Correction to Proof of Lemma 1.1 in PAPER "ON LIFTING HECKE EIGENFORMS"

Here h' the class number (not the strict class number). For \tilde{s} and adele, we set $\chi_{\infty}(\tilde{s}) = \operatorname{sgn}(\tilde{s})^k$. (By $\operatorname{sgn}(\tilde{s})$ we mean $\prod_{i=1}^n \operatorname{sgn}(\tilde{s}_{\varphi_i})$ where the φ_i are the embeddings of \mathbb{K} into \mathbb{Q} and \tilde{s}_{φ_i} is the corresponding component of \tilde{s} .)

Let ε be a character on the ideal class group. Using ε , we define a Hecke character on the adeles of \mathbb{K} extending $\chi_{N\infty}$ as follows.

The ideal class group can be decomposed as a product of cyclic subgroups; using Dirichlet's theorem on primes, we let $\mathcal{P}_1, \ldots, \mathcal{P}_r$ be prime ideals not dividing \mathcal{N} so that the $cls \mathcal{P}_j$ generate the ideal class group. For each j, let $o(\mathcal{P}_j)$ denote the order of $\operatorname{cls} \mathcal{P}_j$. Take $p_j \in \mathcal{O}$ so that $\mathcal{P}_j^{o(\mathcal{P}_j)} = p_j \mathcal{O}$, and choose an $o(\mathcal{P}_j)$ th root ρ_j of $\overline{\chi}_{\mathcal{N}\infty}(p_j)$. For \tilde{s} an adele away from \mathcal{N} , write $\tilde{s}\mathcal{O} = \alpha \mathcal{P}_i^{e_1} \cdots \mathcal{P}_r^{e_r}$ where $\alpha \in \mathbb{K}^{\times}$. Set

$$\chi(\tilde{s}) = \varepsilon(\mathcal{P}_1^{e_1} \cdots \mathcal{P}_r^{e_r})\rho_1^{e_1} \cdots \rho_r^{e_r}\chi_{\mathcal{N}\infty}(\alpha)\overline{\chi}_{\infty}(\tilde{s})$$

To show $\chi(\tilde{s})$ is well-defined, say we also have $\tilde{s}\mathcal{O} = \beta \mathcal{P}_1^{f_1} \cdots \mathcal{P}_r^{f_r}$. Then $f_j = e_j + m_j o(\mathcal{P}_j)$ for $m_j \in \mathbb{Z}$ and $\beta/\alpha = u p_1^{m_1} \cdots p_r^{m_r}$ where $u \in \mathcal{O}^{\times}$. Then

$$\varepsilon(\mathcal{P}_{1}^{f_{1}}\cdots\mathcal{P}_{r}^{f_{r}})\rho_{1}^{f_{1}}\cdots\rho_{r}^{f_{r}}\chi_{N\infty}(\beta)$$

$$=\varepsilon(\mathcal{P}_{1}^{e_{1}}\cdots\mathcal{P}_{r}^{e_{r}})\rho_{1}^{e_{1}}\cdots\rho_{r}^{e_{r}}\overline{\chi}_{N\infty}(p_{1}^{m_{1}}\cdots p_{r}^{m_{r}})\chi_{N\infty}(\beta)$$

$$=\varepsilon(\mathcal{P}_{1}^{e_{1}}\cdots\mathcal{P}_{r}^{e_{r}})\rho_{1}^{e_{1}}\cdots\rho_{r}^{e_{r}}\chi_{N\infty}(\alpha)$$

(recall that for a unit $u, \chi_{N\infty}(u) = 1$). One easily checke that $\chi(a\tilde{s}) = \chi(\tilde{s})$ where $a \in \mathbb{K}$, a a unit at all primes dividing N.

If \tilde{s} is an adele not away from \mathcal{N} , then choose $a \in \mathbb{K}^{\times}$ so that $a\tilde{s} = \tilde{u}$ where \tilde{u} is away from \mathcal{N} ; define $\chi(\tilde{s}) = \chi(\tilde{u})$. As above, one easily verifies $\chi(\tilde{s})$ is well-defined.

1

Thus χ is a Hecke character.