ ∈ P−1−O.

With W varying over all symmetric r1 × r1 matrices modulo P with i, `-entry in
Ir0+iIr0+`J ∂−1, ∑

W

e{µT1W} =
∑

0≤m≤r′1

∑
∆,U

e{µT∆U}

where for each m, ∆ varies over dimension m subspaces of Λ1, ∆ ' T∆ (mod P),
and U varies over all m×m symmetric matrices modulo P.

Proof. For a moment, let’s fix W . Since W is symmetric, we can view it as
the matrix of a quadratic form on an r′1 dimensional O/P space V = L/PL,

L =
(
I−1
r0+1y1 ⊕ · · · ⊕ Ir0+r1yr1

)J−1∂
. (When P is dyadic, let W define an integral

quadratic form on

L = (OPI−1
r0+1y1 ⊕ · · · ⊕ OPI−1

r0+r1yr1)
J−1∂ ,

and let V = L/PL, a quadratic space over OP/POP ≈ O/P. We use §93 of [6]
to understand the structure of L and thereby of V .) The radical of this space is
uniquely defined, so for some G ∈ GLr1(O),

tG−1WG−1 ≡
(
U

0

)
(mod P)

where U is m×m with rankPU = m. (So V G−1 = J ⊕ radV where J is a regular
space whose isometry class is uniquely determined by V , and J ' U .)

So

e{αT1W} = e{αT1
tG

(
U

0

)
G}

= e{α(GT1
tG)

(
U

0

)
}

= e{αSU}

where GT1
tG =

(
S ∗
∗ ∗

)
, S an m × m matrix. Here we take Λ to be a rank

n lattice as in the previous section, and we equip Λ with a quadratic form such
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that Λ ' T ; thus with Λ1 as in the previous section, we have Λ1 ' T1, and

∆ = Λ1
tG

(
Im
0

)
' S. So S corresponds to an m-dimensional subspace ∆ of

the O/P-space Λ1. Thus each W gives rise to (at least one) pair (∆, U), ∆ an
m-dimenstional subspace of Λ1, U an m×m integral symmetric matrix of rank m
modulo P.

With T1 still fixed, fix m, 0 ≤ m ≤ r1. We now define a map ϕ from all pairs
(∆, U) as above to symmetric r1 × r1 matrices W . Here ∆ is an m-dimensional
subspace of Λ1, and U is an integral symmetric m×m matrix with rankPU = m.

For each such ∆ we fix some G = G∆ ∈ GLr1(O) so that ∆ = Λ1
tG

(
Im
0

)
. We

define ϕ(∆, U) = tG

(
U

0

)
G.

We first show that the image of ϕ consists of all symmetric r1 × r1 matrices W
modulo P with rankPW = m. Then we show that ϕ is injective.

As shown above, given any W in the codomain of ϕ,

W ≡ tG

(
U

0

)
G (mod P)

where U is m×m, m = rankPU , and G ∈ GLr1(O).

Take ∆ = Λ1
tG

(
Im
0

)
. So ∆ is an m-dimensional subspace of Λ1, and thus

tG

(
Im
0

)
and tG∆

(
Im
0

)
each map a basis for Λ1 to a basis for ∆. Hence with

(x1, . . . , xr1) a basis for Λ1, (x1, . . . , xr1)
tG = (y1, . . . , yr1), (x1, . . . , xr1)

tG∆ =
(z1, . . . , zr1), we must have (y1, . . . , ym) ≡ (z1, . . . , zm) tC (mod P) for some C ∈

GLm(O). Thus (x1, . . . , xr1)
tG = (x1, . . . , xr1)

tG∆

(
tC ∗
0 ∗

)
, meaning tG =

tG∆

(
tC ∗
0 ∗

)
.

Hence modulo P,

W ≡ tG

(
U

0

)
G = tG∆

(
tC ∗
0 ∗

)(
U

0

)(
C 0
∗ ∗

)
G∆ = ϕ(∆, tCUC).

Thus ϕ is surjective.
Now we show ϕ is injective. Say

W ≡ ϕ(∆1, U1) ≡ ϕ(∆2, U2) (mod P).

