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Abstract

Using the explicit action of the Hecke operators T (p) acting on the
Fourier coefficients of Siegel modular forms of arbitrary degree and
level, a short and elementary proof and a generalization of a result by
Breulmann and Kohnen is obtained, which says that eigenforms are
determined by their coefficients on matrices of square-free content.
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1 Introduction

In a recent paper by Breulmann and Kohnen [BK99], the authors obtain a
weak multiplicity-one result on (integral weight) Siegel-Hecke cuspidal eigen-
forms of degree 2, showing that such forms are completely determined by
their coefficients on matrices of the form mS, where S is primitive and m
is square-free. To show this, they twist Andrianov’s identity relating the
Maaß-Koecher series and the spinor zeta function of an eigenform [An74] by
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a Größencharacter. This allows them to then use Imai’s converse theorem
for degree 2 forms [Im80] and thereby obtain their result.

In this note, we use an elementary algebraic argument to reprove and
extend their result to Siegel modular forms of arbitrary degree n and arbitrary
level which are only assumed to be eigenforms for the operators T (p) (but not
necessarily for the full Hecke algebra). We first show that such an eigenform
must have primitive matrices in the support of its Fourier development. Then
it is immediate from the explicit action of the Hecke operators on Fourier
coefficients that if two such forms have the same eigenvalues for all T (p)
and the same coefficients on primitive matrices then their difference must
be zero. Since, moreover, the assumption of coinciding eigenvalues can be
derived from the above stated assumption of Breulmann and Kohnen, we
recover their result for n = 2.

Note that Andrianov’s identity and Imai’s converse theorem are currently
only known for n = 2 and level 1, so the analytic approach used in [BK99] check!

cannot at this time be extended to general n.

2 Preliminaries

Let F be a degree n Siegel modular form with Fourier expansion

F (τ) =
∑
S

c(S)e{Sτ},

where S runs over all symmetric positive semidefinite even integral n × n
matrices S and e{τ} = exp(πi trace τ). We consider each S to be a quadratic
form on a rank n Z-lattice Λ relative to some basis for Λ. As S varies, the
pair (Λ, S) varies over all isometry classes of rank n lattices with even integral
positive semi-definite quadratic forms. Also, the isometry class of (Λ, S) is
that of (Λ, S ′) if and only if S ′ = S[G] for some G ∈ GLn(Z). When k is
even, F (τ [G]) = F (τ) for all G ∈ GLn(Z), so it follows that c(S[G]) = c(S).
Hence, (with k even) we can rewrite the Fourier expansion of F in the form

F (τ) =
∑

class Λ

c(Λ)e∗{Λτ},
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where c(Λ) = c(S) for any matrix S representing the quadratic form on Λ,
and with O(Λ) the orthogonal group of Λ we set

e∗{Λτ} =
∑

G∈O(Λ)\GLn(Z)

e{S[G]τ}.

When k is odd, we have F (τ [G]) = detG · F (τ), so c(S[G]) = detG · c(S),
and a completely analogous formula holds with Λ considered as an oriented
lattice (i.e. a pair consisting of a lattice and one of the two orientation classes
of its bases), and the sum in the definition of e∗ being over SO(Λ)\SLn(Z).

In what follows we make use of the ‘content’ and the ‘discriminant’ of
lattice. When Λ is a lattice with quadratic form q, the content cont Λ of Λ
is defined as

cont Λ := gcd{q(x, x)/2 | x ∈ Λ}.

If q on Λ has the Gram matrix S, with respect to some basis, then cont Λ
is just the gcd of the entries sij, i 6= j, sii/2 of S. (The term ‘content’ is
standard for symmetric matrices, but not for lattices; 2 cont Λ is equal to
what is uwually called the ‘norm’ of the lattice Λ ; see [O’Me] for further
information.) The determinant of S does not depend on the choice of the
basis and is called the discriminant disc Λ of Λ . For a positive rational
number α, the notation Λα means we “scale” Λ of rather the pair (Λ, q) by
α, i.e. Λα is equipped with the quadratic form αq.

We summarize here the results on content, scaling and discriminant used
in the proofs below; Λ is a lattice of rank n and Ω a sublattice of the same
rank.

• [Λ : Ω] = m =⇒ disc Ω = m2 disc Λ

• disc Λα = αn disc Λ

• cont Λα = α cont Λ

The first formula is well known and is verified e.g. by taking a pair of
elementary divisor bases of Ω ⊆ Λ and their corresponding Gram matrices;
the other two formulas are obvious.

We now recall from e.g. [Fr83], Kapitel IV, the notion of the Hecke
operators T (p), for all primes p, acting on Siegel modular forms degree n
(and any fixed weight k). The Siegel modular form T (p)F or F |T (p), with
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F as above, is defined by averaging F over the double coset Spn(Z)gSpn(Z)

of the rational symplectic similitude g =

(
pIn

In

)
. See e.g. [Fr83] for

the precise definition (and for the definition of the other Hecke operators
Tj(p

2), j = 1, . . . , n − 1, which apparently cannot be used to improve the
result below).

We denote by T (p)c(Λ) the Λ ’th Fourier coefficient of T (p)F . Theorem
4.2 from [HaWa] shows that, for p prime,

T (p)c(Λ) =
∑

pΛ(Ω⊆Λ

γ(Ω)c(Ω1/p) + c(Λp),

for appropriate numerical constants γ(Ω) (depending only on p and disc Λ).
This result is essentially already contained in the classical work [Ma51] by
Maaß; it is also readily derived from the well known coset representatives for
the above double coset, as described e.g. in [Fr83], Kapitel 4.

When T is an eigenform and Tp(F ) = λF (p)F , we shall refer to this
formula as the ‘Hecke eigenform equation’.

