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Preface

The problems herein are designed to lead the students through the process of deducing
the rules of integer arithmetic (§1), patterns among certain sums of natural numbers (§2),
the Euclidean algorithm, the Fundamental Theorem of Arithmetic, the fact that there are
infinitely many primes (§3), and some results using congruences (§4). In §2 the students
are introduced to the technique of induction, which is also used in §3 and §4.

We begin with very minimal assumptions, namely: We agree we understand what the
natural numbers 1, 2, 3, 4, 5, etc. represent. We also agree that, given a (finite) collection
of objects, the number of objects we have does not depend on the order in which we count
them. Also, we agree we understand what it means for one natural number to be larger
or smaller than another.

When designing these problems, my intents were to change my role as instructor from
“oracle” to “facilitator,” to allow the students to work through the mathematics at their
own pace and to discover things themselves, and to give them a clearer idea what it is we do
as mathematicians – which is to deduce things and then to explain clearly our deductions.

One does not need to work through the material in the order in which the problems
are organized, especially as doing so may be boring. However, when working problems
from §2–4, one typically needs some results from §1. The instructor using this material
can choose the amount of class time devoted to lecture, the amount of class time during
which the students, individually or in groups, work through problems or present solutions.
I perceive the greatest burden on the instructor to be the amount of time needed to read,
listen and respond to the students’ explanations. I strongly encourage instructors to have
their students rewrite explanations when necessary or useful.

Many of these problems progress from specific examples to the general case. I recom-
mend the students first work through the specific cases, get feedback from the instructor,
then work through the first step generalizing the situation, get feedback, then work through
the next generalization, get feed back, etc. I also believe it would be helpful to have each
students take some of the correctly completed problems and prepare a (written or oral)
presentation, identifying first the conclusion to be drawn, followed by an outline of the
process, finishing with a thorough, clear and compelling series of deductions leading to the
conclusion.

There is likely to be more than enough material here for a semester course. Please
tell me of any typo’s I have missed. Also, I appreciate all constructive remarks regarding
these exercises. My email address is: walling@boulder.colorado.edu
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A BEGINNING COURSE IN ARITHMETIC AND NUMBER THEORY

Instructions: You are encouraged to discuss your point of view with others (including

the instructor) while you work on these assignment. Write clear, organized arguments,
using complete sentences. If the instructions ever seem unclear or if you are stuck, ask
the instructor for clarification or help. (Remember that you are encouraged to visit the
instructor during office hours, and you are exhorted to make an appointment if you need
to talk to the instructor but you cannot make it to office hours!)

Assumptions: We agree we understand what the numbers 1, 2, 3, 4, 5, etc. represent.
(The latin abbreviation “etc.” indicates that the list extends indefinitely.) These numbers
are called the counting numbers, since we use them to count things; they are also called
the natural numbers, since they arise naturally in our lives. We also agree that, given a
(finite) collection of objects, the number of objects we have does not depend on the order
in which we count them. Also, we agree we understand what it means for one natural
number to be larger or smaller than another.

§1. Rules of Arithmetic and Divisibility.

In this section we develop some basic rules of arithmetic.

A definition of addition: Imagine drawing 3 dots of one color followed by 5 dots of
another color; we agree that 3 + 5 is the total number of dots. More generally, let m and
n represent natural numbers. Imagine drawing m dots of one color followed by n dots of
another color; we agree that m+ n is the total number of dots.

Another assumption: We assume that when we add together two natural numbers, we
obtain another natural number. For instance, 3 + 5 is 8, which is another natural number.

1.1. In this exercise we want to establish that addition is “commutative;” that is, we want
to explain why 3 + 5 is the same as 5 + 3. More generally, we want to explain why,
given two natural numbers m and n, m+n is the same as n+m. (So do not assume

that addition is commutative; this is what we want to deduce!)

(a) On one line, draw 3 dots of one color, followed by 5 dots of another color. (So
you have drawn 3 + 5 dots.) Now turn your paper upside-down; thus you are
looking at 5 dots of one color followed by 3 dots of another color, for a total of
5 + 3 dots. Use this to explain why 3 + 5 is the same as 5 + 3.

(b) Follow the argument used in (a) to explain why 7 + 12 is the same as 12 + 7. Is
it important here that the numbers are 7 and 12, or could this argument work
with any two natural numbers?
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(c) Let n represent a natural number. According to the above definition of addition,
how can you describe the meaning of 3 + n? How can you describe the meaning
of n+ 3? Do 3 +n and n+ 3 represent the same quantities? Clearly explain your
reasoning.

(d) Let m and n represent natural numbers. According to the above definition of
addition, how can you describe the meaning of m+n? How can you describe the
meaning of n+m? Do m+ n and n+m represent the same quantities? Clearly
explain your reasoning.

Notation: We sometimes use parentheses to indicate in which order to perform operations.
For instance, the expression (3 + 5) + 9 denotes the number we obtain by first adding 3 to
5, then adding 9 to the result. (So (3 + 5) + 9 is the same as 8 + 9.) Pictorially, (3 + 5) + 9
denotes the number of dots we have when we have 3+ 5 dots followed by 9 dots. Similarly,
3 + (5 + 9) denotes the number we obtain by adding 3 to the number obtained by adding
5 to 9. (So 3 + (5 + 9) is the same as 3 + 14.) Pictorially, 3 + (5 + 9) denotes the number
of dots we have when we have 3 dots followed by 5 + 9 dots.

1.2. In this exercise we want to establish that addition is “associative;” that is, we want
to explain why (3 + 5) + 9 represents the same quantity represented by 3 + (5 + 9).
More generally, with k,m and n denoting natural numbers, we want to explain why
(k + m) + n represents the same quantity represented by k + (m + n). (So do not
assume that addition is associative; this is what we want to deduce!)
(a) On one line, draw 17 dots. Draw a circle around the first 3 + 5 dots. How many

dots are outside the circle? Explain why this picture represents (3 + 5) + 9 dots.
(b) Again, on one line, draw 17 dots. Draw a circle around the last 5 + 9 dots. How

many dots are outside the circle? Explain why this picture represents 3 + (5 + 9)
dots.

(c) Using (a) and (b), explain why (3+5)+9 represents the same number represented
by 3 + (5 + 9).

(d) Suppose n represents a natural number. How could you draw a picture repre-
senting (3 + 5) + n dots? How could you draw a picture representing 3 + (5 + n)
dots? Are there the same total number of dots in each picture? Explain your
reasoning.

(e) Suppose m and n represent natural numbers. How could you draw a picture
representing (3 + m) + n dots? How could you draw a picture representing 3 +
(m+ n) dots? Are there the same total number of dots in each picture? Explain
your reasoning.
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(f) Suppose k,m and n represent natural numbers. How could you draw a picture
representing (k + m) + n dots? How could you draw a picture representing k +
(m+ n) dots? Are there the same total number of dots in each picture? Explain
your reasoning.

A definition of multiplication: The expression 5 · 8 refers to the quantity obtained by
taking 5 copies of 8 objects. More generally, say m and n represent natural numbers; the
expression m · n refers to the quantity obtained by taking m copies of n objects.

Another assumption: We assume that when we multiply together two natural numbers,
we obtain another natural number. For instance, 5 · 8 is 40, another natural number.

1.3. For later convenience, we want a pictorial description of multiplication.
(a) Imagine 5 rows of dots, with 8 dots in each row. Using the above definition of

multiplication, explain why the total number of dots is 5 · 8.
(b) Imagine 11 rows of dots, with 7 dots in each row. Using the above definition of

multiplication, explain why the total number of dots is 11 · 7.
(c) Let n denote a natural number. Imagine 5 rows of dots, with n dots in each row.

Using the above definition of multiplication, explain why the total number of dots
is 5 · n.

(d) Let m and n denote natural numbers. Imagine m rows of dots, with n dots in
each row. Using the above definition of multiplication, explain why the total
number of dots is m · n.

1.4. In this exercise we want to establish that multiplication is “commutative;” that is,
we want to explain why 5 · 8 represents the same quantity as represented by 8 · 5.
More generally, with m and n denoting natural numbers, we want to establish that
m · n represents the same quantity as n ·m. (So do not assume that multiplication
is commutative; this is what we want to deduce!)
(a) On a piece of paper, draw 5 rows of dots, with 8 dots in each row. Align the rows

so that you have 8 columns of dots. (So the total number of dots is 5 · 8.) Now
turn the paper sideways. How many rows of dots do you see? How many dots
are in each row? Explain why this picture shows 8 · 5 dots; then explain why 5 · 8
represents the same quantity as 8 · 5.

(b) Clearly explain why 7 · 3 represents the same quantity as 3 · 7.
(c) Let m represent a natural number. Clearly explain why m ·8 represents the same

quantity as 8 ·m.
(d) Let m and n represent natural numbers. Clearly explain why m ·n represents the

same quantity as n ·m.
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Notation: The notation (3 · 5) · 9 refers to the quantity obtained by muliplying 3 · 5 by
9. (So (3 · 5) · 9 is the same as 15 · 9.) Similarly, 3 · (5 · 9) denotes the quantity obtained
by multiplying 3 by the quantity 5 · 9. (So 3 · (5 · 9) is the same as 3 · 45.) More generally,
with k,m and n denoting natural numbers, (k ·m) · n denotes the quantity obtained by
multiplying the quantity k ·m with n. Similarly, k · (m · n) denotes the quantity obtained
by multiplying k by the quantity m · n.

1.5. In this exercise we want to establish that multiplication is “associative;” that is, we
want to explain why (3 ·5) ·8 represents the same quantity as 3 ·(5 ·8). More generally,
with k,m and n representing natural numbers, we want to explain why (k · m) · n
represents the same quantity as k · (m · n)

(a) Take 3 small pieces of paper; on each piece, draw 5 rows of dots, with 7 dots in
each row. Explain why the total number of dots on these 3 pieces of paper is
5 · 21. (Suggestion: Arrange the pieces of paper side by side, so that you see 5
rows of dots with 21 dots in each row.)

(b) As in (a), take 3 small pieces of paper; on each piece, draw 5 rows of dots, with 7
dots in each row. Explain why the total number of dots on these 3 pieces of paper
is 15 · 7. Then using (a), explain why 5 · 21 is the same as 15 · 7.(Suggestion:

Arrange the pieces of paper so that you see 15 rows of dots.)

(c) Let n be a natural number. Explain why 5 · (3 · n) is the same as 15 · n.

(d) Let k and n be natural numbers. Explain why k · (3 · n) is the same as (k · 3) · n.

(e) Let k,m and n be natural numbers. Explain why k ·(m·n) is the same as (k ·m)·n.

Remark: One can also show k · (m ·n) is the same as (k ·m) ·n using a 3-dimensional
argument, or by simply describing the sort of situation depicted in (a) in two different
ways.

1.6. We want to explore the claim that “multiplication distributes over addition.” Certainly
3·(2+5) is the same as 3·2+3·5. (Here we agree that in the absence of any parentheses,
we perform the multiplicative operations before we perform the additive operations;
so to evaluate 3 · 2 + 3 · 5, we first evaluate 3 · 2 and 3 · 5, and then we add together
the two resulting numbers.)

(a) To help address the claim in question, create 3 rows of dots, each row containing
2 + 5 (i.e. 7) dots. Now draw a vertical line so that 2 dots in each row are to the
left of the line. What is the total number of dots to the left of the line? What
is the total number of dots to the right of the line? Explain how this picture
demonstrates that 3 · (2 + 5) is equal to 3 · 2 + 3 · 5. Explain your reasoning.

(b) Use a similar picture to show 6 · (4 + 7) is the same as 6 · 4 + 6 · 7.
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(c) Use a similar picture to show 9 · (11 + 15) is the same as 9 · 11 + 9 · 15.
(d) Say k represents a natural number. Explain why k ·(2+5) is the same as k ·2+k ·5.

(Suggestion: Modify your argument from (a).)
(e) Say k and m represent natural numbers. Explain why k · (m+ 5) is the same as

k ·m+ k · 5.
(f) Say k, m and n represent natural numbers. Explain why k · (m+ n) is the same

as k ·m+ k · n.

Notation: When two expressions denote the same quantity, we say they are equal. We
use the symbol = to mean “is equal to.”

1.7. Now we determine how to multiply together two sums.
(a) On a separate piece of paper, draw 5 rows, each with 5 dots. What is the total

number of dots? Now draw a horizontal line so that 4 of the rows are above the
line, and 1 of the rows below. Now draw a vertical line so that 4 columns of dots
are to the left of the line, and 1 column is to the right. Using scissors, cut on
your lines. Rearrange these four pieces of paper into 3 rectangles, so that one
rectangle has 4 rows, each with 4 dots, one rectangle has 2 rows, each with 4 dots,
and one rectangle has 1 row of one dot. How many dots are in each rectangle?
Explain why this means

5 · 5 = 4 · 4 + 2 · 4 + 1.

(b) Modify the argument used in (a) to deduce that

7 · 7 = 6 · 6 + 2 · 6 + 1.

(c) Let n represent a natural number. Modify the argument used in (a) to deduce
that for n a natural number,

(n+ 1) · (n+ 1) = n · n+ 2 · n+ 1.

(Suggestion: Draw a picture.)
(d) Let m and n representa natural numbers. Modify the argument used in (a) to

deduce that for n a natural number,

(n+m) · (n+m) = n · n+ 2 · (n ·m) +m ·m.