Thus with Gi = G∆i
, we have

W ≡ tG1

(
U1

0

)
G1 ≡ tG2

(
U2

0

)
G2 (mod P).
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So with G = G2G
−1
1 , (

U1

0

)
≡ tG

(
U2

0

)
G (mod P).

Since the columns of Ui are linearly independent modulo P, we must have G ≡(
C 0
∗ ∗

)
(mod P).

Now we compare ∆1,∆2; we will find that ∆1 = ∆2, so G1 = G2 and hence
U1 ≡ U2 (mod P). With notation as before, we have

(y1, . . . , ym) = (x1, . . . , xr′1)
tG1

(
Im
0

)
,

(z1, . . . , zm) = (x1, . . . , xr′1)
tG2

(
Im
0

)
= (x1, . . . , xr′1)

tG1
tG

(
Im
0

)
.

Thus given our knowledge of G, we see that (y1, . . . , ym) = (z1, . . . , zm) tC, and
hence ∆1 = ∆2. Thus G1 = G2, and consequently U1 ≡ U2 (mod P). Therefore ϕ
is injective. �

We can now prove our main result. In the remark following the proof we demon-
strate how to compute the geometric term αj(Ω,Λ).

Theorem 5.2. Let F ∈Mk(χ) where χ is a character of the ideal class group and
Mk(χ) is as defined in Proposition 3.2.

(1) The ΛJ th coefficient of F |T̃j(P2) is∑
PΛ⊆Ω⊆P−1Λ

N(P)Ej(Λ,Ω)χ(P)ej(Λ,Ω)αj(Ω,Λ)cF (ΩJ )

where Ej(Λ,Ω) = k(r2 − r0 + j) + r0(r0 + m1 + 1) + r1(r1 + 1)/2 − j(n + 1),
ej(Λ,Ω) = 2r2 + r1 = r2− r0 + j, and αj(Ω,Λ) is the number of totally isotropic
codimension n − j subspaces of Ω ∩ Λ/P(Ω + Λ). Here r0 = mult{Λ:Ω}(P),
m1 = mult{Λ:Ω}(O), r1 = m1 − n+ j, and r2 = mult{Λ:Ω}(P−1).

(2) The ΛJ th coefficient of F |T (P) is∑
PΛ⊆Ω⊆Λ

N(P)E(Ω,Λ)χ(P)n−rcF (ΩJP−1
)

where r = mult{Λ:Ω}(O) and E(Ω,Λ) = k(n− r) + r(r + 1)/2− n(n+ 1)/2.

Proof. Take fractional ideals I1, . . . , In,J and f ′ ∈Mk(Γ(I ′1, . . . , I ′n;J )),

I ′i =
{ PIi if i ≤ j,
Ii if i > j.
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In the preceeding proposition, consider the subsum where we fix a choice of Ω:

∑
Λ1,Y

f ′|S(Ω)
(
I Y

I

)(
C−1

tC

)
= χ(P)2r2+r1

∑
Λ1,Y

f ′′|
(
I Y

I

)(
C−1

tC

)

where f ′′ is the component of F corresponding to the group Γ(I ′′1 , . . . , I ′′n ;J ),

I ′′i =


PIi if 1 ≤ i ≤ r0,
P−1Ii if r0 + r1 < i ≤ j,
Ii otherwise.

Set m1 = r1 + n − j. Expanding f ′′ as a Fourier series supported on even T ∈
((I ′′i I ′′` J )−1), we find that for fixed Λ1,

∑
Y

f ′′|
(
I Y

I

)(
C−1

tC

)
(τ)

=
∑
T

cf ′′(T )e{TC−1τ tC−1}
∑
Y

e{TY }

=
∑
T

cf ′′(T )e{TC−1τ tC−1}∑
W0,W1,W2,W3

e{T0W0} e{µT1W1} e{T2W2} e{T3W3}

where T =


T0 T2 ∗ T3
tT2 T1 ∗ ∗
∗ ∗ ∗ ∗
tT3 ∗ ∗ ∗

 . T0 and W0 are symmetric r0 × r0 matrices with

T0 even, the i, `-entry of W0 in IiI`J ∂−1. Thus the sum on W0 (T0 fixed) is a
complete character sum, yielding N(P)r0(r0+1) if T0 ≡ 0 (mod P), and 0 otherwise.
Similarly, the sums on W2,W3 are complete character sums. So

∑
Y

e{TY } =
{
N(P)r0(r0+m1+1)

∑
W1

e{µT1W1} if T ∈ ((IiI`J )−1),
0 otherwise.

