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Abstract. We use geometric algebra and the theory of automorphic forms to realize
the theta series attached to an indefinite quadratic form as the sum of a specific

Eisenstein series and an L2-function. From this we obtain explicit formulas for the

measure of the representation of an integer by an indefinite quadratic form.

§Introduction.
In this paper we study, from the point of view of automorphic forms, the rep-

resentation number of indefinite quadratic forms. In [12], the second author used
similar techniques for positive definite quadratic forms. In that case, much of the
local theory was similar, but the global automorphic theory was much simpler. As
is typical, we start with some notation and statement of our main results.

Let V be an m-dimensional vector space over Q with m even and m ≥ 6. Let
L be a lattice of full rank m on V on V (so L is a Z-module and L ⊗ Q = V ).
Let B : V × V → Q be a nondegenerate symmetric bilinear form whose assoicated
quadratic form Q, defined by Q(v) = B(v, v), is indefinite. For convenience, we
assume Q(L) ⊆ 2Z. The representation numbers

r(L, 2n) = #{` ∈ L : Q(`) = 2n }

are typically infinite (but finite in the definite case). In fact,

rt(L, 2n) = #{` ∈ L : Q(`) = 2n, ` in a ball of radius t } = O(tm/2−1),

and in general this bound is tight. Hence we can measure the density of solutions
` ∈ L to the equation Q(`) = 2n with the quantity

ρ(L, 2n) = lim
t→∞

t1−m/2rt(L, 2n).
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2 INTRODUCTION

Following Siegel, we call ρ(L, 2n) the measure of the represenation of 2n by L.
Siegel proved that ρ(L, 2n) is a product of “p-adic densities” (which he did not
compute); Siegel also proved that ρ(L, 2n) is a genus invariant and is given by the
Fourier coefficients of a theta series associated to L (as defined below).

We use Siegel’s theta series together with elementary geometric algebra and the
theory of automorphic forms to constructively prove Siegel’s results when the local-
ization of L at 2 is unimodular. We show

ρ(L, 2n) = ρL,∞
∏

p prime

ρL,p(n)

where ρL,∞ depends only on the signature of Q and for p prime, e = ordp(n),

ε =
(

2n/pe

p

)
,

ρL,p(n) =

 ∑
0≤`<e

ν`(0;L, p)p(1−m/2)`

+ νe(ε;L, p)p(1−m/2)e;

the summands ν`(∗;L, p) are given by simple formulas in terms of the invariants of
L(p) = L⊗ Zp.

We give here a brief outline of our strategy. Let RQ be a majorant for Q; thus
RQ is a positive definite quadratic form on V and, identifying RQ, Q with matrices,
RQQ

−1RQ = Q. Then for z = x+ iy, y > 0, Siegel’s theta series is

θ(L;RQ, z) =
∑
`∈L

eπi(Q(`)x+iRQ(`)y).

In §1 we show that θ(L;RQ, z) is an automorphic form for a congruence sub-
group Γ0(N) with weight ((m1 − m2)/2,m2) where (m1,m2) is the signature
of Q. (When L(2) is unimodular, N is necessarily odd.) We also show that
θ(L;RQ, z)− θ(L′;RQ, z) ∈ L2 whenever L′ is in the genus of L (relative to Q). In
§2 we construct a basis {ED : D|N } for the space of Eisenstein series of weight
(k, k′) and odd, square-free level N , and we compute the Fourier coefficients of each
ED. In §3 we consider lattices K of “minimal level N and discriminant dK”. Using
geometric algebra, we construct operators TK(q) for each prime q|N so that

θ(K;RQ, z)
∣∣TK(q) =

∑
K′

θ(K ′;RQ, z)

where the K ′ lie in the genus of K. Thus the results of §1 imply θ(K;RQ, z) is an
approximate eigenform for TK(q); that is,

θ(K;RQ, z)
∣∣TK(q) = λK(q)θ(K;RQ, z) + εq(z)
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where εq ∈ L2(Γ0(N)\H). We also show that the simultaneous eigenspace for
the TK(q) within the space of Eisenstein series is one-dimensional. We know
θ(K;RQ, z) = E(z) + ε(z) for some E in the space of Eisenstein series and some
ε ∈ L2(Γ0(N)\H); since each TK(q) maps Eisenstein series to Eisenstein series and
L2 functions to L2 functions, we find that

θ(K;RQ, z) =

 1
c
K

(N)a
N

(0)

∑
D|N

c
K

(D)ED(z)

+ ε(z)

where the c
K

(D) are explicit constants and a
N

(0) is the 0th coefficient of EN . In
§4 we show that, regardless of the choice of RQ,

ρ(K, 2n) = lim
y→0+

ym/2−1cn(RQ, y)

where cn(RQ, y) is, up to constants, the nth Fourier coefficient of θ(K;RQ, z). We
show that the L2 function ε contributes nothing to ρ(K, 2n), so interpreting the
Fourier coefficients of the sum of Eisenstein series as an Euler product, we find

ρ(K, 2n) = ρK,∞
∏

p prime

ρK,q(n).

Finally, in §5 we consider lattices L of arbitrary odd level. Again using geometric
algebra, we show L descends from a lattice K of minimal level and discriminant
and

θ(L;RQ, z) =
1
δ

∑
K0⊂K

θ(K0;RQ, z) + ε′(z)

where the K0 are particular sublattices of K (of which there are δ) and ε′ ∈
L2(Γ0(N)\H). Since our construction of the K0 allows us to count how often a
vector v ∈ K lies in a sublattice K0, we obtain our formula for ρ(L, 2n).

For basic references on the theory of automorphic forms, quadratic forms and
Siegel’s work in this area see [1,2,6,7,8].

§1. The theta series.
Let (m1,m2) be the signature of Q and, without loss of generality, assume m1 ≥

m2. Let RQ be a majorant for Q; thus RQ : V ⊗ R → R is a positive definite
quadratic form and, identifying RQ, Q with matrices relative to some basis for V ,
RQQ

−1RQ = Q.

Remark. Given Q, a majorant RQ always exists. For example, identify Q with a
symmetric matrix relative to some basis for V . Then for some S ∈ GLm(R) we
have Q = StDS where D = diag{1, . . . , 1,−1, . . . ,−1}. (So the signature of D is
that of Q.) Then RQ = StS is a majorant for Q.
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On the other hand, suppose RQ is a majorant for Q. Thus RQ = StS for some
nonsingular matrix S. Set Q′ = S−tQS−1; by the Singular Value Decomposition
theorem, we can write Q′ = T tDT where D is diagonal and T is orthogonal. Thus
Q = (TS)tD(TS) = T t1DT1, say, and RQ = (TS)t(TS) = T t1T1. Also, since
RQQ

−1RQ = Q, we necessarily have D−1 = D. Hence

D = diag{1, . . . , 1,−1, . . . ,−1}

and the signature of D and Q agree.
For h ∈ V , define the inhomogeneous theta series

θ(L, h;RQ, z) =
∑
`∈L

e{Q(`+ h)x+ iRQ(`+ h)y}

where z = x + iy, y > 0, and e{α} = eπiα. For notational simplicity, let
θ(L;RQ, z) = θ(L, 0;RQ, z).

Let k = (m1 − m2)/2 and k′ = m2. Define a function (actually a generalized
automorphy factor) for z ∈ H via

jk,k′(z) = z−k|z|−k
′
.

Note that since m is even and m1 +m2 = m, we have k ∈ Z, so there are no subtle
issues about which square root to take. Let L# = {v ∈ V : B(v, L) ⊆ Z} denote
the dual of L and let dL denote the discriminant of L relative to Q.

Our first lemma sets the stage for the complete transformation formula for our
theta function under the appropriate modular group.

Lemma 1.1 (Inversion Formula). For h ∈ V , we have

θ(L, h;RQ, z) = ε|dL|−1/2jk,k′(z)
∑
`∈L#

e{2B(`, h) +Q(`)x′ + iRQ(`)y′}

where −1/z = x′ + iy′ and ε is a 4th root of unity (independent of z and L). In
particular, if h ∈ L#,

θ(L, h;RQ, z) = ε|dL|−1/2jk,k′(z)
∑

`∈L#/L

e{2B(`, h)}θ (L, `;RQ,−1/z)

and
θ(L;RQ, z) = ε|dL|−1/2jk,k′(z)θ

(
L#;RQ,−1/z

)
.

Proof. Note that the second formula is an immediate consequence of the first.
It is possible to prove this directly using Poisson summation and the fact that
RQQ

−1RQ = Q. To avoid the grubby details of this sort of computation, we will
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instead identify θ(L, h;RQ, z) with a symplectic theta function and use the corre-
sponding inversion formula (see [3]).

Fix a Z-basis for L and thus identify L with Zm. Relative to this basis, identify
Q,RQ with matrices; set Z = Qx+ iRQy. Let

ϑ

(
Z,

(
u
v

))
=
∑
`∈Zm

e{Z(`+ v)− 2`tu− vtu}.

Thus, by the referenced symplectic theta function inversion formula,

θ(L, h;RQ, z) = ϑ

(
Z,

(
0
h

))
= ε(detZ)−1/2ϑ

(
−Z−1,

(
−h
0

))
= ε(detZ)−1/2

∑
`∈L

e{Q−1(`)x′ + iR−1
Q (`)y′ + 2ht`}

= ε(detZ)−1/2
∑

`∈Q−1L

e{Q(`)x′ + iRQ(`)y′ + 2htQ`}

where x′ = −x/(x2 + y2) and y′ = y/(x2 + y2). To complete the proof, we observe
that Q−1L = L# and that detZ = dL · jk,k′(z)2. The latter is easily deduced from
the relations RQ = StS and Q = StDS where D = diag{1, . . . , 1,−1, . . . ,−1}. �

For k, k′ ∈ Z as above, γ =
(
a b

c d

)
∈ SL2(Z), H = {z ∈ C : =m z > 0}, and a

function g : H → C, we define the slash operator with weight (k, k′) by(
g
∣∣γ) (z) =

(
g
∣∣
k,k′

γ
)

(z) = jk,k′(cz + d)g (γ(z)) .