(Suggestion: Draw a picture.)
(e) On a separate piece of paper, draw 5 rows, each with 5 dots. What is the total

number of dots? Now draw a horizontal line so that 3 of the rows are above the
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line, and 2 of the rows below. Now draw a vertical line so that 1 column of dots
are to the left of the line, and 4 columns are to the right. Using scissors, cut on
your lines. (So you now have 4 rectangles.) How many dots are in each rectangle?
Explain why this means

(3 + 2) · (1 + 4) = 3 · 1 + 2 · 1 + 3 · 4 + 2 · 4.

(f) Use the method of (e) to deduce that

(3 + 5) · (2 + 4) = 3 · 2 + 5 · 2 + 3 · 4 + 5 · 4.

(Suggestion: Begin by drawing (3 + 5) rows, each with (2 + 4) dots.)
(g) Use the ideas used in (e) to deduce that, for k a natural number,

(k + 5) · (2 + 4) = k · 2 + k · 4 + 5 · 2 + 5 · 4.

(Suggestion: Draw a picture.)
(h) Use the ideas used in (e) to deduce that, for k and m natural numbers,

(k + 5) · (m+ 4) = k ·m+ k · 4 + 5 ·m+ 5 · 4.

(i) Use the ideas used in (e) to deduce that, for k,m and n natural numbers,

(k + n) · (m+ 4) = k ·m+ k · 4 + n ·m+ n · 4.

(j) Use the ideas used in (e) to deduce that, for k,m, n and t natural numbers,

(k + n) · (m+ t) = k ·m+ k · t+ n ·m+ n · t.

Terminology: Since 24 = 6 · 4, we say 24 is divisible by 6. We also say that 6 divides 24,
and that 6 is a divisor of 24. Similarly, since 27 = 9 · 3, we say 27 is divisible by 9, and
9 is a divisor of 27. More generally, when n is a natural number that is equal to 6 times
another natural number (i.e.

n = 6 · k

for some natural number k), we say that n is divisible by 6 and that 6 is a divisor of n.
More generally still, when m and n are natural numbers and n is equal to m times another
natural number (i.e.

n = m · k
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for some natural number k), we say that n is divisible by m and that m is a divisor of n.
Notice that the equation n = m ·k means n objects can be partitioned into m groups, each
with k objects. Equivalently, since m · k = k ·m, the equation n = m · k means n objects
can be partitioned into k groups, each with m objects.

1.8. We want to compare the size of a natural number to the size of one of its divisors.

(a) Certainly 10 is a natural number that is divisible by 2. How do 10 and 2 com-
pare in size? (That is, which is larger/smaller?) Explain your reasoning, using
complete sentences. (Suggestion: Imagine partitioning 10 objects into groups of
2.)

(b) Also, 18 is a natural number that is divisible by 2. How do 18 and 2 compare in
size? Explain your reasoning, using complete sentences.

(c) Suppose n is a natural number that is divisible by 2. How do n and 2 compare
in size? Explain your reasoning, using complete sentences. (Note that n could
be 2, since 2 = 2 · 1. Also, remember that the assumption that n is divisible by
2 means n objects can be partitioned into groups of 2.)

(d) Suppose n is a natural number that is divisible by 3. How do n and 3 compare
in size? Explain your reasoning, using complete sentences.

(e) Suppose n is a natural number that is divisible by 10. How do n and 10 compare
in size? Explain your reasoning, using complete sentences.

(f) Suppose n is a natural number that is divisible by m. How do n and m compare
in size? Justify your answer, using complete sentences.

1.9. (a) Suppose that b is a natural number that is divisible by 5. Is 5 + b divisible by 5?
If so, explain why 5 + b satisfies the definition of divisibility by 5; if not, explain
why not. (You may want to use your result from #1.6 (f).)

(b) Suppose still that b is a natural number that is divisible by 5. Is 10 + b divisible
by 5? If so, explain why 10 + b satisfies the definition of divisibility by 5; if not,
explain why not.

(c) Suppose still that b is a natural number that is divisible by 5. Is 15 + b divisible
by 5? If so, explain why 15 + b satisfies the definition of divisibility by 5; if not,
explain why not.

(d) Suppose that a and b are natural numbers, each of which is divisible by 5. Is a+b

divisible by 5? If so, explain why a+ b satisfies the definition of divisibility by 5;
if not, explain why not.

(e) Suppose that a, b and c are natural numbers, and suppose that each a and b

is divisible by c. Is a + b divisible by c? If so, explain why a + b satisfies the
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definition of divisibility by c; if not, explain why not.

A definition of subtraction: Suppose we have 5 objects, then we subtract, or remove,
or eliminate, 3 of these objects; the remaining number of objects is denoted by 5 − 3.
Pictorially, imagine drawing 5 dots, then crossing out 3 dots; the remaining number of
dots is 5 − 3. More generally, suppose we have n objects where n is a natural number at
least as big as 3, and then we remove 3 of the objects; the remaining number of ojects is
n − 3. Pictorially, suppose we draw n dots and then we cross out 3 dots; the remaining
number of dots is n − 3. More generally still, suppose we have n objects, where n is a
natural number, and then we remove k of the objects where k is a natural number not
exceeding n; the remaining number of objects is n− k.

Another assumption: Suppose k and n are natural numbers, and suppose k is smaller
than n. Then we assume that n− k is another natural number. For instance, 5 and 3 are
natural numbers and 3 is smaller than 5; 5− 3 is 2, which is another natural number.

1.10. We want to explore the claim that “multiplication distributes over subtraction.” Cer-
tainly 3 · (7 − 2) = 15 = 3 · 7 − 3 · 2. (Here we agree that in the absence of any
parentheses, we perform the multiplication before we perform the subtraction; so to
evaluate 3 · 7 − 3 · 2, we first evaluate 3 · 7 and 3 · 2, and then we subtract 3 · 2 from
3 · 7.) More generally, for k,m, n natural numbers with m at least as large as n, we
want to show that

k · (m− n) = k ·m− k · n.

(a) Draw 3 rows, each with 7 dots. Then in each row, cross out the last 2 dots.
Explain why your picture now represents 3 · (7− 2) dots. (Recall how we defined
multiplication.) Now draw a vertical line so that the crossed out dots are to the
right of the line and the other dots are to the left. Explain why this picture
represents 3 · 7− 3 · 2.

(b) Let k be a natural number. Explain why k · (7− 2) = k · 7− k · 2.
(c) Let k,m be natural numbers withm at least 2. Explain why k·(m−2) = k·m−k·2.
(d) Let k,m, n be natural numbers with m at least n. Explain why k · (m − n) =

k ·m− k · n.

1.11. (a) Suppose m is a natural number, and suppose m + 12 is divisible by 3. Explain
why this means m is divisible by 3. (We can show m is divisible by 3 by showing
that m objects can be partitioned into groups of 3. Given m + 12 objects, can
these be partitioned into groups of 3? If so, why? How many groups give us 12
objects? Removing these 12 objects, with what are we left?)
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(b) Suppose m is a natural number, and suppose m + 12 is divisible by 6. Explain
why this means m is divisible by 6.

(c) Suppose m and n are natural numbers, and suppose n and m+n are each divisible
by 3. Explain why this means m is divisible by 3.

(d) Suppose m, n and d are natural numbers, and suppose n and m + n are each
divisible by d. Explain why this means m is divisible by d.

1.12. (a) Define ”zero”.

(b) When we have a line with 5 dots, what is the largest number of dots we can cross
out? How many dots would then be left?

(c) Say m and n represent quantities and n is at least as large as m. When is n−m
equal to zero? Briefly explain your reasoning.

(d) Using your definition of zero, explain why 0 · 5 and 5 · 0 should be zero; here 0
represents zero. (You may want to use our definition of multiplication for this.)
More generally, letting n represent any natural number, explain why 0 · n and
n · 0 should be zero.

Definition: We say a number is a whole number if it is a natural number or zero. So the
whole numbers are 0, 1, 2, 3, . . ..

(e) Say m and n are whole numbers, and m · n = 0. Clearly explain why either m or
n (or both) must be zero.

1.13. (a) Draw 9 dots, then draw one circle around 5 of these dots. Within this circle,
draw one circle around 3 dots. (So 5− 3 dots are in the big circle but not in the
small circle.) Now cross out the dots in the big circle but not in the small circle.
Explain why the number of dots not crossed out is 9− (5− 3).

(b) Using ink, draw 9 dots, then draw one circle around 5 of these dots. Within that
circle, draw one circle around 3 dots. Using a pencil, cross out the dots in the
big circle; this leaves you with 9 − 5 dots not crossed out. Now erase the cross
marks on the dots inside the small circle; so now you have (9 − 5) + 3 dots not
crossed out. Does this picture look the same as your picture created in (a)? Can
you conclude that 9 − (5 − 3) is the same as (9 − 5) + 3? Briefly explain your
reasoning.

(c) Let a, b and c denote natural numbers with a larger than b, and b larger than c.
Imagine drawing a dots; describe a process that leaves you with a− (b− c) dots
not crossed out. Explain your reasoning. (You may want to mimic the procedure
used in (a).)
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(d) Again, let a, b and c denote natural numbers with a larger than b, and b larger than
c. Imagine drawing a dots; describe a process that leaves you with (a−b)+c dots
not crossed out. Explain your reasoning. (You may want to mimic the procedure
used in (b).)

(e) Again, let a, b and c denote natural numbers with a larger than b, and b larger
than c. Using (c) and (d), compare the quantities a − (b − c) and (a − b) + c;
explain your reasoning.

Terminology: The numbers

0, 1,−1, 2,−2, 3,−3, 4,−4, 5,−5, . . .

are called the integers. The numbers

−1,−2,−3,−4,−5, . . .

are called the negative integers.

More assumptions: Negative numbers are often useful to express orientation, i.e. to
distinguish forward from reverse. We interpret the symbol − to mean “in reverse.” So for
instance, imagine being on a very long, straight path where a forward direction is indicated.
To take 5 steps, we move forward 5 steps. To take −5 steps, we move in reverse 5 steps
(so we move backward 5 steps). Notice that when you take 7 steps then −3 steps (i.e.
when you move forward 7 steps then backward 3 steps), then you are in the same place
as when you take −3 steps then 7 steps. Similarly, when you take 5 steps then −12 steps,
then you are in the same place as when you take −12 steps then 5 steps. More generally,
we assume that, for x and y integers, when you take x steps then y steps, you are in the
same place as when you take y steps then x steps. So we are assuming addition of integers
is commutative, i.e. x+y = y+x for any integers x and y. Also, when you take

(
7+(−3)

)
steps followed by 5 steps, you are in the same place as when you take 7 steps followed by(
(−3) + 5

)
steps. More generally, we assume that addition of integers is associative, i.e.

(x+ y) + z = x+ (y + z) for any integers x, y and z.

1.14. Throughout, let k and m represent natural numbers.

(a) After taking 7 + (−3) steps, have you moved forward or backward? How many
steps forward or backward are you from where you started? Deduce that 7 +
(−3) = 7 − 3. (To take 7 − 3 steps, what do you do? How does “backward”
compare to “eliminating”?)
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(b) Suppose k is smaller than 7. After taking 7+(−k) steps, have you moved forward
or backward? How many steps forward or backward are you from where you
started? Deduce that 7 + (−k) = 7− k. (To take 7− k steps, what do you do?)

(c) Suppose k is smaller than m. After taking m + (−k) steps, have you moved
forward or backward? How many steps forward or backward are you from where
you started? Deduce that m+ (−k) = m− k. (To take m− k steps, what do you
do?)

1.15. Here we establish that multiplication of integers is commutative. Throughout, let k
and m represent natural numbers.

(a) Recall that to draw 3 ·7 dots, we draw 3 copies of 7 dots. So we repeat the process
of drawing 7 dots, doing this 3 times. So to take 3 ·7 steps, we repeat the process
of moving forward 7 steps, doing so 3 times. Thus to take 3 ·(−7) steps, we repeat
the process of moving in reverse 7 steps, doing so 3 times. When we do this,
how many steps backward do we take? Explain why this means 3 · (−7) = −21.
(To take −21 steps, what do you do?)

(b) Similarly, to take k · (−7) steps, we repeat the process of moving in reverse 7
steps, doing so k times. When we do this, how many steps backward do we take?
Deduce that k · (−7) = −(k · 7). (To take −(k · 7) steps, what do you do?)

(c) Similarly, to take k · (−m) steps, we repeat the process of moving in reverse m
steps, doing so k times. When we do this, how many steps backward do we take?
Explain why this means k · (−m) = −(k ·m). (To take −(k ·m) steps, what do
you do?)

(d) Using the symbol − to denote “in reverse,” to take (−7) · 3 steps, we repeat the
process of moving forward 3 steps, doing so in reverse 7 times. So when we take
(−7) · 3 steps, do we move forward or backward? How many steps forward or
backward do we move? Briefly but clearly explain your reasoning. Deduce that
(−7) · 3 = −21.

(e) To take (−7) · k steps, we repeat the process of moving forward k steps, doing
so in reverse 7 times. So when we take (−7) · k steps, do we move forward or
backward? How many steps forward or backward do we move? Briefly but clearly
explain your reasoning. Deduce that (−7) · k = −(7 · k).

