INDEFINITE QUADRATIC FORMS AND EISENSTEIN SERIES
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ABSTRACT. We use geometric algebra and the theory of automorphic forms to realize
the theta series attached to an indefinite quadratic form as the sum of a specific
Eisenstein series and an L2-function. From this we obtain explicit formulas for the
measure of the representation of an integer by an indefinite quadratic form.

gIntroduction.

In this paper we study, from the point of view of automorphic forms, the rep-
resentation number of indefinite quadratic forms. In [12], the second author used
similar techniques for positive definite quadratic forms. In that case, much of the
local theory was similar, but the global automorphic theory was much simpler. As
is typical, we start with some notation and statement of our main results.

Let V be an m-dimensional vector space over Q with m even and m > 6. Let
L be a lattice of full rank m on V on V (so L is a Z-module and L ® Q = V).
Let B:V xV — Q be a nondegenerate symmetric bilinear form whose assoicated
quadratic form @, defined by Q(v) = B(v,v), is indefinite. For convenience, we
assume @Q(L) C 27Z. The representation numbers

r(L,2n) = #{{ e L: Q) =2n}
are typically infinite (but finite in the definite case). In fact,
re(L,2n) = #{f € L: Q(£) = 2n, £ in a ball of radius ¢ } = O(t™/*71),

and in general this bound is tight. Hence we can measure the density of solutions
¢ € L to the equation Q(¢) = 2n with the quantity

p(L,2n) = lim t'=™/2p,(L,2n).

t—o0
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2 INTRODUCTION

Following Siegel, we call p(L,2n) the measure of the represenation of 2n by L.
Siegel proved that p(L,2n) is a product of “p-adic densities” (which he did not
compute); Siegel also proved that p(L,2n) is a genus invariant and is given by the
Fourier coefficients of a theta series associated to L (as defined below).

We use Siegel’s theta series together with elementary geometric algebra and the
theory of automorphic forms to constructively prove Siegel’s results when the local-
ization of L at 2 is unimodular. We show

p(L,2n) = pree [ pPro(n)

p prime

where pr o, depends only on the signature of ) and for p prime, e = ord,(n),

€= <—2”/pe>,
p

prp() =1 D we(0;L,p)p" D v Lp)pt TP
0<t<e

the summands vy (*; L, p) are given by simple formulas in terms of the invariants of
L@)ZZLQ@Zp

We give here a brief outline of our strategy. Let Rg be a majorant for @); thus
Rq is a positive definite quadratic form on V' and, identifying Rq, () with matrices,
RoQ 'Rg = Q. Then for z = z + iy, y > 0, Siegel’s theta series is

0(L; Rg, z) = Z TRz +iRQ (O)y)
leLl

In §1 we show that 6(L; R, 2) is an automorphic form for a congruence sub-
group I'o(N) with weight ((m; — mg)/2,m2) where (mj,ms) is the signature
of Q. (When L) is unimodular, N is necessarily odd.) We also show that
0(L; Rg,2) —O0(L'; Rg, z) € L? whenever L' is in the genus of L (relative to Q). In
§2 we construct a basis {Ep : D|N } for the space of Eisenstein series of weight
(k, k") and odd, square-free level N, and we compute the Fourier coefficients of each
Ep. In §3 we consider lattices K of “minimal level N and discriminant dg”. Using
geometric algebra, we construct operators Tk (q) for each prime ¢|N so that

0(K; RQ7Z)|TK(Q) = ZG(K/;RQVZ)

where the K’ lie in the genus of K. Thus the results of §1 imply §(K; Rq, #) is an
approximate eigenform for Tk (q); that is,

0(K; Rg, z)|TK(q) = Ak (Q)0(K; Rq, z) + ¢4(2)



HAFNER & WALLING 3

where ¢, € L?*(T'o(N)\'H). We also show that the simultaneous eigenspace for
the Tk (g) within the space of Eisenstein series is one-dimensional. We know
0(K;Rq,z) = E(z) + €(z) for some E in the space of Eisenstein series and some
e € L*(To(N)\H); since each Tk (q) maps Eisenstein series to Eisenstein series and
L? functions to L? functions, we find that

6(K; Ro,2) — ml%%(p)%(z) +e(2)

where the c,. (D) are explicit constants and a,, (0) is the Oth coefficient of Ex. In
§4 we show that, regardless of the choice of Ry,

p(K,2n) = lim ym/2_lcn(RQ,y)

y—0F

where ¢, (Rg,y) is, up to constants, the nth Fourier coefficient of §(K; Rg,2). We
show that the L? function e contributes nothing to p(K,2n), so interpreting the
Fourier coefficients of the sum of Eisenstein series as an Euler product, we find

p(K,2n) = pro || pra(n).

p prime

Finally, in §5 we consider lattices L of arbitrary odd level. Again using geometric
algebra, we show L descends from a lattice K of minimal level and discriminant
and

6(L; Ro, =) :% S 0(Ko; R, 2) +€(2)
KoCK
where the Ky are particular sublattices of K (of which there are §) and &' €
L?(To(N)\'H). Since our construction of the Ky allows us to count how often a
vector v € K lies in a sublattice K, we obtain our formula for p(L,2n).
For basic references on the theory of automorphic forms, quadratic forms and

Siegel’s work in this area see [1,2,6,7,8].

§1. The theta series.

Let (my, mso) be the signature of @) and, without loss of generality, assume m; >
mo. Let Rg be a majorant for @; thus Rg : V ® R — R is a positive definite
quadratic form and, identifying Rq, @) with matrices relative to some basis for V,

RQQflRQ = Q

Remark. Given @), a majorant Rg always exists. For example, identify () with a
symmetric matrix relative to some basis for V. Then for some S € GL,,(R) we
have Q = S*DS where D = diag{1,...,1,—1,...,—1}. (So the signature of D is
that of Q.) Then Rg = S*S is a majorant for Q.
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On the other hand, suppose R is a majorant for Q. Thus Rg = S*S for some
nonsingular matrix S. Set Q' = S~!QS~!; by the Singular Value Decomposition
theorem, we can write Q' = T*DT where D is diagonal and T is orthogonal. Thus
Q = (TS)'D(TS) = T{DTh, say, and Rg = (TS)Y(TS) = T{Ty. Also, since
RoQ 'Rg = Q, we necessarily have D~! = D. Hence

D = diag{1,...,1,—-1,...,—1}

and the signature of D and () agree.
For h € V, define the inhomogeneous theta series

0(L,h; Rq,z) = Y e{Q(L+ h)x + iRq(L + h)y}
leL

where 2 = z + iy, y > 0, and e{a} = ™. For notational simplicity, let
Q(L; RQ, Z) = Q(L, 0; RQ, Z)

Let k = (my — mg)/2 and k' = my. Define a function (actually a generalized
automorphy factor) for z € H via

G (2) = 27Kz 7K.

Note that since m is even and m; + mo = m, we have k € 7Z, so there are no subtle
issues about which square root to take. Let L# = {v € V : B(v,L) C Z} denote
the dual of L and let d; denote the discriminant of L relative to Q.

Our first lemma sets the stage for the complete transformation formula for our
theta function under the appropriate modular group.

Lemma 1.1 (Inversion Formula). For h € V, we have

O(L,h; R, z) = eldr| ™ ?juw (2) Y e{2B(L,h) + Q(0)a' + iRq(L)y'}
Le L#

where —1/z = ' + 4y’ and € is a 4th root of unity (independent of z and L). In
particular, if h € L7,

0(L,h; Rg, 2) = eldr| ™ Pjin(z) Y e{2B(¢,1)}6 (L, Rg,—1/2)
LeL# /L

and
0(L; Rq,z) = e|dr| ™" jiu (2)0 (L¥; Ro, —1/2) .

Proof. Note that the second formula is an immediate consequence of the first.
It is possible to prove this directly using Poisson summation and the fact that
RoQ 'Rg = Q. To avoid the grubby details of this sort of computation, we will
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instead identify 6(L, h; R, z) with a symplectic theta function and use the corre-
sponding inversion formula (see [3]).

Fix a Z-basis for L and thus identify L with Z™. Relative to this basis, identify
Q, Rg with matrices; set Z = Qx + iRqy. Let

9 (Z, (Z‘)) =Y e{Z(t+v) —20'u — v'u}.