Let N be the level of L relative to Q. In other words, if we identify Q with a
(symmetric) matrix relative to a Z-basis for L, N is the smallest positive integer such
that NQ−1 is an integral matrix with even diagonal entries. Let (∗/∗)K =

(∗
∗
)
K

denote the Kronecker symbol.

Lemma 1.2 (Transformation Formula). For γ =
(
a b

c d

)
∈ Γ0(N), d 6= 0,

θ(L;RQ, z)
∣∣γ = χ(d)θ(L;RQ, z),

where χ is a quadratic Dirichlet character modulo N and the weight for the slash
operator is (k, k′). Furthermore,

χ(d) = (sgn d)k
(

(−1)m/2dL
|d|

)
K

.
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If d = 0, then N = 1 and θ(L;RQ, z)
∣∣γ = θ(L;RQ, z).

Remark. With N odd, another description of N is as follows. A prime p does not
divide N if and only if L(p) = L ⊗ Zp is unimodular. Also, χ(p) = 1 if and only

if L(p) is an orthogonal sum of hyperbolic planes
(

0 1

1 0

)
. (So for p = 2, either

L(2) '
(

0 1

1 0

)
⊥ · · · ⊥

(
0 1

1 0

)
or L(2) '

(
0 1

1 0

)
⊥ · · · ⊥

(
0 1

1 0

)
⊥
(

2 1

1 2

)
). For qr‖N ,

L(q) '
〈
1, . . . , 1, ε0

〉
⊥ q
〈
1, . . . , 1, ε1

〉
⊥ · · · ⊥ qr

〈
1, . . . , 1, εr

〉
with εi ∈ Z×q .

Proof. We prove the last statement of the lemma first. If d = 0 then clearly N = 1,
and γ = ±

(
1 a

0 1

)(
0 −1

1 0

)
. Thus, by Lemma 1.1, θ(L;RQ, z)

∣∣γ = θ(L;RQ, z).

Now assume d 6= 0, write z′ = (c + d/z)−1 = x′ + iy′, −1/z = x′′ + iy′′ and
observe that

az + b

cz + d
=
b

d
+

1
d(c+ d/z)

.

So, by definition,

θ(L;RQ, z)
∣∣γ

= jk,k′(cz + d)
∑
`∈L

e

{
b

d
Q(`)

}
e

{
Q(`)

x′

d
+ iRQ(`)

y′

d

}
= jk,k′(cz + d)

∑
h∈L/dL

e

{
b

d
Q(h)

}
θ

(
dL, h;RQ,

z′

d

)

= jk,k′(cz + d)
∑

h∈L/dL

e

{
b

d
Q(h)

}
θ

(
L,
h

d
;RQ, dz′

)

and by the Inversion Formula of Lemma 1.1, this is

= ε|dL|−1/2jk,k′(cz + d)jk,k′(dz′)

·
∑

h∈L/dL
`∈L#

e

{
b

d
Q(h) +

2
d
B(`, h)− c

d
Q(`)

}
e{Q(`)x′′ + iRQ(`)y′′}.

(1.1)

For h ∈ L, ` ∈ L#,

b

d
Q(h− c`) ≡ b

d
Q(h) +

2
d
B(h, `)− c

d
Q(`) (mod 2),



HAFNER & WALLING 7

since bc = ad − 1 and also, c ∈ NZ so cQ(`) ∈ 2Z. For any ` ∈ L#, h − c` varies
over L/dL as h does. Therefore

θ(L;RQ, z)
∣∣γ

= ε|dL|−1/2jk,k′(cz + d)jk,k′(dz′)
∑

h∈L/dL

e

{
b

d
Q(h)

}
· θ
(
L#;RQ,−

1
z

)

and again using the Inversion Formula, this is

= jk,k′(cz + d)jk,k′(dz′)jk,k′(z)−1
∑

h∈L/dL

e

{
b

d
Q(h)

}
· θ (L;RQ, z)

= (sgn d)k|d|−m/2
∑

h∈L/dL

e

{
b

d
Q(h)

}
· θ (L;RQ, z) .

To analyze the exponential sum, write d = ±pe11 · · · perr where the pi are primes.
Then by the Chinese Remainder Theorem,

L/dL ≈ dp−e11 L/dL⊕ · · · ⊕ dp−err L/dL,

and for `i ∈ dp−eii L,

Q(`1 + · · ·+ `r) ≡ Q(`1) + · · ·Q(`r) (mod 2d).

Hence ∑
`∈L/dL

e

{
b

d
Q(`)

}
=
∏
pe‖d

∑
`∈dp−eL/dL

e

{
b

d
Q(`)

}
.

Now, for pe ‖ d,

∑
`∈dp−eL/dL

e

{
b

d
Q(`)

}
=
∑
L/peL

e

{
b′

pe
Q(`)

}
,

where b′ = bd2/p2e. By Proposition 3.2 of [10],

∑
L/peL

e

{
b′

pe
Q(`)

}
=


pme/2 if 2|e,

pm(e−1)/2
∑
L/pL

e

{
b′

p
Q(`)

}
otherwise.

Note that L/pL ≈ L(p)/pL(p), and when p is odd with p - N ,

L(p) '
〈
1, . . . , 1, dL

〉
.
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Hence

∑
L/pL

e

{
b′

p
Q(`)

}
=
(
b′

p

)m(
dL
p

) ∑
a∈Z/pZ

e

{
2a2

p

}m

= pm/2
(

(−1)m/2dL
p

)
K

.

Also, since 2 - N , we have

L(2) '


(

0 1
1 0

)
⊥ · · · ⊥

(
0 1
1 0

)
if (−1)m/2dL ≡ 1 (mod 8),(

0 1
1 0

)
⊥ · · · ⊥

(
0 1
1 0

)
⊥
(

2 1
1 2

)
if (−1)m/2dL ≡ 5 (mod 8).

(See, for example [4].) So

∑
L/2L

e

{
b′

2
Q(`)

}
= 2m/2

(
(−1)m/2dL

2

)
K

.

It remains to show that the mapping d 7→ (sgn d)k
(

(−1)m/2dL
|d|

)
K

is a character

modulo N . We do this as follows. Write (−1)m/2dL = N0N
2
1 where N0 is square-

free; so the Kronecker symbol in the above expression is (N0/|d|)K . For 0 < d < N ,
(d,N) = 1, set χ(d) = (N0/d)K and extend χ to a character modulo N . Thus for
any d > 0 with (d,N) = 1, χ(d) = (N0/d)K and χ(−d) = χ(−1)χ(d). So far we
have shown that the mapping above agrees with the character χ if d is positive. To
complete the proof, we need to show that χ(−1) = (−1)k.

Choose a prime p such that p ≡ −1 (mod N) and p ≡ 1 (mod 4). So by qua-
dratic reciprocity and the fact that N0 ≡ 1 (mod 4), we have

χ(−1) = χ(p) =
(
N0

p

)
=
(

p

|N0|

)
=
(
−1
|N0|

)
= sgnN0.

But, by construction, N0|N , N0 ≡ 1 (mod 4), and

sgnN0 = (−1)m/2 sgn dL = (−1)m/2 sgn dV = (−1)k,

where dV denotes the discriminant of V . This completes the proof. �

Up to this point, we have concentrated on the transformation properties of our
theta functions. Now we investigate some analytic properties.
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Lemma 1.3. There exist positive integers M and M#, dependent only on L and
RQ, such that

|θ(L;RQ, z)− 1| � e−y/M

and for h ∈ L#, h 6∈ L,
|θ(L, h;RQ, z)| � e−y/M

#

uniformly in x as y →∞.

Proof. Since RQ is positive definite, we know that

#{` ∈ L : RQ(`) = n} = O(nm/2−1),

and that R(`) = 0 if and only if ` = 0. Thus, uniformly in x,

|θ(L;RQ, z)− 1| ≤
∑
`∈L
` 6=0

e−R(`)y �
∑
n≥1

nm/2−1e−ny/M � e−y/M ,

where M ∈ Z+ so that R(L) ⊆M−1
Z.

Now for h ∈ L# − L, L + h ⊆ L# but 0 6∈ L + h, so, by a similar argument,
|θ(L, h;RQ, z)| ≤

∑
`∈L#, ` 6=0 e

−R(`)y � e−y/M
#

. �

We now define define the relevant analytic space. Let L2(Γ0(N)\H) be the space
of functions f : H → C such that for γ ∈ Γ0(N), we have f |γ = χ(d)f and∫

Γ0(N)\H
|f(z)|2ym/2 dx dy

y2
<∞.

Note that the integrand is invariant under the action of Γ0(N).

Proposition 1.4. Suppose L′ ∈ genQ L, the genus of L relative to Q. Then for
all γ ∈ Γ0(N), θ(L′;RQ, z)

∣∣γ = χ(d)θ(L′;RQ, z) and θ(L;RQ, z) − θ(L′;RQ, z) ∈
L2(Γ0(N)\H).

Proof. The first part of the proposition is immediate from Lemma 1.2 because both
N and χ in the transformation formula depend only on the genus of L and not on
which lattice we take from genQ L.

Next, take a general γ =
(
a b

c d

)
∈ SL2(Z) and z ∈ H. Continuing the calculation

in (1.1) by partitioning the sum over ` ∈ L#, we have

θ(L;RQ, z)
∣∣γ

= ε|dL|−1/2jk,k′(dz)

·
∑

h∈L/dL
`∈L#/dL

e

{
b

d
Q(h) +

2
d
B(`, h)− c

d
Q(`)

}
θ(dL, `;RQ,−1/z)
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which again by the inversion formula (noting that ` ∈ L# implies ` ∈ (dL)#) equals

= ε|dL|−1/2jk,k′(dz)|ddL|−1/2jk,k′(−1/z)

·
∑

h∈L/dL
`∈L#/dL

`′∈(dL)#/dL

e

{
b

d
Q(h) +

2
d
B(`, h)− c

d
Q(`) + 2B(`′, `)

}
θ(dL, `′;RQ, z).