(f) To take (−m) · k steps, we repeat the process of moving forward k steps, doing
so in reverse m times. So when we take (−m) · k steps, do we move forward
or backward? How many steps forward or backward do we move? Briefly but
clearly explain your reasoning. Deduce that (−m) · k = −(m · k).
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(g) Use the fact that k ·m = m · k and your results from (c) and (f) to deduce that
k · (−m) = (−m) · k.

(h) Again we use the symbol − to denote “in reverse.” So to take (−3) · (−7) steps,
we repeat the process of moving in reverse 7 steps, doing so in reverse 3 times.
So when we take (−3) · (−7) steps, do we move forward or backward? How
many steps forward or backward do we move? Briefly but clearly explain your
reasoning. Then explain why this means (−3) · (−7) = 21.

(i) To take (−3) · (−m) steps, we repeat the process of moving in reverse m steps,
doing so in reverse 3 times. So when we take (−3) · (−m) steps, do we move
forward or backward? How many steps forward or backward do we move? Briefly
but clearly explain your reasoning. Then deduce that (−3) · (−m) = 3 ·m.

(j) To take (−k) · (−m) steps, we repeat the process of moving in reverse m steps,
doing so in reverse k times. So when we take (−k) · (−m) steps, do we move
forward or backward? How many steps forward or backward do we move? Briefly
but clearly explain your reasoning. Then explain why this means (−k) · (−m) =
k ·m. Similarly, explain why (−m) · (−k) = m · k.

(k) Recall that we already know that k ·m = m · k. Use this and your results from
(j) to deduce that (−k) · (−m) = (−m) · (−k).

Terminology: We say that 3 divides −12 (or equivalently, that 3 is a divisor of −12 or
that −12 is divisible by 3) since −12 = 3 · (−4). More generally, we say that 3 divides an
integer n if n = 3 · q for some integer q. More generally still, we say that an integer m
divides another integer n if n = m · q for some integer q.

1.16. We want to establish that multiplication of integers is associative. (Recall that we
know multiplication of natural numbers is associative.) We describe here an algebraic
approach, although one could also use a geometric approach.

(a) Briefly explain why (−3) · 4 = −12 = −(3 · 4), and why (−12) · 7 = −(12 · 7).
(Suggestion: Use #1.15 (f).)

(b) Briefly explain why (−3) ·28 = −(3 ·28). Deduce that (−3) ·
(
4 ·7
)

= −
(
3 · (4 ·7)

)
.

Explain why
(
(−3) · 4

)
· 7 = (−3) ·

(
4 · 7

)
. (Suggestion: Use (a) and #1.5.)

(c) Let n represent a natural number. Briefly explain why (−3) · 4 = −(3 · 4), and
why (−12) · n = −(12 · n).

(d) Again, let n represent a natural number. Briefly explain why (−3) ·
(
4 · n

)
=

−
(
3 · (4 · n)

)
. Deduce that (−3) ·

(
4 · n

)
= −

(
3 · (4 · n)

)
. Now explain why(

(−3) · 4
)
· n = (−3) ·

(
4 · n

)
.
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(e) Let m and n represent natural numbers. Briefly explain why (−3) ·m = −(3 ·m),
and why

(
− (3 ·m)

)
· n = −

(
(3 ·m) · n

)
.

(f) Again, let m and n represent natural numbers. Briefly explain why (−3)·
(
m·n

)
=

−
(
3 · (m · n)

)
. Deduce that (−3) ·

(
m · n

)
= −

(
3 · (m · n)

)
. Now explain why(

(−3) ·m
)
· n = (−3) ·

(
m · n

)
.

(g) Let k,m and n represent natural numbers. Briefly explain why (−k)·m = −(k·m),
and why

(
− (k ·m)

)
· n = −

(
(k ·m) · n

)
.

(h) Again, let k,m and n represent natural numbers. Briefly explain why (−k) ·
(
m ·

n
)

= −
(
k · (m ·n)

)
. Deduce that (−k) ·

(
m ·n

)
= −

(
k · (m ·n)

)
. Now explain why(

(−k) ·m
)
· n = (−k) ·

(
m · n

)
.

(i) Let k,m and n represent natural numbers. Explain why
(
(−k) · (−m)

)
· n =

(−k) ·
(
(−m) · n

)
.

(j) Let k,m and n represent natural numbers. Explain why
(
(−k) · (−m)

)
· (−n) =

(−k) ·
(
(−m) · (−n)

)
.

(k) Let k,m and n represent natural numbers. Explain why
(
(−k) · m

)
· (−n) =

(−k) ·
(
m · (−n)

)
.

(l) Let k,m and n represent natural numbers. Explain why
(
k · (−m)

)
· n = k ·(

(−m) · n
)
.

(m) Let k,m and n represent natural numbers. Explain why
(
k · (−m)

)
· (−n) =

k ·
(
(−m) · (−n)

)
.

(n) Let k,m and n represent natural numbers. Explain why
(
k ·m

)
· (−n) = k ·

(
m ·

(−n)
)
.

1.17. Recall that for k,m and n natural numbers, k · (m+ n) = k ·m+ k · n. We establish
that with x, y and z integers, x · (y + z) = x · y + x · z.
(a) To take 3 ·

(
5 + (−7)

)
steps, you repeat 3 times the process of moving forward 5

steps then backward 7 steps. Altogether, how many steps forward to you move?
How many steps backward do you move?

(b) To take 3 · 5 + 3 · (−7) steps, you repeat 3 times the process of moving forward
5 steps, then you repeat 3 times the process of moving backward 7 steps. Alto-
gether, how many steps forward to you move? How many steps backward do you
move? Using (a), explain why 3 ·

(
5 + (−7)

)
= 3 · 5 + 3 · (−7).

(c) Suppose k,m and n are natural numbers. Explain why k ·
(
m+ (−n)

)
= k ·m+

k · (−n). (Suggestion: Mimic your arguments from (a) and (b).)

(d) Suppose k,m and n are natural numbers. Explain why k ·
(
(−m) + (−n)

)
=

13



k · (−m) + k · (−n).
(e) Suppose k,m and n are natural numbers. Explain why k ·

(
(−m) + n

)
= k ·

(−m) + k · n.
(f) Suppose k,m and n are natural numbers. Explain why (−k) ·

(
m + n

)
= (−k) ·

m+ (−k) · n.
(g) Suppose k,m and n are natural numbers. Explain why (−k) ·

(
(−m) + n

)
=

(−k) · (−m) + (−k) · n.
(h) Suppose k,m and n are natural numbers. Explain why (−k) ·

(
m + (−n)

)
=

(−k) ·m+ (−k) · (−n).
(i) Suppose k,m and n are natural numbers. Explain why (−k) ·

(
(−m) + (−n)

)
=

(−k) · (−m) + (−k) · (−n).
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§2: Looking for patterns.

Terminology: We call a natural number even when it is divisible by 2. The odd natural
numbers are those not divisible by 2. So the odd natural numbers are between the even
natural numbers, and thus each even natural number is preceded by an odd natural number.

2.1. (a) By definition, the 1st even natural number is 2 = 1 · 2.
The next even natural number is 2 + 2 = 4, so the 2nd even natural number is
4 = 2 · 2.
The next even natural number is 4 + 2 = 6, so the 3rd even natural number is
6 = 3 · 2.
The next even natural number is 6 + 2 = 8, so the 4th even natural number is
8 = 4 · 2.
What is the 5th even natural number?
What is the 6th even natural number?
What is the 10th even natural number?
What is the 25th even natural number?
What is the 40th even natural number?
What is the nth even natural number? (Your answer may be in terms of n.)
What is the (n+ 1)st even natural number? (Once again, your answer may be in
terms of n. Also, you can check your formula for n = 1, n = 2, n = 3, n = 4 and
n = 5.)

(b) By definition, the 1st odd natural number is 1 = 1 · 2− 1.
The 2nd odd natural number is 3 = 2 · 2− 1.
The 3rd odd natural number is 5 = 3 · 2− 1.
The 4th odd natural number is 7 = 4 · 2− 1.
What is the 5th odd natural number?
What is the 6th odd natural number?
What is the 10th odd natural number?
What is the 25th odd natural number?
What is the 40th odd natural number?
What is the nth odd natural number?
What is the (n + 1)st odd natural number? (You can check your formula for
n = 1, n = 2, n = 3, n = 4 and n = 5.)

(c) Evaluate 12 = 1 · 1, 22 = 2 · 2, 32 = 3 · 3, 42 = 4 · 4, 52 = 5 · 5.
(d) Evaluate 1 + 3, the sum of the first 2 odd natural numbers.

Evaluate 1 + 3 + 5, the sum of the first 3 odd natural numbers.
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Evaluate the sum of the first 4 odd natural numbers.
Evaluate the sum of the first 5 odd natural numbers.

(e) We now consider whether there is a pattern here: Given your computations in
(c) and (d), guess the value of the sum of the first 6 odd natural numbers. (You
can easily check whether your guess in correct.)
Guess the value of the sum of the first 7 odd natural numbers.
Guess the value of the sum of the first 10 odd natural numbers.
Guess the value of the sum of the first 25 odd natural numbers.
Guess the value of the sum of the first 40 odd natural numbers.
Guess the value of the sum of the first 100 odd natural numbers.
Guess the value of the sum of the first n odd natural numbers.
Guess the value of the sum of the first (n+ 1) odd natural numbers.

(f) You just guessed the value of the sum of the first n odd natural numbers; verify
your guess is correct for n = 2, for n = 3, for n = 4, and for n = 5. (If you find
your guess is not correct for one of these values of n, modify your guess!)

Imagine a stairway to heaven. Of course, it has infinitely many steps. Still, you can
climb the stairway if you know:

(i) how to get to the 1st step, and

(ii) how to get from one step to the next.

So once you get to the 1st step, you can get to the 2nd step. Once you get to the 2nd
step, you can get to the 3rd step. Once you get to the 3rd step, you can get to the
4th step; and so on.

To determine whether your formula for the sum of the first n odd natural numbers is
correct, we follow a similar procedure.

(g) Suppose your formula for the sum of the first n odd natural numbers is correct. We
want to know whether this implies your formula for the sum of the first (n+1) odd
natural numbers is also correct. Briefly explain why [the sum of the first n odd natural numbers] +
[the (n+1)st odd natural number] gives us the sum of the first (n+1) odd natural
numbers. Now using your previous formulas, evaluate

[the sum of the first n odd natural numbers]

+ [the (n + 1)st odd natural number].

Does this agree with your guess of the value of the sum of the first (n + 1) odd
natural numbers?
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(h) Explain why (g) does not imply that your guess of the value of the sum of the
first (n+ 1) odd natural numbers is correct. Explain why (g) does imply that if

your guess of the value of the sum of the first n odd natural numbers is correct
then your guess of the value of the sum of the first (n+ 1) odd natural numbers
is correct.

(i) In (d) you evaluated the sum of the first 5 odd natural numbers. Also, we know
that if your guess of the value of the sum of the first n odd natural numbers is
correct then your guess of the value of the sum of the first (n + 1) odd natural
numbers is correct. What does this say when n = 5? Since you know your formula
for the sum of the first n odd natural numbers is correct when n = 5, what can
you conclude?

(j) We know that if your guess of the value of the sum of the first n odd natural
numbers is correct then your guess of the value of the sum of the first (n + 1)
odd natural numbers is correct. Does the hypothesis hold for n = 6? What can
you then conclude?

(k) We know that if your guess of the value of the sum of the first n odd natural
numbers is correct then your guess of the value of the sum of the first (n + 1)
odd natural numbers is correct. Does the hypothesis hold for n = 7? What can
you then conclude?

(l) We know that if your guess of the value of the sum of the first n odd natural
numbers is correct then your guess of the value of the sum of the first (n + 1)
odd natural numbers is correct. Does the hypothesis hold for n = 8? What can
you then conclude?

(m) We know that if your guess of the value of the sum of the first n odd natural
numbers is correct then your guess of the value of the sum of the first (n + 1)
odd natural numbers is correct. Does the hypothesis hold for n = 9? What can
you then conclude?

(n) Explain how your computations in (c), (d) and (g) allow you to conclude that,
for each successive value of n, your formula for the sum of the first n odd natural
numbers is correct.

(o) (Geometric argument:) This pattern can also be deduced using a geometric
argument. Begin with a picture of one dot. To expand this to a picture of two
rows, each with two dots, how many dots need to be introduced to your picture?
To expand the resulting picture to one with three rows, each with 3 dots, how
many dots need to be introduced to your picture? Suppose you have n rows,
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each with n dots; to expand the picture to one with (n + 1) rows, each with
(n+ 1) dots, how many dots need to be introduced to your picture? Clearly and
thoroughly explain your reasoning, then use this to give another explanation for
the implication stated in (h).

2.2. We now consider the sum of the first n even integers.
(a) Evaluate 2 + 4, the sum of the first 2 even natural numbers.

Evaluate 2 + 4 + 6, the sum of the first 3 even natural numbers.
Evaluate the sum of the first 4 even natural numbers.
Evaluate the sum of the first 5 even natural numbers. Also, evaluate the expres-
sions 2 · 3, 3 · 4, 4 · 5, 5 · 6.

(b) We now consider whether there is a pattern here: Given your computations in
(a), guess the value of the sum of the first 6 even natural numbers. (You can
easily check whether your guess in correct.)
Guess the value of the sum of the first 7 even natural numbers.
Guess the value of the sum of the first 10 even natural numbers.
Guess the value of the sum of the first 25 even natural numbers.
Guess the value of the sum of the first 40 even natural numbers.
Guess the value of the sum of the first 100 even natural numbers.
Guess the value of the sum of the first n even natural numbers.
Guess the value of the sum of the first (n+ 1) even natural numbers.

