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ON LIFTING HECKE EIGENFORMS 

LYNNE H. WALLING 

ABSTRACT.A classical Hilbert modular form f E dk(To(J l r ,Y ), x H )  cannot 
be an eigenform for the full Hecke algebra. We develop a means of lifting a 
classical form to a modular form F E dk,(Tq(Jlr ,YA), x H )  which is an 
eigenform for the full Hecke algebra. Using this lift, we develop the newform 
theory for a space of cusp forms Yk(TO(Jlr,  Y ), x N )  ;we also use theta series 
to construct eigenforms for the full Hecke algebra. 

Since a space A k ( T o ( N ,  Y )  , xM) of Hilbert modular forms for a fixed 
weight, character and congruence subgroup is not invariant under the alge- 
bra 7of Hecke operators, many authors have enlarged this space of forms 
to obtain a Y-invariant space; in this paper we investigate an alternative ap- 
proach, restricting our attention to a subalgebra 5 of 7under which the 
space Lk( T o ( N ,Y), xM) is invariant. This space is finite-dimensional, so it 
has a basis consisting of %-eigenforms; we present here a lifting of such eigen- 
forms to 7-eigenforms in the aforementioned larger space, L k ( N ,  xM) = 

@ n A k ( T o ( N ,  YA) ,xM). Using this lifting, we are able to develop the new- 
form theory for the space of cusp forms Y k ( T o ( N ,  Y )  , xM). In particular, 
we show that the subspace 9 1 ( T o ( N ,  Y), xM) generated by newforms is 
isomorphic as a 5-module to a subspace of 9"k+To(N,  @), xM), and that 
9:(To(N, @) , xM) has a basis of %-eigenforms which can be lifted to a ba- 
sis of 7-eigenforms of P k + ( N ,  xM). Thus the study of the space of cusp 
forms P k ( N ,  xM) can be reduced to the study of the more classical space 
Y k ( T o ( N ,@) , xM) . Finally, we extend a classical result, showing that a par- 
ticular weighted average of theta series attached to lattices is a %-eigenform, 
and hence can be lifted to an eigenform for the full Hecke algebra. 

The author thanks Winnie Li and John Hsia for helpful conversations, and 
the referee for a careful reading of this paper. 

For the most part we follow the definitions of [7]. Let K be a totally real 
number field of degree n over Q,@ its ring of integers, and d its different. 
We define analogs of the group To(N) c SL,(Z) as follows. For N an integral 
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ideal of d and Y a fractional ideal, let 

where a d  - bc >> 0 means that a d  - bc is totally positive. Set Z = {z E C : 
I m r > O ) ;  for f : Z n - C ,  k = ( k l ,  . . . ,  ~ , ) E ( z + ) " ,  and A = ( : : ) €  

G L ~ ( K )  (i.e. A E GL2(K) with det A >> G ) we set 

(where a(') is the jth conjugate of a )  and 

f l ~ ( r )= f , A ( T )= (det A ) ~ ' ~  f (AT).(cz + d)-, 

We say f is a Hilbert modular form of weight k and character x, with respect 
to the group T o ( N ,  Y) if f :Zn-C is an analytic function such that: 

(i) lim,+im f (A(z) exists for all A E G L ~ ( K ) ,and 
(ii) f lA=xM(a) f  forall A = ( ~ : ) E T ~ ( N , Y ) ;  

we say such a function f is a cusp form if the limit in (i) is always 0. Here 
x, is a numerical character modulo N (i.e. xM: (d/M)'+ CX is a homo- 
morphism); we assume xM(u) = sgn(u)k for u E flX(else only f = 0 satisfies 
the above conditions). The collection of all Hilbert modular forms of weight k 
and character xM with respect to the group To(M,  Y )  constitutes a complex 
vector space which is denoted by A k ( T o ( N ,  Y )  , x,) ; the subspace of cusp 
forms is denoted by y k ( r o ( M ,  Y), xM). 

(In [a], Shimura presents a slightly more general definition of a modular form; 
although all of the proofs in this paper are valid when we use that definition, we 
use the more restrictive definition to avoid complicating further our notation.) 

Whenever Y and & are fractional ideals in the same strict class (denoted 
Y N 3 then 

is an isomorphism from A, (rO(N,Y )  , xM) onto A, ( r O(M,&) , x,) , and 
from Yk(r0(M,Y )  , x,) onto Yk(To(.&",&), x,) (where a here is a to- 
tally positive element of K such that a Y  =&). This mapping commutes with 
all the operators we will define on these spaces, thus we will only need one space 
for each strict ideal class. One of the operators we will define gives us an iso- 
morphism between the spaces A k ( r O ( N ,  9), x,) and A k ( r O ( N ,  &), x,) 
(and between the spaces y k ( r O ( N ,  Y )  , x,) and y k ( r O ( N ,  &) , x,) ) when 
Y and are in the same complex. (The principal complex consists of all the 
squares of strict ideal classes; the group of complexes is the strict ideal class 
group modulo the principal complex. For a more complete discussion of the 
group of complexes, see 561 of [2].) Anticipating this, we let CY; , . . . ,Yhl 