By Lemma 1.3, if `′ 6∈ dL, then θ(dL, `′;RQ, z) decays exponentially as z → i∞.
For the one term `′ ∈ dL in the sum, θ(dL, `′;RQ, z) − 1 decays exponentially.
Consequently, as z → i∞, the above expression tends a constant depending only
on d and dL times ∑

h∈L/dL
`∈L#/dL

e

{
b

d
Q(h) +

2
d
B(`, h)− c

d
Q(`)

}
.

This then is the constant term in the Fourier expansion of θ(L;RQ, z) at the cusp
a/c. As this depends only on the genus of L, we deduce that the difference
θ(L;RQ, z) − θ(L′;RQ, z) decays exponentially at every cusp. By a compactness
argument, we deduce that this difference is in L2(Γ0(N)\H), as claimed. �

§2. Eisenstein series for odd, square-free level.
Fix an odd, square-free positive integer N and a Dirichlet character χ mod N .

For D|N , let χ
D

denote the D-part of χ. Let N ′ be the conductor of χ so that
N ′|N . For c, d ∈ Z, set

Gc,d(z) = Gk,k
′

c,d (z;N) =
∑′

u≡c (N)
v≡d (N)

jk,k′(uz + v),

where the prime indicates omission of the u = v = 0 term (if it might occur in spite
of the congruence conditions).

For D|N , D > 0, set

ED(z) = Ek,k
′

D (z) =
∑

amodN
bmodN/D
cmodD

χ̄
N/D

(b)χ
D

(c)e
{
−2ac
D

}
GbD,a(z).

Our first goal in this section is to compute the constant term for the Fourier
expansion for ED(z) at each cusp. Later we will give the complete Fourier expansion
at the cusp at infinity. To these ends, we begin with the Fourier expansion for Gc,d
at the cusp at infinity. These computations are similar to Ogg [7], so we leave out the
details. The only serious difference is that since Ogg deals only with holomorphic
Eisenstein series, the zero-th Fourier coefficient is easier to handle.
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Proposition 2.1. We have

Gc,d(z) = ac,d(0) + a′c,d(0)Wk,k′(0)y1−m/2

+
∑
n∈Z
n 6=0

ac,d(n)y1−m/2Wk,k′(ny/N)e{2nx/N},

where

ac,d(0) =
{

0 if c 6≡ 0 (N)
ζk,k′(d,N) if c ≡ 0 (N),

a′c,d(0) =
1
N
ζk,k′−1(c,N),

for n 6= 0,

ac,d(n) =
(sgnn)k|n|1−m/2

N

∑
v|n

n/v≡c (N)

(sgn v)k|v|m/2−1e{2vd/N},

and

ζk,k′(d,N) =
∑′

v≡d (N)

(sgn v)k|v|−m/2,

Wk,k′(y) =
∫ ∞
−∞

jk,k′(t+ i)e{−2yt}dt.

Our next simple proposition tells us something about how these G-Eisenstein
series permute under the action of SL(2,Z).

Lemma 2.2. The functions Gc,d over all pairs (c, d) mod N form SL(2,Z)-
equivalence classes. The equivalence classes are identified by the value of gcd(c, d)
mod N .

Proof. Let γ =
( s t
u v

)
be an element of SL(2,Z). We see, by an easy calculation,

that
Gc,d(γz) = j−1

k,k′(uz + v)Gcs+du,ct+dv(z),

(in other words, Gc,d|γ = G(c,d)γ). We first deduce that gcd(c, d) = gcd(cs +
du, ct + dv). Furthermore, given any two pairs (c1, d1) and (c2, d2) with equal
greatest common divisors, there is a matrix γ ∈ SL(2,Z) with the property that
c1s+ d1u = c2 and c1t+ d1v = d2. To see this, note that without loss of generality
we can assume that the common gcd is equal to one. Let γi be any matrix in
SL(2,Z) whose first column is (ci, di), for i = 1, 2. Then γ = γ2γ

−1
1 is in SL(2,Z)

and this solves the problem. �
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Our next goal is to show that the set of functions ED, with D ranging over
the divisors of N have the property that their constant terms (the constant part
of the zero-th Fourier coefficient) can support all functions which don’t vanish at
the cusps (e.g., our theta function). In other words, given any modular function F

satisfying F
∣∣γ = χ(d)F for γ =

(
a b

c d

)
∈ Γ0(N), there exists a linear combination

E of these functions ED so that F −E vanishes at every cusp and is in fact L2 on
the fundamental domain. (This is not to say that this difference is cuspidal — it
is possible, and likely, that the non-constant part of the zero-th Fourier coefficient
does not vanish.)

The set of Γ0(N) inequivalent cusps can be parameterized by the numbers −1/M ,
for M > 0 and M |N . (Note, the cusp at infinity is equivalent to the cusp −1/N .)
The next proposition proves our claim and much more.

Recall that N ′ is the conductor of χ.

Proposition 2.3. The Eisenstein series ED has non-zero constant term at the cusp
−1/M if and only if M |D and gcd(D/M,N ′) = 1. Under these circumstances, the
constant term is

2χ(−1)ϕ(D/M)(M/D)m/2gχ
M ′
µ(M ′′)L(m/2, χ̄

N/D
χ
M

)
∏
q|M ′′

L(m/2, χ̄
N/D

χ
M ′
, q)

where for any Dirichle character ψ, L(s, ψ) is the classical Dirichlet L-function,
and

L(s, ψ, q) =
1− ψ(q)q1−s

1− ψ(q)q−s
,

M ′ = gcd(M,N ′), M ′′ = M/M ′ = gcd(M,N/N ′) and gχ
M ′

is the standard Gauss
sum.

Proof. This proposition follows by straigthforward though quite tedious calcula-
tions, so we leave them out for the sake of brevity. We note only that key to the
calculations are the facts that N is square-free and that χ(−1) = (−1)k. �

Parts of the next proposition are a corollary of the last proposition. In the above,
we only computed the constant term. In the next proposition we deal with all the
other Fourier coefficients, but only at the cusp at infinity.

It is important to note here that even though the Gc,d are defined on the group
Γ(N), it will turn out that ED is defined on Γ0(N). In particular, we find that,
though Gc,d are translation invariant in z → z+N , ED is invariant under z → z+1.

Proposition 2.4. With the notation above, we have

ED(z) = a
D

(0) + a′
D

(0)y1−m/2Wk,k′(0) +
∑
n∈Z
n 6=0

a
D

(n)y1−m/2Wk,k′(ny)e{2nx},
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where

a
D

(0) =


0 if D 6= N

2χ(−1)gχ
N ′
µ(N/N ′)L(m/2, χ)

∏
q|N/N ′
q prime

L(m/2, χ
N ′
, q) if D = N,

a′
D

(0) =
{

0 if D 6= 1
2L(m/2− 1, χ̄) if D = 1,

and for n 6= 0,

a
D

(n) = 2χ
D

(sgnn)D1−m/2
∑
d|n
d>0

d1−m/2χ
D

(|n|/d)χ̄
N/D

(d).

Also, for n|N , a
D

(n2) = 2D1−m/2(n,D)2−m.

Remark. Note that the zero-th Fourier coefficients at infinity of ED are all zero
unless D = 1 or D = N . In the first case, only the non-constant part survives; in
the latter case, only the constant term is non-zero.

Proof. Again, the proof is just a calculation so we leave it out. �

§3. Lattices of minimal level and discriminant.
In this section we restrict our attention to lattices K of minimal level and dis-

criminant at an odd prime q (as defined below). We design operators of Hecke type
for which θ(K;RQ, z) is an approximate eigenform. By an approximate eigenform,
we mean a form whose image under the operator differs from a scalar multiple of
itself by an L2(Γ0(N)\H) form. We then apply these operators to the Eisenstein
series and show the subspace of simultaneous eigenforms is 1-dimensional. In §4 we
use these results to obtain formulas for the measures of representation of K. In §5
we extend the formulas to include all odd levels.

Definition. We say a lattice of even rank m has minimal level and discriminant
at an odd prime q if, locally, K has one of the following shapes

K(q) '


〈
1, . . . , 1, η

〉〈
1, . . . , 1, η

〉
⊥ q
〈
η′
〉〈

1, . . . , 1, η
〉
⊥ q
〈
1, η′

〉
where η, η′ ∈ Z×q and in the last case the Legendre symbols ((−1)m/2−1η/q) and
(−η′/q) both equal −1. Throughout the rest of the paper, we will use the shorthand
notation

ψq(η) =
(

(−1)m/2−1η

q

)
.
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If K has odd level and minimal level and discriminant at all odd primes then we
simply say K has minimal (odd) level and minimal discriminant.

Recall that if K(q) '
〈
1, . . . , 1, η

〉
for an odd prime q with η ∈ Z×q , then q does

not divide the level of K. So when K has minimal level and discriminant at q with
q dividing the level, either q‖dK or q2‖dK . Recall that N =

∏
p|dK p.

For the first part of this section, fix an odd prime q and let K be a lattice which
at q has minimal odd level N 6= 1 and minimal discriminant dK . Let RQ be a
majorant for Q.

We need some more notation. Let q be an odd prime dividing N . For any t ∈ Z+,
we have

K '
{ 〈

1, . . . , 1, η
〉
⊥ q
〈
η′
〉

(mod qt) if q‖dK ,〈
1, . . . , 1, η

〉
⊥ q
〈
1, η′

〉
(mod qt) if q2‖dK ,

where ψq(η) = (−η/q) = −1. Let p be an odd prime such that p - N and

(3.1) χq (p) = χq

(
(−1)m/2−1ηη′

)
,

(
p

q′

)
=
(
q

q′

)
for all primes q′|N , q′ 6= q. We refer to p as a prime associated to q. Finally, let

P = preimage in K of radK/qK,

so that, for example in the case q2‖dK , P = qK + q
〈
1, η′

〉
.

We first define a Hecke-type operator relative to the quotient K/P and q as
follows. Let

TK/P (q) = (1 + q1−m/2)T ∗pBq − q1−m/2UqBq,

where T ∗p = (pm/2−1+1)−1Tp is the classical Hecke operator for weight m/2 = k+k′

(with a special normalization) and Bq and Uq are the classical Hecke operators
defined by the following (q|N):

Bq = q−m/4
(
q 0
0 1

)
, Uq = qm/4−1

q∑
b=1

(
1 b
0 q

)
.