(c) You just guessed the value of the sum of the first n even natural numbers; verify
your guess is correct for n = 2, for n = 3, for n = 4, and for n = 5. (If you find
your guess is not correct for one of these values of n, modify your guess!)

(d) Suppose your formula for the sum of the first n even natural numbers is correct.
We want to know whether this implies your formula for the sum of the first (n+1)
even natural numbers is correct. Briefly explain why the sum of the first n even
natural numbers + the (n + 1)st even natural number gives you the sum of
the first (n+ 1) even natural numbers. Using your assumption and your previous
formulas, evaluate

[the sum of the first n even natural numbers]

+ [the (n + 1)st even natural number].

Does this agree with your guess for the value of the sum of the first (n+ 1) even
natural numbers?
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(e) Explain why (d) does not imply that your guess of the value of the sum of the
first (n+1) even natural numbers is correct, but (d) does imply that if your guess
of the value of the sum of the first n even natural numbers is correct then your
guess of the value of the sum of the first (n1) even natural numbers is correct.

(f) In (a) you evaluated the sum of the first 5 even natural numbers. Also, we know
that if your guess of the value of the sum of the first n even natural numbers is
correct then your guess of the value of the sum of the first (n+ 1) even natural
numbers is correct. What does this say when n = 5? Since you know your formula
for the sum of the first n even natural numbers is correct when n = 5, what can
you conclude?

(g) We know that if your guess of the value of the sum of the first n even natural
numbers is correct then your guess of the value of the sum of the first (n + 1)
even natural numbers is correct. Does the hypothesis hold for n = 6? What can
you then conclude?

(h) We know that if your guess of the value of the sum of the first n even natural
numbers is correct then your guess of the value of the sum of the first (n + 1)
even natural numbers is correct. Does the hypothesis hold for n = 7? What can
you then conclude?

(i) We know that if your guess of the value of the sum of the first n even natural
numbers is correct then your guess of the value of the sum of the first (n + 1)
even natural numbers is correct. Does the hypothesis hold for n = 8? What can
you then conclude?

(j) We know that if your guess of the value of the sum of the first n even natural
numbers is correct then your guess of the value of the sum of the first (n + 1)
even natural numbers is correct. Does the hypothesis hold for n = 9? What can
you then conclude?

(k) Explain how your computations in (c), (d) and (g) allow you to conclude that,
for each successive value of n, your formula for the sum of the first n even natural
numbers is correct.

(l) Find a geometric argument that shows your formula for the sum of the first n
even integers is correct.

2.3. Consider the following arrangement of stars:

∗

∗ ∗

∗ ∗ ∗
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There are a total of 1 + 2 + 3 stars, and they are arranged to form a triangle. For
this reason, 1 + 2 + 3 is called a triangular number. Similarly, 1 + 2 + 3 + 4 is called
a triangular number.

∗

∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

Terminology: We define the triangular numbers as follows.
Let T1 = 1 = the first triangular number,
let T2 = 1 + 2 = the second triangular number,
let T3 = 1 + 2 + 3 = the third triangular number,
let T4 = 1 + 2 + 3 + 4 = the fourth triangular number,
let T5 = 1 + 2 + 3 + 4 + 5 = the fifth triangular number,
and so on. So for n a natural number, Tn denotes the nth triangular number,
which is the sum of the first n natural numbers.

(a) Compute the values of T1 + T2, T2 + T3, T3 + T4, T4 + T5, and T5 + T6. Does
this list look familiar? (You may want to compare this list the one you created
in #2.1 (c).)

(b) Without performing the computation, what would you guess T6 +T7 is? Without
performing the computation, what would you guess T7 + T8 is? Without per-
forming the computation, what would you guess T8 + T9 is? What would you
guess T25 + T26 is? What would you guess T40 + T41 is? What would you guess
T100 + T101 is?

(c) Given a natural number n, what would you guess T(n−1) +Tn is? (You can check
your guess for n = 2, n = 3, n = 4, n = 5 and n = 6.) What would you guess
Tn + T(n+1) is? (You can check your guess forn + 1, n = 2, n = 3, n = 4 and
n = 5.)

(d) Notice that T2 = 1 + 2 = T1 + 2, T3 =
(
1 + 2

)
+ 3 = T2 + 3, T4 =

(
1 + 2 +

3
)

+ 4 = T3 + 4, and so on. More generally, for n a natural number, Tn =(the
sum of the first (n − 1) natural numbers)+n = T(n−1) + n. Briefly explain why
T(n+1) = Tn + (n+ 1). So

(∗) Tn + T(n+1) =
(
T(n−1) + n

)
+ (Tn + (n+ 1)) .

If your guess for the value of T(n−1) + Tn is correct, then is your guess for Tn +
T(n+1) correct? (Use the equation labeled (*) together with (c).)
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(e) Explain why (d) does not imply that your guess of the value of Tn + T(n+1) is
correct, but (d) does imply that if your guess for the value of T(n−1) + Tn is
correct then your guess for the value of Tn + T(n+1) is correct.

(f) In (a) you evaluated T5 +T6. Use the conclusion of (d) (as described in (e)) with
n = 6 to verify that your guess for T6 + T7 is correct.

(g) From (f) you know that your guess for T6 + T7 is correct. Use the conclusion of
(d) with n = 7 to verify that your guess for T7 + T8 is correct.

(h) From (g) you know that your guess for T7 + T8 is correct. Use the conclusion of
(d) with n = 8 to verify that your guess for T8 + T9 is correct.

(i) Explain how your computations in (a) and (d) allow you to conclude that, for
each successive value of n, your formula for Tn + T(n+1) is correct.

(j) Find a geometric argument that shows your formula for Tn + T(n+1) is correct.
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Notation: When a natural number n is even, we write 1
2 · n to denote half of n. For

instance, 1
2 · 6 = 3, and 1

2 · 10 = 5. More generally, if n is even then n = 2 · k for some
natural number k; then

1
2
· n = k.

2.4. We now find a formula for Tn, the nth triangular number. (Recall that Tn is the sum
of the first n natural numbers.)

(a) Suppose you have two consecutive natural numbers. Explain why one of these
numbers is even and the other is odd.

(b) Let n be a natural number; so the next natural number is (n + 1). Using (a),
explain why n · (n+ 1) is even, and so 1

2 · n · (n+ 1) is a natural number.

(c) Compute the values of T1, T2, T3, T4 and T5. Also, compute the values of 1
2 · 1 · 2,

1
2 ·2 ·3, 1

2 ·3 ·4, 1
2 ·4 ·5, and 1

2 ·5 ·6. What would you guess is the value of T6? What
would you guess is the value of T7? What would you guess is the value of T10?
What would you guess is the value of T25? What would you guess is the value
of T40? What would you guess is the value of T100? With n a natural number,
what would you guess is the value of Tn? (You can check your guess for n = 1,
n = 2, n = 3, n = 4 and n = 5.) What would you guess is the value of T(n+1)?
(You can check your guess for n = 1, n = 2, n = 3 and n = 4.)

(d) What must you add to Tn to obtain T(n+1)? So what must you add to 2 · Tn to
obtain 2 · T(n+1)? Now suppose your guess for Tn is correct. Use this and the
connection between 2 · Tn and 2 · T(n+1) to evaluate 2 · T(n+1).

(e) Explain why (d) does not imply that your guess of the value of T(n+1) is correct,
but (d) does imply that if your guess for the value of Tn is correct then your
guess for the value of T(n+1) is correct.

(f) In (a) you evaluated T5. Use the conclusion of (d) (as stated in (e)) with n = 5
to verify that your guess for T6 is correct.

(g) From (e) you know that your guess for T6 is correct. Use the conclusion of (d)
with n = 6 to verify that your guess for T7 is correct.

(h) From (g) you know that your guess for T7 is correct. Use the conclusion of (d)
with n = 7 to verify that your guess for T8 is correct.

(i) Explain how your computations in (a) and (d) allow you to conclude that, for
each successive value of n, your formula for Tn is correct.

(j) Find a geometric argument that shows your formula for Tn is correct.

2.5. Consider the following diagram.
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1

3 5

7 9 11

13 15 17 19

21 23 25 27 29

31 33 35 37 39 41

...

So row 1 has the 1st odd natural number, row 2 has the next 2 odd natural numbers,
row 3 has the next 3 odd natural numbers, and so on. We let Sn be the sum of the
numbers in row n. We seek a formula for Sn.
(a) Compute the values of S1, S2, S3, S4 and S5. Also, compute the values of 13 =

1 · 1 · 1, 23 = 2 · 2 · 2, 33 = 3 · 3 · 3, 43 = 4 · 4 · 4, and 53 = 5 · 5 · 5.
(b) Explain why the 2nd triangular number tells you how many numbers are in the

first 2 rows of the diagram. Explain why the 3rd triangular number tells you
how many numbers are in the first 3 rows of the diagram. Explain why the 4th
triangular number tells you how many numbers are in the first 4 rows of the
diagram. Explain why the 5th triangular number tells you how many numbers
are in the first 5 rows of the diagram. Explain why the nth triangular number
tells you how many numbers are in the first n rows of the diagram. Explain why
the (n−1)st triangular number tells you how many numbers are in the first (n−1)
rows of the diagram. Also, what must one add to T(n−1) to obtain Tn? Use this
to write Tn in terms of T(n−1) and n.

(c) Determine the value of the sum of the numbers in the first 2 rows of the diagram.
(You may want to use #2.1.) Determine the value of the sum of the numbers in
the first 3 rows of the diagram. Determine the value of the sum of the numbers in
the first 4 rows of the diagram. Determine the value of the sum of the numbers in
the first 5 rows of the diagram. With n a natural number, determine the value of
the sum of the numbers in the first n rows of the diagram. Determine the value
of the sum of the numbers in the first (n − 1) rows of the diagram. Finally, use
(b) to write the sum of the numbers in the first n rows of the diagram in terms
of T(n−1) and n.
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(d) Notice that S3, the sum of the numbers in the 3rd row of the diagram, is equal
to

S3 = (the sum of the numbers in the first 3 rows)

− (the sum of the numbers in the first 2 rows).

Similarly,

S4 = (the sum of the numbers in the first 4 rows)

− (the sum of the numbers in the first 3 rows),

S5 = (the sum of the numbers in the first 5 rows)

− (the sum of the numbers in the first 4 rows),

and so on. More generally,

Sn = (the sum of the numbers in the first n rows)

− (the sum of the numbers in the first (n− 1) rows).

Using this observation and (c), find a formula for Sn in terms of T(n−1) and n.
Using #2.4, determine whether your formula for Sn agrees with the conjecture
you made in (a); explain your reasoning. (You may want to use #1.7 (d) with
T(n−1) in place of k.)

2.6. The first hexagonal number, H1, is 1. The 2nd hexagonal number, H2, is 6, which is
the number of stars needed to outline a hexagon with each side comprised of 2 stars:

∗

∗ ∗

∗ ∗

∗

To find the 3rd hexagonal number H3, we take the picture corresponding to the 2nd
hexagonal number, and we embellish the picture with more stars so that we also have a
hexagon with each side comprised of 3 stars; the upper 2 sides of the smaller hexagon lie
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on the upper 2 sides of the larger hexagon. The total number of stars in the picture is the
3rd hexagonal number.

(a) The third hexagonal number H3 is 15. Draw the picture described above that
corresponds to H3.

(b) To find the 4th hexagonal number H4, we take the picture corresponding to the
3nd hexagonal number, and we embellish the picture with more stars so that we
also have a hexagon with each side comprised of 4 stars; the upper 2 sides of
the smaller hexagons lie on the upper 2 sides of the larger hexagon. The total
number of stars in the picture is the 4th hexagonal number, H4, which is equal
to 28. Draw the picture described above that corresponds to H4.

(c) To find the 5th hexagonal number H5, we take the picture corresponding to the
4th hexagonal number, and we embellish the picture with more stars so that we
also have a hexagon with each side comprised of 5 stars; the upper 2 sides of
the smaller hexagons lie on the upper 2 sides of the larger hexagon. The total
number of stars in the picture is the 5th hexagonal number, H5. Draw the picture
described above that corresponds to H5. What is the value of H5?

(d) To find the 6th hexagonal number H6, we take the picture corresponding to the
5th hexagonal number, and we embellish the picture with more stars so that we
also have a hexagon with each side comprised of 6 stars; the upper 2 sides of
the smaller hexagons lie on the upper 2 sides of the larger hexagon. The total
number of stars in the picture is the 6th hexagonal number, H6. Draw the picture
described above that corresponds to H6. What is the value of H6?

(e) Let n be a natural number. The picture corresponding to Hn is comprised of
hexagons with sides of length 2, 3, 4,. . . , n; the upper 2 sides of the smaller
hexagons lie on the upper 2 sides of the larger hexagon. Similarly, the pic-
ture corresponding to H(n+1) is comprised of hexagons with sides of length 2, 3,
4,. . . , n, (n+1); the upper 2 sides of the smaller hexagons lie on the upper 2 sides
of the larger hexagon. Suppose you have the picture corresponding to Hn. How
many stars do you need to add to the picture to obtain the picture corresponding
to H(n+1)? Explain your reasoning.

