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Welcome to Mathematics at the University of Bristol, where our
teaching is informed by our research.

| am a number theorist, which means that in my research | study
questions primarily about the integers, which are

., —3,-2,-1,0,1,2,3, ...

Number theorists love to count. For instance, a classical question in
number theory is:

Given a positive integer t, how many ways can we write t as a sum of
squares?
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For example, using 4 squares, we have:
10=12 412422422
=0%+0% 412+ 32
and
27 =02 +12 412 + 52

=17 +12+33+ 42
=02 +3%+3%+32

Note that for x + 0, we can replace x° by (—x)? and have another

solution. For instance, 10 = (—1)? + 12 4 (—2)? + 22,
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Generalising this question: How many ways can we write an integer t as
a sum of k squares?

For instance, how many integer solutions do we have to the equation

12,345 = X3 4+ x5 + 53 + -+ + x39?

Instead of proceding case by case, | want to count in an intelligent way,
solving all cases at once.

To do this, | use mathematical structures to model the information | want
to count, functions to encode these counts, and then again use
mathematical structures as well as symmetry to decipher these counts.
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STRUCTURE: With xq,xp, - - - , xx integers, | think of (xq,xp, - -

a vector in a /attice, sitting inside a k-dimensional space.

2-dimensions:

0A=(23)
A

3-dimensions:

e
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September 12, 2015 5/1



| can capture geometry by defining a dot product of vectors:

For Euclidean geometry, | set

(x1,x2, - %K) - (Y1, Y20+, Yk) = X1V + Xoyo + -+ + XiYk-

Then in the standard Euclidean geometry,

(XI,X27' "an) : (X17X2a'° 'an) — Xf +X22 + e +X;%
is (the square of) the length of the vector (xi, x2, ..., xk), and this vector
is perpendicular to the vector (y1,y2, ..., yk) exactly when

(X1,X2,...,Xk) . (yl,yg,...,yk) :0.

So my original question can be rephrased: Given an integer t, how many
vectors in the lattice have (squared) length t?
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GENERALISING: There are other geometries | can capture on this
k-dimensional space, by redefining the dot product.

For instance, in 2-dimensional space, | can define
(x1,%2) - (y1,¥2) = 3x1y1 + x1y2 + Xoy1 + 5xoys,
corresponding to the vector (x1, x2) having (squared) length

(x1,x2) - (x1,x2) = 3x¥ + 2x1x0 + 5x5.

So in this geometry, the (squared) length of the vector (1,0) is 3, the
(squared) length of the vector (—1,3) is 42, and these vectors are
perpendicular as

(1,0)- (=1,3) = —3+3+0+0=0.
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GENERALISING FURTHER: Instead of just looking at each vector
singly, | could take a sublattice and look at the geometry it inherits.

Example of a sublattice of the standard 2-dimensional lattice:

.........................................

Then | can ask: Given an n-dimensional geometry T, how many

n-dimensional sublattices of our k-dimensional lattice have their geometry
described by T ?

MORAL: Mathematical structure and symmetry are beautiful
things, and functions are our friends!
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In the 1st year course Foundations and Proof, we explore SIZES OF
INFINITY.

Let's ask first: Does infinity exist?

Albert Einstein, 1879 — 1955

Two things are infinite: the universe and human stupidity; and I'm not
sure about the universe.

Everything that can be counted does not necessarily count; everything
that counts cannot necessarily be counted.
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We use the numbers 1,2,3,4,5, ... to count, so we sometimes call these
the counting numbers, or more formally, the positive integers.

We use Z, to denote the set (that is, the collection) of all the positive
integers, of which there are infinitely many.

We say that a set X is countable if there is a one-to-one correspondence
between the elements of X and the elements of Z, and when there is we
write

X|=[Z.4].
(So we think of |Z.| as capturing the “size” of the set of positive integers.)

Is every infinite set countable?
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First, we note that every infinite set X contains a countable subset.

Intuitively: Suppose X is an infinite set. Choose a; from X.

Next, choose ay from X so that ax # a; (possible since X is infinite).
Then, choose asz from X so that a3 # a; and a3 # a».

Continue... We get a subset A = {aj, a, a3, ...} of X with |A| = |Z4]|.

WARNING! The argument above is inductive, meaning that it describes
an algorithm, which in our lifetime we can only apply finitely many times.
So to make this argument rigourous one needs to use the technique of
Transfinite Induction, or The Axiom of Countable Choice, or ...
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Conclusion: |Z. | is the “smallest magnitude of infinity".

Thus there must be as many even positive integers as there are positive
integers (since the set of even positive integers is infinite and is
contained in the set of positive integers).

Here is a one-to-one correspondence between the positive integers and the
even positive integers:

positive integers <+ even positive integers
12
24
36

n<2n
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Now consider Z X Z, the set of ordered pairs of positive integers.
Surely there are more of these than there are positive integers...
or are there?

Claim: |Zy x Zy|=|Z4|.

To prove this, we need to set up a one-to-one correspondence between the
collection of ordered pairs of positive integers and the positive integers.
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A grid of the ordered pairs of positive integers
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Counting: ONE

fonYon Xonkonkon)

— N N

~ o~ A~~~

— N N N

NN N SN

— N N

~ A~ A~~~

— N N N

AN AN SN S /S

— N N N

15/1

September 12, 2015



Counting: TWO
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Counting: THREE
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Counting: FOUR
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Counting: FIVE
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Counting: SIX
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Counting: SEVEN
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Counting: EIGHT
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Counting: NINE
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Counting: TEN
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Counting: ELEVEN
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Counting: TWELVE
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Counting: THIRTEEN
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Counting: FOURTEEN
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Counting: FIFTEEN
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Formula? Note that we have been counting along successive
cross-diagonals.

