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ON LIFTING HECKE EIGENFORMS

LYNNE H. WALLING

ABSTRACT. A classical Hilbert modular form f € ./ (I'y(#", %), x ) cannot
be an eigenform for the full Hecke algebra. We develop a means of lifting a
classical form to a modular form F € @, 4 (T'y(*", -A), x,) which is an
eigenform for the full Hecke algebra. Using this lift, we develop the newform
theory for a space of cusp forms # (I'y(#", #), 1) ; we also use theta series
to construct eigenforms for the full Hecke algebra.

Since a space 4 (I'y(/",.*), x,) of Hilbert modular forms for a fixed
weight, character and congruence subgroup is not invariant under the alge-
bra 7 of Hecke operators, many authors have enlarged this space of forms
to obtain a 9 -invariant space; in this paper we investigate an alternative ap-
proach, restricting our attention to a subalgebra 7 of J  under which the
space ./, (I'y(V",*), x ) is invariant. This space is finite-dimensional, so it
has a basis consisting of 7 -eigenforms; we present here a lifting of such eigen-
forms to 7 -eigenforms in the aforementioned larger space, # (4", x,) =
D, £ Ty, H), x,). Using this lifting, we are able to develop the new-
form theory for the space of cusp forms & (I'y(#", ), x,). In particular,
we show that the subspace 5”,:(1"0(/1/ ,*), x,) generated by newforms is
isomorphic as a J-module to a subspace of L%:“(FO(W ,O), X), and that
%*(FO(W ,O), X,) has a basis of F-eigenforms which can be lifted to a ba-
sis of 7 -eigenforms of 5”k+(‘/1/ , X») .- Thus the study of the space of cusp
forms (4", x,) can be reduced to the study of the more classical space
ST, ), x,). Finally, we extend a classical result, showing that a par-
ticular weighted average of theta series attached to lattices is a 7-eigenform,
and hence can be lifted to an eigenform for the full Hecke algebra.

The author thanks Winnie Li and John Hsia for heipful conversations, and
the referee for a careful reading of this paper.

1. PRELIMINARIES

For the most part we follow the definitions of [7]. Let K be a totally real
number field of degree n over Q, & its ring of integers, and 9 its different.
We define anaiogs of the group I'((N) C SL,(Z) as follows. For .#" an integral
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ideal of @ and .# a fractional ideal, let

Lo, %)
a b g s o7\, v
—{(C d)€</1/fa P ).ad—bce@’ ,ad—bc>>0}

where ad — bc > 0 means that ad — bc is totally positive. Set # = {te€ C:
Imt > 0}; for /1 #" - C, k=(k,... ,k,) €(2,)", and 4 = (‘c’z) €
GL; (K) (i.e. 4 € GL,(K) with det4 > G) we set

a(l)’tl+b(l) a(")r +b(n)

A= | 5 TR STy

¢Vt +d ", +d"

(where a" is the Jjth conjugate of a) and

fla@) = 1|, A@) = (det 4)* (et + d)™* f(47).

Wesay f is a Hilbert modular form of weight k and character y ,, with respect
to the group I'y(//", F) if f: # " — C is an analytic function such that:

(i) lim,_,, f]A(r) exists for all 4 € GL;(K), and

(i) flA=x,(a)f forall A= (!7)eT (W, F);
we say such a function f is a cusp form if the limit in (i) is always 0. Here
X, is a numerical character modulo /" (i.e. x ,: (Z/#)" — C* is a homo-
morphism); we assume x ,(u) = sgn(u)k for u € @™ (else only f =0 satisfies
the above conditions). The collection of all Hilbert modular forms of weight k
and character x , with respect to the group I'j(.#", .#) constitutes a complex
vector space which is denoted by .#, (I',(/", ), x ) ; the subspace of cusp
forms is denoted by (I'y(#", #), x,) .

(In [8], Shimura presents a slightly more general definition of a modular form;
although all of the proofs in this paper are valid when we use that definition, we
use the more restrictive definition to avoid complicating further our notation.)

Whenever ¥ and _# are fractional ideals in the same strict class (denoted

S ~ _FZ ) then
rea1(59)

is an isomorphism from .#Z (I'(/", *), x ,) onto 4, (I'y(+V", *), x,), and
from S (Ty(/", F), x,) onto K (Ty(, F), x,) (where a here is a to-
tally positive element of K such that a.¥ = _# ). This mapping commutes with
all the operators we will define on these spaces, thus we will only need one space
for each strict ideal class. One of the operators we will define gives us an iso-
morphism between the spaces ./, (I'y(.*", %), x,) and A (Ty(*", .F), Xy)
(and between the spaces 7, (I'y(/", #), x,) and A (o(S", F), x ) ) when
< and £ are in the same complex. (The principal complex consists of all the
squares of strict ideal classes; the group of complexes is the strict ideal class
group modulo the principal complex. For a more complete discussion of the
group of complexes, see §61 of [2].) Anticipating this, we let .7, ... , %,
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be fractional ideals such that J‘]z yeen s J‘;f represent the distinct strict ideal
classes in the principal complex; so 4’ is the class number and AN
represent the distinct ideal classes. For later convenience, we assume .7, ... ,
, arerelatively prime to ./ (i.e. if & is a prime dividing .#" then ord 9‘"}; =
0). Welet 4, ..., 7% e be fractional ideals which represent the distinct com-