With (B(xi, x`)) = tC−1TC−1, take Λ = I1x1 ⊕ · · · ⊕ Inxn. Then the sum on
W0,W2,W3 is nonzero if and only if ΛJ is even integral.

Let (y1 . . . yn) = (x1 . . . xn)C and set Ω = I ′′1 y1⊕· · ·⊕I ′′nyn. Then (B(yi, y`)) = T
and cf ′′(T )N(I ′′1 · · · I ′′n)kN(J )nk/2 = cF (ΩJ ).

Note that when cf |S`(P)(T ) is contributing to the ΛJ th coefficient of f |Tj(P2) ∈
Mk(Γ(I1, . . . , In;J )), it gets normalized by N(I1 . . . In)kN(J )nk/2; when it is
determining a coefficient of f |S`(P) ∈ Mk(Γ′), Γ′ ' Γ(P−`I1, I2, . . . , In;J ), it
gets normalized by N(P)−`kN(I1 . . . In)kN(J )nk/2.
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So the contribution from f ′′ to the ΛJ th Fourier coefficient of f ′|Tj(P2) is

N(P)j(k−n−1)+r0(r0+m1+1)χ(P)2r2+r
′
1
∑
Ω,Λ1

N(P)k(2r2+r1)cF (ΩJ )
∑
W1

e{µTΛ1W1}

where Ω varies subject to PΛ ⊆ Ω ⊆ P−1Λ, mult{Λ:Ω}(P−1) = r0, mult{Λ:Ω}(P) =
r2, Λ1 a codimension n−j subspace of Ω1 ' Ω∩Λ/P(Ω+Λ), and W1 varies modulo
P with i, `-entry in IiI`J ∂−1, P 6 |detW1. Here TΛ1 = (B(xr0+i, xr0+`)) is r1 × r1
where Λ1 = Ir0+1xr0+1 ⊕ · · · ⊕ Ir0+r1xr0+r1 . If T ′1 is also a matrix associated to
Λ1 then there is a change of basis matrix G whose i, `-entry lies in IiI−1

` so that
tGT ′1G = TΛ1 . Thus e{µT ′1W1} = e{µTΛ1(GW1

tG)}; as W1 varies over invertible
matrices modulo P, so does GW1

tG. Thus the sum on W1 is independent of the
choice of matrix associated to Λ1.

We complete the character sum on W1 by replacing Tj(P2) with T̃j(P2), then
apply Proposition 5.1, where we consider

∑
W e{αT1W} with W varying over all

symmetric r1 × r1 integral matrices modulo P.
Notice that for 0 ≤ ` ≤ j,

S`+1(P) · · ·Sj(P)T`(P2) : Mk(Γ(I ′1, . . . , I ′n;J )) →Mk(Γ(I1, . . . , In;J ).

Also notice that the number of dimension r1 = m1−n+j lattices Λ1 containing some
dimension m1−n+` lattice ∆ is the number of ways to extend ∆ to a j-dimensional
subspace of Ω1 (where Ω = Ω0 ⊕ Ω1 ⊕ Ω2, Λ = PΩ0 ⊕ Ω1 ⊕ P−1Ω2). Extending
∆ is equivalent to choosing a j − ` dimensional subspace of an n − ` space (here
dim Ω1 = m1). So the number of Λ1 containing ∆ is β(n−`, j−`) = βP(n−`, j−`).