(f) Compare the values of H1,H2,H3,H4,H5 and H6 to the values of the triangular
numbers. Is there a correspondence? Can you guess the value of Hn? (You can
check your guess for n = 1, n = 2, n = 3, n = 4, n = 5 and n = 6.) Can you
guess the value of H(n+1)? (You can check your guess for n = 1, n = 2, n = 3,
n = 4 and n = 5.)

(g) Suppose your guess for the value of Hn in (f) is correct. Using (e) and your
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supposition that you have correctly guessed the value of Hn, determine whether
you have correctly guess the value of H(n+1).

(h) Explain why (g) does not imply that your guess of the value of H(n+1) is correct,
but (g) does imply that if your guess for the value of Hn is correct then your
guess for the value of H(n+1) is correct.

(i) In (d) you evaluated H6. Use the conclusion of (g) (as stated in (h)) with n = 6
to verify that your guess for H7 is correct.

(j) From (h) you know that your guess for H7 is correct. Use the conclusion of (g)
with n = 7 to verify that your guess for H8 is correct.

(k) From (l) you know that your guess for H8 is correct. Use (g) with n = 8 to verify
that your guess for H9 is correct.

(l) Explain how (f) and (g) allow you to conclude that, for each successive value of
n, your formula for Hn is correct.
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§3. Linear Combinations, Primes and Common Divisors.

Terminology: A linear combination of two natural numbers x and y is a sum or difference
of multiples of x and y. For example, 6 · 5− 2 · 7 is a linear combination of 5 and 7.

3.1. (a) Make a list of the multiples of 7 between 1 ·7 and 7 ·7. Make a list of the multiples
of 10 between 1 · 10 and 7 · 10. Find a pair of numbers, one from each of your
lists, so that the difference between these numbers is 1. Using this, write 1 as a
linear combination of 7 and 10.

(b) Write 2 as a linear combination of 7 and 10.
(c) Write 3 as a linear combination of 9 and 15.
(d) Write 6 as a linear combination of 9 and 15.

3.2 (a) Suppose m,n, x and y are natural numbers so that

m = 3 · x+ 5 · y and n = 7 · x− 10 · y.

(So both m and n are linear combinations of x and y.) Demonstrate that 4·m−2·n
is also a linear combination of x and y. (So you need to demonstrate that 4·m−2·n
can be written in the form (some natural number)·x+(some natural number)·y.)

(b) Suppose m,n, x and y are natural numbers so that

m = 3 · x+ 5 · y and n = 7 · x− 10 · y.

Let a and b represent natural numbers; demonstrate that a ·m − b · n is also a
linear combination of x and y.

(c) Suppose m,n, x and y are natural numbers so that

m = r · x+ s · y and n = 7 · x− 10 · y

where r and s are natural numbers. Demonstrate that 4 ·m− 2 ·n is also a linear
combination of x and y.

(d) Suppose m,n, x and y are natural numbers so that

m = r · x+ s · y and n = 7 · x− 10 · y

where r and s are natural numbers. Let a and b represent natural numbers;
demonstrate that a ·m− b · n is also a linear combination of x and y.

(e) Suppose m,n, x and y are natural numbers so that

m = r · x+ s · y and n = u · x− v · y
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where r, s, u and v are natural numbers. Demonstrate that 4 ·m− 2 · n is also a
linear combination of x and y.

(d) Suppose m,n, x and y are natural numbers so that

m = r · x+ s · y and n = u · x− v · y

where r, s, u and v are natural numbers. Let a and b represent natural numbers;
demonstrate that a ·m− b · n is also a linear combination of x and y.

Terminology: Since each natural number n is equal to 1 · n, 1 is called a multiplicative
identity. A natural number greater than 1 is called prime if it is divisible only by 1 and
itself. (For example, 2, 3, 7 and 17 are prime; 15 and 9 are not.)

3.3. A natural number e is a multiplicative identity if, for every natural number n, e · n
is equal to n. We want to show the natural numbers contain only one multiplicative
identity.
(a) (Geometric approach) Suppose k is a natural number other than 1. So how small

could k be? How do k ·5 and 5 compare in size? Is it possible for k ·5 to be equal
to 5? Explain your reasoning.

(b) (Algebraic approach) Suppose e is a natural number, and suppose e is a mul-
tiplicative identity. Knowing how to multiply by 1, what is e · 1? Using the
assumption that e is a multiplicative identity, what is e · 1? (Suggestion: Take
n to be 1 in the sentence describing what it means for e to be a multiplicative
identity.) Explain why this means e must equal 1.

(c) Using (a) or (b), explain why 1 is the multiplicative identity, not just a multi-
plicative identity. Explain why this means 1 is the unique multiplicative identity
within the natural numbers.

3.4. (a) Briefly but clearly explain why 4, 6, 12 and 36 are not prime.
(b) Classify each natural number from 2 to 25 as prime or non-prime. Write each of

these non-prime numbers as a product of primes. (For instance, 12 = 2 · 2 · 3.)
For the other non-primes between 2 and 25, it is possible to write each of these
non-primes as a product of primes.

3.5. (a) Suppose you are given 17 pennies and you are asked to put them into stacks of
5. How many stacks will you have? How many pennies all together are in your
stacks? How many (if any) pennies are left over?

(b) Find whole numbers q and r so that 17 = 5 · q + r, and r is smaller than 5. How
do q and r relate to the number of stacks and the number of pennies left over?
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(c) Suppose you are given 17 pennies and you are asked to put them into stacks of
5. How many stacks will you have? How many pennies all together are in your
stacks? How many (if any) pennies are left over?

(d) Find whole numbers q and r so that 15 = 5 · q + r, and r is smaller than 5. How
do q and r relate to the number of stacks and the number of pennies left over?

(e) Suppose you are given 17 pennies and you are asked to put them into stacks of
21. How many stacks will you have? How many pennies all together are in your
stacks? How many (if any) pennies are left over?

(f) Find whole numbers q and r so that 17 = 21 ·q+r, and r is smaller than 21. How
do q and r relate to the number of stacks and the number of pennies left over?

(g) Suppose you are given n pennies (where n is a natural number). With these
pennies, you create as many stacks of 5 pennies as possible. How many pennies
can you have left over? (In particular, can you have 5 or more pennies left over?)
Explain why there are whole numbers q and r so that n = 5 · q + r. How do q
and r relate to the number of stacks and the number of pennies left over?

(h) Suppose you are given n pennies (where n is a natural number). Suppose m is
another natural number; imagine putting your n pennies into as many stack of
m as possible. How many pennies can you have left over? (In particular, can you
have m or more pennies left over?) Explain why there are whole numbers q and
r so that n = m · q + r. How do q and r relate to the number of stacks and the
number of pennies left over? When will q equal 0? When will r equal 0?

3.6. Recall: Suppose we have natural numbers m and n with m smaller than n. Then
either m divides n (so n = m · q for some natural number q), or n = m · q+ r for some
natural numbers q and r with r smaller than m. Thus for natural numbers m and
n with m smaller than n, we have n = m · q + r where q is a natural number and r

is a whole number smaller than m. (Recall that r is a whole number if either r is a
natural number or r is zero.)
(a) We now consider the situation with n smaller than m. For instance, suppose

n = 10 and m = 35. Find whole numbers q and r so that n = m · q + r with r

smaller than m.
(b) Now suppose m and n are some natural numbers with n smaller than m. Find

whole numbers q and r so that n = m · q + r with r smaller than m.

Recall: The numbers

0, 1,−1, 2,−2, 3,−3, 4,−4, 5,−5, . . .

are called the integers.
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(c) Say n = −10 and m = 35. Find an integer s and a whole number t so that
n = m · s+ t with t smaller than m. (Suggestion: Try s = −1.)

(d) Now suppose m and n are natural numbers with n smaller than m. Find an
integer s and a whole number t so that −n = m · s + t with t smaller than m.
(Suggestion: Try s = −1.)

(e) Now suppose n = 37 and m = 11. First find a natural number q and a whole
number r so that n = m · q + r with r smaller than m. Now find an integer s
and a whole number t so that −n = m · s+ t with t smaller than m. (Suggestion:
Multiply both sides of your equation n = m · q+ r by −1. Then try s = −q− 1.)

(f) Now suppose m and n are natural numbers with m smaller than n. So we know
there is a natural number q and a whole number r so that n = m · q + r with
r smaller than m. Now find an integer s and a whole number t so that −n =
m ·s+ t with t smaller than m. (Suggestion: Multiply both sides of your equation
n = m · q + r by −1. Then try s = −q − 1.)

Terminology: We say a natural number d is a divisor of another natural number n if n
is divisible by d, i.e. n = d · k for some natural number k. We say d is a common divisor
of m and n if d is both a divisor of m and of n. We say a common divisor d of m and n is
the greatest common divisor if d is larger than every other common divisor of m and n.

3.7. (a) Find the common divisors of 9 and 15. Which is the greatest common divisor?

(b) Find the common divisors of 60 and 84. Which is the greatest common divisor?
Find the common divisors of 9 and 17. Which is the greatest common divisor?

(c) Let m and n represent natural numbers. Explain why m and n have at least
one common divisor, and why m and n have a greatest common divisor. (What
natural number divides every other natural number? How do diviors of a number
compare in size to that number? So how many divisors can a number have,
infinitely many or only finitely many?)

(d) Say n is a natural number and 12 divides n List the common divisors of 12 and
n; identify the greatest common divisor.

(e) Say m and n are natural numbers and m divides n. Describe the common divisors
of m and n. What is the greatest common divisor of m and n?

(f) Say n and q are natural numbers so that n = 12 · q + 3. Explain why 3 is a
common divisor of n and 12. If d is a divisor of n and 12, why must d divide
3? (Suggestion: Write 3 in terms of n and 12.) Explain why 3 is the greatest
common divisor of n and 12.
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(g) Say n and q are natural numbers so that n = 12 ·q+9. Explain why any common
divisor of n and 12 is also a divisor of 9. List the common divisors of n and 12;
identify the greatest common divisor.

(h) Say m,n and q are natural numbers so that n = m · q + 9. Explain why any
common divisor of n and m is also a divisor of 9. Explain why any common
divisor of m and 9 is also a divisor of n. Explain why the greatest common
divisor of m and 9 is also the greatest common divisor of m and n.

(i) Say m,n, q and r are natural numbers so that n = m · q + r. Explain why any
common divisor of n and m is also a divisor of r. Explain why any common
divisor of m and r is also a divisor of n. Explain why the greatest common
divisor of m and r is also the greatest common divisor of m and n. (How does
the list of common divisors of m and r compare to the list of common divisors of
m and n?)

3.8. Recall: In #3.7 we saw that when we have natural numbers n,m and q with n = m·q,
then the greatest common divisor of m and n is m. When we have natural numbers
n and m, and whole numbers q and r, with n = m · q + r, then the greatest common
divisor of n and m is equal to the greatest common divisor of m and r.

(a) Take n1 = 24 and m1 = 9. What is the greatest common divisor of n1 and m1?
Find whole numbers q1 and r1 so that n1 = m1 · q1 + r1 with r1 smaller than m1.

(b) Now take n2 = m1 = 9 and m2 = r1. Find whole numbers q2 and r2 so that
n2 = m2 · q2 + r2 with r2 smaller than m2.

(c) Now take n3 = m2 and m3 = r2. Find whole numbers q3 and r3 so that n3 =
m3 · q3 + r3 with r3 smaller than m3.

(d) Use (b) to write r2 as a linear combination of n2 and m2. Remembering that
n2 = m1 and m2 = r1, briefly explain why this means you have written r2 as a
linear combination of m1 and r1.

(e) Use (a) to write r1 as a linear combination of n1 and m1. Now substitute this
expression for r1 into your formula for r2 found in (d).

(f) Using (e), demonstrate that r2 is a linear combination of n1 and m1.

Abbreviation: “gcd” stands for “greatest common divisor.”

3.9. Suppose n1 and m1 are natural numbers. Then we know from #3.4 that we can find
whole numbers q1 and r1 so that r1 is smaller than m1 and

n1 = m1 · q1 + r1 (Equation 1).
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Here r1 is called the “remainder term” in Equation 1. Provided r1 is not 0, we
construct Equation 2 from Equation 1 as follows: Set n2 = m1 and m2 = r1. Find
whole numbers q2 and r2 so that r2 is smaller than m2 and

n2 = m2 · q2 + r2 (Equation 2).

Here r2 is called the remainder term of Equation 2. Provided r2 is not 0, we construct
Equation 3 from Equation 2 as follows: Set n3 = m2 and m3 = r2. Find whole
numbers q3 and r3 so that r3 is smaller than m3 and

n3 = m3 · q3 + r3 (Equation 3).

Here r3 is called the remainder term of Equation 3. In a similar manner, if r3 is not
0 we construct Equation 4 from Equation 3, and if r4 is not 0 we construct Equation
5 from Equation 4, and so on. So eventually we have many equations:

n1 = m1 · q1 + r1 with r1 smaller than m1;

n2 = m1, and m2 = r1, and

n2 = m2 · q2 + r2 with r2 smaller than m2;

n3 = m2, and m3 = r2, and

n3 = m3 · q3 + r3 with r3 smaller than m3;

n4 = m3, and m4 = r3, and

n4 = m4 · q4 + r4 with r4 smaller than m4;

...

nk = m(k−1), and mk = r(k−1), and

nk = mk · qk + rk with rk smaller than mk;

n(k+1) = mk, and m(k+1) = rk, and

n(k+1) = m(k+1) · q(k+1) + r(k+1) with r(k+1) smaller than m(k+1).