plexes; here £ is the strict class number. So the ideals /rf”z represent all the

strict classes. Without loss of generality, we assume % ~ & and flz ~ .
Also, we set T, (/) =To(#, £57) and T,(#) =T, (S).

Let
M N X y) = @-/[ ;,, )s Xy)s

and let
«/V X/V @y ;_,, X/;/)'a

we say the elements of .4 (4", x /,/) (resp. SN, %)) are Hilbert modular
(resp. cusp) forms of level /.

For the sake of convenience we use Shimura’s notation to represent the var-
ious operators on .# (4", x ) (see [7]). To use this notation, we consider
the forms of .#, (", x ,) as functions on G, = GL,(K,) where K, is the
adelization of K. We use @, b, ¢ (and so on) to denote elements of K,.
We decompose G, as follows. For each A and 7, choose 7, and §n from K:
such that (7,) =1= (8)) oo > Lo =7 and 5,0 =7 ; set

=0 432):

Let G, = {xeG, : detx > O} where x_ denotes the archimedean part
of x, and let G, denote the image of GL,(K) embedded along the diagonal
of G, . For a finite prime %, set

_f[fa b &, 97'0,\,
Wg,(/lf)—{<c d)€</1/6@’9 e, ).ad bceé’}

and set W(/) = G, x[[, W, (#") where the product is over all finite primes
& . Then we can write G, as the disjoint union

-1
G, = JGyx,, W
A,

(here 1 denotes the main involution of A,(K) and its extension to M,(K,)).
For F € #4,(/V, %) and x = ax,,w € G, (where a € Gy and w e W(A))
we define

F(x) = x, (W) (fh,|w ){)
where i=(i,... ,i) e #" and XW((cd))_X/V( ) =x,(a) for a €& such

that a=a (mod /V ). Note that this definition of F as a function on G, is
independent of the choices of 7, and 5, -
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As discussed in [7], 4. (4, x ) (resp. (4", X)) can be viewed as the
space of all functions F: G, — C such that:
(1) F(axw) = x,, (W) F(x) for all a € Gy, x € G,, and w € W(4)
with w_ =1;
(2) For every pair A, n, there is a Hilbert modular (resp. cusp) form flrz
with respect to some group I‘O(% ,*) such that F (x;”' w,.) =
(fig|Woo) (@) forall w eG

For ye G, and F € £, (N, x,) we deﬁne Flye #(V, x,) by
Fly(x) = F(xy')
where x € G, . Clearly F|y|y' = F|yy . Notice that
F|yo(x;,,lwoo) = F(X;,,IY:)WOO) = F(ax;;vwoo) =X (V) (f,w|Voo)|Woo( )

where y, denotes the finite part of y and x 'y, = ax v for some a € G
0 And0 T

and ve W(/) withv_=a . Soif F:G, = C satlsﬁes condition (ii), then
so does Fy,.

For & a finite prime, £t , we define the Hecke operator T(Z) on
M (N, X y) bY

pire-wiere (11(5 4) - 2 1 2))

where k, = max{k,,...,k,} and p& = & ; here N(&) denotes the norm of
P.

We want the Hecke operators to act on the Fourier coefficients of a Hilbert
modular form in the same way the Hecke operators act on those of an elliptic
modular form. To obtain such an action, we will need to restrict our attention
to Hilbert modular forms which are eigenforms for the operators S(&), which
are defined as follows. For & a fractional ideal relatively prime to /", we
define the operator S(&) on 4 (4", x ,) by

s - (§ ),

where g@ =@ . It is easily seen that S(€,)S(@,) = S(@\4,) .

We let .7~ denote the algebra generated by the operators 7(<) and S(@);
since we can define all Hecke operators 7'(-¥) in terms of the operators 7T'(%)
and S(&@) (see [7]), we refer to 7 as the Hecke algebra.