883 ON LIFTING HECKE EIGENFORMS 

be fractional ideals such that <2 ,  . . . ,3?represent the distinct strict ideal 
classes in the principal complex; so h' is the class number and 4,.. . ,3, 
represent the distinct ideal classes. For later convenience, we assume 4 , . . . , 
Yh,are relatively prime to M (i.e. if 9 is a prime dividing M then ord 9Y, = 

0 ). We let , . . . ,A,,!b e fractional ideals which represent the distinct com- 

plexes; here h is the strict class number. So the ideals &<2 represent all the 

strict classes. Without loss of generality, we assume 4 - 19 and qL- 8 .  
Also, we set TA,,(N) = and T,(M) TAi(N).r,(N,~ 3 ~ )= 

Let 
xJY) @Mk(r2n(M), xJY), 

A . ,  

and let 
q ( J ,  xJY) = @q(r*,(J), XJY) ; 

A , ,  

we say the elements of A k ( N ,  x,,) (resp. Y k ( M ,  x ~ ) )are Hilbert modular 
(resp. cusp) forms of level A/.  

For the sake of convenience we use Shimura's notation to represent the var- 
ious operators on A k ( M ,xdv) (see [7]). To use this notation, we consider 
the forms of kk(M, xM) as functions on G, = GL,(K,) where K, is the -
adelization of K. We use 2 ,  b , iT (and so on) to denote elements of K, . 
We decompose G, as follows. For each 3. and q , choose i, and S, from K: 
such that (i,), = 1 = (S,)m , $19 = and S,8 = .$; set 

Let G,+ = {x E G, : det x, >> 0) where x, denotes the archimedean part 
of x ,  and let Gq denote the iinage of GL2(K) embedded along the diagonal 
of G, . For a finite prime 9 ,  set 

and set W ( N )  = Gm+x n, W9(N) where the product is over all finite primes 
9 .  Then we can write G, as the disjoint union 

GA= UGQx;iw ( ~ )  
A , ,  

(here z denotes the main involution of M2(K) and its extension to M2(K,) ). 
For F E A k ( M ,x,.) and x = a x ~ i wE G, (where a E Gq and w E W(M) ) 
we define 

F(x)  = xw(w1) (&,w.,) (9 
where i = ( i ,  . . .  , i) E Zn and x,((:!)) = ~ ~ ( 2 )  a E 8 such=xJY(a) for 
that a = ?r: (mod M) . Note that this definition of F as a function on G, is 
independent of the choices of f, and s", . 
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As discussed in [7] ,Ak(N,xSJ)(resp. Yk(N, x M ) ) can be viewed as the 
space of all functions F :  G, + C such that: 

( 1 )  	F(axw) = xw(wl)  F ( x )  for all a E G q ,  x  E G A ,  and w E W ( N )  
with woo= 1 ; 

(2 )  For every pair A , q , there is a Hilbert modular (resp. cusp) form f,, 
with respect to some group To(&, 9) such that F(x;;wm) = 

(A,lw,) (9 for all wm E Gm+. 
For 	y E G, and F E d k ( N ,xSJ)we define Fly E L k ( N ,xSJ)by 

where x E GA. Clearly F 1 ( y' = F I y y '  . Notice that 

where yo denotes the finite part of y and xT;yb = axiiv for some a E GB 

and v E W ( N )with vm = a - 1 . So if F :  GA +C satisfies condition (ii), then 
so does F 1 yo . 

For 9 a finite prime, 9 + N ,we define the Hecke operator T ( 9 )  on 
L k ( N >  x S J )  

where ko = max{kl , ... , k n ) and F@ =9 ;here N ( 9 ) denotes the norm of 
9 .  

We want the Hecke operators to act on the Fourier coefficients of a Hilbert 
modular form in the same way the Hecke operators act on those of an elliptic 
modular form. To obtain such an action, we will need to restrict our attention 
to Hilbert modular forms which are eigenforms for the operators S(@),which 
are defined as follows. For @ a fractional ideal relatively prime to N ,  we 
define the operator S(@)on L k ( N ,xSJ)by 

where T@ = @ .  It is easily seen that S(@l)S(@2)S(@l@.).= 

We let 7denote the algebra generated by the operators T ( 9 ) and S(@); 
since we can define all Hecke operators T ( Y ) in terms of the operators T ( 9 )  
and S(@) (see [7]) ,we refer to 9 as the Hecke algebra. 

For 	@ an integral ideal we define B(@):Ak(N, xSJ)+Lk(N@, xSJ)by 

where g@ = @ (see Proposition 2.3 of [7]) .  

mailto:S(@l@.)
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Clearly S ( f ) commutes with T ( 9 )  and B ( d )  ;for 9 1- Hd , the operators 
T ( 9 )  and B(@) commute. Notice that for each y E G, with ym = 1 and 
5 E Z nwe have 

where wooE Gw+ such that w_i = 5 ,  a E GQ and v E W ( N )  with vm = 

u -1 
E Gp . Thus we can find matrices in G L ~(K) which give the action of an 

operator on a component space Ak(T,,(N), x,~) ; this, however, is awkward 
since we need different matrices for each pair p ,o . 