3 The result

We immediately proceed to our main result.

Theorem 3.1 Suppose F,G are degree n eigenforms of arbitrary level and
character, for all T (p) with the same eigenvalues (i.e. λF (p) = λG(p) for all
p), and that their Fourier coefficients agree on primitive lattices and on 0.
Then F = G.

Proof. By the support suppF of a Siegel modular form as above, we mean
the support of its Fourier coefficients, i.e. the set of lattices Λ with c(Λ) 6= 0.
Suppose F 6= G. Then F −G is an eigenform for all T (p) with no primitive
lattices in its support. But this is impossible by the following lemma.

Lemma 3.2 Let F be a degree n eigenform for T (p) for all primes p. Then
there is at least one primitive lattice in the support of F .

Proof. Suppose not. Denote by rad Λ the radical of a positive semidefinite
lattice Λ , and set Λ̄ := Λ/ rad Λ, which is a positive definite lattice. For
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1 ≤ m ≤ n let

suppm F = {Λ ∈ suppF | dim rad Λ = n−m}.

Fix an m s.t. suppm F 6= ∅; such an m obviously exists. Let N be the minimal check!

content of lattices in suppm F (so N > 1). Take a prime p|N . Then among
the lattices in suppm F with content N , choose Λ s.t. the p-part of disc Λ̄ is
minimal. Then Λ1/p is integral and the Hecke eigenform equation says

λF (p)cF (Λ1/p) =
∑

pΛ(Ω⊆Λ

γ(Ω)cF (
1

p
Ω) + cF (Λ) .

For Ω s.t. pΛ ( Ω ⊆ Λ, we have Λ ( 1
p
Ω and hence the p-part of disc(1

p
Ω̄) is

strictly smaller than that of disc Λ̄. Similarly, disc Λ̄1/p = p−n disc Λ̄. Hence
Λ1/p, 1

p
Ω 6∈ suppm F , for pΛ ( Ω ⊆ Λ; so the Hecke eigenform equation says

0 = cF (Λ), contradicting that Λ was chosen in suppm F .

The next lemma shows, for cusp forms, the equivalence between our assump-
tion of coinciding eigenvalues and the assumption used in [BK99].

Lemma 3.3 Let F,G be degree n cuspidal eigenforms for each T (p), p prime,
s.t. the coefficients of F and G agree on primitive lattices. Then λF (p) =
λG(p) for all p if and only if the coefficients of F,G agree on all primitive
lattices scaled by non-squares.

Proof. Suppose λF (p) = λG(p) for all p. Let Q ∈ N be square-free, and
let p be a prime not dividing Q. Suppose we know that the coefficients of
F,G agree on all primitive lattices scaled by divisors of Q. (Note that we are
assuming this for Q = 1.) We show that the coefficients of F,G must then
agree on all primitive lattices scaled by divisors of pQ.

Let Λ be a primitive lattice scaled by some divisor of Q s.t. p - disc Λ.Then
for pΛ ( Ω ⊆ Λ, we have [Λ : Ω] = pr with r < n. Hence disc Ω = p2r ·disc Λ,
so p2r‖ disc Ω. Thus p2

- cont Ω (else p2n| disc Ω), so Ω is a primitive lattice
scaled by some divisor of pQ. This means either Ω1/p is not integral or is a
primitive lattice scaled by a divisor of Q; in either case cF (Ω1/p) = cG(Ω1/p).
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This together with the Hecke eigenform equation then gives us

cF (Λp) = λF (p)cF (Λ)−
∑

pΛ(Ω⊆Λ

γ(Ω)cF (Ω1/p)

= λG(p)cG(Λ)−
∑
Ω

γ(Ω)cG(Ω1/p)

= cG(Λp) .

Now suppose that for some t ≥ 1 we know the coefficients of F,G agree on
primitive lattices ∆ scaled by a divisor of pQ provided pt - disc ∆. Let Λ
be a primitive lattice scaled by a divisor of Q s.t. pt‖ disc Λ. Take Ω s.t.
pΛ ( Ω ⊆ Λ. Since p2‖ cont(pΛ) and cont Ω | cont(pΛ), we have p3

- cont Ω.
Thus 1

p
Ω is either non-integral, or primitive scaled by some divisor of pQ.

Also since pΛ ( Ω, we know [Λ : Ω] = pr for some r < n, so p2(r−n)+t‖ disc 1
p
Ω.

Hence by hypothesis, cF (1
p
Ω) = cG(1

p
Ω). Consequently, the Hecke eigenform

equation, with all terms rescaled by 1
p
, gives us cF (Λ) = cG(Λ).

Induction on t shows that cF (Λ) = cG(Λ) for all Λ that are primitive
lattices scaled by a divisor of pQ. Induction on the number of primes dividing
Q shows cF (Λ) = cG(Λ) for all Λ that are primitive lattices scaled by non-
squares.

Conversely, suppose the coefficients of F,G agree on all primitive lattices
scaled by non-squares. Fix a prime p. Choose a primitive lattice Λ ∈ suppF .
Then as shown above, for Ω s.t. pΛ ( Ω ⊆ Λ, Ω1/p is either non-integral or
a primitive lattice scaled by a non-square. Thus∑

Ω

γ(Ω)cF (Ω1/p) + cF (Λp) =
∑

Ω

γ(Ω)cG(Ω1/p) + cG(Λp) ,

so the Hecke eigenform equation implies

λF (p)cF (Λ) = λG(p)cG(Λ) .

Also cF (Λ) = cG(Λ) by hypothesis, and cF (Λ) 6= 0. Hence λF (p) = λG(p).

Remark 3.4 Using the lattices Λ̄ = Λ/ rad Λ as before, one can easily re-
move the resriction to cusp forms in the previous lemma.
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