(a) Explain why the second remainder term r2 is smaller than the first remainder
term r1.

(b) Explain why the third remainder term r3 is smaller than the second remainder
term r2.

(c) Explain why the fourth remainder term r4 is smaller than the third remainder
term r3.
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(d) Explain why the fifth remainder term r5 is smaller than the fourth remainder
term r4.

(e) Suppose we know that the kth remainder term rk is smaller than the (k + 1)st
remainder term r(k−1). Explain why r(k+1) must be smaller than rk.

(f) Explain why, as we continue this construction, the remainder term in some equa-
tion must be 0.

3.10. Suppose n1 and m1 are natural numbers, and we build equations as we did in #3.9.
So we have:

n1 = m1 · q1 + r1 with r1 smaller than m1;

n2 = m1, and m2 = r1, and

n2 = m2 · q2 + r2 with r2 smaller than m2;

n3 = m2, and m3 = r2, and

n3 = m3 · q3 + r3 with r3 smaller than m3;

n4 = m3, and m4 = r3, and

n4 = m4 · q4 + r4 with r4 smaller than m4;

...

nk = m(k−1), and mk = r(k−1), and

nk = mk · qk + rk with rk smaller than mk;

n(k+1) = mk, and m(k+1) = rk, and

n(k+1) = m(k+1) · q(k+1) + r(k+1) with r(k+1) smaller than m(k+1).

(a) Suppose r1 is not 0. (So m2 is not 0.) Using your result from #3.7, explain why
the gcd of n1 and m1 is equal to the gcd of m1 and r1. Also, explain why the
gcd of n2 and m2 is equal to the gcd of m2 and r2. Using this, explain why the
gcd of m2 and r2 is equal to the gcd of m1 and r1. Finally, recalling the way in
which n2 and m2 were defined, explain why the gcd of m2 and r2 is equal to the
gcd of n1 and m1.

(b) Suppose r1 is not 0, but r2 is 0; explain why this means the gcd of m2 and r2 is
m2, and conclude that the gcd of n1 and m1 is m2.

(c) Suppose r1 and r2 are not 0. (So m3 is not 0.) Remembering the way in which
n3 and m3 were defined, explain why the gcd of m3 and r3 is equal to the gcd of
m2 and r2. Then using (a), conclude that the gcd of m3 and r3 is equal to the
gcd of n1 and m1.
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(d) Suppose r1 and r2 are not 0, but that r3 is 0; explain why this means the gcd of
m3 and r3 is m3, and conclude that the gcd of n1 and m1 is m3.

(e) Suppose r1, r2 and r3 are not 0. (So m3 and m4 are not 0.) Explain why the gcd
of m4 and r4 is equal to the gcd of m3 and r3. Then using (c), conclude that the
gcd of m4 and r4 is equal to the gcd of n1 and m1.

(f) Suppose r1, r2 and r3 are not 0, but that r4 is 0; explain why this means the gcd
of m4 and r4 is m4, and conclude that the gcd of n1 and m1 is m4.

(g) Suppose r1, r2, r3 and r4 are not 0. (So m5 is not 0.) Explain why the gcd of m5

and r5 is equal to the gcd of m4 and r4. Then using (e), conclude that the gcd
of m5 and r5 is equal to the gcd of n1 and m1.

(h) Suppose r1, r2, r3 and r4 are not 0, but that r5 is 0; conclude that the gcd of n1

and m1 is m5.
(i) Suppose r1, r2, r3, r4, . . . , rk are not 0. (So m(k+1) is not 0.) Explain why the gcd

of m(k+1) and r(k+1) is equal to the gcd of n1 and m1.
(j) Suppose r1, r2, r3, r4, . . . , rk are not 0, but that r(k+1) is 0; conclude that the gcd

of n1 and m1 is m(k+1).

3.11. Suppose n1 and m1 are natural numbers, and we build equations as we did in #3.9.
So we have:

n1 = m1 · q1 + r1 with r1 smaller than m1;

n2 = m1, and m2 = r1, and

n2 = m2 · q2 + r2 with r2 smaller than m2;

n3 = m2, and m3 = r2, and

n3 = m3 · q3 + r3 with r3 smaller than m3;

n4 = m3, and m4 = r3, and

n4 = m4 · q4 + r4 with r4 smaller than m4;

...

nk = m(k−1), and mk = r(k−1), and

nk = mk · qk + rk with rk smaller than mk;

n(k+1) = mk, and m(k+1) = rk, and

n(k+1) = m(k+1) · q(k+1) + r(k+1) with r(k+1) smaller than m(k+1).

(a) Demonstrate that r1 is a linear combination of n1 and m1, and r2 is a linear
combination of n2 and m2. Then, remembering how n2 and m2 are defined,
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explain why r2 is a linear combination of n1 and m1. (You may want to use the
result of #3.2.)

(b) Write r3 as a linear combination of n3 and m3. Then, remembering how n3 and
m3 are defined, explain why r3 is a linear combination of r1 and r2. Now use
your result from (a) and #3.2 to explain why r3 is a linear combination of n1 and
m1.

(c) Following the method used in (b), explain why r4 is a linear combination of n1

and m1.

(d) Using your above results, explain why r5 is a linear combination of n1 and m1.

(e) Suppose we know that r(k−1) and rk are linear combinations of n1 and m1. Ex-
plain why r(k+1) is also a linear combination of n1 and m1.

(f) With k = 5, explain why we already know that r(k−1) and rk are linear combina-
tions of n1 and m1. What does (e) then tell us about r6?

(g) With k = 6, explain why we already know that r(k−1) and rk are linear combina-
tions of n1 and m1. What does (e) then tell us about r7?

(h) With k = 7, explain why we already know that r(k−1) and rk are linear combina-
tions of n1 and m1. What does (e) then tell us about r8?

(i) Suppose we’ve constructed (at least) 25 equations. Can (e) be used to deduce
that r25 is a linear combination of n1 and m1? Clearly explain your reasoning.

(j) Suppose we’ve constructed (at least) 100 equations. Can (e) be used to deduce
that r100 is a linear combination of n1 and m1? Clearly explain your reasoning.

(k) Suppose we’ve constructed (at least) 1000 equations. Can (e) be used to deduce
that r1000 is a linear combination of n1 and m1? Clearly explain your reasoning.

3.12. Suppose n1 and m1 are natural numbers, and we construct equations as in #3.10.
By #3.10, we know that eventually the remainder term in one of these equations will
be 0. Thus for some natural number k (being the number of equations constructed
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before the remainder term is 0), we have:

n1 = m1 · q1 + r1 with r1 smaller than m1;

n2 = m1, and m2 = r1, and

n2 = m2 · q2 + r2 with r2 smaller than m2;

n3 = m2, and m3 = r2, and

n3 = m3 · q3 + r3 with r3 smaller than m3;

n4 = m3, and m4 = r3, and

n4 = m4 · q4 + r4 with r4 smaller than m4;

...

nk = m(k−1), and mk = r(k−1), and

nk = mk · qk + rk with rk smaller than mk;

n(k+1) = mk, and m(k+1) = rk, and

n(k+1) = m(k+1) · q(k+1).

Using your conclusions from #3.10 and #3.11, explain why the gcd of n1 and m1 is
a linear combination of n1 and m1. (This result is called the Euclidean algorithm.)

3.13. (a) Say b is a natural number. Suppose 7 divides 10 · b. As in #3.2 (a), write 1
as a linear combination of 7 and 10. (So you have an equation: 1= some linear
combination of 7 and 10.) Then multiply both sides of the equation by b. Using
this new equation and your assumptions, explain why 7 must divide b. (You may
want to use the result of #1.9.)

(b) Say a and b are natural numbers and 7 does not divide a, but 7 does divide a · b.
Using #3.12 with n1 = 7 and m1 = a, explain why 1 can be written as a linear
combination of 7 and a. Then use the techniques of (a) to explain why b must be
divisible by 7.

(c) Say a and b are natural numbers and p is a prime. Suppose p does not divide a,
but p does divide a · b. Explain why 1 can be written as a linear combination of
p and a (again, you may want to use your result from #3.12). Then explain why
b must be divisible by p.

(d) Let m and n be natural numbers, and p a prime. Say p divides m · n; explain
why either p divides m or p divides n (or both). (Certainly either p divides m or
p does not divide m. If p divides m then we are done. If p does not divide m,
what does (c) tell you?)
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3.14. (a) Suppose that x and y are integers so that x ·y = 12. Is it necessarily the case that
either 6 divides x or 6 divides y? Either deduce that this is the case, or present
a specific example to show this is not the case.

(b) Suppose 6 divides x · y where x and y are integers. Does this mean that either 6
divides x or 6 divides y? Either deduce that this is the case, or present a specific
example to show this is not the case.

(c) Suppose 9 divides x · y where x and y are integers. Does this mean that either 9
divides x or 9 divides y? Either deduce that this is the case, or present a specific
example to show this is not the case.

(d) Suppose p is a prime and 2 · p divides x · y where x and y are integers. Does this
mean that either 2 · p divides x or 2 · p divides y? Either deduce that this is the
case, or present a specific example to show this is not the case.

(e) Suppose p and q are primes, and p · q divides x · y where x and y are integers.
Does this mean that either p · q divides x or p · q divides y? Either deduce that
this is the case, or present a specific example to show this is not the case.

(f) Suppose n is a natural number that is not prime. Suppose also that n divides x ·y
where x and y are integers. Does this mean that either n divides x or n divides
y? Either deduce that this is the case, or present a specific example to show this
is not the case.

3.15. (a) For each natural number between 2 and 25, classify the number as prime, or write
the number as a product of primes.

(b) Can 12 · 5 be written as a product of primes? Briefly but clearly explain your
answer.

(c) Can 12 · 7 be written as a product of primes? Briefly but clearly explain your
answer.

(d) Suppose n is a natural number, and n = 12 · p where p is a prime. Can n be
written as a product of primes? Briefly but clearly explain your answer.

(e) Suppose n is a natural number, and n = 18 · p where p is a prime. Can n be
written as a product of primes? Briefly but clearly explain your answer.

(f) Suppose n is a natural number with n = m ·k where m and k are natural numbers
between 2 and 25. Can n be written as a product of primes? Briefly but clearly
explain your answer. (You may want to use your previous conclusions, especially
from (a).)

(g) Say n is a natural number greater than 1, and suppose we already know that each
natural number smaller than n can be written as a product of primes. Can n be
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written as a product of primes? Present a clear and compelling argument. (Note:

If n is prime, then there is nothing to do. So if n is not prime, can n be written
as a product of natural numbers smaller than n? What are we assuming here
about numbers smaller than n? What can you then conclude about a product of
natural numbers smaller than n?)

(h) Explain why (g) does not imply that we necessarily know that each natural
number smaller than n can be written as a product of primes. Explain why
(g) does imply that if each natural number smaller than n can be written as a
product of primes, then n can be written as a product of primes.

(i) By (a), we know that each natural number between 2 and 25 can be written as
a product of primes. Use (g) with n = 26 to deduce that 26 can be written as a
product of primes.

(j) By (i), we know that 26 can be written as a product of primes. Use (g) with
n = 27 to deduce that 27 can be written as a product of primes.

(k) By (j), we know that 27 can be written as a product of primes. Use (g) with
n = 28 to deduce that 28 can be written as a product of primes.

(l) By (k), we know that 28 can be written as a product of primes. Use (g) with
n = 29 to deduce that 29 can be written as a product of primes.

(m) Can (g) be used to show that 291 can be written as a product of primes? Can
(g) be used to show that 6325 can be written as a product of primes? Clearly
explain your reasoning.

3.16. Recall: Suppose p is a prime and a, b are natural numbers. If p divides a · b but p
does not divide a, then p must divide b.

Verifiable fact: 61 is a prime.

(a) Suppose p is a prime that divides 183. (Notice that 183 = 3 · 61.) Explain why
either p divides 3 or p divides 61. Then, remembering that 3 and 61 are prime,
explain why either p = 3 or p = 61. (What are the divisors of 3 and 61?)

(b) Explain why (a) implies that the only primes that divide 183 are 3 and 61. (We
already know that 3 and 61 divide 183. You need to explain why no other prime
can possibly divide 183.)

3.17. We show here that a prime cannot be written as a product of primes in exactly one
way.

(a) The number 2 is itself prime, so certainly we can write 2 as a “product” of one
prime. Explain why there is no other way to write 2 as a product of primes.
(Which numbers divide 2? Which of these divisors are prime?)
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(b) Explain why there is only one way to write 3 as a product of primes.

(c) Suppose p is prime. Explain why no prime other than p divides p. Then explain
why the only way to write p as a product of primes is simply to write p as p, a
product of one prime.

3.18. In #3.15 we saw that each natural number can be written as a product of primes.
We want to deduce that there is esentially only one way to write a natural number as
a product of primes. (Since 1 is not divisible by any primes, we consider 1 to be an
“empty product” of primes.) As seen in #3.17, each prime can be written in exactly
one way as a product of primes. Suppose we have a non-prime natural number n that
is larger than 3. To factor n into a product of primes, we can begin with a prime p
that divides n. Then we can write n as p · k for some natural number k. Then we
continue to factor k as a product of primes.