Lezm

Thus, by the referenced symplectic theta function inversion formula,

O(L, h; Rq,2) = (Z’ (2»
= ¢(det Z)~ /29 (—Z_l’ <_Oh))

= e(det 2) ") " e{Q 7N (0)a' +iRG (O)y + 2h'(}
lel

=e(det 2)717 Y e{Q(O)2 +iRq(0)y + 2" QLY
leQ1L

where 2/ = —z/(2% + 4?) and y’ = y/(2? + y?). To complete the proof, we observe
that Q'L = L# and that det Z = df, - jx 1 (2)?. The latter is easily deduced from
the relations Rg = S'S and @Q = S*DS where D = diag{1,...,1,-1,...,—1}. O

For k, k' € Z as above, v = (CC”Z) € SLy(Z), H={2€ C:Qm z > 0}, and a

function g : H — C, we define the slash operator with weight (k, k") by

(91) (2) = (9l 17) (2) = e (e + d)g (1(2))

Let N be the level of L relative to Q). In other words, if we identify @) with a
(symmetric) matrix relative to a Z-basis for L, N is the smallest positive integer such
that NQ™! is an integral matrix with even diagonal entries. Let (x/*)x = (%) K
denote the Kronecker symbol.

Lemma 1.2 (Transformation Formula). Fory = (Z Z) € Iy(N), d#0,

0(L; Rq, Z)h = x(d)0(L; Rq, z),

where x 1 a quadratic Dirichlet character modulo N and the weight for the slash
operator is (k,k'). Furthermore,

\(d) = (sgnd)* (M)K

|d|
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Ifd =0, then N =1 and H(L;RQ,z)h =0(L; Rg, 2).

Remark. With N odd, another description of N is as follows. A prime p does not
divide N if and only if L,y = L ® Z, is unimodular. Also, x(p) = 1 if and only

if L, is an orthogonal sum of hyperbolic planes (0 ! (So for p = 2, either

10
01 01 01 01 21 r
L(2)2<10>J_---J_(10> orL(2)2<10>J_---J_<1O>J_<12>). For ¢"|| N,
Lig~(1,....e) Lg{l,... . L,er) L--- Lg"(1,...,1,€)

with ¢; € Z; .
Proof. We prove the last statement of the lemma first. If d = 0 then clearly N =1,

and v = + (é T) (? _01>. Thus, by Lemma 1.1, 0(L; Rg, z)|”y =0(L; Rg, 2).

Now assume d # 0, write 2’ = (¢ +d/2)"! = 2/ + 4y, —1/2z = 2" +iy” and

observe that
az+b B b 1

cz+d_a+d(c+d/z)'

So, by definition,
6(L7 RQ7 Z) ‘7

= jrawlcz+d) > e {SQ(@} e {Q(é)% + iRQ(@%’}

teL

b /
= Jrx (cz + d) Z e {EQ(h)} 0 (dL, h; Rg, %

heL/dL

b h
= jr.k(cz + d) Z 6{3Q(h)}9<L,E;RQ7dZ’

heL/dL

and by the Inversion Formula of Lemma 1.1, this is

= e‘dL’_1/2jk7k/(CZ + d)jkyk/(dz’)

(1.1)

> e{Gem+ 25 - Saw | @ + gy
heL/dL
LeL#

For h € L, ¢ € L#,
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since bc = ad — 1 and also, ¢ € NZ so cQ({) € 27Z. For any £ € L#, h — c/ varies
over L/dL as h does. Therefore

0(L; Rg, z)|y

. . b 1
= | s+ @) S e{Gom} o (1% rg. 1)

heL/dL

and again using the Inversion Formula, this is

= i (cz + d) ji e (d2") jioor (2) 7 Z e {g@(h)} -0 (L; Rq, 2)

heL/dL

— et Y efSa |0 (iRg. ).

heL/dL

To analyze the exponential sum, write d = £p{* ---p§ where the p; are primes.
Then by the Chinese Remainder Theorem,

L/dL ~ dpy“*L/dL & --- @ dp,“"L/dL,
and for ¢; € dp; “' L,
QU+ +4,) = Qtr) +++- Q(6y)  (mod 2d).
Hence

> c{iew}-TT ¥ <{lew}

¢eL/dL pe|ldtedp—<L/dL

Now, for p°© || d,
b b
> c{fen)- ¥ ofran},
tedp—<L/dL L/p°L
where b' = bd?/p*¢. By Proposition 3.2 of [10],

pme/? if 2|e,

> 6{2—;49(5)} =\ preniz 3 e{b—/Q(Z)} otherwise.

L/p°L L/p. (P
Note that L/pL ~ L,)/pL(), and when p is odd with p{ N,

L(p) ~ <1, ce ,1,dL>.
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Hence
v v\" (d 2a? —1)™/2q
= {fao}= () ([ ZA3)) (25,
Lipr P p p a€ZL/pL p p K
Also, since 21 N, we have
0 1 0 1
(1 0) L1 (1 0) if (=1)™/2d;, =1 (mod 8),
Loy >~
) 0 1 0 1 2 1\ | ,
L1 1 if (—1)™/2d;, =5 (mod 8).
10 1 0 1 2

(See, for example [4].) So

> e {%Q(Z)} — om/2 (%)K.

L/2L

—_1)m/2 .
It remains to show that the mapping d — (sgnd)* <(1)TdL> is a character
K

modulo N. We do this as follows. Write (—1)"™/2d;, = NgN? where Ny is square-
free; so the Kronecker symbol in the above expression is (Ny/|d|) k. For 0 < d < N,
(d,N) =1, set x(d) = (No/d)k and extend x to a character modulo N. Thus for
any d > 0 with (d, N) = 1, x(d) = (No/d)g and x(—d) = x(=1)x(d). So far we
have shown that the mapping above agrees with the character y if d is positive. To
complete the proof, we need to show that x(—1) = (—1)*.

Choose a prime p such that p = —1 (mod N) and p = 1 (mod 4). So by qua-
dratic reciprocity and the fact that Ny =1 (mod 4), we have

But, by construction, No|N, Ng =1 (mod 4), and
sen No = (—1)™?sgndy, = (—1)™?sgndy = (—1)*,

where dy denotes the discriminant of V. This completes the proof. [J

Up to this point, we have concentrated on the transformation properties of our
theta functions. Now we investigate some analytic properties.
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Lemma 1.3. There exist positive integers M and M¥*, dependent only on L and
Rq, such that
0(L; R, 2) — 1] < e ¥/M
and for h € L*#, h & L,
0L, h; Rg, 2)| < e~/
uniformly in r as y — oo.

Proof. Since Rq is positive definite, we know that
#{l e L: Ro(l)=n}=0n™?*1),
and that R(¢) = 0 if and only if £ = 0. Thus, uniformly in z,

0(L; Rg, z) — 1] < Ze*R(@y < Z n/2 1=y /M o o—y/M

leL n>1
£#£0

where M € Z, so that R(L) C M~1Z.
Now for h € L#¥ — L, L +h C L* but 0 € L + h, so, by a similar argument,
0(L, h; R, 2)| < Y pep# pppe 0¥ < emv/M7 . O

We now define define the relevant analytic space. Let L?(T'o(NN)\H) be the space
of functions f : H — C such that for v € I'o(N), we have f|y = x(d)f and

[ erme i <o
To(N)\'H Yy

Note that the integrand is invariant under the action of I'o(N).

Proposition 1.4. Suppose L' € geng L, the genus of L relative to Q. Then for
all v € Ty(N), 6(L'; R, 2)|y = x(d)0(L'; Rg, 2) and 0(L; Rg,z) — 0(L; Rg,2) €
L*(To(N)\H).

Proof. The first part of the proposition is immediate from Lemma 1.2 because both

N and y in the transformation formula depend only on the genus of L and not on
which lattice we take from gen, L.

Next, take a general v = (Z 2) € SLy(7Z) and z € ‘H. Continuing the calculation
in (1.1) by partitioning the sum over ¢ € L#, we have

0(L; Rg, 2)|y
= €|dL|71/2jk,k/(dZ)

> e e+ 5en - Sa0 ot trg, 1/
heL/dL
LeL* /dL
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which again by the inversion formula (noting that ¢ € L# implies £ € (dL)#) equals

= e|dr| ™ % jp i (d2)|dar |~ 2 (—1/2)

2
Z e {%Q(h) + EB(E, h) — 2@(6) + QB(E’,E)} 6(dL,?'; Rg, z).
heL/dL
LeL# /dL

0 e(dL)* /dL

By Lemma 1.3, if ¢/ ¢ dL, then 0(dL,!'; Rg, z) decays exponentially as z — iocc.
For the one term ¢’ € dL in the sum, 6(dL,¢; Rg,z) — 1 decays exponentially.
Consequently, as z — 100, the above expression tends a constant depending only
on d and dj, times

> efbam+ ipen - Sao}.
heL/dL
LeL# /dL

This then is the constant term in the Fourier expansion of 8(L; Rq, z) at the cusp
a/c. As this depends only on the genus of L, we deduce that the difference
O(L;Rg,z) — 0(L'; Rg, z) decays exponentially at every cusp. By a compactness
argument, we deduce that this difference is in L?(T'o(N)\'H), as claimed. O

§2. Eisenstein series for odd, square-free level.