Note that the coefficient of f ′|T̃j(P2) associated to ΛJ = (I1x1 ⊕ · · · ⊕
Inxn)J carries a normalizing factor of N(I1 · · · In)kN(J )nk/2, while the coeffi-
cient of f ′|S(j)(P) associated to ΩJ = (I ′′1 y1 ⊕ · · · ⊕ I ′′nyn)J carries a factor of
N(P)k(r0−r2)N(I1 · · · In)kN(J )nk/2. Hence, contributing to c(ΛJ ) we have

N(P)k(r2−r0+j)+r0(r0+m1+1)+r1(r1+1)/2−j(n+1)χ(P)2r2−r0
∑
Λ1

c(ΩJ )

where ΛJ1 varies over all totally isotropic codimension n − j sublattices of ΛJ ∩
ΩJ /P(ΛJ + ΩJ ). Summing over all Ω, PΛ ⊆ Ω ⊆ P−1Λ, yields (1).

The proof of (2) is quite similar to the proof of (1), but much simpler, and so
we leave it to the reader. �

Remark. As discussed above Proposition 2.2, ΛJ1 /PΛJ1 is a quadratic space over
O/P. By §42 of [6] (for results about quadratic spaces over fields of characteristic
2, see, for example, §5 of [9]), ΛJ1 /PΛJ1 = R ⊥ W ⊥ Ht where R = radΛJ1 /PΛJ1 ,

W is anisotropic, and H '
(

0 1
1 0

)
denotes a hyperbolic plane. With U = R ⊥W ,

Lemma 1.6 of [8] and Lemma 4.1 of [9] tell us that the number of `-dimensional
totally isotropic subspaces of ΛJ1 /PΛJ1 is

ϕ`(ΛJ1 /PΛJ1 ) =
∑
a

q(t−a)(`−a)δ(d+ t− `+ a+ 1, a)β(t, a)ϕ`−a(U)
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where q = N(P), d = dimU , δ(m, r) =
∏r−1
i=0 (qm−i + 1), β(m, r) =

∏r−1
i=0 (qm−i −

1)/(qr−i − 1), and 0 ≤ a ≤ `. (Note that Lemma 1.6 of [8] is proved for a qua-
dratic space over Z/pZ, but the argument is valid over all finite fields. When the
characteristic is 2, we replace Q by 1

2Q; we present a full discussion of this case
in §5 of [9].) Also, since U = R ⊥ W with R totally isotropic and W anisotropic,
any totally isotropic subspace of U is a subspace of R. Thus ϕ`−a(U) = β(r, `− a)
where r = dimR. (So d = dimU = r + dimW , and since W is anisotropic, dimW
is 0, 1, or 2 by 62:1b of [6] for q odd, and by, e.g., Proposition 5.1 of [9] for q even.)
Hence

αj(Ω,Λ) =
∑
a

q(t−a)(`−a)δ(d+ t+ a+ 1, a)β(t, a)β(r, `− a)

where 0 ≤ a ≤ `, ` = r1 − n+ j.

6. Lemma on symmetric coprime pairs.

Definition. We say a pair of matrices (C,D) is a symmetric coprime lower pair
for Γ(I1, . . . , In;J ) if:
(a) C tD is symmetric;
(b) C ∈ J−1∂

(
I−1
i I−1

j

)
, D ∈

(
I−1
i Ij

)
;

(c) for all prime ideals P,

rankP

λ1

. . .
λn

 (C,D)



αλ1

. . .
αλn

αλ−1
1

. . .
αλ−1

n


= n

where αOP = J ∂−1OP , λiOP = IiOP .

Since Γ(I1, . . . , In;J ) ≈ Γ(O, . . . ,O, I;J ) when I ∈ cls(I1 · · · In), the follow-
ing technical lemma focuses on Γ(O, . . . ,O, I;J ), but the conclusion (c) is valid
for Γ(I1, . . . , In;J ).

Corresponding definitions and results hold for symmetric coprime upper, right-
hand, and left-hand pairs for Γ(I1, . . . , In;J ).

Lemma 6.1. Let I,J be fractional ideals; set

G = {E ∈
(
I

I

)
On,n

(
I

I−1

)
: detE = 1 }.