For & an integral ideal we define B(@) : A4 (N, X ) — (N, %) bY

F|B@) = N@) " F| ( ‘791)
0

where q@ = @ (see Proposition 2.3 of [7]).


mailto:S(@l@.)
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Clearly S(.#) commutes with 7(#) and B(&); for &  A#Z , the operators
T(#) and B(#) commute. Notice that for each y € G, with y _ =1 and
1€ #" we have

(F1¥), (D) = (Fly) (g, We,) = Fxg,y'w,,)
= F(axwvwoo) = 1w (V) f1|Veo ()

where w € G, suchthat w i=17, a € Gy and v € W(/) with v =

ale Gy . Thus we can find matrices in GL;(K) which give the action of an
operator on a component space /Zk(l"w (), x4); this, however, is awkward
since we need different matrices for each pair u, o.

Sometimes we will restrict these operators to a component space: for a form
f et (),xy), YEG, with y =1 and 1€ 2", set

Iy = (Fy)(x,,%,,)

where w_i =1, (dety))jtf,,2 ~ j}faz ,and F € £ (¥, x,) has [ asits

A, n-component. Then we see that for frlzé’z ~ faz (with & relatively prime to
W), S(&) defines an isomorphism between the spaces .# (T, ,(/), x ,) and
./Z,((I"M(./If), X)) (and between (T, (4), x ) and .5’,((1"1"(/1/), Ly))-

We can decompose # (7", x,) into a direct sum of subspaces, each of
which is associated to a Hecke character x “extending x .~ where x_ (a) =
sgn(a)k and ¥, = X,X. - (So x is a Hecke character such that x(a,) =
X(@) when a is a unit at all primes dividing ./ and &, is the ./ "-part of
a,and y(a, )= x.(a).) For such a Hecke character y we set

M, x) ={F e (N, xp): F(5x)= x(@)F(x)forallseKA}

(Thus .#, (7", x) is an eigenspace for the operators S(&).) As stated in [7],
we have L (1, 1) = Q)X/Zk(/lf , x) where the sum is over all Hecke char-
acters y extending x , . This can be shown using representation theoretic
arguments; we present here a constructive argument. We first show how to
construct the Hecke characters y which extend x . .

Lemma 1.1. There are h' Hecke characters x extending x veo Where h' is the
ideal class number. If y and x' are Hecke characters extending x oo then xx
is a character on the ideal class group.

Proof. The ideal class group can be decomposed as a product of cyclic sub-

groups; using Dirichlet’s theorem on primes, we let %, ... , %, be primes
not dividing .#° so that cls# , ..., cls% generate these cyclic subgroups.
Let € be a character on the ideal class group. For each j = 1,...,r, let

0(9’].) denote the order of clsg’j , and take p; € ¢@ such that p; > 0 and

o(Z)

P =p,@. Set x(%,) equal to ¢(F)) times an o(%,)-root of ¥, ().

Then for § € K , we can write § = ali where ¢ € K* and # is a unit at all
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primes dividing /" ; set
XE) =1 (P A (L) Ko@)
where u# isin the class of ﬁ’f te. -3”,9 . Then yx is a Hecke character extending

X/V o *

Now, suppose x and x' are both Hecke characters extending x oo+ Then
(xZ')" is a character on the ideal class group, where (x7')*(cls@) = x(§)%'(q)
for g&@ = & relatively prime to .#°. Thus the Hecke characters extending
Xye are in one-to-one correspondence with the characters on the ideal class
group. 0O

Notice that if x extends x ,_ , then 1 =x7 oo 18 Well-defined on ideals
relatively prime to /.
Now we show

Proposition 1.2. We have 4, (V" , ) = EBX/X,C(/V , X), and hence we have
S xy) = 691‘71((/’/ , X) Wwhere the sum is over all Hecke characters )
extending X .

Proof. Clearly 4 (/" , )N M (N, x') = {0} when x # x', so @X/[k(/lf, X)
CM(N, x,). Choose G = (gh,) eM(N,x,),andlet g, ..., x, denote
the distinct Hecke characters extending x , . We know that (x,% j)* is an
ideal class character and %, ... , %, are in distinct ideal classes; thus Artin’s
theorem on the linear independence of characters implies that the matrix

T ) G Z) (A
diag(7;(A), - » 1)) P :
L Z) ) o GTe) (F)
is invertible. So for each A we can solve the matrix equation
FACANRI AR A gulSA™

T F) o T F) ;“ NG
for "
1
WD e (T ), 1)

(Notice that ngS(gfn_l) € M, (T (AN), x,).) Then for each j, we set f(”
x;(5) fl(j)|S(fn) and FY = ( f;{l)) For any # and any fractional ideal &
relatively prime to ./, we have f"z@’z ~ faz for some o ; thus f"é’ =at,
for some a € K* with & relatively prime to .#". Then we have
Ms@ =7 18#5@) =77(%) 1|S@r)
=7 (A1 ‘”IS a®)

=x'(a"'@) fM)|Saﬁ =x@) 1.
So FV e (', 1,), and FO4.. .4 F" —G. o
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2. THE LIFTING

Let J, be the subalgebra of the Hecke algebra 7 consisting of those
mappings in  which are actually operators on each component space
/Z,((I"M(/V )s X) - Thus 7 is generated by mappings of the form

T(P)" - T(P)"S@)
where r; € Zzo’ the ,97’]. are primes ideals not dividing 24", and & is a

fractional ideal such that ,97’1' ! ~-,97’S'Sé’ > ~ @ . To ease the notation, we write
TP - Pr) for T(P) - T(P)".