Fix an odd, square-free positive integer N and a Dirichlet character x mod N.
For D|N, let Xp denote the D-part of . Let N’ be the conductor of y so that
N'|N. For ¢,d € Z, set

/ /
Gea(2) = Giy (N) = Y jrw(uz+v),
u=c (N)
v=d (N)
where the prime indicates omission of the v = v = 0 term (if it might occur in spite
of the congruence conditions).
For D|N, D > 0, set

/ B —2ac
Ep(z) = Eg’k (2) = Z XN/D(b)XD(C)e{ D }Gbp7a(2’).
a modN
bmodN/D
cmodD

Our first goal in this section is to compute the constant term for the Fourier
expansion for Ep(z) at each cusp. Later we will give the complete Fourier expansion
at the cusp at infinity. To these ends, we begin with the Fourier expansion for G. 4
at the cusp at infinity. These computations are similar to Ogg [7], so we leave out the
details. The only serious difference is that since Ogg deals only with holomorphic
Eisenstein series, the zero-th Fourier coeflicient is easier to handle.
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Proposition 2.1. We have

Ged(2) = ac,q(0) + al, 4(0) Wi (0)y'~m/2
+ Z ac,d(n>yl_m/2Wk,k’ (ny/N)e{2nx/N},

nez
n#0
where
0 if cZ0(N)
ac,d(o) = . -
Ck,k:’(daN) ZfC:O(N),
1
a,c,d(o) - Ngk,k”—l(C? N)?
form #0,
SOTL M k n 1-m/2
e.q(n) = (sg >J|\7 | |Z (sgnv)k]v|m/2_le{2vd/N},
n/v=c (N)
and

/
Chp (d, N) = Z (Sgnv)k|U’_m/27

v=d (N)

Wisely) = [ e+ ide{-2ut}r

— 00

Our next simple proposition tells us something about how these G-Eisenstein
series permute under the action of SL(2,7Z).

Lemma 2.2. The functions G.q over all pairs (¢,d) mod N form SL(2,Z)-
equivalence classes. The equivalence classes are identified by the value of ged(c, d)
mod N.

Proof. Let v = (
that

) be an element of SL(2,Z). We see, by an easy calculation,

st
u v
Gc,d(ﬁyz) = ]k:’]{-;/ (UZ + U)Gcs+du,ct+dv(z)7

(in other words, Gegly = Gcq)y). We first deduce that ged(c,d) = ged(cs +
du, ct + dv). Furthermore, given any two pairs (c1,d;) and (cz,d2) with equal
greatest common divisors, there is a matrix v € SL(2,7Z) with the property that
c15 + diu = co and c1t + dyv = dy. To see this, note that without loss of generality
we can assume that the common gcd is equal to one. Let ~; be any matrix in
SL(2,7) whose first column is (c;,d;), for i = 1,2. Then v = yoy; * is in SL(2,7Z)
and this solves the problem. [
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Our next goal is to show that the set of functions Ep, with D ranging over
the divisors of N have the property that their constant terms (the constant part
of the zero-th Fourier coefficient) can support all functions which don’t vanish at
the cusps (e.g., our theta function). In other words, given any modular function F’

satisfying Fh = x(d)F for v = (ZZ

E of these functions Ep so that F' — E vanishes at every cusp and is in fact L? on
the fundamental domain. (This is not to say that this difference is cuspidal — it
is possible, and likely, that the non-constant part of the zero-th Fourier coefficient
does not vanish.)

The set of I'g(N) inequivalent cusps can be parameterized by the numbers —1/M,
for M > 0 and M|N. (Note, the cusp at infinity is equivalent to the cusp —1/N.)
The next proposition proves our claim and much more.

Recall that N’ is the conductor of x.

> € I'g(N), there exists a linear combination

Proposition 2.3. The Eisenstein series Ep has non-zero constant term at the cusp
—1/M if and only if M|D and gcd(D/M,N') = 1. Under these circumstances, the
constant term s

ZX(—1)¢(D/M)(M/D)m/2gxM, p(M")L(m/2,X ) p Xar) I L(m/2, Xn/pXp @)
q|M”

where for any Dirichle character 1, L(s,1) is the classical Dirichlet L-function,
and

1—4(q)q" ™
1—4(q)g"

M' = ged(M,N"), M" = M/M’ = gecd(M,N/N') and I,y is the standard Gauss
sum.

L(s,¢,q) =

Proof. This proposition follows by straigthforward though quite tedious calcula-
tions, so we leave them out for the sake of brevity. We note only that key to the
calculations are the facts that NV is square-free and that x(—1) = (=1)*. O

Parts of the next proposition are a corollary of the last proposition. In the above,
we only computed the constant term. In the next proposition we deal with all the
other Fourier coefficients, but only at the cusp at infinity.

It is important to note here that even though the G. 4 are defined on the group
['(N), it will turn out that Ep is defined on I'g(N). In particular, we find that,
though G, 4 are translation invariant in z — 24N, Ep is invariant under z — z+1.

Proposition 2.4. With the notation above, we have
Ep(2) = ap,(0) +a’, (0)y" ™2 Wi (0) + Y ap, (n)y' "Wy ps (ny)e{2na},

nez
n#0
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where
0 if D# N
ap(0) = ¢ 2x(=Dgy , WN/N)L(m/2, x) NHN/ L(m/2,xy»q) i D=N,
g|pr/ime
, [0 if D #1
“p0)= { 2L(m/2—1,X) if D=1,
and for n # 0,
ay,(n) = 2x, (sgnn) D=2y a2y (Inl/d)x ().
d|n
d>0

Also, for n|N, a, (n®) = 2D'~—™/2(n, D)2~™.

Remark. Note that the zero-th Fourier coefficients at infinity of Ep are all zero
unless D =1 or D = N. In the first case, only the non-constant part survives; in
the latter case, only the constant term is non-zero.

Proof. Again, the proof is just a calculation so we leave it out. [J

§3. Lattices of minimal level and discriminant.

In this section we restrict our attention to lattices K of minimal level and dis-
criminant at an odd prime ¢ (as defined below). We design operators of Hecke type
for which 0(K; Rg, z) is an approximate eigenform. By an approximate eigenform,
we mean a form whose image under the operator differs from a scalar multiple of
itself by an L?(I'g(N)\H) form. We then apply these operators to the Eisenstein
series and show the subspace of simultaneous eigenforms is 1-dimensional. In §4 we
use these results to obtain formulas for the measures of representation of K. In §5
we extend the formulas to include all odd levels.

Definition. We say a lattice of even rank m has minimal level and discriminant
at an odd prime q if, locally, K has one of the following shapes

(1,...,1,m)
Kg) ~ <1,...,1,77>Lq<77'>

(L. L) La(Ln)
where 7,7" € Z) and in the last case the Legendre symbols ((—1) n/q) and
(—n’/q) both equal —1. Throughout the rest of the paper, we will use the shorthand
notation X

(=)™ 77)
q

m/2—1

it =
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If K has odd level and minimal level and discriminant at all odd primes then we
simply say K has minimal (odd) level and minimal discriminant.

Recall that if K4 ~ <1, AU 77> for an odd prime ¢ with n € Z;, then g does
not divide the level of K. So when K has minimal level and discriminant at ¢ with
q dividing the level, either ¢||dx or ¢*||dx. Recall that N = [0, P

For the first part of this section, fix an odd prime ¢ and let K be a lattice which
at ¢ has minimal odd level N # 1 and minimal discriminant dx. Let Rg be a
majorant for Q).