Sometimes we will restrict these operators to a component space: for a form 
f E kk(rlv(N),xM), y E Gh with yoo = I and r E 2", set 

where w_i = r , (det~~)8,lq,'-4x2,and F E A k ( N ,x,?) has f as its 

1,i-component. Then we see that for <'d2 -42(with d relatively prime to 
N ), S(d) defines an isomorphism between the spaces A k ( r l a ( N ) ,  xSJ) and 
Ak(rl,l(H), x,,) (and between 9k (rj.u(N) 5 x J ~ )and 9k(rLtl(N) 3 XM) 1' 

We can decompose k k ( N ,  xM) into a direct sum of subspaces, each of 
which is associated to a Hecke character x "extending xMoo" where x,(a) = 

sgn(a)
k and x,,, = xMx,. (So x is a Hecke character such that x(%) = 

~ ~ ( 2 )when 2 is a unit at all primes dividing N and Zis, is the N-part of 
2,and x(Z,) = .) For such a Hecke character x we set ~ ~ ( 2 )  

(Thus Ak(Jtr ,  X )  is an eigenspace for the operators S(@).) As stated in 171, 
we have A k ( N ,  xSJ) = A k ( N ,X )  where the sum is over all Hecke char- 
acters x extending x , , ~ .  This can be shown using representation theoretic 
arguments; we present here a constructive argument. We first show how to 
construct the Hecke characters x which extend zSJ_. 
Lemma 1.1. There are h' Hecke characters x extending xd4,_ where h' is the 
ideal class number. If x and are Hecke characters extending x,,_ then ZX' 
is a character on the ideal class group. 

Proof. The ideal class group can be decomposed as a product of cyclic sub- 
groups; using Dirichlet's theorem on primes, we let , . .. ,Pr be primes 
not dividing Jtr so that cls , . . . , clsPr generate these cyclic subgroups. 
Let E be a character on the ideal class group. For each j = 1, . . . , r , let 
o ( 9 , )  denote the order of clsg, ,  and take pj  E @ such that pj >> 0 and 

9,0(p~1p,A. Set ~*(9,) times an o(9,)-root of zA.,(pj). = equal to ~(9,) 
Then for 5E K: ,we can write 5= a: where a E K" and :is a unit at all 
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primes dividing JV ; set 

x(9= --x*(PJerxSJm(E) 
where E@ is in the class of 9?. . .Prer. Then x is a Hecke character extending 

XNoo ' 
Now, suppose x and are both Hecke characters extending x N m .  Then- -1 -

( X ~ l ) *is a character on the ideal class group, where ( X ~ ' ) * ( c l s d )= ~ ( q ) x( q )  
for ?@ = d relatively prime to JV . Thus the Hecke characters extending
xSJm are in one-to-one correspondence with the characters on the ideal class 
group. 

Notice that if x extends , then X *  = xXN,  is well-defined on ideals 
relatively prime to N . 

Now we show 

Proposition 1.2. We have Ak(N,xSJ)= exAk(JZr , X )  , and hence we have 
Pk(Y,x M )  = eXPk(JZr,X )  where the sum is over all Hecke characters 2 
extending x,, . 
Proof. Clearly A ~ ( N ,x)nAk(JZr,x ' )  = {o} when x iX I ,so $,Ak(JZr,X )  
5Ak(JZr,~ , y ) .Choose G = (gAV)EAk(H,x N ) ,and let x l ,  ... , xht denote 
the distinct Hecke characters extending x,, . We know that (x,ll,)* is an 
ideal class character and 4, ... ,Yhrare in distinct ideal classes; thus Artin's 
theorem on the linear independence of characters implies that the matrix 

is invertible. So for each 1, we can solve the matrix equation 

for 
8'), . , &!h" E A k ( T A ( 4 ,xSJ). 

(Notice that g , V l ~ ( < - l )  E A k ( r A ( J V ) ,x,.) .) Then for each j ,we set 6::)= 

( ) S ) and F = ( ) For any and any fractional ideal B 
relatively prime to JV , we have <2d2N <2 for some o ; thus <b = a% 

for some a E K~ with B relatively prime to N . Then we have 

&!:)IS(@)= ~ ' ( $ 1  &)ls(<~)= a'(<) &!"ls(a<) 

So F"' EAk(N,x j ),and F ( ' )+ . . - + F ' ~ "= G .  
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2. THELIFTING 

Let 5 be the subalgebra of the Hecke algebra 7 consisting of those 
mappings in 9- which are actually operators on each component space 
Ak(TAtl(N), xSJ) . Thus 5 is generated by mappings of the form 