Our goal is to begin with a 7 -eigenform f € /ﬁk(l"/m(‘/l/ )»> X) and, using
its eigenvalues, lift f to a 7 -eigenform F € /4, (//", x) (where x can be any
Hecke character extending yx ,-_ ); however, we need to find nonzero eigenvalues
to effect this lift. To ease the description of this construction, we make the
following

Definition. Let f € /Zk(l"h,(/l/ ), X,) be a J -eigenform. Let [#] denote the
complex of the strict ideal class of .# . (Note that each complex has order 1 or
2.) Set

Z(f) ={I71: f]T,(@")S@ ") # 0 for some & € [.F]}
where it is understood that & is an integral ideal relatively prime to .#". If
we have such an ideal & € [#] with f] To(éz)S(@’_l) # 0 then we say &
witnesses [F] € F(f).

Clearly %(f) is a subgroup of the group of complexes; thus the order of
#(f) is a divisor of &/h", which is a power of 2 (see §61 of [2]).

Theorem 2.1. Suppose f € /Z,((FM(/V )s Xy) is a Fy-eigenform such that when-
ever [@] ¢ € (f) we have f|T,(@) =0 (where @ is an integral ideal relatively
prime to 24") . Then for any Hecke character x extending yx ,.  , we can con-
struct € (f)| T -eigenforms F € M (N, x); if F and G are two of these
forms then G = £F,, where F, is the twist of F by a character ¢ on the group
Z(f).

Remark. In Lemma 3.4 we show that any newform satisfies the conditions of the
theorem, and in Theorem 4.3 we use theta series to construct forms satisfying
these conditions.

Proof. Choose generators [@)], ... , [€,] for &€ (f) where @, witnesses [@;] €
% (f). For each j, choose ¢; such that

fT@)s@ )y =¢; 7' @),
Set f/h7 =f.If [fi_lfﬂ] € @ (f) then set j:w =0 for all ¢. For each u such
that [jj—lfﬂ] € #(f), choose ¢ such that fﬂff ~ @1" ---@s’Sflfnz where

tj=0 or 1. Set

1 t 1
j:w= 1 t flanO(@ll'“@; )
Cl .. aCS.Y
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(Note that the exponents ¢ ; are uniquely determined by the complex of /u J)
For each o', choose .# relatively prime to .#" such that fazf 20 fj ; set

ft =T (F) £,]S(F).

Since f/w|S(aé’) = x"(a?®) Juo for ace K™, the definition of J,o' 1s indepen-
dent of the choice of .7 .

We claim F = (f,,/) is a J -eigenform. Just as in the proof of Proposition
1.2, F |S(@’) = x"(@) F forall & relatively prime to .#". Also, for any u and
o' we have

fuo | To(@)) = %Lfc—)j Ll (@' - @) Ty(@)S(S)
] Y(j})—fc(;f)c]z L\ To(@ @0 e)s(@,7) (if 1, =1)
C%Lfc—)’ Ll Ty @@y - a@)s() (if1;=0)
: (ZIY_@_]&{_% £ Ty ...gj?...@;s)s(@}j)> (if £, =1)

(_xﬂ £ T E e ...@;s)sm) it =0)
j1 s
=¢; fuy
for appropriate A’ and #'. Thus F |T0(@’j) =c; F.

Now, choose a prime & + ./ ; if [P & & (f) then f| T(##) =0 and by our
constuction, F|T(Z) = 0. Suppose [#] € Z(f). Then & ~ a --«@s_'s/_z
where r; = 0 or I and < isrelatively prime to .#". Then TO(%"{‘ ---@;'X)S(f)
€9, and J is a commutative algebra, so remembering how we defined fﬂ o
we see that

S| To(FE] - 5)S(F) = cf
for some constant ¢ which is independent of 4 and ¢’. So

cF = F|Ty(Pg] - @*)S(F) = x"(F)c] - c* F|T(P)

N
and hence F|T(%)=cx"(F)F/c}' - c. Thus F is a J -eigenform.
Suppose we choose a set of generators [@; ] of Z(f) where @J' is a witness;

then F|T,(&;) = c; F for some ¢, #0, and f| To(é’jfz)S(@’j'_l) = c}z @) f.
The form constructed using f, @’j’ and c;. gives us F, and hence regardless
of the choices for the generators of % (f) and their representative witnesses,
we obtain the same |%(f)| lifts of f.