We need some more notation. Let ¢ be an odd prime dividing N. For any t € Z,

we have .
K~ { <1,... ,1,77> Lq<n'> (mod ¢*) if q||d,
N <1,... ,1,n> J_q<1,77’> (mod ¢') if ¢?|d,
where 9,(n) = (—n/q) = —1. Let p be an odd prime such that p{ N and

o). (5

for all primes ¢'|N, ¢’ # q. We refer to p as a prime associated to ¢. Finally, let
P = preimage in K of rad K/qK,

so that, for example in the case ¢*||dx, P = q¢K + q<1, 77’>.
We first define a Hecke-type operator relative to the quotient K/P and ¢ as
follows. Let

Tx/p(q) = (1+¢""™/*)T: B, — ¢"™/*U,B,,

where T = (p™/2714+1)71T,, is the classical Hecke operator for weight m/2 = k+&’
(with a special normalization) and B, and U, are the classical Hecke operators
defined by the following (q|N):

B —gma(e 0 U:m/412q: 1 b
e =1 0 1) Tt 2o q)

Notice that for any lattice L, 8(L;7)|B5 = 6(qL; 7). We will see in the proof that
our operator T, p(q) does not depend on our choice of prime p associated to g.
Here and in the sequel, we will use the notation

to mean that f — g € L?(To(N)\H).
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Proposition 3.1. With K, q, P, and p as above, we have x(p) = 1 (where x = X,
is the character which arises in the transformation formula for 6(K; Rq, z)) and

0(K: Rg,2)|T.., . (q) = 0(P; Rg, 2).

TK/P

Remark. When ¢ { di, P = ¢K and so §(P; Rg,z) = 6(K; RQ,Z)|B§. Also, this
proposition extends easily to the case dx even by imposing the extra condition
p=q (mod 8).

Proof. We follow the proof of Proposition 2.1 of [12]. Let C be a maximal totally
isotropic subspace of K/qK (so rad K/qK C (), and let

K’ = preimage in K of C,
so C = K'/qK. By Proposition 1.2 of [12],

K { (L., L, (=)™ ) L@((=1)™/*" ) (mod ¢') if glldx,
N q<1,... ,1,77> J_q2<1,77'> (mod ¢t) if ¢?|dk

for any ¢t € Z. Also, for any prime ¢’ # q, K{q,) = Kg.

Clearly these sublattices K’ are in one-to-one correspondence with these sub-
spaces C. Using the formulas from p. 146 of [1] (cf. Proposition 7.2 of [10]), we
find there are (defining (3 by this expression)

(™/? 1+ 1) (g™ 2+ 1)+ (¢+1) if ¢lldk,

m/2—1 .

q +1)5= { :
( ) (@™ + D)@+ 1) (P +1)if ¢Pldk

ways to choose C. If ¢ Q(x), then x ¢ K’ for any K'. If ¢q|Q(z) and 2 € K — P,
then © € K’ for exactly § of the K'. If ¢q|Q(z) and x € P, then x € K’ for all
(¢™/?~1 + 1) of these K’. Recognizing that 0(K; Rq,z)|UyBy is the subsum of
0(K; Rg,z) containing only those terms x for which ¢|Q(z), we see that

1
0(K;Rg,2)|UsBy + ¢™/*7'0(P;Rg,z) = BZ@(K';RQ,Z)
K/

where K’ varies over all the sublattices constructed as above. Also, since the K’ lie
in the same genus and 6(K’; Rg, z) is a modular form on I'g(/V), Proposition 1.4
implies that we have for any fixed K’,

L2

(32)  O(K;Rq,2)|UsBy+¢™*7'0(P; Rg,2) = (¢ + 1)0(K'; R, 2).
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If ¢’ t cond x then K{ ) ~ Ky ~ K

(a
if (¢/q') = 1. We claim that

but if ¢’| cond x then K7 ny = K{, only

/
(¢’) (q (q

2
0(K; Rg,2)|T; By = 0(K’; R, 2).
To verify this claim, first note that

%) _ ((—1)771/2(]1 - th3>

p p

x(p) = (

where q1,...,qp are distinct primes and Ny € Z,. Since by assumption y is a
character of odd level N, we must have (—1)"/2¢; - ¢, =1 (mod 4) and cond y =
q1 - qn. Hence our constraints on p and quadratic reciprocity imply that x(p) = 1.
Thus Lemmas 5.2 of [10], 3.3 of [11] and 1.3 of §1 imply that

2

6(K; Rg, 2)|T; = 6(M; R, 2)

where M is a lattice on V/7, My ~ Ky, for all primes ¢’ # p, M4y ~ Kf So

a)’
for ¢’ # p, our constraints on p imply

q ~ Prq
Mgy = Kgy

~ q ~ ~ !/
) = Ky = Ky = K,

~ K(q/) ~ Kéq’)'

Also, since p{dg, M . Hence MY € gen K/, and

q
(p
L2
0(K; Rq,2)|TyBy = 0(K'; Rg, 2).
(We see here also that the effect of T, is independent of p up to gen K'.) The

proposition now follows by solving (3.2) for 8(P; Rg,z). O

Assume still that ¢ is an odd prime dividing N. Let p be a prime associated to ¢
as above. Let X, be the twist (by the quadratic character modulo ¢) operator and
define

;

2
U(? _ qm/2—1Uqu + (qm—Z + qm/2—1)T;<Bq 4 ¢q(n) <6) qm/2—1Xq
Ty (q) = if glldx
Uz = (q™2 + q"* Uy By + ("2 + ¢™/*" )T B,
\ if q2||dK7
and set
m—2 :
q +1 if ql|dk.
(3.3 e ={ 0 e
q" =g+ 1 if ¢ ||dk,
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Proposition 3.2. With notation as above,

2

L
6(gen K; R, z)|TK(q) = A\ (9)0(K; Rg, 2).
Proof. The arguments used to prove Proposition 2.2 of [12]| show that

K//

where the sum is over certain sublattices K" of K, all of which lie in gen ¢/K. Thus
by applying Proposition 1.4 we obtain our result. [

For g an odd prime dividing N, the level of K, let Cx(q) denote the subspace of
Eisenstein series F of level N, weight (k,k’) (as defined in §2), character x, such
that E}TK(q) = A (@)E. As in the proof of Lemmw 2.3 of [12], examining the
action of T}, (¢) on the Fourier coefficients of the Ep (D|N) gives us

Lemma 3.3. For any prime q|N, span{Ep : D|N/q } NCk(q) = {0} where the
Ep are the Eisenstein series with character x, level N and weight (k,k').

Set 5
e (5) (20 if glldc.

C =

T if ¢*||dre,
qm/271 —q H
and extend c,. () multiplicatively to the divisors of .

Proposition 3.4. Cx(q) =span{Ep + ¢, (q)Ep, : D|N/q}.

Proof. By looking at Fourier coefficients one easily verifies that Ep + ¢, (9)Epq €
Ck(q) for all D|N/q. The proposition now follows from the preceding lemma. [

Theorem 3.5. Let E= ) c,.(D)Ep. Then (| Ck(q) =CE
D|N q|N

Proof. Write N = q; - - - q¢. Using induction on r < ¢, we argue that

() Cx(g:)=spanq > ¢, (d)Epa: DIN/q1--q,

l<isr dlgi-qr

This is clearly true for r = 0. Take r > 0 and f € [, <;<,41 Cx(¢;). The induction
hypothesis tells us that for some o, € C, -

f: Z & Z CK(d)EDd = Z CK(d) (O‘DEDd+OéDqT+1Equr+1>'

DIN/q1---qr dlqi---qr DIN/q1-qr41
dlq1--qr
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Since f € Ck(gr+1), Proposition 3.4 implies « (¢r4+1)a . Hence

DQT+1 T K

f= > Y. c(dEpa |,

D‘N/Q1“‘Q7‘+1 d|CI1'“QT+1

as claimed. O

We have from Proposition 2.4 that E has zeroth Fourier coefficient (at infinity)
equal to x(2)c, (N)a, (0) # 0. Let

so that the zeroth Fourier coefficient of Fx is 1 (agreeing now with that for
0(K; Rq, z)).

Corollary 3.6. With K and E as above, then
0(K; Rqg,z2) = Ex(2).

Proof. There are three ingredients to this argument. First, T (q) takes Eisenstein
series into Eisenstein series, though a priori the level may increase by a factor of ¢ or
q*. Second, T (q) maps Ly(Io(N)\H) into itself. Both of these are straightforward
calculations. Third, by Proposition 2.3 there exist a, € C so that

K RQ, Za ED —|—€1(Z),
DIN

where (as always) €1 € La(I'g(IV)\'H). Let S be the sum of Eisenstein series on the
right. By Proposition 3.2,

S|Ty (q) = (0(K) —1)| T (g

x(@O(K) + &2 — 81‘TK(Q)

< (O)S + X (q)er +e2 —e1| Ty (q)
x(@)S +es,

A
A
A

say, where by our second remark €3 € Lo(T'o(IN)\H). By our first remark, e3 = 0
and by Theorem 3.5, S = aFk for some o # 0. But our choice of normalization
for Fx implies that @ = 1 and the Corollary. [
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§4. Relationship between Fourier coefficient and representation num-
ber.