Say C ∈ J−1∂

(
I

I−1

)
On,n

(
I

I−1

)
, D ∈

(
I

I−1

)
On,n

(
I

I

)
are a

symmetric coprime lower pair for Γ(O, . . . ,O, I;J ).
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(a) Let Q be a prime ideal, and choose λ ∈ I, α ∈ J ∂−1 such that
ordQλ = ordQI, ordQα = ordQJ ∂−1. Then there is some E ∈ G so that

α

(
I

λ

)
CE

(
I

λ

)
≡ (C0, 0) (mod Q) where C0 is n×r with rankQC0 = r.

(b) There is a matrix M ∈ Γ(O, . . . ,O, I;J ) so that (C|D)M = (C ′|D′) with
detC ′,detD′ 6= 0 and

(
(J ∂−1)nI2 detC ′,detD′) = 1.

(c) There are n× n matrices A,B so that
(
A B
C D

)
∈ Γ(O, . . . ,O, I;J ).

Proof. It suffices to establish the claims for Γ(O, . . . ,O,P;J ) where P is a prime
ideal in clsI. Choose α ∈ J ∂−1 so that ordQα = ordQJ ∂−1 whenever ordQJ ∂−1 6=
0. Choose λ ∈ P − P2, µ ∈ P−1 −O so that λµ ≡ 1 (mod P).

(a) Let C̃ = α

(
I

λ

)
C

(
I

λ

)
= (c1 . . . cn) (so ci is the ith column of C̃).

Then there is some E′ ∈ GLn−1(O) so that

(c1 . . . cn−1)E ≡ (C ′
0, 0) (mod P)

where C ′
0 is n× r′, r′ = rankP(c1 . . . cn−1). So E1 =

(
E′

1

)
∈ G, and

α

(
I

λ

)
CE1

(
I

λ

)
= C̃E1 ≡ (C ′

0, 0, cn) (mod P).

First suppose cn ∈ spanPC ′
0. Thus there exist γ1, . . . , γr ∈ O so that C ′

0γ ≡

−cn (mod P) where γ =

 γ1
...
γr

 . Let E = E1

 I µγ
I

1

 . Then

α

(
I

λ

)
CE

(
I

λ

)
= C̃E1

(
I

(µλ)−1

) I γ
I

1

( I
µλ

)

≡ C̃E1

(
I

(µλ)−1

) I γ
I

1

( I
µλ

)
(mod P)

≡ (C ′
0, 0) (mod P),

proving (a) in the case cn ∈ spanPC ′
0.

So suppose cn 6∈ spanPC ′
0. If r′ = n− 1 then we are done, as then rankP C̃ = n

and we can take E = I. So let us also suppose r′ < n − 1. Choose δ ∈ P so
that for all primes Q|µλ, Q 6 |δ. Thus (µλ, δ) = 1, so there are u, v ∈ O so that

vδ − uµλ = 1. Thus E2 =

(
I

ν µη
λ δ

)
∈ G, and

α

(
I

λ

)
CE1E2

(
I

λ

)
≡ C̃E1 ·

(
I

µ

)
E2

(
I

λ

)
(mod P)
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where c′i = ci for i < n− 1, c′n−1 ≡ cn (mod P) and c′n ≡ 0 (mod P).

Let E3 =
(
∗

1

)
be a permutation matrix that interchanges columns r′ and

n− 1. So E = E1E2E3 ∈ G, and (a) is proved.
(b) Let A = (J ∂−1)n · I2 · detC ⊆ O. Take λ ∈ I, η ∈ I−1, α ∈ J ∂−1, µ ∈ J−1∂
so that λη ≡ αν ≡ 1 (mod Q).

Case 1: Say detD 6= 0, detD 6∈ O×. Part (a) says there exists some E ∈ G so
that

α

(
I

λ

)
CE

(
I

λ

)
≡ (C0, 0) (mod Q),

with C0 n× r, rankQC0 = r. Thus
(
E

tE−1

)
∈ Γ(O, . . . ,O, I;J ), and

(
I

λ

)
(C|D)

(
E

tE−1

)
αI

αλ
I

η

 ≡ (C0, 0)D0, D1) (mod Q);

here D0 ⊆ spanQC0 (since C tD is symmetric; see the proof of Lemma 7.2 in [5]),
and thus rankQ(C0|D1) = n.