Now, let F be one of the forms constructed above and let ¢ be a character

on Z(f). Extend ¢ so that a([f”]) =0 for [)2] ¢ & (f). We define F, by
F,(x) = g([det(x)]) F(x).


mailto:T~(@,@;I
mailto:T~(@,@;I
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So if F is the lift of f using @’J and ¢ then *F, is the lift of f using @’j
and a([@’j]) "G Unless ¢ = 1, F # £F,. Thus the lifts of f to (A4, x)
are (up to sign) twists of each other. O

Remark. If F € # (¥, ) and G € # (N, ') are lifts of [ where x # 1,
then F and G are linearly independent.

3. NEWFORMS

To define a newform, we first observe that we can define an inner product on
‘?7((‘/1/5 Xﬂ): for F’ GE‘ZC(‘/I/’ X‘/V)a

(F, G)= Z(ﬁn’ g).r,)

where ( S gb’> is the Petersson inner product (see (2.27) of [7]). With this in-
ner product, 69/1, ,’5”,((1" ln(‘/V )»> X ) becomes an orthogonal sum. As Shimura
shows, the operators 7() and S(&) are (essentially) Hermitian on each space
SN, x) (see Proposition 2.4 of [7]). We define ., (/" x ,-) to be the sub-
space of % (", x,) which is generated by the forms F |B(@) where F isa
form of a lower level (i.e. of a level ./ " where /" is a proper divisor of /" );
we set

S W 0=, 00 (I xy)

We define 5”,;'(/1/ , Xy) to be the orthogonal complement of (4", x ),
and we set

FEN 1) =AW )NFI 1)

Similarly, for each 4 and # we define Z:(FM ("), x4) tobe the subspace
of 5”,((1“1”(/1/) , X »-) which is generated by f|B(&@) € ZC(FM(/V), X)) Where
f is a form of a lower level, and we define

‘Z:(rb’(./l/), x/V) g %(FA”(W), X./V)

to be the orthogonal complement of 5’}(_(1“1,7(/1/ )s X) - Then, the arguments
of [3] (cf. [6]) extend in a straightforward manner, giving us multiplicity-one
in SN, 2):

Theorem 3.1. Let y be a Hecke character extending x ,. . Then 5’7:’ W, x)
has a basis of simultaneous eigenforms for the Hecke operators T (), if two
such forms have the same eigenvalues for all but a finite number of the operators
T(P) (where P denotes a prime ideal not dividing 2.9°), then the forms are
linearly dependent.

Corollary 3.2. 5”,: (Y, x) has a basis T -eigenforms.

Now we consider the component spaces Z((Fln(ﬂ )s Xy) -
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Lemma 3.3. The projection map F = ( j;n) — (fy,) takes S (AN, x) onto
D, S T(A*), x,) and hence takes G, x) onto @, L (TN, Xy)-
Proof. Clearly proj(F|B(@)) € @, (T;(*), x,) (where the level of F is
a divisor of #" @~ "). For each 4, choose g, = fMlB(é'?A) eSS ) xy)
where f, € (T, (W), x,) and G| 1 ; set

fro =X ETE) 1,557 5),
and take F, to be the element of .7 (/#'/&,, x) whose u, c-component is f‘“7

and whose other components are 0. Then G =3, /1|B eSS (M, x),and
proj G = (g;) . Since proj(G + G') = proj G + proj G , it follows that prOJ is a
surjective map.

Suppose G € &, (/, x) and (F, G) =0. Since

Sins &) = i ST, 8,857
-ﬂ.a'A g).a|A Aa’gla>

where A4 € GL;'(K) gives the action of S(J‘;&fa‘ ), we have

(projF,projG)=%(F, G)=0

and thus
proj : K (N, x) — P K T, 2,)-
A

We know proj (F (A, x) @S (N, X)) =D, AT (A), xy), s0
proj(F (A, X)) 695” L), xy). O

Lemma 3.4. Let f € & (T, (1), X)) bea Fy-eigenform. If [G]1 ¢ B (f) then
f|Ty(@) = 0. Hencewe canlift f to |Z(f)| linearly independent T -eigenforms
in <9”,(+(./V , X); these lifts of f are (up to sign) twists of each other.