(a) Find a natural number m so that 105 = 3·m. Now write m as a product of primes;
tThis allows you to write 105 as a product of primes. Next, find a natural number
k so that 105 = 5 · k. Now write k as a product of primes; again, this allows you
to write 105 as a product of primes. Does this give you two truely different ways
of writing 105 as a product of primes? In what sense are these factorizations of
105 essentially the same?

For (b)–(j), suppose n is a natural number larger than 3. Suppose also that each natural
number smaller than n can be written in essentially one way as a product of primes. If n
is prime, then we already know n can be written in only one way as a product of primes;
so suppose n is not prime. Let p and q be two primes that divide n.

(b) Expalin why this means n = p · k for some natural number k, and n = q ·m for
some natural number m. Also, explain why k and m are necessarily smaller than
n.

(c) Let k and m be as in (b). Explain why either p divides q or p divides m. (Does
p divide n? How does n relate to q and m?)

(d) Suppose p divides q. Explain why this means p = q. (What primes divide q?
Remember the assumptions on q.) Still supposing p divides q, explain why this
means p · k− p ·m = 0; then deduce that k−m = 0 and hence k = m. (You may
want to use #1.12.) Finally, using our assumption regarding numbers smaller
than n, explain why our initial factorizations of n as p · k and as q · m lead to
essentially the same factorization of n as a product of primes.

(e) Suppose p does not divide q. Explain why this means p is not equal to q. (What
primes divide q? Remember your assumptions on p and q. You may want to
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use #3.17.) Then using the conclusion that p does not equal q, explain why this
means q does not divide p.

(f) Again suppose p does not divide q. Explain why this means p must divide m.
Then explain why this means m = p · s for some natural number s. Explain why
s is necessarily smaller than m, and so s is necessarily smaller than n.

(g) Still suppose p does not divide q. Explain why this means q must divide k. Then
explain why this means k = q · t for some natural number t. Explain why t is
necessarily smaller than k, and so t is necessarily smaller than n.

(h) Still suppose p does not divide q. Using (f) and (g), explain why n = p · q · t
and n = q · p · s where s and t are as in (f) and (g). From this deduct that
p · q · (t− s) = 0; then deduce that t− s =0 and hence t = s.

(i) Still suppose p does not divide q. Given the suppositions and your conclusions
in (h), can there be essentially differenct ways to factor t and s as products
of primes? Explain your reasoning. (Remember what we are assuming about
numbers smaller than n.)

(j) Still suppose p does not divide q. Using (h) and (i), explain why our factorizations
of n as p ·k and as q ·m lead to essentially the same factorization of n as a product
of primes.

(k) Explain why (d) and (j) allow us to conclude that if each natural number smaller
than n can be factored in essentially one way as a product of primes, then n can
be factored in essentially one way as a product of primes.

(l) We know from #3.17 that each natural number smaller than 4 can be factored
in essentially one way as a product of primes. Use (k) to conclude that 4 can
factored in essentially one way as a product of primes.

(m) We know from (l) that each natural number smaller than 5 can be factored in
essentially one way as a product of primes. Use (k) to conclude that 5 can factored
in essentially one way as a product of primes.

(n) We know from (m) that each natural number smaller than 6 can be factored
in essentially one way as a product of primes. Use (k) to conclude that 6 can
factored in essentially one way as a product of primes.

(o) We know from (n) and #3.17 that each natural number smaller than 8 can be
factored in essentially one way as a product of primes. Use (k) to conclude that
8 can factored in essentially one way as a product of primes.

(p) We know from (o) that each natural number smaller than 9 can be factored in
essentially one way as a product of primes. Use (k) to conclude that 9 can factored
in essentially one way as a product of primes.
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(q) Can (k) and #3.17 be used to show that 25 can factored in essentially one way as
a product of primes? Can (k) and #3.17 be used to show that 40 can factored in
essentially one way as a product of primes? Can (k) and #3.17 be used to show
that 100 can factored in essentially one way as a product of primes? Can (k) and
#3.17 be used to show that any natural number n can factored in essentially one
way as a product of primes? Clearly explain your reasoning.

3.19. We want to deduce that there are infinitely many primes. (So do not already assume
this!) Say we have a list of finitely many primes: 2, 3, 5, 7, . . . , p. Let n be the product
of the primes in this list; so n = 2 · 3 · 5 · 7 · . . . · p.
(a) Briefly explain why n+1 can be written as a product of primes. (Is n+1 a natural

number? What do you know about natural numbers and products of primes?)
(b) Suppose n and n + 1 are divisible by d, where d represents a natural number.

Deduce that d must be 1. (You may want to use your result from #5(d).)
(c) Clearly explain why n + 1 is not divisible by any of the primes in the list

2, 3, 5, 7, . . . , p. (Use part (b)!)
(d) Clearly explain why there is another prime besides those in the list 2, 3, 5, 7, . . . , p.
(e) Clearly explain why this means there cannot be only finitely many primes.
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§4. Congruences.

Notation: Given integers a, b, the notation a ≡ b (mod 7) means that 7 divides a− b. For
instance, 3 ≡ 10 (mod 7) and −12 ≡ 5 (mod 7). More generally, given a natural number
m and integers a, b, the notation a ≡ b (mod m) means that m divides a− b. (The symbol
≡ is shorthand for “is congruent to”, and “mod” is shorthand for “modulo”.)

4.1. We want to establish that congruence modulo a fixed natural number m is “reflexive;”
that is, for an integer x, x ≡ x (mod m).
(a) Using the definition of congruence, explain why 3 ≡ 3 (mod 10).
(b) Using the definition of congruence, explain why 5 ≡ 5 (mod 12).
(c) Let m be a natural number. Using the definition of congruence, explain why

3 ≡ 3 (mod m).
(d) Let m be a natural number. Using the definition of congruence, explain why

x ≡ x (mod m) for any integer x.

4.2. We want to establish that congruence modulo a fixed natural number m is “symmet-
ric;” that is, for integers x and y, x ≡ y (mod m) exactly when y ≡ x (mod m).
(a) Explain why 17 ≡ 11 (mod 6); then explain why 11 ≡ 17 (mod 6).
(b) Suppose k is an integer so that 17 ≡ k (mod 6). Deduce that k ≡ 17 (mod 6).
(c) Suppose k and n are integers so that k ≡ n (mod 6). Deduce that n ≡ k (mod 6).
(d) Suppose m is a natural number, and k and n are integers so that k ≡ n (mod m).

Deduce that n ≡ k (mod m).
(e) Suppose m is a natural number and x and y are integers. Using (d), explain why

x ≡ y (mod m) exactly when y ≡ x (mod m). (So you must explain two things:
You must show that if x ≡ y (mod m) then y ≡ x (mod m); you also must show
that if y ≡ x (mod m) then x ≡ y (mod m).)

4.3. We want to establish that congruences modulo a fixed natural number m are “transi-
tive;” that is, if k, ` and n are integers with k ≡ ` (mod m) and ` ≡ n (mod m) then
k ≡ n (mod m).
(a) Suppose n is an integer so that 11 ≡ k (mod 6). Using the definition of congruence

and the fact that 17 ≡ 11 (mod 6), explain why 17 ≡ k (mod 6). (Notice that
17 − k = (17 − 11) + (11 − k). What do you already know about 17 − 11 and
11− k?)

(b) Suppose ` and n are integers so that 17 ≡ ` (mod 6) and ` ≡ n (mod 6). Using
the definition of congruence, explain why 17 ≡ n (mod 6).

(c) Suppose k, ` and n are integers so that k ≡ ` (mod 6) and ` ≡ n (mod 6). Using
the definition of congruence, explain why k ≡ n (mod 6).
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(d) Suppose m is a natural number and k, ` and n are integers so that k ≡ ` (mod m)
and ` ≡ n (mod m). Using the definition of congruence, explain why k ≡
n (mod m).

Terminology Since congruence modulo m is reflexive, symmetric and transitive, congru-
ence modulo m is called an equivalence relation.

4.4. (a) Suppose k, n are integers so that k ≡ n (mod 7). (So k − n is divisible by 7;
equivalently, 7 divides k − n.) Deduce that k + 3 ≡ n + 3 (mod 7) and that
k− 5 ≡ n− 5 (mod 7). (So you must deduce that (k+ 3)− (n+ 3) is divisible by
7, and that (k − 5)− (n− 5) is divisible by 7.)

(b) Suppose k, n are integers so that k ≡ n (mod 7). Let x denote another integer.
Deduce that k + x ≡ n+ x (mod 7) and that k − x ≡ n− x (mod 7).

(c) Suppose m is a natural number, and suppose k, n are integers so that k ≡
n (mod m). Deduce that k+3 ≡ n+3 (mod m) and that k−5 ≡ n−5 (mod m).

(d) Suppose m is a natural number, and suppose k, n are integers so that k ≡
n (mod m). Let x denote another integer. Deduce that k + x ≡ n+ x (mod m)
and that k − x ≡ n− x (mod m).

(e) Suppose k, n are integers so that k ≡ n (mod 7). Suppose also that x and y are
integers so that x ≡ y (mod 7). Deduce that k + x ≡ n + y (mod 7) and that
k− x ≡ n− y (mod 7). (Notice that (k+ x)− (n+ y) = (k− n) + (x− y). What
are we assuming about k − n and x− y?)

(f) Suppose m is a natural number, and suppose k, n are integers so that k ≡
n (mod m). Suppose also that x and y are integers so that x ≡ y (mod m).
Deduce that k + x ≡ n+ y (mod m) and that k − x ≡ n− y (mod m).

(g) Suppose k and n are integers with k ≡ n (mod 7). Explain why 3·k ≡ 3·n (mod 7)
and k · 3 ≡ n · 3 (mod 7).

(h) Suppose x, k and n are integers with k ≡ n (mod 7). Explain why x · k ≡
x · n (mod 7) and k · x ≡ n · x (mod 7).

(i) Suppose m is a natural number and k and n are integers with k ≡ n (mod m).
Explain why 3 · k ≡ 3 · n (mod m) and k · 3 ≡ n · 3 (mod m).

(j) Suppose m is a natural number and k and n are integers with k ≡ n (mod m).
Let x be an integer. Explain why x ·k ≡ x ·n (mod m) and k ·x ≡ n ·x (mod m).

(k) Suppose k and n are integers with k ≡ n (mod 7). Suppose also that x and y

are integers with x ≡ y (mod 7). Explain why x · k ≡ y · n (mod 7). (Notice that
x · k− y · n = (x · k− x · n) + (x · n− y · n). What do our assumptions and (i) tell
us about (x · k − x · n) and (x · n− y · n)?)

43



(l) Suppose m is a natural number and k and n are integers with k ≡ n (mod m).
Suppose also that x and y are integers with x ≡ y (mod 7). Explain why x · k ≡
y · n (mod m).

Notation: We write n2 to denote n ·n, n3 to denote n ·n ·n, n4 to denote n ·n ·n ·n, etc.

4.5. (a) Suppose n and a are integers with n ≡ a (mod 7). Deduce that

n2 ≡ n · a (mod 7) and n · a ≡ a2 (mod 7).

Then deduce that n2 ≡ a2 (mod 7). (You may want to use #4.4.)
(b) Suppose n and a are integers with n2 ≡ a2 (mod 7). Use this to deduce that

n3 ≡ n · a2 (mod 7).

Explain why a2 ≡ a2 (mod 7), then deduce that

n · a2 ≡ a3 (mod 7).

Then deduce that
n3 ≡ a3 (mod 7).

(c) Suppose that n, a and k are natural numbers. Suppose also that nk ≡ ak (mod 7).
Deduce that

nk+1 ≡ n · ak (mod 7).

Explain why ak ≡ ak (mod 7), and then deduce that

n · ak ≡ ak+1 (mod 7).

(Notice that nk+1 = n · nk and ak+1 = a · ak.) Then deduce that

nk+1 ≡ ak+1 (mod 7).

(Notice that nk+1 − ak+1 = (nk+1 − n · ak) + (n · ak − ak+1).)
(d) Explain why (c) does not imply that we necessarily have nk+1 ≡ ak+1 (mod 7).

Explain why (c) does imply that if nk ≡ ak (mod 7) then nk+1 ≡ ak+1 (mod 7).
(e) Suppose n and a are integers with n ≡ a (mod 7). So from (b) we know that

n3 ≡ a3 (mod 7). Use (d) with k = 3 to deduce that n4 ≡ a4 (mod 7).
(f) Suppose n and a are integers with n ≡ a (mod 7). So from (e) we know that

n4 ≡ a4 (mod 7). Use (d) with k = 4 to deduce that n5 ≡ a5 (mod 7).
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(g) Suppose n and a are integers with n ≡ a (mod 7). So from (f) we know that
n5 ≡ a5 (mod 7). Use (d) with k = 5 to deduce that n6 ≡ a6 (mod 7).

(h) Suppose n and a are integers with n ≡ a (mod 7). Does (d) imply that n100 ≡
a100 (mod 7)? Does (d) imply that n5000 ≡ a5000 (mod 7)? Does (d) imply that
nk ≡ ak (mod m) for all natural numbers k? Clearly explain your reasoning.

4.6. Throughout, let m be a natural number.
(a) Suppose n and a are integers with n ≡ a (mod m). Deduce that

n2 ≡ n · a (mod m) and n · a ≡ a2 (mod m).