In the previous section, we showed how to construct an Eisenstein series F as a
linear combination of the Eisenstein series Ep in such a way that the constant terms
of E exactly match those of the theta function at every cusp. In this section, we use
this information to describe the Fourier coefficients of the theta function explicitly
in terms of the more arithmetic Fourier coefficients of the Eisenstein series. We
also show how asymptotic knowledge of the Fourier coefficient (as a function of
y — 0) determines the representation number for n, according to Siegel’s definition.
Siegel’s representation number is defined in terms of the quantity

ri(K,2n)=#{{ e K : Q) =2n,Rqo({) <t}.

(Note, this makes explicit the definition in the introduction. Namely, our “ball of
radius ¢” is determined by the positive definite quadratic form determined by Rg.)
We assume that n > 1. We first need a couple of lemmas.

Lemma 4.1. If k' > 0, then

kak/(O) + O(y) asy — 0
19 <y—k//2+m/2—1e—27ry> as y — +00.

Wi (y) = {

Furthermore, Wy, 1/ (0) # 0.

Proof. If k' is even, then an explicit formula for this integral can be derived via
a standard contour integration argument. Namely, the value of the integral is
determined by the residue at the pole t = —i of the integrand. This residue is
Pk+k//2_1(y)e_2”y, where Py /2-1(y) is a polynomial of degree k + k'/2 — 1 with
non-zero constant term. From here, all statements in the lemma are immediate.
(Note, k+k'/2—1=m1/2 —1=—k'/24+m/2 —1.)

For k£’ odd, a similar but more complex contour integration method is possible.
In this case, the contour has to be a “key” contour looping around the singularity
at t = —i. By a careful calculation, one finds that Wy, ;s (y) is a non-zero multiple
of the function

e [ ) AR n(y(2 4 ),
0

where Py (x—1)/2 is again a polynomial of degree k 4 (k' — 1)/2 and non-zero
constant term. From here, the first and last statements are evident. The asymptotic
as y — 400 can be deduced by a change of variables from ¢ to ty. (This asymptotic
bound can also be deduced from formulas 3.384.9, 9.232.1 and 9.227 of Gradshteyn
and Ryzhik [5].)
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Though we don’t need it here, a similar proof shows that as y — —oo, Wy i/ (y) =
@) <|y|_k_k//2+m/2_162”y>. Also, if ¥ = 0 (when the quadratic form is positive
definite and the Eisenstein series is holomorphic), this function is identically zero
for y < 0, and equals a constant times y™/2~1e=2"Y for y > 0. Note that the

behavior as y — oo is the same for ¥ = 0 and k¥’ > 0, but the behavior as y — 0
differs dramatically. [

Lemma 4.2. Ifc,(y) denotes the nth Fourier coefficient at infinity of Ex —0, then
fory >0, we have

enly) = O(y~™/*).

Proof. First, we note that by Corollary 3.6, at every cusp either Ex — 6 has no
zero-th Fourier coefficient, or has a zero-th coefficient consisting only of a term of
the form cy'~™/2, for some constant ¢. By the above lemma, at every cusp all the
other Fourier coefficients decay as y~*/2¢=2™ toward the cusp. This shows that
|Ex(2) — 0(K; Rg, 2)|?y™? is uniformly (in = and y) bounded on the fundamental
domain. Since it is invariant under I'o(NV), it is bounded on the entire upper half-
plane. Thus

en(y) = /O (Exc(2) — (K Roy, 2)) e{—2nakda < y~™/4.

This completes the proof of the lemma. [J

Let Ak (n) be the scalar in the nth Fourier coefficient of Ex at infinity, so that
by the results of the previous section,

1

(4.1) Ag(n) = ———=> ¢, (D)ay(n).
e (Nay (0) 2%

Let T,,(y) be the nth Fourier coefficient of (K; Rq, ) at infinity and a(n,n’) be the
number of simultaneous solutions of Q(¢) = 2n and Rg(¢) = n’ for lattice points
¢ € K. With this definition, we have

To(y) = Z a(n,n')e 2™y,

n/

Also r¢(K,2n) =3, a(n,n’). By the two lemmas above we have

To(y) = Ax (n)y* "™ Wi (ny) + cn(y)
= A (n)y " Wi (ny) + O(y~™/*)
= Ax (n)y' =" 2 Wi 1 (0) + O(ny*~™/2).

Note that the leading term here is not zero.
Our goal is to prove the following proposition.
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Proposition 4.3. We have for fited n > 1,

(27T)m/2—1

PU20) = T )

AK (n)kak/ (0)

Proof. Let Sy (t) = r(K,2n) and S,(s) = Jo T t7°dS,(t), the Mellin transform of
the Riemann-Stieljtes measure dS,,(t). This clearly is analytic in some half-plane
o = Res > 0 because S, (t) is easily estimated as having polynomial growth in ¢.
We next make the trivial observation that

T, (y) = /0 T ermugg (1),

From these two formulas, it is easy to see that for s in some right half-plane

o [

- >{ Y

8)+I2

Sn(s) =

say. Now T}, (y) decays exponentially as y tends to infinity (because R¢(¢) is positive
definite, or by the formula above relating 7}, and S,, and realizing that S,, is non-
negative, monotonic and of polynomial growth) so I5(s) is entire. Furthermore,
from the above asymptotic formula for T),(y) as y — 0, we get, for o > m/2 — 3/2,
say,

(2m)°

L) =t —ma T

Ap (n)Wk,k/(O) + I{ (S),

where I](s) is analytic in this region. We now appeal to the classical Wiener-Ikehara
theorem [13].

The assumptions of that theorem are that the function S,,(¢) be monotone, non-
decreasing, locally bounded variation, vanish to the left of 1 and right continuous
and that the function gn(s) be continuous in a closed half-plane, except for a simple
pole (one-sided) on the real axis (in our case, at s = m/2 —1). Under these circum-
stances, one determines the asymptotic behavior at infinity of the function S, (t).
Clearly, we have established all (and more) of these hypotheses. Consequently, we
deduce
(27T)m /2—1

I'(m/2)

Dividing by t"/2~! letting t — oo we derive the proposition. [

Sn(t) ~ AK(n)Wk’k/(O)tm/2_l.
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By Proposition 2.4 and (4.1), we have

25/) o0 1—-m 1—-m
(4.2) p(K,2n>:WM§VcK(D)D Pxp (/)X (d)d 2,

d|n
where € = sgn(Wy 1/ (0)),

_ o)™ W (0)
PR T Tm)

(4.3)

and as in §3 for a prime ¢|dk,

Vq(2n) if qlldx,
CK(q) = qm/2 -1 e o
——— if ¢*||dk,
qm/2—1 —q
with N’ = cond ¥,
1—x ., (q)q ™/
L(m/2,x,,q) = =
( / N ) 1 — XN/ (q)q—m/Q

and a,, (0) is defined by

ay (0) = 2x(=D)gy , w(N/N)L(m/2,%) [ L(m/2,x,.9).
q|N/N’
q prime
To write (4.2) as a product over (finite) primes, we define pairs of local factors.
One part of each pair will come from the factor ¢, (N)a, (0) and the other from
the summation. Fixed a prime p, and set e = ord,(n). Define

1— 1-m/2\e+1
/ (X(p)p 1—m/)2 1fp|n, pJ(N,
(44)  pp (n) = 1—x(p)p
L+ e (D)X (/D)X , ()P D ET/D) i p|N
and ,
1—x(pp~™? ptN,
. B 1 _p2—m/2 . )
Kp | p—p2-m/2 if p|N/N
p/? if p| N’

and set . (n) = le,p (n)p’[’{’p.