~ ( 9 ~ ) ' ~. . . T ( ~ ~ ) ~ J S ( @ )  

where r, E Z,o, the 9, are primes ideals not dividing W ,and @ is a 
-

fractional ideal such that 9 ; l  . . .9Srs@2 8.To ease the notation, we write w 

TO(9;l . . . PSIS) for ~ (9 '. . . T(ps)'~)rl  . 
Our goal is to begin with a 6-eigenform f E Ak(TAt l (N) ,xSJ) and, using 

its eigenvalues, lift f to a 7-eigenform F E A k ( N ,X )  (where x can be any 
Hecke character extending xSJm); however, we need to find nonzero eigenvalues 
to effect this lift. To ease the description of this construction, we make the 
following 

Definition. Let f E d k ( T A t l ( N ) ,xSJ) be a 5-eigenform. Let [ Y ]  denote the 
complex of the strict ideal class of Y . (Note that each complex has order 1 or 
2.) Set 

W (f )= { [ Y ]  : f I # 0 for some 8E [Y]}T ~ ( @ ~ ) S ( @ - ~ )  

where it is understood that @ is an integral ideal relatively prime to N . If 

we have such an ideal @ E [ Y ]  with flT0(b2)S(@-l) # 0 then we say @ 

witnesses [ Y ]  E '$?(f ). 

Clearly W(f )  is a subgroup of the group of complexes; thus the order of 
'$?(f )  is a divisor of hlh' ,which is a power of 2 (see 56 1 of [2]). 

Theorem 2.1. Suppose f E A k ( m t l ( N ) ,  xSJ) is a 6-eigenform such that when- 
ever [@] # '$?(f )  we have f ( To(@)= 0 f where @ is an integral ideal relatively 
prime to W ). Then for any Hecke character x extending xJZroo,we can con- 
struct IW(f ) (  y-eigen-forms F E d k ( N ,X ) ; if F and G are two of these 
forms then G = fF, , where F, is the twist of F by a character E on the group 
W ( f  . 
Remark. In Lemma 3.4we show that any newform satisfies the conditions of the 
theorem, and in Theorem 4.3 we use theta series to construct forms satisfying 
these conditions. 
Proof. Choose generators . . . , [gS] for W(f )  where @, witnesses [@,I E 

W(f ). For each j , choose cj such that 

Set A,, = f . If G-'B,] # W ( f )  then set f,, = 0 for all o . For each ,LL such 

that gP18,] E W (f)  , choose o such that 8,Y: - 69;' . . .L $ ~ ~ Y 'tl whereA 

t :  = 0 or 1. Set 
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(Note that the exponents t j  are uniquely determined by the complex of fp .) 

For each a', choose Y relatively prime to N such that Y:Y2-43 ; set 

fpu i  = Z * ( 4 f p u I S ( Y ) .  

Since fp , lS(ab)  = x*(a@) fp, for a E K' , the definition of f,,, is indepen- 
dent of the choice of Y . 

We claim F = ( f p u r )is a 7-eigenform. Just as in the proof of Proposition 
1.2, F IS(@) = X*  (@) F for all @ relatively prime to N . Also, for any y and 
a' we have 

, I T I @ (if t . = 1)@ s f s ) ~ ( @ j ~ )  1 

'* (Y!  h ,T~(@,@;I..@: )s(Y) (if t j  = 0 ). ..C S  

p (@,Y)  

( c l l  . . . cy.  . . c2 A, 1 )@ s f s ) ~ ( ~ ~ )  @;. . .TO(h4;" . 
 (if t j  = 1) 

(if t j  = 01(c,cl' . . . c,. 
&,IT~(@,@;I.. .@:)s(Y) )c~ 


= c .  f , ,  

1 A ,  

for appropriate A' and rl' .Thus F T ~ ( $ ; )= c, F. 
Now, choose a prime 9 -f N ; if [9]# O(f )  then f 1 T ( 9 )= 0 and by our 

constuction, Fl T ( 9 )  = 0 .  Suppose [9]E '29(f )  . Then 9 -@Trl . . .@s-rsy-2 
where r,  = 0 or 1 and Y is relatively prime to N . Then T0(9%9;' . .@ s r s ) ~ ( f )  
E and 7 is a commutative algebra, so remembering how we defined fpu, 
we see that 

f,,. I . . .BS')S(B)cf;,.T , c ~ ; '  = 

for some constant c which is independent of y and a'. So 

CF = ~ 1 ~ ~ ( 9 % 9 ; '  = . . .c: FIT(^). . . @ s r s ) ~ ( y )X * ( f ) ~ T '  
and hence F I T ( 9 )= ca*( f )F / C ' ; ~. . . c: . Thus F is a 7-eigenform. 

Suppose we choose a set of generators [$;!I of O(f )  where @]! is a witness; 

then F 1 T~(@]!)= ci F for some c; # 0 , and f 1 = ci2 a*(@]!)f.T~(@~!~)s(@~!;")  
The form constructed using f ,  @;
 and c; gives us F , and hence regardless 
of the choices for the generators of '29(f )  and their representative witnesses, 
we obtain the same IO(f ) 1 lifts of f . 