Notice that for any lattice L, θ(L; τ)|B2
q = θ(qL; τ). We will see in the proof that

our operator TK/P (q) does not depend on our choice of prime p associated to q.
Here and in the sequel, we will use the notation

f(z)
L2

≡ g(z)

to mean that f − g ∈ L2(Γ0(N)\H).
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Proposition 3.1. With K, q, P , and p as above, we have χ(p) = 1 (where χ = χ
K

is the character which arises in the transformation formula for θ(K;RQ, z)) and

θ(K;RQ, z)
∣∣T
K/P

(q)
L2

≡ θ(P ;RQ, z).

Remark. When q - dK , P = qK and so θ(P ;RQ, z) = θ(K;RQ, z)
∣∣B2

q . Also, this
proposition extends easily to the case dK even by imposing the extra condition
p ≡ q (mod 8).

Proof. We follow the proof of Proposition 2.1 of [12]. Let C be a maximal totally
isotropic subspace of K/qK (so radK/qK ⊆ C), and let

K ′ = preimage in K of C,

so C = K ′/qK. By Proposition 1.2 of [12],

K ′ '
{
q
〈
1, . . . , 1, (−1)m/2−1η′

〉
⊥ q2

〈
(−1)m/2−1η

〉
(mod qt) if q‖dK ,

q
〈
1, . . . , 1, η

〉
⊥ q2

〈
1, η′

〉
(mod qt) if q2‖dK

for any t ∈ Z+. Also, for any prime q′ 6= q, K ′(q′) = K(q′).

Clearly these sublattices K ′ are in one-to-one correspondence with these sub-
spaces C. Using the formulas from p. 146 of [1] (cf. Proposition 7.2 of [10]), we
find there are (defining β by this expression)

(qm/2−1 + 1)β =
{

(qm/2−1 + 1)(qm/2−2 + 1) · · · (q + 1) if q‖dK ,
(qm/2−1 + 1)(qm/2−2 + 1) · · · (q2 + 1) if q2‖dK

ways to choose C. If q - Q(x), then x 6∈ K ′ for any K ′. If q|Q(x) and x ∈ K − P ,
then x ∈ K ′ for exactly β of the K ′. If q|Q(x) and x ∈ P , then x ∈ K ′ for all
(qm/2−1 + 1)β of these K ′. Recognizing that θ(K;RQ, z)

∣∣UqBq is the subsum of
θ(K;RQ, z) containing only those terms x for which q|Q(x), we see that

θ(K;RQ, z)
∣∣UqBq + qm/2−1θ(P ;RQ, z) =

1
β

∑
K′

θ(K ′;RQ, z)

where K ′ varies over all the sublattices constructed as above. Also, since the K ′ lie
in the same genus and θ(K ′;RQ, z) is a modular form on Γ0(N), Proposition 1.4
implies that we have for any fixed K ′,

(3.2) θ(K;RQ, z)
∣∣UqBq + qm/2−1θ(P ;RQ, z)

L2

≡ (qm/2−1 + 1)θ(K ′;RQ, z).
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If q′ - condχ then Kq
(q′) ' K(q′) ' K ′(q′), but if q′| condχ then Kq

(q′) ' K
′
(q′) only

if (q/q′) = 1. We claim that

θ(K;RQ, z)
∣∣T ∗pBq L2

≡ θ(K ′;RQ, z).

To verify this claim, first note that

χ(p) =
(

(−1)m/2dK
p

)
=
(

(−1)m/2q1 · · · qhN2
0

p

)
where q1, . . . , qh are distinct primes and N0 ∈ Z+. Since by assumption χ is a
character of odd level N , we must have (−1)m/2q1 · · · qh ≡ 1 (mod 4) and condχ =
q1 · · · qh. Hence our constraints on p and quadratic reciprocity imply that χ(p) = 1.
Thus Lemmas 5.2 of [10], 3.3 of [11] and 1.3 of §1 imply that

θ(K;RQ, z)
∣∣T ∗p L2

≡ θ(M ;RQ, z)

where M is a lattice on V 1/p, M(p) ' K(p), for all primes q′ 6= p, M(q′) ' Kp
(q′). So

for q′ 6= p, our constraints on p imply

Mq
(q′) ' K

pq
(q′) ' K(q′) ' K ′(q′).

Also, since p - dK , Mq
(p) ' K

q
(p) ' K(p) ' K ′(p). Hence Mq ∈ genK ′, and

θ(K;RQ, z)
∣∣T ∗pBq L2

≡ θ(K ′;RQ, z).

(We see here also that the effect of T ∗p is independent of p up to genK ′.) The
proposition now follows by solving (3.2) for θ(P ;RQ, z). �

Assume still that q is an odd prime dividing N . Let p be a prime associated to q
as above. Let Xq be the twist (by the quadratic character modulo q) operator and
define

T
K

(q) =


U2
q − qm/2−1UqBq + (qm−2 + qm/2−1)T ∗pBq + ψq(η)

(
2
q

)
qm/2−1Xq

if q‖dK
U2
q − (qm/2 + qm/2−1)UqBq + (qm−2 + qm/2−1)T ∗pBq

if q2‖dK ,

and set

(3.3) λ
K

(q) =
{
qm−2 + 1 if q‖dK .

qm−2 − qm/2 + 1 if q2‖dK ,
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Proposition 3.2. With notation as above,

θ(genK;RQ, z)
∣∣T
K

(q)
L2

≡ λ
K

(q)θ(K;RQ, z).

Proof. The arguments used to prove Proposition 2.2 of [12] show that

θ(K;RQ, z)
∣∣T
K

(q)B2
q =

∑
K′′

θ(K ′′;RQ, z)

where the sum is over certain sublattices K ′′ of K, all of which lie in gen qK. Thus
by applying Proposition 1.4 we obtain our result. �

For q an odd prime dividing N , the level of K, let CK(q) denote the subspace of
Eisenstein series E of level N , weight (k, k′) (as defined in §2), character χ, such
that E

∣∣T
K

(q) = λ
K

(q)E. As in the proof of Lemmw 2.3 of [12], examining the
action of T

K
(q) on the Fourier coefficients of the ED (D|N) gives us

Lemma 3.3. For any prime q|N , span {ED : D|N/q } ∩ CK(q) = {0} where the
ED are the Eisenstein series with character χ, level N and weight (k, k′).

Set

c
K

(q) =


ψq(η)

(
2
q

)
= ψq(2η) if q‖dK ,

qm/2 − 1
qm/2−1 − q

if q2‖dK ,

and extend c
K

(∗) multiplicatively to the divisors of N .

Proposition 3.4. CK(q) = span{ED + c
K

(q)EDq : D|N/q}.

Proof. By looking at Fourier coefficients one easily verifies that ED + c
K

(q)EDq ∈
CK(q) for all D|N/q. The proposition now follows from the preceding lemma. �

Theorem 3.5. Let E =
∑
D|N

c
K

(D)ED. Then
⋂
q|N
CK(q) = CE

Proof. Write N = q1 · · · q`. Using induction on r ≤ `, we argue that

⋂
1≤i≤r

CK(qi) = span

 ∑
d|q1···qr

c
K

(d)EDd : D|N/q1 · · · qr

 .

This is clearly true for r = 0. Take r ≥ 0 and f ∈
⋂

1≤i≤r+1 CK(qi). The induction
hypothesis tells us that for some α

D
∈ C,

f =
∑

D|N/q1···qr

α
D

 ∑
d|q1···qr

c
K

(d)EDd

 =
∑

D|N/q1···qr+1
d|q1···qr

c
K

(d)
(
α
D
EDd + α

Dqr+1
EDdqr+1

)
.
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Since f ∈ CK(qr+1), Proposition 3.4 implies α
Dqr+1

= c
K

(qr+1)α
D
. Hence

f =
∑

D|N/q1···qr+1

α
D

 ∑
d|q1···qr+1

c
K

(d)EDd

 ,

as claimed. �

We have from Proposition 2.4 that E has zeroth Fourier coefficient (at infinity)
equal to χ(2)c

K
(N)a

N
(0) 6= 0. Let

EK(z) =
1

c
K

(N)a
N

(0)
· E(z),

so that the zeroth Fourier coefficient of EK is 1 (agreeing now with that for
θ(K;RQ, z)).

Corollary 3.6. With K and E as above, then

θ(K;RQ, z)
L2

≡ EK(z).

Proof. There are three ingredients to this argument. First, T
K

(q) takes Eisenstein
series into Eisenstein series, though a priori the level may increase by a factor of q or
q2. Second, T

K
(q) maps L2(Γ0(N)\H) into itself. Both of these are straightforward

calculations. Third, by Proposition 2.3 there exist α
D
∈ C so that

θ(K;RQ, z) =
∑
D|N

α
D
ED(z) + ε1(z),

where (as always) ε1 ∈ L2(Γ0(N)\H). Let S be the sum of Eisenstein series on the
right. By Proposition 3.2,

S
∣∣T
K

(q) = (θ(K)− ε1)
∣∣T
K

(q)

= λ
K

(q)θ(K) + ε2 − ε1

∣∣T
K

(q)

= λ
K

(q)S + λ
K

(q)ε1 + ε2 − ε1

∣∣T
K

(q)

= λ
K

(q)S + ε3,

say, where by our second remark ε3 ∈ L2(Γ0(N)\H). By our first remark, ε3 ≡ 0
and by Theorem 3.5, S = αEK for some α 6= 0. But our choice of normalization
for EK implies that α = 1 and the Corollary. �
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§4. Relationship between Fourier coefficient and representation num-
ber.

In the previous section, we showed how to construct an Eisenstein series E as a
linear combination of the Eisenstein series ED in such a way that the constant terms
of E exactly match those of the theta function at every cusp. In this section, we use
this information to describe the Fourier coefficients of the theta function explicitly
in terms of the more arithmetic Fourier coefficients of the Eisenstein series. We
also show how asymptotic knowledge of the Fourier coefficient (as a function of
y → 0) determines the representation number for n, according to Siegel’s definition.
Siegel’s representation number is defined in terms of the quantity

rt(K, 2n) = # {` ∈ K : Q(`) = 2n,RQ(`) ≤ t} .