(1,1) (1,2) (1,3) (1,4) (1.5)
(1) (22) (2.3) (2.4) (2.5)
(3,1) (3,2) (3.3) (3,4) (3.5)
(4,1) (4,2) (4.3) (4,4) (4.5)
(5.1) (5,2) (5.3) (5,4) (5.5)

(3,2) is the 3rd pair on the 4th cross-diagonal.
On the first 3 cross-diagonals, there are 1 + 2 + 3 = 6 pairs.
So the pair (3, 2) is the 3 4 6th pair that we count.

(m+n—2)(m+n—1)
2

More generally, (m, n) is the m + th pair that we count.
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We can use this to show that there are as many positive integers as there
are positive rational numbers (which are all numbers of the form 7 where
m and n are positive integers).

Each positive rational number can be written uniquely as 77 where m and
n are positive integers with hcf(m, n) = 1.

So we can identify the set of positive rational numbers with a subset of
Z x Z, the set of ordered pairs of positive integers: ' <+ (m, n).

Hence with Q. denoting the set of positive rational numbers, we have

Q4| < |Zy X Zy| = |Z4 .

But we also know that each positive integer is a positive rational number,
o)

|Z4| <1Qu].

Thus |Q] = |Z4].
R



Are all infinite sets countable, meaning the same “size” as Z,7?
No!

We can show that there are more real numbers in the interval between 0
and 1 than there are positive integers.

To do this, we argue by contradiction: We assume there are as many
positive integers as there are real numbers between 0 and 1, and we then
derive a contradiction.

Technical fact: Each real number has a unique decimal expansion,
provided we not use any decimal expansion that ends in all 9's.

Using geometric progressions, we can show that 0.99999 --. = 1, so for
instance, 0.356799999 ... = 0.35680000. ..
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Suppose that the real numbers between 0 and 1 are countable, meaning
that they are in one-to-one correspondence with the positive integers.
Then we can enumerate these real numbers as

a1, a2, 3, (04, A5, . . .

Each of these has a decimal expansion. For instance,

a1 = 0.a11a10a13314315 " -

where each a; ; is a digit in the decimal expansion of aj.

(Soa1;=0,1.2,3,4,5,6.7.8, 0r9.)
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We create a grid of these numbers with their decimal expansions:

a1 = 0.ar1a1 0313914915 -
ap = 0.a2 1220823324325 "
a3 = 0.a3 1332333334335 -
a4 = 0.34,134234 3344345 - - -

a5 = 0.35,135 235335 4355 - * -

Now we construct another real number 3 between 0 and 1 that is not in
the list a1, an, a3, - -
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We look at the “diagonal” of our grid of decimal expansions:

a1 = 0.a11a10a313a14915 " -
ap = 0.a2 1220823324325 "
a3z = 0.a3133233333 4335
a4 = 0.34134234 334 4345 - - -

as = 0.a5 135 2a5 3a5 4355 - - -

We set 5 = 0.bybobzbsbs - - - where

1 if a,-,,- 7& 1,
2 if aji = 1.

I' =
We know that 3 is not equal to any «; since the jth digit in the decimal
expansion of /3 is not equal to the ith digit in the decimal expansion of «;.
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This is our contradiction:

We assumed that the set of real numbers between 0 and 1 was countable,
meaning that we could enumerate all of them as a1, a2, as, -+, and then
we constructed a real number 8 between 0 and 1 that is not in this list.

Hence it cannot be the case that the set of real numbers between 0 and 1
is countable.

Thus the magnitude of the set of real numbers between 0 and 1 is larger
than that of the positive integers.

Mathematicians have proved that there is a one-to-one correspondence
between all real numbers, and those between 0 and 1 (we will prove this).
(So in some sense, the magnitude of the unit interval is the same as the
magnitude of the real line.)

Mathematicians have also proved that there are magnitudes of infinity
larger than that of the real line (we will prove this).

Unknown: Is there a magnitude of infinity between that of the positive
integers and that of the real numbers?
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Infinity is a dreadfully poor place.
They can never manage to make ends meet.
— Norton Just, The Phantom Tollbooth
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Georg Cantor

Georg Cantor, 1845 — 1918

Cantor introduced and studied these notions of magnitudes of infinity,
which he believed came directly from God.

Although Cantor’s work is now fundamental in mathematics, initially there
were mathematicians and philosophers who objected vehemently to
Cantor’s claims and methods of argument, calling him a scientific
charlatan and a corrupter of youth, whose work was laughable, wrong and
contradicted the uniqueness of the absolute infinity in the nature of God.
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Bertrand Russell, 1872 — 1970

Another significant outcome of Cantor’'s work was the discovery of certain
paradoxes, exemplifying that not everything one can think to write down
gives an unambiguous defnition, and in particular, that one needs to be
careful when defining a set.

For instance, in 1901 Russell presented the following:

Suppose there is a set R consisting of all sets that do not contain
themselves as elements.

But then we have an unresolvable paradox:
If RZ R then Re R, and if R € R then R ¢ R.

A variation of this paradox is the following:
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A PARADOX:

The barber is the man in town who shaves all the men who do not shave
themselves.

Who shaves the barber?
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