Note that p’Kp(n) depends on n only via e and (#) and that each of these

local factors is positive.
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Corollary 4.4. With K and pr(n) as above,

p(K,2n) = PK o H pK7p(TL).

p prime

Proof. Let S(n) be the sum on the right hand side of (4.2). An arbitrary integer
n can be written as a product of two integers, one which is relative prime to N
and one all of whose prime factors come from N (i.e., which divides N°°). Let
(n/,N) =1 and n|N*°. We first develop a product formula for S(nn’). So,

S(nn') =Y e (DYDY 2x (' [dd)x , , (dd') (dd') "2,

D|N
d'|n’
d|n
Now
Xp(nn'fdd)x ,  (dd') = x5 (d)x , , (d)xp (nn [d)x ) (d)
= x(d)xp, (nn' [d)x,,, (d).
Thus
1—-m/2 —m —m
S(nn') = 3 x(d)d Y e (D)D'T (nn fd)x (A
d’|n/ D|N
d|n

= 5'(n")S(n, N),

say, where the dependence on N in S(n, N) is only in the range of summation and
not in the character x D The first sum is easily seen to be

) =TTo, 0= T s, o)
pln’ plnn’, ptN
as defined above, since p’Kp(n’) = p’Kp(nn’) forpt N.

For S(n,N), we have to work a bit harder. Note that a term in the d sum is
non-zero only if (n/d, D) = (d, N/D) = 1 and this can happen for only one term,
namely d = (n, D). For simplicity, let np = (n, D*). Then for any fixed prime
q|N,

S(n,N) =3 ¢, (DYD'"™2x (0 fnp)x y,, p (np)npy ™2
D|N

= > {e (DD (an frp)xy p (p)n ™
D|N/q

—m 1-m/2
+ e (D)D) ="/2x . (n' /ripg)X (W00,
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Let ¢°||n. Then npy, = ¢°np. Also, for D|N/q,
XDq(nn//an>XN/Dq(an)
= Xp (@ )xp (mn' [np)xy (00" /q°np) - X, 5 (€)X, p (RD) X4 (nD)
= Xp (' /np)xy,n(nD) - Xp (4)X y p, (47) - Xq(n1' /4" D)X, (D)
= Xp (' /np)x b (nD) - Xy, () - Xq(n0'/q°).
Thus, since ¢, (Dq) = ¢, (D)c, (q),

S N)= D" e (DYD'"2x (nn! fnp)xy p, (n0)np, "
D|N/q

{1 + e (@xq (n/a%)x
= P ,(MS(n, N/q).

Arguing inductively on the primes dividing N, we have

=117, ™

q|N

(qe)q(e—i—l)(l—m/Q) }

q

Since all primes p{ nN contribute nothing to the product,
Il #, ™
p prime

To complete the proof, we must show

c(N) H,O

K p prime
Since p(K,2n) > 0, p,. > 0 and pr(n) > 0 for any n € Z, we must have

m > (0. Because of these, we can ignore the sign contributions from any
K N

of the factors (e.g., the Gauss sum and €). Also, for a prime p|N/N’, we know
Ky >~ <1, ... ,1,77> 1 p<1,77’>

where <(_1)Z/2_1”> = <(_1)m;2_1’7’> = —1 and dg = p*nn'u® where u € Zy. So

for p|N/N’,

and thus L(m/Q,XN,,p) = 11’_’1’:%://22. (Note, for p|N, we have p|N/N’ if and only

p?||dk.) Hence, factoring the Gauss sum and the Dirichlet L-function and collecting
the terms we have
= II »%

K ( N p prime

C

as claimed. O
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65. Lattices of descent.

Now we fix an integral Z-lattice L of even rank m and odd level N’. For conve-
nience, assume L is scaled so that Q(L) C 2Z, Q(L) € 2nZ for any n > 1. Using
local constructions, we show L descends from a lattice of minimal level and dis-
criminant, then we construct chains of lattices from the minimal lattice to lattices
Ky in gen L; by counting how often an element of the minimal lattice lies in these
lattices Ky we obtain formulas for p(gen L, 2n).

Notation. Fix a prime ¢|N’ and set s = s(L,q) = [ord, N'/2]. Fix t > 2s + 1;
then by Lemma 1.2 of [12]

L:LO@---@L%H:@,... ,1,60>L---J_q28+1<1,... ,1,628+1> (mod ¢")

where the ¢; € Z — qZ, and the ith component, L; =~ i<1, e ,1,ei>, has rank
m; > 0. Let Hy; = ¢~ "La;, Hajp1 = ¢~ "Loj1. Thus

L=Hy®H ®qHy ®qHs® - ® ¢"Hoy ® q¢°Host1

where the Hs; are unimodular (mod ¢') and the Ha;yq are g-modular (mod ¢*).
Let

H; = b H r; = ri(L,q) = rank H;, n2i = 12i(L, q) = disc Ha;,

0<0<i
£=i (mod 2)

¢ g1 = ¢ 0541 (L, q) = disc Hyip1, pi = pi(L, q) = (%)

where ¢; = [r;/2]. (When r; = 0, set u; = 1.) Note that s,r;, u; are invariants of
gen L, and when r; is even, u; = 1 exactly when H; is hyperbolic modulo ¢ (here
H; is scaled by 1/q when i is odd).

Convention. When a lattice J has the property that the first Jordan component
of Jig) is q"-modular, we use the quadratic form ¢=*Q on the Z/qZ-space J/q.J.

Since the local constructions used in [12] are independent of whether @) is positive
definite or indefinite, we have the following three lemmas.

Lemma 5.1. Fiz a prime q dividing the level of L and let p;,7; be as above.
(a) Ifrag is odd or pas = —1, then there is a lattice K on V with ¢ K C L C K,
Ky =~ Ly for all primes p # q, and K has minimal level and discriminant
at q.
(b) If ros is even and pos = 1, then there is a lattice K¢ on V so that ¢°T1 K9 C
L C K% Kg ~ L’(Jp) for all primes p # q, and K? has minimal level and
discriminant at q.
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Furthermore, if rog is even, pss = —1 and pogi1 = 1 then
K(q):<1,... ,1,6K>, VYo(—€,) = —1.
If ros is even, pos = —1 = pgsy1 then

Kg) ~ <17 e ’1’€K> 1 q<1=elK>7 ¢q(€K) = (_GIK/Q) = -1

If rog 1s even and ps = 1 then
K(qQ) = <1’ T ’1’6K>’ ¢q(_fK) = M2s+1-

Finally, gen K is determined by gen L.

Remark. Since dy,, dx and df, differ by squares, their theta series are associated
with the same character x (although the modulus may differ between the theta
series).

Proof. See Lemma 3.1 of [12].

We construct descending chains of lattices K, Koy, ... , K such that K; € gen L;.
More notation. For ¢ fixed and r;, u; as above, set = pas, g’ = post1,
Tos/2 if 2|rog, p =1,

Tost1/2 if 2|ros, p=—1, u' =1,
(ros+1 —1)/2  if 24 roq,
rosi1/2—1  if 2lrog, p=p' = —1;
(qf = D)/[@"> + 1)@ =1)] i 2rag, p= g = —1,
a=ar,=1 (¢¢=1)/(¢"*-1) if 21 ros,
(¢ = 1)/[(¢""? = pp')(@™*~ 1 + )] otherwise;
A e O e DV (USRS DI CARA e b)

if 2|ros, p=p' = —1,
B=0Lq=1 ¢ (¢ 2=1)/(¢"?*-1) if 21 ras,
g (g™ = ) (@™ 2 ) 1™ = ) (@2 )]
\ otherwise;

and for w = +1,

(@2 D) /(@" P+ i 2 p= =
VW) =0gw) =3 (@27 fop) /(g™ + o) if 24,
(™2~ — ') /(™2 = ') otherwise.
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Lemma 5.2. Let the notation be as above, and let x denote the (primitive) char-
acter associated to O(K; 1) and to O(L;7). There exist sublattices Kos of K such
that qK C Koy C K and for allt € Z,

Ko~ (1,...,1,ms) Lg{1,... . 1,moi1) (mod ¢"),

where the first component has rank rog, and the second has rank rog41. In particular,
Kos € gen Log. Let P = preimage in K of rad K/qK, Pas = preimage in Kos of
rad Kos/qKos. (Scale Pys by 1/q in the case 2|ras, pas =1.) Let v € K — P.

(a) Suppose ras is odd or pas = —1. If ¢ 1 Q(x) then x & Pss and the proportion
of Kas such that x € Kog — Pas is y(w) where w = x4(Q(x)). If q|Q(x) then
the proportion of Kog such that x € Psg is o, and the proportion of Kog such
that x € Koy — Psy is 3.

(b) Suppose ros is even, pos = 1. If gt Q(x) then = is in none of the lattices Kss,
and the proportion of Ko such that qx € Pas — qKas is v(£1). If q|Q(x) then
the proportion of Kos such that x € Kos — Pas i .

Finally, if x € Ko then necessarily qx € Poy.