Proof. First we suppose that f] To(é’z) S(@~") = 0; we show that f|T,(@)=0.
A basis of 7 -eigenforms for 5”,:(/1/ , X) projects to a spanning set of J-
eigenforms for ,9”,:(1“1”(/1/), Xy)» thus we have f = f +---+ f, where each

fj is nonzero and is the projection of some 7 -eigenform F; € 5”,:“(/1/ » X) -
Now, this means that

|T S(@’ )
and since F; isa J -eigenform, F jITO(@’ = 0. (Recall that 7 is a commu-
tative algebra and FJ.|S(@_1) =7'(@) F;.) Thus

f1T(@) = A|Ty(@) + - + £,|Ty(@) =0,
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and so by Theorem 2.1 we can lift f to |#Z(f)| linearly independent 7 -
eigenforms F in (A1, x).
We now show that a lift F = ( fﬂa) of f is a newform. For

840 €% Ty 24)

we have
(frs 8uo) = (S| To@)S(F), 8,) 5

the operators S(#) and T\ (&) are (essentially) Hermitian, and they map old-
forms to oldforms (see [7] and [6]). Thus ( j:w, gW) = 0 and hence F €

FHA ). O

Now we show that multiplicity-one in the product space 5”k+ (", x) implies
that multiplicity-one (with regard to the algebra %) holds in each component
space.

Theorem 35. If f,g € <5”k+(l"b,(/1/ ), Xy) are Jy-eigenforms with the
same eigenvalues, then f and g are linearly dependent. Furthermore,
5”,:(1“1”(/1/ )s Xy) 1S isomorphic (as a Fy-module) to a subspace of

G ), 1) = F T, ), Ap)-

Proof. The mapping f — f ]S(J’,’_l) is a J-module isomorphism, thus we
may assume that f, g € % (T;(#), x,). By Lemma 3.4, we see that we
can use f and g to construct 7 -eigenforms in 5”,:(./1/ , x). We see by the
construction of these .7 -eigenforms that we can construct F and G to have
the same eigenvalues for 7 with f as the A, l-component of F, and g as
that of G. Thus by multiplicity-one for 5”,:(/1/ ,X), F and G are linearly
dependent and hence f and g must be linearly dependent as well. Further-
more, since F is a 9 -eigenform in 5”,:(./1/ , X),its 1, l1-component f, must
be nonzero (see [6]). Thus f, € 5’}:(]‘1 ), x,) is a J-eigenform with the
same eigenvalues as f € 5’}:(1“ (), x) . (In fact, we see from the construc-
tion of F that f = c f||T,(€)S(#) where & is a witness for [€] € Z(f),
P 2 @, and c is some nonzero constant.) So a basis of 7 -eigenforms for
5’,:(1“ (), x,) corresponds to a linearly independent set of 7 -eigenforms in
,S’j:(I“I(JV )s Xy) ; since 9 is a commutative algebra, this correspondence pre-
serves the J-eigenvalues, meaning that if f, € LZ:(FA(A/ )s Xy) corresponds
to f] € 5’,:'(1“ 1), x,) then f and f; have the same eigenvalues for all
operators in 7). Thus as a J-module, .57:(1"1(/1/ )s Xy) 1s isomorphic to a
subspace of . (' |(#), x,). O

Notice that the dimension of 5’;:“(1“ (), x,) is equal to the number of
subgroups % ( f(’)) which contain [ £] where { f(l), cee f(')} is a basis of for
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LT, 1) - Thus we get

Corollary 3.6. For % (T,(#¥), 1), let {f, ..., f} be a basis of F}-
eigenforms then

dim A, ) =Y |8V < hﬁ -dim F (T, 1),
J

Proposition 1.2 and Theorem 3.1 show that we have multiplicity-one in
SN, x,) when we consider all operators in the algebra .7 . The Hecke
operators T () (where & is a prime ideal) generate a subalgebra of 7 ; the
multiplicity of eigenvalues in 57: (", x,) for this subalgebra depends in part
on “how often” we have F|T(Z%) = 0. To allow us to describe this more
precisely, we have the

Definition. Let e S (I,(/), x,,) be a J-eigenform; set
Z(f) ={clsF: f|T,(@) # 0 for some & € cls.#}

where cls ¥ denotes the ideal class of ¥, and & is understood to be an
integral ideal relatively prime to /.

Then, extending Theorem 5 of [3], we have

Theorem 3.7. Let F € <7k+(/1/ , Xy) bea T -eigenform; let f denote the 1, 1-
component of F. There are exactly W' (f) = h'||.Z(f)| linearly independent
forms G € 5”,:(/1/ . Xy) Such that the 1, 1-component of G is f and G has
the same eigenvalues as F under all the Hecke operators T(P) (where P isa
prime ideal not dividing 2.9"). We can obtain some of these forms G by twisting
F by characters on the ideal class group modulo Z(f) ; the number of distinct
twists of F obtained in this way is h'(f) divided by the number of ideal classes
whose squares lie in Z(f).