Now, let F be one of the forms constructed above and let E be a character 
on '29(f )  . Extend E so that c ( V p ] )  0 for Vp]= # O(f )  . We define F, by 

mailto:T~(@,@;I
mailto:T~(@,@;I


ON LIFTING HECKE EIGENFORMS 889 

So if F is the lift of f using @, and c, , then &F, is the lift of f using @, 
and &([&?,I).C, . Unless E = 1 , F # &F,. Thus the lifts of f to L k ( M ,x)  
are (up to sign) twists of each other. 

Remark. If F E Lk(M, X) and G E A k ( M ,x') are lifts of f where x # x' , 
then F and G are linearly independent. 

To define a newform, we first observe that we can define an inner product on 
yk(JZr, xM):  for F ,  G € P k ( H ,xM) ,  

where (&, , gA,) is the Petersson inner product (see (2.27) of [7]). With this in-
ner product, $,,,Yk(T,, ( M )  ,xM) becomes an orthogonal sum. As Shimura 
shows, the operators T ( 9 )  and S(@) are (essentially) Hermitian on each space 
P k ( H ,x )  (see Proposition 2.4 of [7]). We define Pkk(M, xN) to be the sub-
space of P k ( H ,xJY)which is generated by the forms FIB(@) where F is a 
form of a lower level (i.e. of a level H' where M' is a proper divisor of M ); 
we set 

Pk-(H, X )  =Pk(H, X )  nPk-(H, xM). 

We define P t ( H ,  xM) to be the orthogonal complement of 9; ( M ,  xN) , 
and we set 

3 + w ,  x )  = < ( J ,  x )  n 3 + ( 4  xM). 

Similarly, for each A and q we define Pk-(r , , (M),  xM) to be the subspace 
of Pk(r,, ( M ) , xM) which is generated by f 1 B (@) E Pk(r,,( H ),xM) where 
f is a form of a lower level, and we define 

to be the orthogonal complement of Pk-(T,,(M) ,xM) . Then, the arguments 
of [3] (cf. [6]) extend in a straightforward manner, giving us multiplicity-one 
in P l ( H ,  x ) :  

Theorem 3.1. Let x be a Hecke character extending xM, . Then PC(.&", x)  
has a basis of simultaneous eigenforms for the Hecke operators T ( 9 )  ; if two 
such forms have the same eigenvaluesfor all but a finite number of the operators 
T ( 9 )  (where 9 denotes a prime ideal not dividing W ), then the forms are 
linearly dependent. 

Corollary 3.2. P'k+(H, xN) has a basis 9-eigenforms. 

Now we consider the component spaces Pk(r,, (M),xJY). 
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Lemma 3.3. The projection map F = (f,,) H (Ll) takes Ykk(A'", X )  onto 

$,9; (r,(M), x,) X ),(A'" 9: and hence takes onto $,9: (r,(M), x,) . 

Proof. Clearly p r o j ( ~  B(@))E $,Yk-(\(A'") ,x,) (where the level of F isI 
a divisor of A'" @-' ). For each A: , choose g, = f,, 1 B(@') E 9; (T,(A'") , xN) 
where f,, E 9 k ( ~ , ( A ' " ' ),x,) and @'A'"'IA'" ;set 

f,, = x*(s,)x'(s,) f,,ls(s,-l%)' 

and take F, to be the element of Pk(A'"/@', X )  whose p , g-component is f,, 
and whose other components are 0. Then G = x, F+I B(@~)E 9; (M, X )  ,and 
proj G = (g,) . Since proj(G + G') = proj G + proj G , it follows that proj is a 
surjective map. 

Suppose G E 9; (A'", X )  and (F, G) = 0 .  Since 

where A E G L ~ ( K )gives the action of s(<s,-') , we have 

1
(projF , proj G) = --T (F, G) = 0

h 

and thus 

proj : 4 + ( ~ y ,  x,).X )  -@ $ ( r , ( ~ ) ,  
I 

If [@I @ 9(f )  thenbe a 5-eigenform. xM),(M)(rIq 9: Lemma 3.4. Let f E 

f 1 To(@)= 0 .  Hence we can lift f to Ig(f ) l  linearly independent 3-eigenforrns 
in Y;(M, X )  ; these lifts of f are (up to sign) twists of each other. 

Probf. First we suppose that f 1 T ~ ( @ ~ )  = 0 ;we show that f 1 = 0 .s(@-') To(@) 
A basis of 7-eigenforms for 9:(M, X )  projects to a spanning set of q-
eigenforms for 9C(r,,(A'"), x,) , thus we have f = h + . . . +f, where each 
6 is nonzero and is the projection of some 3-eigenform Fj E 9:(A'", X )  . 
Now, this means that 

F~~T,(@*)s(@-') = o 
and since Fj is a 3-eigenform, F~I To(@)= 0 . (Recall that 3 is a commu- 

tative algebra and F, IS(@-') = x*(8)Fj .) Thus 
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and so by Theorem 2.1 we can lift f to Ie(f)jlinearly independent 7 -
eigenforms F in Yk(A'", X )  . 