(Note, this makes explicit the definition in the introduction. Namely, our “ball of
radius t” is determined by the positive definite quadratic form determined by RQ.)
We assume that n ≥ 1. We first need a couple of lemmas.

Lemma 4.1. If k′ > 0, then

Wk,k′(y) =

{
Wk,k′(0) +O(y) as y → 0

O
(
y−k

′/2+m/2−1e−2πy
)

as y → +∞.

Furthermore, Wk,k′(0) 6= 0.

Proof. If k′ is even, then an explicit formula for this integral can be derived via
a standard contour integration argument. Namely, the value of the integral is
determined by the residue at the pole t = −i of the integrand. This residue is
Pk+k′/2−1(y)e−2πy, where Pk+k′/2−1(y) is a polynomial of degree k+ k′/2− 1 with
non-zero constant term. From here, all statements in the lemma are immediate.
(Note, k + k′/2− 1 = m1/2− 1 = −k′/2 +m/2− 1.)

For k′ odd, a similar but more complex contour integration method is possible.
In this case, the contour has to be a “key” contour looping around the singularity
at t = −i. By a careful calculation, one finds that Wk,k′(y) is a non-zero multiple
of the function

e−2πy

∫ ∞
0

t−1/2(2 + t)−k/2−k
′+1/2e−2πytPk+(k′−1)/2(y(2 + t))dt,

where Pk+(k′−1)/2 is again a polynomial of degree k + (k′ − 1)/2 and non-zero
constant term. From here, the first and last statements are evident. The asymptotic
as y → +∞ can be deduced by a change of variables from t to ty. (This asymptotic
bound can also be deduced from formulas 3.384.9, 9.232.1 and 9.227 of Gradshteyn
and Ryzhik [5].)
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Though we don’t need it here, a similar proof shows that as y → −∞, Wk,k′(y) =

O
(
|y|−k−k′/2+m/2−1e2πy

)
. Also, if k′ = 0 (when the quadratic form is positive

definite and the Eisenstein series is holomorphic), this function is identically zero
for y < 0, and equals a constant times ym/2−1e−2πy for y > 0. Note that the
behavior as y → ∞ is the same for k′ = 0 and k′ > 0, but the behavior as y → 0
differs dramatically. �

Lemma 4.2. If cn(y) denotes the nth Fourier coefficient at infinity of EK−θ, then
for y > 0, we have

cn(y) = O(y−m/4).

Proof. First, we note that by Corollary 3.6, at every cusp either EK − θ has no
zero-th Fourier coefficient, or has a zero-th coefficient consisting only of a term of
the form cy1−m/2, for some constant c. By the above lemma, at every cusp all the
other Fourier coefficients decay as y−k

′/2e−2πy toward the cusp. This shows that
|EK(z)− θ(K;RQ, z)|2ym/2 is uniformly (in x and y) bounded on the fundamental
domain. Since it is invariant under Γ0(N), it is bounded on the entire upper half-
plane. Thus

cn(y) =
∫ 1

0

(EK(z)− θ(K;RQ, z)) e{−2nx}dx� y−m/4.

This completes the proof of the lemma. �

Let AK(n) be the scalar in the nth Fourier coefficient of EK at infinity, so that
by the results of the previous section,

(4.1) AK(n) =
1

c
K

(N)a
N

(0)

∑
D|N

c
K

(D)a
D

(n).

Let Tn(y) be the nth Fourier coefficient of θ(K;RQ, z) at infinity and a(n, n′) be the
number of simultaneous solutions of Q(`) = 2n and RQ(`) = n′ for lattice points
` ∈ K. With this definition, we have

Tn(y) =
∑
n′

a(n, n′)e−2πn′y.

Also rt(K, 2n) =
∑
n′≤t a(n, n′). By the two lemmas above we have

Tn(y) = AK(n)y1−m/2Wk,k′(ny) + cn(y)

= AK(n)y1−m/2Wk,k′(ny) +O(y−m/4)

= AK(n)y1−m/2Wk,k′(0) +O(ny2−m/2).

Note that the leading term here is not zero.
Our goal is to prove the following proposition.
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Proposition 4.3. We have for fixed n ≥ 1,

ρ(K, 2n) =
(2π)m/2−1

Γ(m/2)
AK(n)Wk,k′(0).

Proof. Let Sn(t) = rt(K, 2n) and Ŝn(s) =
∫∞

0
t−sdSn(t), the Mellin transform of

the Riemann-Stieljtes measure dSn(t). This clearly is analytic in some half-plane
σ = <e s > σ0 because Sn(t) is easily estimated as having polynomial growth in t.
We next make the trivial observation that

Tn(y) =
∫ ∞

0

e−2πtydSn(t).

From these two formulas, it is easy to see that for s in some right half-plane

Ŝn(s) =
(2π)s

Γ(s)

∫ ∞
0

Tn(y)ys−1dy,

=
(2π)s

Γ(s)

{∫ 1

0

+
∫ ∞

1

}
Tn(y)ys−1dy

= I1(s) + I2(s),

say. Now Tn(y) decays exponentially as y tends to infinity (because RQ(`) is positive
definite, or by the formula above relating Tn and Sn and realizing that Sn is non-
negative, monotonic and of polynomial growth) so I2(s) is entire. Furthermore,
from the above asymptotic formula for Tn(y) as y → 0, we get, for σ > m/2− 3/2,
say,

I1(s) =
(2π)s

Γ(s)(s−m/2 + 1)
AK(n)Wk,k′(0) + I ′1(s),

where I ′1(s) is analytic in this region. We now appeal to the classical Wiener-Ikehara
theorem [13].

The assumptions of that theorem are that the function Sn(t) be monotone, non-
decreasing, locally bounded variation, vanish to the left of 1 and right continuous
and that the function Ŝn(s) be continuous in a closed half-plane, except for a simple
pole (one-sided) on the real axis (in our case, at s = m/2−1). Under these circum-
stances, one determines the asymptotic behavior at infinity of the function Sn(t).
Clearly, we have established all (and more) of these hypotheses. Consequently, we
deduce

Sn(t) ∼ (2π)m/2−1

Γ(m/2)
AK(n)Wk,k′(0)tm/2−1.

Dividing by tm/2−1 letting t→∞ we derive the proposition. �
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By Proposition 2.4 and (4.1), we have

(4.2) ρ(K, 2n) =
2ε ρ

K,∞

c
K

(N)a
N

(0)

∑
D|N
d|n

c
K

(D)D1−m/2χ
D

(n/d)χ
N/D

(d)d1−m/2,

where ε = sgn(Wk,k′(0)),

(4.3) ρ
K,∞ =

(2π)m/2−1|Wk,k′(0)|
Γ(m/2)

,

and as in §3 for a prime q|dK ,

c
K

(q) =


ψq(2η) if q‖dK ,

qm/2 − 1
qm/2−1 − q

if q2‖dK ,

with N ′ = condχ,

L(m/2, χ
N ′
, q) =

1− χ
N ′

(q)q1−m/2

1− χ
N ′

(q)q−m/2

and a
N

(0) is defined by

a
N

(0) = 2χ(−1)gχ
N ′
µ(N/N ′)L(m/2, χ)

∏
q|N/N ′
q prime

L(m/2, χ
N ′
, q).

To write (4.2) as a product over (finite) primes, we define pairs of local factors.
One part of each pair will come from the factor c

K
(N)a

N
(0) and the other from

the summation. Fixed a prime p, and set e = ordp(n). Define

(4.4) ρ′
K,p

(n) =


1− (χ(p)p1−m/2)e+1

1− χ(p)p1−m/2 if p|n, p - N ,

1 + c
K

(p)χp(n/pe)χ
N/p

(pe)p(e+1)(1−m/2) if p|N

and

ρ′′
K,p

=


1− χ(p)p−m/2 p - N ,

1− p2−m/2

p− p2−m/2 if p|N/N ′

p−1/2 if p|N ′

and set ρ
K,p

(n) = ρ′
K,p

(n)ρ′′
K,p

.

Note that ρ′
K,p

(n) depends on n only via e and
(
n/pe

p

)
and that each of these

local factors is positive.
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Corollary 4.4. With K and ρ
K,p

(n) as above,

ρ(K, 2n) = ρ
K,∞

∏
p prime

ρ
K,p

(n).

Proof. Let S(n) be the sum on the right hand side of (4.2). An arbitrary integer
n can be written as a product of two integers, one which is relative prime to N
and one all of whose prime factors come from N (i.e., which divides N∞). Let
(n′, N) = 1 and n|N∞. We first develop a product formula for S(nn′). So,

S(nn′) =
∑
D|N
d′|n′
d|n

c
K

(D)D1−m/2χ
D

(nn′/dd′)χ
N/D

(dd′)(dd′)1−m/2.

Now

χ
D

(nn′/dd′)χ
N/D

(dd′) = χ
D

(d′)χ
N/D

(d′)χ
D

(nn′/d)χ
N/D

(d)

= χ(d′)χ
D

(nn′/d)χ
N/D

(d).

Thus

S(nn′) =
∑
d′|n′

χ(d′)d′1−m/2
∑
D|N
d|n

c
K

(D)D1−m/2χ
D

(nn′/d)χ
N/D

(d)d1−m/2

= S′(n′)S(n,N),

say, where the dependence on N in S(n,N) is only in the range of summation and
not in the character χ

N/D
. The first sum is easily seen to be

S′(n′) =
∏
p|n′

ρ′
K,p

(n′) =
∏

p|nn′, p-N

ρ′
K,p

(nn′)

as defined above, since ρ′
K,p

(n′) = ρ′
K,p

(nn′) for p - N .
For S(n,N), we have to work a bit harder. Note that a term in the d sum is

non-zero only if (n/d,D) = (d,N/D) = 1 and this can happen for only one term,
namely d = (n,D∞). For simplicity, let nD = (n,D∞). Then for any fixed prime
q|N ,

S(n,N) =
∑
D|N

c
K

(D)D1−m/2χ
D

(nn′/nD)χ
N/D

(nD)n1−m/2
D

=
∑
D|N/q

{
c
K

(D)D1−m/2χ
D

(nn′/nD)χ
N/D

(nD)n1−m/2
D

+ c
K

(Dq)(Dq)1−m/2χ
Dq

(nn′/nDq)χN/Dq (nDq)n
1−m/2
Dq

}
.
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Let qe‖n. Then nDq = qenD. Also, for D|N/q,
χ
Dq

(nn′/nDq)χN/Dq (nDq)

= χ
D

(qe)χ
D

(nn′/nD)χq (nn′/qenD) · χ
N/Dq

(qe)χ
N/D

(nD)χq (nD)

= χ
D

(nn′/nD)χ
N/D

(nD) · χ
D

(qe)χ
N/Dq

(qe) · χq (nn′/qenD)χq (nD)

= χ
D

(nn′/nD)χ
N/D

(nD) · χ
N/q

(qe) · χq (nn′/qe).

