
Analysis Workshop
Life without Limits: The Finite Calculus

Story. “Limits” are fundamental in our study of analysis. We see the
beginnings of our modern notion of a limit in the works of Archimedes
(circa 287–212 BC). Often hailed as the greatest mathematician of antiquity,
Archimedes used the “method of exhaustion” to compute things like the area
of a circle and the area between a parabola and a line. To compute the area
of a circle, Archimedes inscribes the circle inside a regular hexagon, and
inscribes a regular hexagon inside the circle, thereby being able to compute
an upper and a lower estimate for the area of the circle. Then Archimedes
proceeds to repeatedly double the number of sides of each regular polygon,
and thus squeezes the area of the circle between the areas of these polygons,
with greater precision of the estimate of the area of the circle as the number
of sides of the outer and inner polygons grow. So Archimedes essentially
uses a limiting process to compute the area of the circle. Archimedes uses a
similar method to compute the area between a parabola and a line, yielding
what we now call a “geometric series”, which he evaluates.

However, it is surprising what we can accomplish without the use of the
limit. Here we look at functions f : Z → Q. Instead of the derivative, we
have the difference operator ∆, defined by

∆f(n) = f(n + 1)− f(n).

To develop an analogue of differentiating polynomials, we introduced the
“factorial power” nk as follows. For n ∈ Z and k ∈ N, we set

nk = n(n− 1)(n− 2) · · · (n− k + 1)

(so this is the product of the k integers m where n ≥ m > n− k). We also
set n0 = 1. (Note that if k > n ≥ 0 then nk = 0, as n ≥ 0 > n − k. For
instance, 24 = 2 · 1 · 0 · (−1) = 0.) A significant result is that ∆nk = k ·nk−1.

Instead of the integral, for a, b ∈ Z with a < b, we have the summation

operator
∑

n:a→b

defined by

∑
n:a→b

f(n) = f(a) + f(a + 1) + f(a + 2) + · · ·+ f(b− 2) + f(b− 1)

(so this is a sum of b−a terms). Then we get an analogue of the Fundamental
Theorem of Calculus: ∑

n:a→b

∆f(n) = f(b)− f(a).

In this workshop, you demonstrated that for f : Z→ Q, we have

∆(f + g)(n) = ∆f(n) + ∆g(n),
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and with c ∈ Q, we have

∆(cf)(n) = c(∆f(n)).

Also, you verified that∑
n:1→m+1

∆f(n) = f(m + 1)− f(1).

Note: for your own amusement, you can also verify analogues of the
“product rule” and the “quotient rule” for derivatives; more precisely, you
can verify that

∆(fg)(n) = f(n + 1) ·∆g(n) + (∆f(n)) · g(n),

and when g(n), g(n + 1) 6= 0,

∆(f/g)(n) =
(∆f(n)) · g(n)− f(n) ·∆g(n)

g(n)g(n + 1)
.

You can also verify that with a, b ∈ Z and a < b, we have∑
n:a→b

∆f(n) = f(b)− f(a),

an analogue of the Fundamental Theorem of Calculus.

In this workshop, you found values for a, b, c so that ∆(an3+bn2+cn1) =
n2, and then you evaluated

∑
n:1→m+1 ∆f(n) in two ways to obtain a concise

formula for 12 + 22 + 32 + · · ·+ m2.

For further exploration:

(i) Using this method, with m ∈ N, find formulas for

13 + 23 + 33 + · · ·+ m3

and for
14 + 24 + 34 + · · ·+ m4.

(ii) The Prime Number Theorem has to do with the distribution of prime
numbers, or put another way, the probability that a large integer is
a prime number. Many eminent mathematicians are known to have
made conjectures toward the distribution of primes, and the theorem
was finally proved independently but simultaneously by de la Vallée
Poussin and Hadamard in 1896, using “continuous” methods of com-
plex analysis (and Riemann’s now famous “zeta function”). But it is
impressive how close people came to proving this theorem using “dis-
crete” methods, such as you have used in this workshop. For a brief but
nice discussion of this history and development of the mathematics,
see Chapter 7 of “Multiplicative Number Theory” by H. Davenport;
for a very nice and accessible development of the progress made with
discrete methods, see “A Primer of Analytic Number Theory: From
Pythagoras to Riemann” by J. Stopple.
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