We now show that a lift F = (f,,) of f is a newform. For 

we have 

( f , , 7  g,,) = (cf-,,IT,(@)S(y) 7 g,,); 

the operators S ( Y )  and To(@)are (essentially) Hermitian, and they map old-
forms to oldforms (see [7] and [6]). Thus (f,,, g,,) = 0 and hence F E 

9 j ( A ' " , x ) .  

Now we show that multiplicity-one in the product space Y:(M, X )  implies 
that multiplicity-one (with regard to the algebra 6)holds in each component 
space. 

Theorem 3.5. If f , g t ~:(T,,(A'") , x,) are 6-eigenforms with the 
same eigenvalues, then f and g are linearly dependent. Furthermore, 
9;(r,,(M), x,) is isomorphic (as a 5-module) to a subspace of 

%+(r](JY) 7 x,) =<+(ro(A'"7 @) ,x,)' 
Proof. The mapping f I+ f IS(<-^) is a 6-module isomorphism, thus we 

may assume that f ,  g E Y;(r,(M), x,) . By Lemma 3.4, we see that we 
can use f and g to construct 7-eigenforms in Y:(A'", X )  . We see by the 
construction of these 7-eigenforms that we can construct F and G to have 
the same eigenvalues for 7 with f as the A ,  1-component of F , and g as 
that of G . Thus by multiplicity-one for 9:(A'" , X )  , F and G are linearly 
dependent and hence f and g must be linearly dependent as well. Further-
more, since F is a 7-eigenform in 9: (A'", X )  , its 1 , 1-component f, must 
be nonzero (see l.61). Thus f, E 9;(T1 (A'"),x,) is a 6-eigenform with the 
same eigenvalues as f E Y;(r,(A'"), x,) . (In fact, we see from the construc-
tion of F that f = c f,1 T o ( d ) S ( 3 )where @ is a witness for [dlE e ( f ) ,  
~ @ 3 ~@ ,and c is some nonzero constant.) So a basis of 6-eigenforms for 
9;(r,(M) ,x,) corresponds to a linearly independent set of 6-eigenforms in 
9; (rl(M), x,) ;since 7 is a commutative algebra, this correspondence pre-
serves the 6-eigenvalues, meaning that if f ,  t 9;(r,(A'") , xSJ) corresponds 
to f, E Yf(r1(A'"), x,) then fn and f, have the same eigenvalues for all 
operators in 6 .  Thus as a 6-module, Y:(r,(A'") ,x,) is isomorphic to a 
subspace of 9; (rl(A'"), x,) . 

Notice that the dimension of Y:(r,(A'"), x,) is equal to the number of 
subgroups e(f'j') which contain g ]  where {f"), ... ,f")} is a basis of for 
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P;(r, ( H ), x M ). Thus we get 

Corollary 3.6. For P;(T,( H ), x,) , let { f " )  , . . . , f " ) }  be a basis of 5-
eigenforms then 

Proposition 1.2 and Theorem 3.1 show that we have multiplicity-one in 
Pk(H,x M )  when we consider all operators in the algebra 7. The Hecke 
operators T ( 9 )  (where 9 is a prime ideal) generate a subalgebra of 7; the 
multiplicity of eigenvalues in P ; ( M ,  x M )  for this subalgebra depends in part 
on "how often" we have F I T ( 9 )  = 0 .  To allow us to describe this more 
precisely, we have the 

Definition. Let f E Pk(rA(H) be a 5-eigenform; set , x,) 
Z ( f )= {clsY:  flT,(@) # 0 for some @ E c ~ s Y }  

where c l s Y  denotes the ideal class of Y ,  and B is understood to be an 
integral ideal relatively prime to H . 

Then, extending Theorem 5 of [3], we have 

Theorem 3.7. Let F E 9;(H, x M )  be a 7-eigenform; let f denote the 1 , 1 -
component of F . There are exactly hl( f )  = hl/lL?( f)l linearly independent 
forms G E P;(H, x,) such that the 1, 1-component of G is f and G has 
the same eigenvalues as F under all the Hecke operators T ( 9 )  (where 9 is a 
prime ideal not dividing W ). We can obtain some of these.forms G by twisting 
F by characters on the ideal class group modulo Z (f )  ; the number of distinct 
twists of F obtained in this way is hl(  f )  divided by the number of ideal classes 
whose squares lie in .S?(f )  . 
Proof. Since F is a 7-eigenform, F E Pk( M  , X )  for some Hecke character 
x extending xMm. For 9 a prime not dividing M , we know that 

where f T ( P ) ~ s ( ~ - ~ )c9 f . Suppose we have 1 = G E 9 ; ( M ,  a 7 -
eigenform with 1, l  -component f ; then 

If F and G have the same eigenvalues for all T ( 9 ) , then we must have 
(n1)*(9)= 1 whenever c9 # 0 .  