Proof. Since F is a J -eigenform, F € & (/, x) for some Hecke character
x extending x , . For & a prime not dividing /", we know that

F|T(P) =+\/x"(P)cyp F

where flT(ga)zS(@_l) = ¢, f. Suppose we have G € 5”,:(/1/, 1) a T-
eigenform with 1,1-component f; then

G|T(P) =+\/2"(P)cy G.

If F and G have the same eigenvalues for all 7(&), then we must have
(Xx')"(%) =1 whenever c, #0.

On the other hand, if ' extends y veo With xx')(#) = 1 whenever Cp F
0, then we can use f to construct G € 5*’7:(/1/ , X)) such that G is a I -
eigenform with the same eigenvalues as F for all the T(%).

We know that (¥x')* is a character on the ideal class group; there are
K ||Z(f)| characters which are trivial on the subgroup .Z(f). Thus there
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are h'/|Z(f)| Hecke characters x' extending yx , . such that (7x')"(%) =1
whenever ¢, # 0; for each such x' we can use f to construct exactly one
form G € % (/, x') such that G is a 7 -eigenform with the same eigenval-
ues as F for all the Hecke operators. We know 5”,:' (7", x4) has a basis of
J -eigenforms, thus the first assertion of the theorem holds.

To prove the second assertion, let ¢ be a character on the ideal class group
modulo .Z(f); consider ¢ as a character on ideals relatively prime to /.
Then we can view & as a Hecke character with conductor ¢ ; as shown in [6],
F, € & (W, xe®) (where F, is defined by F,(x) = g(detx)F(x)). Clearly F
and F, have the same eigenvalues for 7(&). Unless =1, 57:(./1/ , x)N
5”,:(/1/, xaz) = {0} ; thus F = F, when ¢ = 1,and F and F, are linearly
independent otherwise. 0O

4. THETA SERIES

Let V' be a quadratic space of even dimension 2k over the field K with a
totally positive quadratic form Q;let L be a lattice on V', and let L* denote
the dual of L (see[5]). As shown in [11] (see also [1]), the theta series attached

to L o
iTr(Q(x)T
O(L,7)=) e"
xX€L
is a modular form with a quadratic character x, and weight k for the group

T(S(L), N(L)) = {4 € T,(S(L), N(L)) : detd = 1},

where N(L), the norm of L, is the fractional ideal generated by the set
{10(x): x € L}, and S(L), the level (or stufe) of L, is the product of
N (L)_'N (L#)_l and perhaps some dyadic primes (see [11] for a precise def-
inition). Note that a nondyadic prime % divides S(L) if and only if L, =
L®&, is not modular (where &, is the localization of & at & ). Also, we see
that we can relax the conditions in [11] to extend the transformation formula
(2), giving us the transformation formula

9 (L art b) = (c+dn)fa™ 3 e (%Q(x)) o(L, 1)

ct+d x€L/dL

where (‘; z) is any matrix in I"(I)(S(L), N(L)). (The crucial observation to
make when extending this~ formula is that with such a matri}, local consider-
ations show that bL NdL = bdL and thus for any x € L, bxo + X runs
over L/dL as X, runs over L/dL.) With this transformation formula, the
arguments used to prove Theorem 3.7 of [11] show that §(L, 1) is a modular
form of weight k for the group I“(I)(S(L), N(L)) with character x,, and x,
is trivial if and only if L/ L is hyperbolic for all primes # not dividing
28(L).
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We define the weighted average of the theta series attached to the lattices in
the genus of L, genL, to be

1
O(genlL, 1) = LZJ m O(L;, 1)

where the sum runs over a compiete set of representatives L ; of the isometry
classes in genL, and O(L j) denotes the orthogonal group of L ;- As is fairly
clear, f(gen L, 1) is independent of the choices of representatives L ;-

Siegel showed that #(gen L, 7) is an Eisenstein series (see [9-10]); for K =
Q, it is well known that the space spanned by Eisenstein series has a basis of
eigenforms for the Hecke operators (see Chapter IV of [4]). Our goal is to use
a weighted average of forms 6(gen L, 7) to produce a .7 -eigenform.

To examine the action of 7 on 6(gen L, 1), we first state a consequence of
Theorem 7.3 and Proposition 6.1 of [11]:

Theorem 4.1. If & is a prime ideal not dividing 2S(L) and L/L is hyper-
bolic, then
O(L, )|T(P) =N 27" Y 0(k, 1)
K

where A = (N(gz)k_2 +1)--- (NP + 1) and the sum is taken over all P-
sublattices K of L, i.e. over all sublattices K of L such that L C K
and K/PL is a maximal totally isotropic subspace of L/ L. Furthermore,
each 0(K, ) is a modular form with character y, and weight k for the group

Ty(S(L), ZN(L)).