Thus, since c
K

(Dq) = c
K

(D)c
K

(q),

S(n,N) =
∑
D|N/q

c
K

(D)D1−m/2χ
D

(nn′/nD)χ
N/D

(nD)n1−m/2
D{

1 + c
K

(q)χq (n/qe)χ
N/q

(qe)q(e+1)(1−m/2)
}

= ρ′
K,q

(n)S(n,N/q).

Arguing inductively on the primes dividing N , we have

S(n,N) =
∏
q|N

ρ′
K,q

(n).

Since all primes p - nN contribute nothing to the product,

S(nn′) =
∏

p prime

ρ′
K,p

(n).

To complete the proof, we must show
2ε

c
K

(N)a
N

(0)
=

∏
p prime

ρ′′
K,p

.

Since ρ(K, 2n) ≥ 0, ρ
K,∞ > 0 and ρ

K,p
(n) > 0 for any n ∈ Z, we must have

2ε
c
K

(N)a
N

(0) > 0. Because of these, we can ignore the sign contributions from any

of the factors (e.g., the Gauss sum and ε). Also, for a prime p|N/N ′, we know

K(p) '
〈
1, . . . , 1, η

〉
⊥ p
〈
1, η′

〉
where

(
(−1)m/2−1η

p

)
=
(

(−1)m/2−1η′

p

)
= −1 and dK = p2ηη′u2 where u ∈ Z×p . So

for p|N/N ′,

χ
N ′

(p) =
(

(−1)m/2N ′

p

)
=
(

(−1)m/2dK/p2

p

)
=
(

(−1)m/2ηη′

p

)
= 1

and thus L(m/2, χ
N ′
, p) = 1−p1−m/2

1−p−m/2 . (Note, for p|N , we have p|N/N ′ if and only
p2‖dK .) Hence, factoring the Gauss sum and the Dirichlet L-function and collecting
the terms we have

2ε
c
K

(N)a
N

(0)
=

∏
p prime

ρ′′
K,p

as claimed. �
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§5. Lattices of descent.
Now we fix an integral Z-lattice L of even rank m and odd level N ′. For conve-

nience, assume L is scaled so that Q(L) ⊆ 2Z, Q(L) 6⊆ 2nZ for any n > 1. Using
local constructions, we show L descends from a lattice of minimal level and dis-
criminant, then we construct chains of lattices from the minimal lattice to lattices
K0 in genL; by counting how often an element of the minimal lattice lies in these
lattices K0 we obtain formulas for ρ(genL, 2n).

Notation. Fix a prime q|N ′ and set s = s(L, q) = [ordq N ′/2]. Fix t > 2s + 1;
then by Lemma 1.2 of [12]

L = L0 ⊕ · · · ⊕ L2s+1 '
〈
1, . . . , 1, ε0

〉
⊥ · · · ⊥ q2s+1

〈
1, . . . , 1, ε2s+1

〉
(mod qt)

where the εi ∈ Z − qZ, and the ith component, Li ' qi
〈
1, . . . , 1, εi

〉
, has rank

mi ≥ 0. Let H2i = q−iL2i, H2i+1 = q−iL2i+1. Thus

L = H0 ⊕H1 ⊕ qH2 ⊕ qH3 ⊕ · · · ⊕ qsH2s ⊕ qsH2s+1

where the H2i are unimodular (mod qt) and the H2i+1 are q-modular (mod qt).
Let

H̃i =
⊕

0≤`≤i
`≡i (mod 2)

H`, ri = ri(L, q) = rank H̃i, η2i = η2i(L, q) = disc H̃2i,

qr2i+1η2i+1 = qr2i+1η2i+1(L, q) = disc H̃2i+1, µi = µi(L, q) =
(

(−1)`iηi
q

)
where `i = [ri/2]. (When ri = 0, set µi = 1.) Note that s, ri, µi are invariants of
genL, and when ri is even, µi = 1 exactly when H̃i is hyperbolic modulo q (here
H̃i is scaled by 1/q when i is odd).

Convention. When a lattice J has the property that the first Jordan component
of J(q) is qk-modular, we use the quadratic form q−kQ on the Z/qZ-space J/qJ .

Since the local constructions used in [12] are independent of whether Q is positive
definite or indefinite, we have the following three lemmas.

Lemma 5.1. Fix a prime q dividing the level of L and let µj , rj be as above.
(a) If r2s is odd or µ2s = −1, then there is a lattice K on V with qs+1K ⊆ L ⊆ K,

K(p) ' L(p) for all primes p 6= q, and K has minimal level and discriminant
at q.

(b) If r2s is even and µ2s = 1, then there is a lattice Kq on V so that qs+1Kq ⊆
L ⊆ Kq, K(p) ' Lq(p) for all primes p 6= q, and Kq has minimal level and
discriminant at q.
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Furthermore, if r2s is even, µ2s = −1 and µ2s+1 = 1 then

K(q) '
〈
1, . . . , 1, ε

K

〉
, ψq(−εK ) = −1.

If r2s is even, µ2s = −1 = µ2s+1 then

K(q) '
〈
1, . . . , 1, ε

K

〉
⊥ q
〈
1, ε′

K

〉
, ψq(εK ) = (−ε′

K
/q) = −1.

If r2s is even and µ2s = 1 then

Kq
(q) '

〈
1, . . . , 1, ε

K

〉
, ψq(−εK ) = µ2s+1.

Finally, genK is determined by genL.

Remark. Since dL, dK and dqK differ by squares, their theta series are associated
with the same character χ (although the modulus may differ between the theta
series).

Proof. See Lemma 3.1 of [12].

We construct descending chains of lattices K,K2s, . . . ,K0 such that Ki ∈ genLi.

More notation. For q fixed and ri, µi as above, set µ = µ2s, µ′ = µ2s+1,

d =


r2s/2 if 2|r2s, µ = 1,
r2s+1/2 if 2|r2s, µ = −1, µ′ = 1,
(r2s+1 − 1)/2 if 2 - r2s,
r2s+1/2− 1 if 2|r2s, µ = µ′ = −1;

α = αL,q =


(qd − 1)/[(qm/2−1 + 1)(qm/2−2 − 1)] if 2|r2s, µ = µ′ = −1,
(qd − 1)/(qm−2 − 1) if 2 - r2s,

(qd − 1)/[(qm/2 − µµ′)(qm/2−1 + µµ′)] otherwise;

β = βL,q =



qd(qm/2−d−1 + 1)(qm/2−d−2 − 1)/[(qm/2−1 + 1)(qm/2−2 − 1)]
if 2|r2s, µ = µ′ = −1,

qd(qm−2d−2 − 1)/(qm−2 − 1) if 2 - r2s,

qd(qm/2−d − µµ′)(qm/2−d−1 + µµ′)/[(qm/2 − µµ′)(qm/2−1 + µµ′)]
otherwise;

and for ω = ±1,

γ(ω) = γL,q(ω) =


(qm/2−d−1 + 1)/(qm/2−1 + 1) if 2|r2s, µ = µ′ = −1,

(qm/2−d−1 + ωµ)/(qm/2−1 + ωµ) if 2 - r2s,

(qm/2−d − µµ′)/(qm/2 − µµ′) otherwise.
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Lemma 5.2. Let the notation be as above, and let χ denote the (primitive) char-
acter associated to θ(K; τ) and to θ(L; τ). There exist sublattices K2s of K such
that qK ⊆ K2s ⊆ K and for all t ∈ Z+,

K2s '
〈
1, . . . , 1, η2s

〉
⊥ q
〈
1, . . . , 1, η2s+1

〉
(mod qt),

where the first component has rank r2s, and the second has rank r2s+1. In particular,
K2s ∈ genL2s. Let P = preimage in K of radK/qK, P2s = preimage in K2s of
radK2s/qK2s. (Scale P2s by 1/q in the case 2|r2s, µ2s = 1.) Let x ∈ K − P .

(a) Suppose r2s is odd or µ2s = −1. If q - Q(x) then x 6∈ P2s and the proportion
of K2s such that x ∈ K2s − P2s is γ(ω) where ω = χq(Q(x)). If q|Q(x) then
the proportion of K2s such that x ∈ P2s is α, and the proportion of K2s such
that x ∈ K2s − P2s is β.

(b) Suppose r2s is even, µ2s = 1. If q - Q(x) then x is in none of the lattices K2s,
and the proportion of K2s such that qx ∈ P2s− qK2s is γ(±1). If q|Q(x) then
the proportion of K2s such that x ∈ K2s − P2s is α.

Finally, if x ∈ K2s then necessarily qx ∈ P2s.

Proof. See the proof of Lemma 3.2 of [12].

Lemma 5.3. For 0 ≤ j ≤ 2s+ 1, ω = 0,±1, let

r′j =
{
r2s +m if j is even,
r2s+1 +m if j is odd.

Set

νj(ω) = νj(ω;L, q) =


q(rj−r′j)/2(qrj/2 − µj) if 2|rj, ω 6= 0,

q(rj−r′j+1)/2(q(rj−1)/2 + ωµj) if 2 - rj, ω 6= 0,

q1−r′j/2(qrj/2 − µj)(qrj/2−1 + µj) if 2|rj, ω = 0,

q1−r′j/2(qrj−1 − 1) if 2 - rj, ω = 0.