Proof. See the proof of Lemma 3.2 of [12].

Lemma 5.3. For0<j <2s+4+1, w=0,%£1, let

, ros +m if 7 is even,
T’j -

ros+1 +m if j is odd.

Set
q(Tj—T})/2(q7”j/2_luj) Zf2’7’3, w#O,
. q(rjfrj+1)/2(q(rj*1)/2 _|-wuj) Zf2 1’ T, W 7& 0,
viw)=vjwilia) =9 ri/2-1 :
q (g = ) (@ P ) if 2]y, w =0,
g i (gr = 1) if24rj, w=0.

For j > s, let Vo (w) = st(w); V2j+1(w) = V25+1(w). Let v € Kog —qKog; fix € > 0.
(a) Suppose x € Pas and set w = x4 (Q(x)/q). Then the proportion of chains
Kos, ..., Kq such that ¢"z € Ky is %

(b) Suppose x & Pas and set w = x4 (Q(z)). Then the proportion of chains

Vasg (w) :

Proof. See the proof of Lemma 3.6 in [12].

Now we can prove
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Theorem 5.4. Suppose m = rank L is even, m > 6, and (—1)"/2dy, =1 (mod 4).
For n € Z4, the measure of representation is p(L,2n) = PL oo 11, PL g (n) where
= Py oo U8 defined by (4.3) for a
minimal lattice K and for fixed q # oo, pLyq(n) is defined as follows:

_ym/
Let x(*) = (sgn*)* (%), the character of the theta transformation for-

mula which has (odd) conductor. Let vj(w) = v;(w; L, q) be as defined in Lemma 5.3,

and let o = pay (L, q), ' = pzgs1(Lyq). Then for e = ordy(n), e = ("4°),

the product is over all finite primes q and p, __

P (M) =vi(e Lg)g" ™2+ N gm0, L, q).
0<t<e

Proof. We argue by induction on the number h of primes ¢ such that L does not
have minimal level and discriminant at ¢q. If h = 0, that is if L has minimal level
N and discriminant then the statement of the theorem follows immediately from
Corollary 4.4 (after deciphering the notation).

Our induction hypothesis has two parts. The first is that the theorem holds
for all lattices which have fewer than A primes at which the lattice does not have
minimal level and discriminant. Let L be a lattice with A such primes. Fix such a
prime ¢ and let K be as in Lemma 5.1. Note that PLoe = Proo since this factor
only reflects the signature of Q. If ro5 is odd or 4 = —1 then K has minimal level
and discriminant at ¢, and the induction hypothesis (and the fact that the local
structure of K and L agree for primes p # ¢) implies

p(K7 2”) = Prq (n) "PLoo H pL,p(n)
pFq

where p . q(n) is as in (4.4) and p, p(n) is as in the statement of the theorem to be
proved. If ro5 is even and pu = 1 then K9 has minimal level and discriminant at q,
and the induction hypothesis again implies

p(Kq,27’L) = qu,q(n) ’ pL,oo H pL,p(qn) = XN(Q)qu,q(n) ’ pL,oo H pL’p(n)
p#q p#q

where qu7q(n) is defined as in (4.4) and pL’p(n) is as in the theorem to be proved.

The second part of our induction hypothesis is that for all lattices J which
have fewer than h primes at which the lattice does not have minimal level and
discriminant there is an approximate Fourier series expansion in the form

M)

0(J; R, 2) = 1+ A (0)y'~™/*W;, 1 (0)

T'(m/2) e
(2m)m/2=1 Wy, 1 (0) ,;p(‘]’ 2n)y' " Wi ke (ny)e{2n}.

(5.1)
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By Corollary 3.6, this is true for J = L if L has minimal level and discriminant (and
so starts the induction for this part of the hypothesis). This is essentially equivalent
to the theta function being L?-equivalent to an Eisenstein series.

For notational simplicity, let ey(v) = <%>, e1(v) = <%> and €_1(v) =
(qQ(v)>

-
Case 1. First consider the case that either 2 t ro5 or p = —1; so K, L lie in the
same quadratic space. Assume s > 1. For e = £1, w =0, 1, set

V2£+1(w) V2e(0) o v20-1(0)
Aelw) = V25+1(w) V2s(0) +{ f) v2s41(0)’
Bafe) = 2(6) 249 4 (1 = ey 2221

vas(€) vas+1(0)
(Here the notation is as in Lemmas 5.2 and 5.3; we take v_;(x) = 0.) Fix £ > 0,
and let P = preimage in K of rad K/qK. Then from Lemmas 5.2 and 5.3we have:

(a) For v € K — P and ¢|Q(v), the proportion of Ky in K containing ¢‘v is
Ag(er(v)).

(b) For v € K — P and q { Q(v), the proportion of Ky in K containing ¢‘v is
By(eo(v))-

(c) For v € P — gK and ¢|Q(v), the proportion of Ky in K containing q¢‘v is
vaetr1(€1(v))
vast1(€1(v))”

Since K satisfies our induction hypothesis, 0(K; Rq,z) has an approximate
Fourier expansion of the type in (5.1). But then this must also be true for any theta
function derived from 0(K; Rg, z) via the action of any of the Hecke operators since
they act on Fourier series by definition and also map L? to L?. Consequently, by
Proposition 3.1, 8(P; Rq, z) has such an expansion.

Furthermore, if J is any lattice which has such a Fourier expansion, then
the constant term in the nth Fourier coefficient of 6(J; RQ,Z)|Bq is given by

¢ ~™/2p(J,2n/q). Since 0(J; RQ,z)‘BSZ = 0(¢"J; Rq, 2), we have
(5.2) p(g"J,2n) = =™ p(J,2n/¢%).

In particular, this formula holds for J = K and J = P.
Let 6 denote the number of K constructed via Lemma 5.3from K. Each Ky lies
in gen L, so by Proposition 1.4,

21
0(L; Rg,2) = 5 > 0(Ko; R, 2).
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On the other hand, we have by Lemma 5.2 and Lemma 5.3and cases (a)-(c) above,

1 S
= D, 0(KoiRg,2) = 0(¢""' K; Rg, 2)
KoCK

Y Y Ada) Qe +iRg(d vy
0§£<s+17}q€‘g@§3

+ 3 Y Beleo) efQlg‘v)x +iRq (g o)y}
0<l<s+1 }(}5{(1})

D DY aei | U))e{Q(qﬁv)xHRQ(qev)y}

v (v
0<t<s+1veEP—qK 25+1 (€1(v))

For any ¢ > s, Ay(x) = By(x) = 1 and v9p41(%) = vas11(%). This means that the
above formula holds with s+ 1 replaced by any larger integer s’. In fact we can let
such a s’ tend to infinity and derive

(5.3)
0(L; Rq, 2) —1+Z Z Ay (e1(v) e{Q(v)¢* = + iR (v)g* v}
(>0 veEK —
qIQ(v)
+3 ) Bi(eo(v) e{Q(v)¢* 'z + iRq(v)g* v}
>0 veK
@#Q(v)
vart1 (€1(v)) 2¢ ‘R 20
P L (O iR )

For each fixed ¢, each of the summands on the right of the above formula can
be written as 6(K; Rg,z) and/or 0(P;Rg,z) acted on by an appropriate alge-
braic combination of the standard Hecke operators Uy, By, X4, T,,. For example, if

Tu(0) = 30, (+(2) Xy + 1= U,B,) B2, then

> e{Q)¢*z +iRg(v)g*y} = (0(K; Rg, z) — 6(P; R, 2)) T (¢)
veK—P

7|Q(v)
€1 (U)::tl

By the second part of the induction hypothesis, observing how the corresponding
Fourier expansions and L? functions change under these operators, we can replace
the right hand side of (5.3) above by an approximate Fourier series involving the
representation numbers for K and P. This shows that L satisfies the second part
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of our induction hypothesis. More explicitly, if e = ord,(n) and € = <2n/ qe>,

Lemma 4.2 implies

Ai(€) (p(¢' K, 2n) — p(q" P, 2n))
+ 251 (p(q' P, 2n) — plq' T K, 2n))

v2s+1(e)
+ ZO§£<t Ay(0) (P(qua 2n) — P(qeR 2”))
p(L,2n) = + > o<i<t Z;Ziiggg (p(¢"P,2n) — p(¢"™' K,2n)) if e=2t+1,
Bi(e)p(q' K, 2n)
+ ZO§£<t AZ(O) (P(QEK7 2”) - P(qu 2”))

+ > 0<e<t Vae1(0) (p(¢"P,2n) — p(¢"™ K,2n)) if e = 2t.

v2s+1(0)

\

Our next step is to simplify this formula.
First note that for e = 2t + 1, p(¢*1K,2n) = 0 and so its term in the above
formula can be ignored. Next, suppose the ¢ 1 N so that P = ¢K and

(5.4) p(q"P,2n) = p(¢" K, 2n)

for 0 < ¢ < t. This implies that the summations involving the vp4; terms vanish
identically.