Set W = µ

(
I

η

)(
0r

In−r

)(
I

η

)
; hence

MQ =
(
E

tE−1

)(
I 0
W I

)
∈ Γ(O, . . . ,O, I;J ).

Also, with (C ′|D′) = (C|D)MQ, detD′′ = detD and

(
I

λ

)
(C ′|D′)


αI

αλ
I

η



≡
(
I

λ

)
(C|D)

(
E

tE−1

)
αI

αλ
I

η



I

I
0r I

I I


(mod Q).

Thus rankQα
(
I

λ

)
C ′
(
I

λ

)
= n, and hence Q 6 |(J ∂−1)nI2 detC ′.

Only finitely many prime ideals Q divide detD, so repeating this process for all
suchQ yields a pair (C ′|D′) = (C|D)M , M ∈ Γ(O, . . . ,O, I;J ), detC ′,detD′ 6= 0,
and

(
(J ∂−1)nI2 detC ′,detD′) = 1.

Case 2: Say detD ∈ O×. If detC 6= 0 then we are done; so suppose detC = 0.
Then let Q be any prime ideal; following the algorithm in Case 1, we produce
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MQ ∈ Γ(O, . . . ,O, I;J ) so that with (C ′|D′) = (C|D)MQ, we have detD′ = detD
and Q 6 |detC ′ (so detC ′ 6= 0). This completes this case.

Case 3: Say detD = 0. Choose a prime Q; with λ, η, α, µ as in Case 1, we know
there is some E ∈ G so that

(
I

λ

)
(C|D)

(
E

tE−1

)
αI

αλ
I

η

 ≡ (C0, 0|D0, D1) (mod Q)

with rankQ(C0|D1) = n, D0 ⊆ spanQC0. Thus for some Y ∈ Or,r, rankQ(C0Y +
D0, D1) = n. Note that Y is uniquely determined modulo Q, and that C0

tD0 is
symmetric modulo Q. Since C0Y

tC0 ≡ −D0
tC0 (mod Q), we can choose Y to be

symmetric in Or,r.
Set

Y ′ = α

(
I

λ

)(
Y

0

)(
I

λ

)
;

hence M =
(
E

tE−1

)(
I Y ′

I

)
∈ Γ(O, . . . ,O, I;J ). Thus with (C ′|D′) =

(C|D)M , we have

(
I

λ

)
(C ′|D′)


αI

αλ
I

η

 ≡ (C0, 0|C0Y +D0, D1) (mod Q).

Hence rankQ

(
I

λ

)
D′
(
I

η

)
= n, so Q 6 |detD′ (and thus detD′ 6= 0). This

reduces this situation to one of the previous cases.
(c) Set κ = detD; choose λ ∈ A so that (κ, λ) = 1, and η ∈ O
so that η ≡ κ−1 (mod λ) (this is possible by the Chinese Remainder The-

orem). Since C ∈ J−1∂

(
I

I−1

)
On,n

(
I

I−1

)
, we have λ tC−1 ∈

J ∂−1

(
I

I

)
On,n

(
I

I

)
. Also, λ|(ηκ− 1), so

B = (ηκ− 1) tC−1 ∈ J ∂−1

(
I

I

)
On,n

(
I

I

)
.

(Note that locally everywhere: C ∈ J−1∂

(
I

I−1

)
C0

(
I

I−1

)
, C0 ∈ On,n,

detC0 = (J ∂−1)nI2 detC; hence C−1 ∈ 1
detC0

J ∂−1

(
I

I

)
On,n

(
I

I

)
.)

Set A = ηκ tD−1. We have κ = detD, η ∈ O, so ηκ tD−1 ∈(
I

I

)
On,n

(
I

I−1

)
. Thus

(
A B
C D

)
is a candidate for Γ(O, . . . ,O, I;J ).
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To see this matrix indeed lies in this group, first note that A tD − B tC = I,
and by assumption, C tD is symmetric. Finally, substituting for A and B, we get
A tB = ηκ(ηκ−1) tD−1C−1; since tD−1C−1 = (C tD)−1 is symmetric, so is A tB.
�
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