Remark. Note that the operators used in [11] are the same as those defined
by Eichler; in our current notation, Eichler’s operator V(&) is the operator
S(@™"), and Eichler’s operator T(%) is N(#)%2T(#)S(#~") (see [1] or
[11]). Note also that we may need to follow Eichler’s operators by the isomor-
phism f — f|( g ?) (where a € K*, a>> 0) so that the range of the operators
is one of the component spaces of .# (.#", x); this isomorphism depends only
on the ideal a@ when f l( g ?) = f for all totally positive units .
Now we can prove

Lemma 4.2. Suppose & is a prime ideal not dividing 2S(L) such that L]/ %L
is hyperbolic; let K be a P-sublattice of L. Then

O(gen L, 1)|T(P) = N(P)*(N(#)*™" +1) 6(genK, 1).

Proof. Let L, ... ,L, and K|, ... , K_ be full sets of representatives for the
classes in gen L and gen K (respectively); let f; i be the number of isometries
‘o of V' which map K, into L, such that L, C o(K;). Then one has the
following easily verified facts:

(1) f; ; #0 if and only if K ; 1s isometric to a -sublattice of L,.

(2) 1/]0(K))|- S i is the number of Z-sublattices of L; which are isometric

to K e
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(3) 10(L)I/IO(K )| - f;; is the number of isometries o of V' which map
ZLL; into K such that #K; Cc o(£L,).

4)
Z IO lj ( ( A’ Z |0(L lj

where A is as in Theorem 4.1. (To verify (4), see Proposition 7.2 of [11].)
The lemma now follows easily. O

Let us assume that I'j(S(L), N(L)) = I"M(S(L)) for some A and 7 (notice
that we can always scale L to effect this). Our intention is to form a weighted
average of theta series to obtain a J-eigenform in //Zk(FM(S(L)) , X;) which
we will then use to construct a 7 -eigenform in .Z, (S(L), x,) -

We first observe that the sum

> O(genL”, 1
u

is an element of .Z (', ( (L)), x;) (where the sum is over totally positive units
u which give us dlstlnct genera gen L"“); however, this sum is not necessarily a
F,-eigenform. The preceding lemma together with Proposition 6.1 of [11] shows
that for x, =1, a> 0, I a fractional ideal (relatively prime to S(L)), and
P, ..., prime ideals not dividing 2S(L) with akf 2901 P =0, we
have
Z O(genL", 1)|Ty(P, - P)S(F) =c- Y _ 0(genFK,", 1)
u

where ¢ # 0, K is a Z-sublattice of K _1» Ky=L,and Kf‘ is the lattice K,
scaled by o . Although N(FK) = (L) and S(FK,") = S(L), we may not
have . Kr" “ecgenL’ forany v € @, v > 0 (consider, for instance, the case
where Z is nondyadic, a is not a square in &, and L, has some Jordan
components of odd rank). So to obtain a Jj-eigenform we need to consider
more lattices than those in gen L ; thus we make the following

Definition. Let L be a lattice on a quadratic space V', and let « > 0. A lattice
K on V*® is in the family of L, fam L, if for every prime ideal % there is a
unit u, € @, such that K7 ~ L,

Notice that the family of a lattice L can be partitioned into a finite number
of genera, since L“; ~ L, whenever & { 2S8(L) and u, € ﬁ; . (Recall also
that there are, up to isometry, only a finite number of spaces ¥“.) Note that in
the special case where V' is a quadratic space over Q and L is a unimodular
lattice with N(L) C Z, we have fam L = gen L (see Chapter 6 of [5] and note
that the rank of such a lattice L must be a multiple of 8).

Sowith L and K =.* Kr"“ as in the discussion preceding this definition, we

see that K € fam L where we take u, =1 if % +2S(L), and uy, =« 2t if
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P|2S(L) with 28, = # '@, . Now we have
Theorem 4.3. Let L be as above. Define

6(famL, 7) = Z—I——O(L'

(L, )
— o]

where the sum runs over a complete set of representatives of the isometry classes
in fam L. Then 6(fam L, t) is a nonzero element of A (S(L), x,);if x, =1
then 6(fam L, 1) is a J-eigenform.

Note that when x, = 1, Lemma 4.2 together with Proposition 6.1 of [11]
allows us to compute the eigenvalues for 6(fam L, 7); note in particular that
these eigenvalues are nonzero. Now, applying Theorem 2.1, we obtain

Corollary 4.4. Let the notation be as in Theorem 4.3, and suppose x, = 1 and
that T, (S(L)) = Ty(S(L), N(L)). Then we can lift 6(famL, t) to h lin-
early independent T -eigenforms of #, (S(L), x,). Let & be a prime such
that #+2S(L) and fﬂff ~ eg"flf:lz; then the u, n-component of any lift of
6(famL, 7) is ¢, -0(fam K, 1) where c,, # 0 and K isa P-sublattice of L.
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