It turns out that the same thing happens for ¢|/N. If e < 1 then these sums are
empty. We will show that if e > 2, and 0 < ¢ < ¢, then (5.4) holds and again the
sums vanish. To see this, let ¢’ be a prime associated to ¢ as in (3.1). Then, as
discussed in the proof of Proposition 3.1, we know that

6(K; Ro, 2)| T = 6(M; Ry, 2)

where M, ~ Ké) for all primes p # ¢/, Mgy ~ K. Since 0(M;Rq,z) is
derived from K via a Hecke operator, the remark above concerning the approxi-
mate Fourier expansion for §(M; Rg, z) and Corollary 4.4 imply that p(M,2n) =
P oo [l r Mp (n) where our conditions on ¢’ give us

) prp(n)  forptN
Parp (M) =
Mo pp@n) for p|N

| rg,lan)  forp#g,
Pr ldn) forp=gq.
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We have the constant part of the nth Fourier coefficient of 6(M; RQ,z)|Bq is
given by ¢'=™/2p(M,2n/q). Because

I

6(P; Ro, 2) = 6(K; Ro, )| ((1 +¢" )T B, — ql_m/ZUqu>

%

(1+¢""™%)0(M;Rq,2)|By — ¢""™/*0(K; Rq, z)|U, By,
we have
p(P,2n) = (14 ¢"~"/%)¢" =™/ p(M, 2n/q) — ¢' =™/ p(K, 2n)

if gln and is zero otherwise.
Consequently, for e > 1, Proposition 3.1 and (4.4) give us

p/p,q(") =¢* " + CK(CI)Xq(n/qe)XN/q(qe)q(l—m/2)(e+1)

. ((1 + ¢ )X (€)X N (@) — qlfmﬂ) '

Again using the conditions on ¢’, we find that
X (@)X, 10 (@) = Xo (@)X, (@) = x(d) = 1.

So, for g|N and e = ord,(n),

/ 0 if€:07
p (n)= o e e\, (1—m/2)(e— :
Pal = o (14 e @ralnfad)ny, (602D e 1,

Thus, if e > 2, pp,(n) = ¢ "p ,(n/q?) from which we see that p(P,2n) =
> ™p(K,2n/q?). This and (5.2) imply that if e > 2 then (5.4) holds for 0 < £ < t
as claimed.

Using this information to simplify our formula for p(L,2n), we get

( A(€)qP=™ (p(K,2n/q?) — p(P,2n/q?"))
+ vart1(€) q(2—m)tp(P7 2n/q2t)

v2s+1(€)
+ D 0<ier Ae(0)g ™ (p(K, 20/ ) — ¢* =" p(K, 20/ 7))
L2 = ife—2+1,
By(e)q®~™"p(K,2n/q?)
+ Y ocrcr A(0)g 2™ (p(K, 2n/¢%) — 2~ p(K, 2n/*+2))
if e = 2t.
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As before, e = ord,(n) and € = (%).

Extracting the ¢ local factor, we have

p(L,2n) = | ppe o 11 i, () | P, (),

p prime
PF#q
where
At(f)q(2—m)t (pK’q (n/th) _ pP,q (n/th))
R o, (n/g*)
+ Zoge<t AK(G)q(Q—m)E (pK,q (n/q*) — q2_mpK,q (n/q2e+2)>
pp.g(n) = ife=292t+1,

By(e)q*™'py  (n/q*)

+2 o<t Ag(0)gBm* (pK,q (n/q*) — q2_mpK,q (n/q2€+2))
if e = 2t.

\

To complete the proof in this case, we need to separate a couple of cases. When
q 1 dr, we have ry, is even, p = —1,u" =1, x, = 1 and x (q) = x(q) = pp’ = —1;
also, P = ¢K. So for e = 2t + 1, ppq(n/q2t) = 0. When ¢||dx, we have ras is odd,

Xq(¥) = (+/q),

Xy (@) = (ﬁ) = ¥q(No) = ¥g(dic /q) = put’,

and cK(q) = 1;(2/q); so for e = 2t + 1,
apK7q(n/q2t) + (1 _ a)pp,q(n/q%) _ q2—m(qd + EM/),()/Il(ﬂ _ q3/2—m(qd +€,u'),

where d = (ros11 — 1)/2. When ¢?||dk, we have rq, is even, u =y’ = —1, Xq = 1,

Xpq(@) = (Nio) = Yq(—=No) = ¥g(—dk /q*) = pp' =1
and ¢, (q) = (¢™/? —1)/(q™/*7! — q); so for e = 2t + 1,

1-m¢,.d m/2—1 _
g "(g° +1)(q 1)
ap ,(n/d*) + (1 —a)p, (n/q*) = 2 o

— ql—m(qd—l + 1)’

»q
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where d = rogy1/2 — 1.

Using these observations and the formulas for A, and By, one performs straight-
forward computations to show p L’q(n) is as claimed in the theorem.
Case 2. Now suppose o4 is even and pu = 1; so L, Ky and K9 lie on V. While K is
not integral, K7 is integral and K E]q) is unimodular. Thus, our induction hypotheses
apply to K9, a lattice on V4. Set

. var(w) v20-1(0) el v20—-2(0)
Ap(w) = e (@) +ﬁl/23+1(0) + (1 ﬂ)—VZS(O) :
and
Bilw) =7 21E) 4 (1 222D
Vos+1(w) v25(0)

As in the preceding case, for £ > 0 Lemmas 5.2 and 5.3give us:
(a) For v € K9 — gK1, q|gQ(v), the proportion of K¢ in K9 containing q‘v is
Ag(eo(v)).
(b) For v € K9 —qK9, g1 qQ(v), the proportion of K in K9 containing ¢‘v is 0
if =0 and By(e_1(v)).
Thus

1
5 Z 0(K5; Rg, 2) = 9(q8+1Kq;RQ7Z)
KoCK

+ Y Y Ar(eo(v) e{gQ(q v)x + igRg(q v)y}
e

+ > Y Bi(e1(v) e{qQg"v)z + igRo(q"v)y}

vEK—qK 1</<s
a1qQ(v)

where 0 is the number of Ky in K. We have L € gen K so an argument similar
to that when 755 is odd or u = —1 gives us:

( Ai(e)gP™ (K, 2n/¢?")

+ Y A(0)g—m)e (P(Kq,Qn/q%) _ qQ—mp(Kq72n/q2£+2))
0<e<t

if q2t+1Hn,
p(L9,2n) = { By(e)q?™tp(K1,2n/q?)
+ > Ag(0)gme (p(K7,2n/¢%) — ¢>~™p(K9,2n/q2+2))

0<r<t
if ¢*[In, t > 1,
(0 if g1n
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where e = ord,(n) and € = (%). By hypothesis,

PKY2n) = Xy (0)pgea (1) - pp oo [ 21, (0/0)
p#q

and hence (as in Case 1)

p(L92qn) = p,  [Tppa, (an)

p
where
/ 27m t 2t
A(e)g® ™ p e, (an/*)
+ 3 Ag(0)gBmm <qu Jan/*) =@ "o, (an/ q%“))
0<e<t ’ ’
if ¢**|In,
Proglan) = 4§ Bu(€)d® ™', (an/q™)
+ 3 Ad0)gC ™ (e (an/a*) = 0y (an/a2 )
0<e<t ’ ’
if ¢?=Ln, t > 1,
(0 otherwise
We know that ) -
, R O ) i S
quq(n) o 1— 1-m/2
) Xy (@)q
and
Prea g (M) 0*) = @ " prea  (0/ ) = 14 X (@)™

where x \;(q) = pp' = p/. Also, from the definition of the measure of a representa-
tion, we find that
p(L7,2qn) = q'~™/?p(L,2n).

Thus
p(L,2n) = ¢™/*" ' p(L7, 2qn)

" an) oy T e, (an)
p#q

XN (Q)qu’q (qn) ’ pL,oo (n) H pL,p (n)

P#q
=y oo L1 P21, ()
P

=4q

— qm/2—1
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where p, q(n) is as claimed in the theorem. [
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