On the other hand, if extends xsJm with (fi1)*(9)
= 1 whenever c9 # 
0 ,  then we can use f to construct G E P ; ( M ,  such that G is a 7 -
eigenform with the same eigenvalues as F for all the T ( 9 ) .  

We know that (zX1)*is a character on the ideal class group; there are 
h l / l Z ( f ) l  characters which are trivial on the subgroup L ? ( f ) .  Thus there 
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are h'l I T (f )  1 Hecke characters extending xJYmsuch that (zxl)*( 9 )  = 1 
whenever c9 # 0 ;  for each such we can use f to construct exactly one 
form G E 9 i ( M ,  such that G is a 7-eigenform with the same eigenval-
ues as F for all the Hecke operators. We know P J M ,  xJY)has a basis of 
7-eigenforms, thus the first assertion of the theorem holds. 

To prove the second assertion, let E be a character on the ideal class group 
modulo T (f ); consider E as a character on ideals relatively prime to H .  
Then we can view E as a Hecke character with conductor B ; as shown in [ 6 ] ,  
F, E 9; (H, xs2) (where F, is defined by F, (x) = ~ ( d e tx)F (x)). Clearly F 
and F, have the same eigenvalues for T ( 9 )  . Unless e2 = 1 , Pi(&", X)n 
PC(.&", xc2) = {0} ; thus F = F, when e2 = 1 ,  and F and F, are linearly 
independent otherwise. 

Let V be a quadratic space of even dimension 2k over the field K with a 
totally positive quadratic form Q ; let L be a lattice on V , and let L# denote 
the dual of L (see [ 5 ] ) .  As shown in [ 111 (see also [I]),the theta series attached 
to L 

is a modular form with a quadratic character ,yL and weight k for the group 

r b ( s ( ~ ) ,N(L)) = {A E r o ( s ( L ) ,N(L)) : det A = I } ,  

where N(L) , the norm of L ,  is the fractional ideal generated by the set 
{ iQ(x) :  x E L} , and S(L), the level (or stufe) of L ,  is the product of 
N(L)-' N(L#)-' and perhaps some dyadic primes (see [111 for a precise def-
inition). Note that a nondyadic prime 9 divides S(L)  if and only if L9 = 
L@B' is not modular (where B' is the localization of B at 9 ). Also, we see 
that we can relax the conditions in [ l  11 to extend the transformation formula 
(2),giving us the transformation formula 

where ( ) is any matrix in I'~(s(L), N(L)) . (The crucial observation to 
make when extending this formula is that with such a matrix, local consider-
ations show that bL n d E  = bdL and thus for any x E E ,  bxo + x runs 
over E l d E  as xo runs over LIdL .) With this transformation formula, the 
arguments used to prove Theorem 3.7 of [ l l ]  show that O(L, T) is a modular 
form of weight k for the group T~(s (L) ,N(L)) with character x L ,  and xL 
is trivial if and only if L I 9 L  is hyperbolic for all primes 9 not dividing 
2S(L) .  
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We define the weighted average of the theta series attached to the lattices in 
the genus of L , gen L , to be 

where the sum runs over a compiete set of representatives Lj of the isometry 
classes in gen L , and O(Lj) denotes the orthogonal group of L j  . As is fairly 
clear, O(gen L , T) is independent of the choices of representatives L, . 

Siege1 showed that O(gen L ,  T)  is an Eisenstein series (see [9-101); for K = 
0,it is well known that the space spanned by Eisenstein series has a basis of 
eigenforms for the Hecke operators (see Chapter IV of [4]). Our goal is to use 
a weighted merage of forms O(gen L ,  T)  to produce a 7-eigenform. 

To examine the action of 5 on O(gen L ,  T) , we first state a consequence of 
Theorem 7.3 and Proposition 6.1 of [ l  11: 

Theorem 4.1. If 9 is a prime ideal not dividing 2S(L) and L / 9 L  is hyper- 
bolic, then 

O(L 7 711T ( 9 )  = N ( 9 )
k/2  

A
- 1  C O(K,7) 

K 

where A = ( ~ ( 9 ) ~ ~ ~+ 1) .. . (~(9) '+ 1) and the sum is taken over all 9-
sublattices K of L ,  i.e. over all sublattices K of L such that 9 L  K 
and K / 9 L  is a maximal totally isotropic subspace of L / 9 L .  Furthermore, 
each O(K , T) is a modular form with character xL and weight k for the group 

~ A ( s ( L )  P N ( L ) ) .7 

Remark. Note that the operators used in [ l l ]  are the same as those defined 
by Eichler; in our current notation, Eichler's operator V(@) is the operator 
s(@-') , and Eichler's operator T ( 9 )  is N ( ~ ) ~ o ' ~ T ( ~ ) s ( ~ - ' )(see [I] or 
[l 11). Note also that we may need to follow Eichler's operators by the isomor- 
phism f I+ f 1 ( P ) (where a E K" , a >> 0 ) so that the range of the operators 
is one of the component spaces of kk(JZr, X )  ; this isomorphism depends only 
on the ideal a@ when f 1 ( ) = f for all totally positive units u . 