For j > s, let ν2j(ω) = ν2s(ω), ν2j+1(ω) = ν2s+1(ω). Let x ∈ K2s− qK2s; fix ` ≥ 0.
(a) Suppose x ∈ P2s and set ω = χq (Q(x)/q). Then the proportion of chains

K2s, . . . ,K0 such that q`x ∈ K0 is ν2`+1(ω)
ν2s+1(ω) .

(b) Suppose x 6∈ P2s and set ω = χq (Q(x)). Then the proportion of chains
K2s, . . . ,K0 such that q`x ∈ K0 is ν2`(ω)

ν2s(ω) .

Proof. See the proof of Lemma 3.6 in [12].

Now we can prove



28 LATTICES OF DESCENT

Theorem 5.4. Suppose m = rankL is even, m ≥ 6, and (−1)m/2dL ≡ 1 (mod 4).
For n ∈ Z+, the measure of representation is ρ(L, 2n) = ρ

L,∞
∏
q ρL,q (n) where

the product is over all finite primes q and ρ
L,∞ = ρ

K,∞ is defined by (4.3) for a
minimal lattice K and for fixed q 6=∞, ρ

L,q
(n) is defined as follows:

Let χ(∗) = (sgn ∗)k
(

(−1)m/2dL
|∗|

)
, the character of the theta transformation for-

mula which has (odd) conductor. Let νj(ω) = νj(ω;L, q) be as defined in Lemma 5.3,

and let µ = µ2s(L, q), µ′ = µ2s+1(L, q). Then for e = ordq(n), ε =
(
n/qe

q

)
,

ρ
L,q

(n) = νt(ε;L, q)q(1−m/2)e +
∑

0≤`<e

q(1−m/2)`ν`(0;L, q).

Proof. We argue by induction on the number h of primes q such that L does not
have minimal level and discriminant at q. If h = 0, that is if L has minimal level
N and discriminant then the statement of the theorem follows immediately from
Corollary 4.4 (after deciphering the notation).

Our induction hypothesis has two parts. The first is that the theorem holds
for all lattices which have fewer than h primes at which the lattice does not have
minimal level and discriminant. Let L be a lattice with h such primes. Fix such a
prime q and let K be as in Lemma 5.1. Note that ρ

L,∞ = ρ
K,∞ since this factor

only reflects the signature of Q. If r2s is odd or µ = −1 then K has minimal level
and discriminant at q, and the induction hypothesis (and the fact that the local
structure of K and L agree for primes p 6= q) implies

ρ(K, 2n) = ρ
K,q

(n) · ρ
L,∞

∏
p6=q

ρ
L,p

(n)

where ρ
K,q

(n) is as in (4.4) and ρ
L,p

(n) is as in the statement of the theorem to be
proved. If r2s is even and µ = 1 then Kq has minimal level and discriminant at q,
and the induction hypothesis again implies

ρ(Kq, 2n) = ρ
Kq,q

(n) · ρ
L,∞

∏
p6=q

ρ
L,p

(qn) = χ
N

(q)ρ
Kq,q

(n) · ρ
L,∞

∏
p6=q

ρ
L,p

(n)

where ρ
Kq,q

(n) is defined as in (4.4) and ρ
L,p

(n) is as in the theorem to be proved.
The second part of our induction hypothesis is that for all lattices J which

have fewer than h primes at which the lattice does not have minimal level and
discriminant there is an approximate Fourier series expansion in the form

θ(J ;R, z)
L2

≡ 1 +A′J(0)y1−m/wWk,k′(0)

+
Γ(m/2)

(2π)m/2−1Wk,k′(0)

∑
n 6=0

ρ(J, 2n)y1−m/2Wk,k′(ny)e{2nx}.(5.1)
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By Corollary 3.6, this is true for J = L if L has minimal level and discriminant (and
so starts the induction for this part of the hypothesis). This is essentially equivalent
to the theta function being L2-equivalent to an Eisenstein series.

For notational simplicity, let ε0(v) =
(
Q(v)
q

)
, ε1(v) =

(
Q(v)/q
q

)
and ε−1(v) =(

qQ(v)
q

)
.

Case 1. First consider the case that either 2 - r2s or µ = −1; so K,L lie in the
same quadratic space. Assume s ≥ 1. For ε = ±1, ω = 0,±1, set

A`(ω) = α
ν2`+1(ω)
ν2s+1(ω)

+ β
ν2`(0)
ν2s(0)

+ (1− α− β)
ν2`−1(0)
ν2s+1(0)

,

B`(ε) = γ(ε)
ν2`(ε)
ν2s(ε)

+ (1− γ(ε))
ν2`−1(0)
ν2s+1(0)

.

(Here the notation is as in Lemmas 5.2 and 5.3; we take ν−1(∗) = 0.) Fix ` ≥ 0,
and let P = preimage in K of radK/qK. Then from Lemmas 5.2 and 5.3we have:

(a) For v ∈ K − P and q|Q(v), the proportion of K0 in K containing q`v is
A`(ε1(v)).

(b) For v ∈ K − P and q - Q(v), the proportion of K0 in K containing q`v is
B`(ε0(v)).

(c) For v ∈ P − qK and q|Q(v), the proportion of K0 in K containing q`v is
ν2`+1(ε1(v))
ν2s+1(ε1(v)) .

Since K satisfies our induction hypothesis, θ(K;RQ, z) has an approximate
Fourier expansion of the type in (5.1). But then this must also be true for any theta
function derived from θ(K;RQ, z) via the action of any of the Hecke operators since
they act on Fourier series by definition and also map L2 to L2. Consequently, by
Proposition 3.1, θ(P ;RQ, z) has such an expansion.

Furthermore, if J is any lattice which has such a Fourier expansion, then
the constant term in the nth Fourier coefficient of θ(J ;RQ, z)

∣∣Bq is given by
q1−m/2ρ(J, 2n/q). Since θ(J ;RQ, z)

∣∣B2`
q = θ(q`J ;RQ, z), we have

(5.2) ρ(q`J, 2n) = q(2−m)`ρ(J, 2n/q2`).

In particular, this formula holds for J = K and J = P .
Let δ denote the number of K0 constructed via Lemma 5.3from K. Each K0 lies

in genL, so by Proposition 1.4,

θ(L;RQ, z)
L2

≡ 1
δ

∑
K0⊆K

θ(K0;RQ, z).
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On the other hand, we have by Lemma 5.2 and Lemma 5.3and cases (a)-(c) above,

1
δ

∑
K0⊆K

θ(K0;RQ, z) = θ(qs+1K;RQ, z)

+
∑

0≤`<s+1

∑
v∈K−P
q|Q(v)

A` (ε1(v)) e{Q(q`v)x+ iRQ(q`v)y}

+
∑

0≤`<s+1

∑
v∈K
q-Q(v)

B` (ε0(v)) e{Q(q`v)x+ iRQ(q`v)y}

+
∑

0≤`<s+1

∑
v∈P−qK

ν2`+1 (ε1(v))
ν2s+1 (ε1(v))

e{Q(q`v)x+ iRQ(q`v)y}

For any ` > s, A`(∗) = B`(∗) = 1 and ν2`+1(∗) = ν2s+1(∗). This means that the
above formula holds with s+ 1 replaced by any larger integer s′. In fact we can let
such a s′ tend to infinity and derive

θ(L;RQ, z)
L2

≡ 1 +
∑
`≥0

∑
v∈K−P
q|Q(v)

A` (ε1(v)) e{Q(v)q2`x+ iRQ(v)q2`y}

(5.3)

+
∑
`≥0

∑
v∈K
q-Q(v)

B` (ε0(v)) e{Q(v)q2`x+ iRQ(v)q2`y}

+
∑
`≥0

∑
v∈P−qK

ν2`+1 (ε1(v))
ν2s+1 (ε1(v))

e{Q(v)q2`x+ iRQ(v)q2`y}.

For each fixed `, each of the summands on the right of the above formula can
be written as θ(K;RQ, z) and/or θ(P ;RQ, z) acted on by an appropriate alge-
braic combination of the standard Hecke operators Uq, Bq, Xq, T

∗
q′ . For example, if

T±(`) = 1
2Uq

(
±
(

2
q

)
Xq + 1− UqBq

)
B2`+1
q , then

∑
v∈K−P
q|Q(v)

ε1(v)=±1

e{Q(v)q2`x+ iRQ(v)q2`y} = (θ(K;RQ, z)− θ(P ;RQ, z))
∣∣T±(`).

By the second part of the induction hypothesis, observing how the corresponding
Fourier expansions and L2 functions change under these operators, we can replace
the right hand side of (5.3) above by an approximate Fourier series involving the
representation numbers for K and P . This shows that L satisfies the second part



HAFNER & WALLING 31

of our induction hypothesis. More explicitly, if e = ordq(n) and ε =
(

2n/qe

q

)
,

Lemma 4.2 implies

ρ(L, 2n) =



At(ε) (ρ(qtK, 2n)− ρ(qtP, 2n))

+ ν2t+1(ε)
ν2s+1(ε)

(
ρ(qtP, 2n)− ρ(qt+1K, 2n)

)
+
∑

0≤`<tA`(0)
(
ρ(q`K, 2n)− ρ(q`P, 2n)

)
+
∑

0≤`<t
ν2`+1(0)
ν2s+1(0)

(
ρ(q`P, 2n)− ρ(q`+1K, 2n)

)
if e = 2t+ 1,

Bt(ε)ρ(qtK, 2n)
+
∑

0≤`<tA`(0)
(
ρ(q`K, 2n)− ρ(q`P, 2n)

)
+
∑

0≤`<t
ν2`+1(0)
ν2s+1(0)

(
ρ(q`P, 2n)− ρ(q`+1K, 2n)

)
if e = 2t.

Our next step is to simplify this formula.
First note that for e = 2t + 1, ρ(qt+1K, 2n) = 0 and so its term in the above

formula can be ignored. Next, suppose the q - N so that P = qK and

(5.4) ρ(q`P, 2n) = ρ(q`+1K, 2n)

for 0 ≤ ` ≤ t. This implies that the summations involving the ν2`+1 terms vanish
identically.