Now we can prove 

Lemma 4.2. Suppose 9 is a prime ideal not dividing 2S(L) such that L / 9 L  
is hyperbolic; let K be a 9-sublattice of L . Then 

O(gen L ,  r ) /  ~ ( 9 )  	 + 1) O(genK, 7).= N ( ~ ) ~ / ~ ( N ( S ) ~ - '  

Proof. Let L, ., . . . , L, and Kl , . . . , K, be full sets of representatives for the 
classes in gen L and gen K (respectively); let f;,be the number of isometries 
a of V which map K, into L, such that 9 L i  c a(Kj). Then one has the 
following easily verified facts: 

(1) 	hj # 0 if and only if Kj is isometric to a 9-sublattice of L, . 
(2) 	 1/ I O(K,) I .Aj is the number of 9-sublattices of Li which are isometric 

to K,. 
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(3)  I O(L,)1 / 1 O(K,) I .4, is the number of isometries a of V which map 
9 L i  into K, such that 9 K j  c a ( 9 L i ). 

(4) 

where A is as in Theorem 4.1. (To verify (4), see Proposition 7.2 of [l  11.) 
The lemma now follows easily. 

Let us assume that To(S(L),N(L)) = T,,(S(L)) for some A and q (notice 
that we can always scale L to effect this). Our intention is to form a weighted 
average of theta series to obtain a 6-eigenform in dk( rL , (S(L)) ,xL) which 
we will then use to construct a 7-eigenform in Ak(S(L) ,xL) .  

We first observe that the sum 

is an element of dk(rr l , (S(L)) ,xL) (where the sum is over totally positive units 
u which give us distinct genera gen L' ); however, this sum is not necessarily a 
6-eigenform. The preceding lemma together with Proposition 6.1 of [ l11shows 
that for xL = 1, a >> 0 ,  I a fractional ideal (relatively prime to S(L)), and 
9,, .. . ,9 prime ideals not dividing 2S(L) with a ~ ~ 9 ~. .gr= 8 ,  we 
have 

x ~ ( ~ e n ~ ~ ,T ) J T , ( ~ ,. . .gr)S(3)= c .  x ~ ( ~ e n 3 ~ ~ ~ " ,T) 

u u 

where c # 0 ,  Kj is a 9-sublattice of Kj-, , KO= L ,  and K: is the lattice Kr 
scaled by cu . Although N(YK~'") = N(L) and s ( ~ K ~ ' " )= S(L),we may not 
have YKrU"E gen L" for any v E 8X, v >> 0 (consider, for instance, the case 
where 9 is nondyadic, cu is not a square in 8', and L, has some Jordan 
components of odd rank). So to obtain a 6-eigenform we need to consider 
more lattices than those in gen L ; thus we make the following 

Definition. Let L be a lattice on a quadratic space V , and let cu >> 0 .  A lattice 
K on V" is in the family of L , fam L , if for every prime ideal 9 there is a 
unit u, E 8, such that K g  E L, . 

Notice that the family of a lattice L can be partitioned into a finite number 
of genera, since L$ E L, whenever 9i2S(L) and up E 8' . (Recall also 
that there are, up to isometry, only a finite number of spaces Va .) Note that in 
the special case where V is a quadratic space over Q and L is a unimodular 
lattice with N(L) 5Z,we have fam L = gen L (see Chapter 6 of [ 5 ]  and note 
that the rank of such a lattice L must be a multiple of 8). 

So with L and K =3KFu"as in the discussion preceding this definition, we 
-1 2 . see that K E fam L where we take u, = 1 if 9 1 2S(L),  and u, = cu n if 
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912S(L) with n@' = . Now we have Y-'@" 


Theorem 4.3. Let L be as above. Define 

where the sum runs over a complete set of representatives of the isometry classes 
in fam L . Then O(fam L ,  z) is a nonzero element of Ak(S(L) ,  xL) ; if xL= 1 
then B(fam L , z) is a 6-eigenform. 

Note that when xL = 1 , Lemma 4.2 together with Proposition 6.1 of [11] 
allows us to compute the eigenvalues for B(fam L ,  z) ; note in particular that 
these eigenvalues are nonzero. Now, applying Theorem 2.1, we obtain 

Corollary 4.4. Let the notation be as in Theorem 4.3, and suppose xL = 1 and 
that T,,(S(L)) = T,(S(L), N(L)) . Then we can lift B(fam L ,  z) to h lin-
early independent 7-eigenforms of A k ( S ( L ) ,  xL) . Let 9 be a prime such 
that 9 + 2 S ( L )  and 8,<2-9 ~ 6 ~; then the p ,  11-component of any lijl of 
B(fam L , z) is c,, .B(fam K , T) where c,, f: 0 and K is a 9-sublattice of L . 
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