It turns out that the same thing happens for q|N . If e ≤ 1 then these sums are
empty. We will show that if e ≥ 2, and 0 ≤ ` < t, then (5.4) holds and again the
sums vanish. To see this, let q′ be a prime associated to q as in (3.1). Then, as
discussed in the proof of Proposition 3.1, we know that

θ(K;RQ, z)
∣∣T ∗q′ L2

≡ θ(M ;RQ, z)

where M(p) ' Kq′

(p) for all primes p 6= q′, M(q′) ' K(q′). Since θ(M ;RQ, z) is
derived from K via a Hecke operator, the remark above concerning the approxi-
mate Fourier expansion for θ(M ;RQ, z) and Corollary 4.4 imply that ρ(M, 2n) =
ρ
M,∞

∏
p ρM,p

(n) where our conditions on q′ give us

ρ
M,p

(n) =

{
ρ
K,p

(n) for p - N

ρ
K,p

(q′n) for p|N

=

{
ρ
K,p

(qn) for p 6= q,

ρ
K,q

(q′n) for p = q.
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We have the constant part of the nth Fourier coefficient of θ(M ;RQ, z)
∣∣Bq is

given by q1−m/2ρ(M, 2n/q). Because

θ(P ;RQ, z)
L2

≡ θ(K;RQ, z)
∣∣ ((1 + q1−m/2)T ∗q′Bq − q1−m/2UqBq

)
L2

≡ (1 + q1−m/2)θ(M ;RQ, z)
∣∣Bq − q1−m/2θ(K;RQ, z)

∣∣UqBq,
we have

ρ(P, 2n) = (1 + q1−m/2)q1−m/2ρ(M, 2n/q)− q1−m/2ρ(K, 2n)

if q|n and is zero otherwise.
Consequently, for e ≥ 1, Proposition 3.1 and (4.4) give us

ρ′
P,q

(n) =q2−m + c
K

(q)χq(n/qe)χN/q (qe)q(1−m/2)(e+1)

·
(

(1 + q1−m/2)χq(q′)χNK/q(q)− q
1−m/2

)
.

Again using the conditions on q′, we find that

χq (q′)χ
NK/q

(q) = χq (q′)χ
NK/q

(q′) = χ(q′) = 1.

So, for q|N and e = ordq(n),

ρ′
P,q

(n) =

{
0 if e = 0,

q2−m
(

1 + c
K

(q)χq(n/qe)χN/q (qe)q(1−m/2)(e−1)
)

if e ≥ 1.

Thus, if e ≥ 2, ρ′P,q(n) = q2−mρ′K,q(n/q
2) from which we see that ρ(P, 2n) =

q2−mρ(K, 2n/q2). This and (5.2) imply that if e ≥ 2 then (5.4) holds for 0 ≤ ` < t
as claimed.

Using this information to simplify our formula for ρ(L, 2n), we get

ρ(L, 2n) =



At(ε)q(2−m)t
(
ρ(K, 2n/q2t)− ρ(P, 2n/q2t)

)
+ ν2t+1(ε)

ν2s+1(ε)q
(2−m)tρ(P, 2n/q2t)

+
∑

0≤`<tA`(0)q(2−m)`
(
ρ(K, 2n/q2`)− q2−mρ(K, 2n/q2`+2)

)
if e = 2t+ 1,

Bt(ε)q(2−m)tρ(K, 2n/q2t)

+
∑

0≤`<tA`(0)q(2−m)`
(
ρ(K, 2n/q2`)− q2−mρ(K, 2n/q2`+2)

)
if e = 2t.
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As before, e = ordq(n) and ε =
(

2n/qe

q

)
.

Extracting the q local factor, we have

ρ(L, 2n) =

ρK,∞ ∏
p prime
p6=q

ρ
K,p

(n)

 ρ
L,q

(n),

where

ρ
L,q

(n) =



At(ε)q(2−m)t
(
ρ
K,q

(n/q2t)− ρ
P,q

(n/q2t)
)

+ ν2t+1(ε)
ν2s+1(ε)q

(2−m)tρ
P,q

(n/q2t)

+
∑

0≤`<tA`(ε)q
(2−m)`

(
ρ
K,q

(n/q2`)− q2−mρ
K,q

(n/q2`+2)
)

if e = 2t+ 1,
Bt(ε)q(2−m)tρ

K,q
(n/q2t)

+
∑

0≤`<tA`(0)q(2−m)`
(
ρ
K,q

(n/q2`)− q2−mρ
K,q

(n/q2`+2)
)

if e = 2t.

To complete the proof in this case, we need to separate a couple of cases. When
q - dK , we have r2s is even, µ = −1,µ′ = 1, χq = 1 and χ

N
(q) = χ(q) = µµ′ = −1;

also, P = qK. So for e = 2t+ 1, ρ
P,q

(n/q2t) = 0. When q‖dK , we have r2s is odd,
χq (∗) = (∗/q),

χ
N/q

(q) =
(

q

N0/q

)
= ψq(N0) = ψq(dK/q) = µµ′,

and c
K

(q) = µj(2/q); so for e = 2t+ 1,

αρ
K,q

(n/q2t) + (1− α)ρ
P,q

(n/q2t) = q2−m(qd + εµ′)ρ′′
K,q

= q3/2−m(qd + εµ′),

where d = (r2s+1 − 1)/2. When q2‖dK , we have r2s is even, µ = µ′ = −1, χq = 1,

χ
N/q

(q) =
(
q

N0

)
= ψq(−N0) = ψq(−dK/q2) = µµ′ = 1

and c
K

(q) = (qm/2 − 1)/(qm/2−1 − q); so for e = 2t+ 1,

αρ
K,q

(n/q2t) + (1− α)ρ
P,q

(n/q2t) =
q1−m(qd + 1)(qm/2−1 − 1)

qm/2−2 − 1
ρ′′
K,q

= q1−m(qd−1 + 1),
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where d = r2s+1/2− 1.
Using these observations and the formulas for A` and B`, one performs straight-

forward computations to show ρ
L,q

(n) is as claimed in the theorem.
Case 2. Now suppose r2s is even and µ = 1; so L,K0 and Kq lie on V . While K is
not integral, Kq is integral and Kq

(q) is unimodular. Thus, our induction hypotheses
apply to Kq, a lattice on V q. Set

A`(ω) = α
ν2`(ω)
ν2s(ω)

+ β
ν2`−1(0)
ν2s+1(0)

+ (1− α− β)
ν2`−2(0)
ν2s(0)

,

and

B`(ω) = γ
ν2`−1(ω)
ν2s+1(ω)

+ (1− γ)
ν2`−2(0)
ν2s(0)

.

As in the preceding case, for ` ≥ 0 Lemmas 5.2 and 5.3give us:
(a) For v ∈ Kq − qKq, q|qQ(v), the proportion of Kq

0 in Kq containing q`v is
A`(ε0(v)).

(b) For v ∈ Kq − qKq, q - qQ(v), the proportion of Kq
0 in Kq containing q`v is 0

if ` = 0 and B`(ε−1(v)).
Thus

1
δ

∑
K0⊆K

θ(Kq
0 ;RQ, z) = θ(qs+1Kq;RQ, z)

+
∑

v∈K−qK
q|qQ(v)

∑
0≤`≤s

A` (ε0(v)) e{qQ(q`v)x+ iqRQ(q`v)y}

+
∑

v∈K−qK
q-qQ(v)

∑
1≤`≤s

B` (ε−1(v)) e{qQ(q`v)x+ iqRQ(q`v)y}

where δ is the number of K0 in Kq. We have L ∈ genK0 so an argument similar
to that when r2s is odd or µ = −1 gives us:

ρ(Lq, 2n) =



At(ε)q(2−m)tρ(Kq, 2n/q2t)

+
∑

0≤`<t
A`(0)q(2−m)`

(
ρ(Kq, 2n/q2`)− q2−mρ(Kq, 2n/q2`+2)

)
if q2t+1‖n,

Bt(ε)q(2−m)tρ(Kq, 2n/q2t)

+
∑

0≤`<t
A`(0)q(2−m)`

(
ρ(Kq, 2n/q2`)− q2−mρ(Kq, 2n/q2`+2)

)
if q2t‖n, t ≥ 1,

0 if q - n
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where e = ordq(n) and ε =
(

2n/qe

q

)
. By hypothesis,

ρ(Kq, 2n) = χ
N

(q)ρ
Kq,q

(n) · ρ
L,∞

∏
p6=q

ρ
L,p

(n/q)

and hence (as in Case 1)

ρ(Lq, 2qn) = ρ
L,∞

∏
p

ρ
Lq,p

(qn)

where

ρ
Lq,q

(qn) =



At(ε)q(2−m)tρ
Kq,q

(qn/q2t)

+
∑

0≤`<t
A`(0)q(2−m)`

(
ρ
Kq,q

(qn/q2`)− q2−mρ
Kq,q

(qn/q2`+2)
)

if q2t‖n,

Bt(ε)q(2−m)tρ
Kq,q

(qn/q2t)

+
∑

0≤`<t
A`(0)q(2−m)`

(
ρ
Kq,q

(qn/q2`)− q2−mρ
Kq,q

(qn/q2`+2)
)

if q2t−1‖n, t ≥ 1,
0 otherwise

We know that

ρ′
Kq,q

(n) =
1− (χ

N
(q)q1−m/2)e+1

1− χ
N

(q)q1−m/2

and
ρ
Kq,q

(n/q2`)− q2−mρ
Kq,q

(n/q2`+2) = 1 + χ
N

(q)q1−m/2

where χ
N

(q) = µµ′ = µ′. Also, from the definition of the measure of a representa-
tion, we find that

ρ(Lq, 2qn) = q1−m/2ρ(L, 2n).

Thus

ρ(L, 2n) = qm/2−1ρ(Lq, 2qn)

= qm/2−1ρ
Lq,q

(qn) · ρ
L,∞

∏
p6=q

ρ
Lq,p

(qn)

= qm/2−1χ
N

(q)ρ
Lq,q

(qn) · ρ
L,∞(n)

∏
p6=q

ρ
L,p

(n)

= ρ
L,∞

∏
p

ρ
L,p

(n),
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where ρ
L,q

(n) is as claimed in the theorem. �
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