Then deduce that n2 ≡ a2 (mod m). (You may want to use #4.4.)
(b) Suppose n and a are integers with n2 ≡ a2 (mod m). Use this to deduce that

n3 ≡ n · a2 (mod m).

Explain why a2 ≡ a2 (mod m), then deduce that

n · a2 ≡ a3 (mod m).

Then deduce that
n3 ≡ a3 (mod m).

(c) Suppose that n, a and k are natural numbers. Suppose also that nk ≡ ak (mod m).
Deduce that

nk+1 ≡ n · ak (mod m).

Explain why ak ≡ ak (mod m), and then deduce that

n · ak ≡ ak+1 (mod m).

(Notice that nk+1 = n · nk and ak+1 = a · ak.) Then deduce that

nk+1 ≡ ak+1 (mod m).

(Notice that nk+1 − ak+1 = (nk+1 − n · ak) + (n · ak − ak+1).)
(d) Explain why (c) does not imply that we necessarily have nk+1 ≡ ak+1 (mod m).

Explain why (c) does imply that if nk ≡ ak (mod m) then nk+1 ≡ ak+1 (mod m).
(e) Suppose n and a are integers with n ≡ a (mod m). So from (b) we know that

n3 ≡ a3 (mod m). Use (d) with k = 3 to deduce that n4 ≡ a4 (mod m).
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(f) Suppose n and a are integers with n ≡ a (mod m). So from (e) we know that
n4 ≡ a4 (mod m). Use (d) with k = 4 to deduce that n5 ≡ a5 (mod m).

(g) Suppose n and a are integers with n ≡ a (mod m). So from (f) we know that
n5 ≡ a5 (mod m). Use (d) with k = 5 to deduce that n6 ≡ a6 (mod m).

(h) Suppose n and a are integers with n ≡ a (mod m). Does (d) imply that n100 ≡
a100 (mod m)? Does (d) imply that n5000 ≡ a5000 (mod m)? Does (d) imply that
nk ≡ ak (mod m) for all natural numbers k? Clearly explain your reasoning.

4.7. Here we find an easy way to determine whether a 3 digit number is divisible by 9.

(a) Briefly explain why 10 ≡ 1 (mod 9). (Suggestion: Begin by translating the
notation into words. What does it mean for two numbers to be congruent modulo
9?)

(b) Briefly explain why 10 · 3 ≡ 1 · 3 (mod 9).

(Suggestion: Use (a) and #4.4 (m), or note that 10 · 3− 1 · 3 = (10− 1) · 3.)

(c) Explain why 10 · b ≡ 1 · b (mod 9) where b denotes some integer.

(d) Briefly explain why 10 · 3 + 7 ≡ 1 · 3 + 7 (mod 9). (Suggestion: Use (b) and
#4.4 (b).)

(e) Suppose b is some integer. Explain why 10·b+3 ≡ 1·b+3 (mod 9). (Suggestion:

Use (c) and #4.4 (b).)

(f) Suppose a and b are integers. Explain why 10 · b+ a ≡ 1 · b+ a (mod 9). (Sug-

gestion: Use (c) and #4.4 (b).)

(g) Suppose a and b are integers. Explain why 10 ·b+a is divisible by 9 exactly when
b + a is divisible by 9. (So you must demonstrate two things: (i) If 10 · b + a is
divisible by 9 then b+a is divisible by 9; and (ii) If b+a is divisible by 9 then 10·b+a
is divisible by 9. Remember what you just deduced about (10 · b+ a)− (b+ a).)

(h) Use (g) to determine whether 9 divides 51; breifly explain your reasoning. (Notice
that 51 = 10 · 5 + 1.)

(i) Briefly explain why 102 ≡ 12 (mod 9), then conclude that 100 ≡ 1 (mod 9). (You
may want to use #4.6.)

(j) Briefly explain why 100 · 3 ≡ 1 · 3 (mod 9). (You may want to use (i) and #4.4
(j).)

(k) Explain why 100 · c ≡ 1 · c (mod 9) where c denotes some integer. (Suggestion:

Use (i) and #4.4 (j).)

(l) Briefly explain why 100 · 3 + 10 · 7 + 5 ≡ 1 · 3 + 1 · 7 + 5 (mod 9). (Suggestion:

Use (f), (k) and #4.4 (l).)

(m) Suppose a, b and c are integers. Explain why 100·c+10·b+a ≡ 1·c+1·b+a (mod 9).
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(p) Suppose a, b and c are integers. Explain why 100 · c+ 10 · b+ a is divisible by 9
exactly when c+ b+ a is divisible by 9.

(q) Use (p) to determine whether 9 divides 513; breifly explain your reasoning.
(r) Can you extend this argument to determine whether numbers with more than 3

digits are divisible by 9? Clearly explain your reasoning.

4.8. Here we find an easy way to determine whether a 4 digit number is divisible by 11.
(a) Briefly explain why 10 ≡ −1 (mod 11).
(b) Briefly explain why 10 · 3 ≡ −1 · 3 (mod 11).
(c) Explain why 10 · b ≡ −1 · b (mod 11) where b denotes some integer.
(d) Briefly explain why 10 · 3 + 7 ≡ −1 · 3 + 7 (mod 11).
(e) Suppose b is some integer. Demonstrate that 10 · b+ 3 ≡ −1 · b+ 3 (mod 11).
(f) Suppose a and b are integers. Explain why 10 · b+ a ≡ −1 · b+ a (mod 11). (You

may want to use #4.4.)
(g) Suppose a and b are integers. Demonstrate that 10 · b + a is divisible by 11

exactly when −b+ a is divisible by 11. (So you must demonstrate two things: (i)
If 10 · b+ a is divisible by 11 then −b+ a is divisible by 11; and (ii) If −b+ a is
divisible by 11 then 10 · b + a is divisible by 11. Remember what you have just
deduced about (10 · b+ a)− (−b+ a).)

(h) Use (g) to determine whether 11 divides 51; breifly explain your reasoning. (No-
tice that 51 = 10 · 5 + 1.)

(i) Explain why 102 ≡ (−1)2 (mod 11). Conclude that 100 ≡ 1 (mod 11).
(j) Briefly explain why 100 · 3 ≡ 1 · 3 (mod 11).
(k) Explain why 100 · c ≡ 1 · c (mod 11) where c denotes some integer.
(l) Suppose a, b and c are integers. Explain why

100 · c+ 10 · b+ a ≡ 1 · c− 1 · b+ a (mod 11).

(m) Suppose a, b and c are integers. Explain why 100 · c+ 10 · b+ a is divisible by 11
exactly when c− b+ a is divisible by 11.

(n) Use (m) to determine whether 11 divides 572; breifly explain your reasoning.
(o) Explain why 103 ≡ (−1)3 (mod 11). Conclude that 1000 ≡ −1 (mod 11).
(p) Explain why 1000 · d ≡ −1 · d (mod 11) where d denotes some integer.
(q) Suppose a, b, c and d are integers. Explain why

1000 · d+ 100 · c+ 10 · b+ a ≡ −1 · d+ 1 · c− 1 · b+ a (mod 11).

(r) Suppose a, b, c and d are integers. Explain why

1000 · d+ 100 · c+ 10 · b+ a
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is divisible by 11 exactly when

−d+ c− b+ a

is divisible by 11.
(s) Use (r) to determine whether 11 divides 8391; breifly explain your reasoning.
(t) Can you extend this argument to determine whether numbers with more than 4

digits are divisible by 11? Clearly explain your reasoning.

4.9. Recall: Given any integer n, there is an integer s and a whole number t so that
n = 7 · s+ t where t is smaller than 7.
(a) Find an integer s and a whole number t so that −25 = 7 · s+ t where t is smaller

than 7. (So t is either 0, 1, 2, 3, 4, 5 or 6.) Then, with this choice of t, explain why
−25 ≡ t (mod 7).

(b) Let n denote an integer. Explain why n ≡ t (mod 7) where t is either 0, 1, 2, 3, 4, 5
or 6.

(c) Using (b), briefly explain why, given any integers k and m, k · m ≡ t (mod 7)
where t is either 0, 1, 2, 3, 4, 5 or 6.

(d) Suppose k and m denote whole numbers between 0 and 6. By (c), we know k ·m
is congruent modulo 7 to some whole number between 0 and 6. For instance,
5 · 2 ≡ 3 (mod 7), and 3 · 6 ≡ 4 (mod 7). Complete the attached multiplication
table modulo 7 so that each entry in the table is a whole number between 0 and
6.

(e) Suppose c denotes an integer. Explain why c · 3 ≡ c · 10 (mod 7), and why
3 · c ≡ 10 · c (mod 7).

(f) Suppose a, b and c denote integers, and suppose a ≡ b (mod 7). Using the defini-
tion of congruence, explain why c ·a ≡ c · b (mod 7), and why a · c ≡ b · c (mod 7).

(g) Suppose k,m and n denote integers; suppose also that k ≡ m (mod 7) and
m ≡ n (mod 7). Deduce that k ≡ n (mod 7). (Suggestion: Notice that n− k =
(n−m) + (m− k).)

(h) Use (d) to find a whole number k between 0 and 6 so that k · 3 ≡ 1 (mod 7).
Using (f), deduce that k · 3 · x ≡ x (mod 7).

(i) Suppose 3 ·x ≡ 2 (mod 7) where x is a whole number between 0 and 6. Taking k
as in (h), multiply both sides of the above congruence by k, obtaining k · 3 · x ≡
k · 2 (mod 7). Use this to find the value of x. (Remember that x is between 0
and 6.)

4.10. Recall: Given any integer n, there is an integer s and a whole number t so that
n = 6 · s+ t where t is smaller than 6.

48



(a) Find an integer s and a whole number t so that −25 = 6 · s+ t where t is smaller
than 6. (So t is either 0, 1, 2, 3, 4 or 5.) Then, with this choice of t, explain why
−25 ≡ t (mod 6).

(b) Let n denote an integer. Explain why n ≡ t (mod 6) where t is either 0, 1, 2, 3, 4
or 5.

(c) Using (b), briefly explain why, given any integers k and m, k · m ≡ t (mod 6)
where t is either 0, 1, 2, 3, 4 or 5.

(d) Suppose k and m denote whole numbers between 0 and 5. By (c), we know k ·m
is congruent modulo 6 to some whole number between 0 and 5. For instance,
5 · 2 ≡ 4 (mod 6), and 2 · 4 ≡ 2 (mod 6). Complete the attached multiplication
table modulo 6 so that each entry in the table is a whole number between 0 and
5.

(e) Suppose c denotes an integer. Explain why c · 5 ≡ c · 11 (mod 6), and why
5 · c ≡ 11 · c (mod 6).

(f) Suppose a, b and c denote integers, and suppose a ≡ b (mod 6). Using the defini-
tion of congruence, explain why c ·a ≡ c · b (mod 6), and why a · c ≡ b · c (mod 6).

(g) Suppose k,m and n denote integers; suppose also that k ≡ m (mod 6) and
m ≡ n (mod 6). Deduce that k ≡ n (mod 6). (Suggestion: Notice that n− k =
(n−m) + (m− k).)

(h) Use (l) to find a whole number k between 0 and 5 so that k ·5 ≡ 1 (mod 6). Using
(f), deduce that k · 5 · x ≡ x (mod 6).

(i) Suppose 5 ·x ≡ 2 (mod 6) where x is a whole number between 0 and 5. Taking k
as in (h), multiply both sides of the above congruence by k, obtaining k · 5 · x ≡
k · 2 (mod 6). Use this to find the value of x. (Remember that x is between 0
and 5.)

(j) Suppose a ≡ b (mod 6) for integers a, b. Deduce that a ≡ b (mod 3) and a ≡
b (mod 2).

(t) Suppose 3 · x ≡ 2 (mod 6) where x is a whole number between 0 and 5. Either
find the value of x, or explain why no such x exists.
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Appendix

Assumptions, Definitions, Terminology and Notation

Assumptions: We agree we understand what the numbers 1, 2, 3, 4, 5, etc. represent.
(The latin abbreviation “etc.” indicates that the list extends indefinitely.) These numbers
are called the counting numbers, since we use them to count things; they are also called
the natural numbers, since they arise naturally in our lives. We also agree that, given a
(finite) collection of objects, the number of objects we have does not depend on the order
in which we count them. Also, we agree we understand what it means for one natural
number to be larger or smaller than another. Also, we assume that when we add together
two natural numbers, we obtain another natural number. For instance, 3 + 5 is 8, which
is another natural number.

A definition of addition: Imagine drawing 3 dots of one color followed by 5 dots of
another color; we agree that 3 + 5 is the total number of dots. More generally, let m and
n represent natural numbers. Imagine drawing m dots of one color followed by n dots of
another color; we agree that m+ n is the total number of dots.

Another assumption: We assume that when we add together two natural numbers, we
obtain another natural number. For instance, 3 + 5 is 8, which is another natural number.

Notation: We sometimes use parentheses to indicate in which order to perform operations.
For instance, the expression (3 + 5) + 9 denotes the number we obtain by first adding 3 to
5, then adding 9 to the result. (So (3 + 5) + 9 is the same as 8 + 9.) Pictorially, (3 + 5) + 9
denotes the number of dots we have when we have 3+ 5 dots followed by 9 dots. Similarly,
3 + (5 + 9) denotes the number we obtain by adding 3 to the number obtained by adding
5 to 9. (So 3 + (5 + 9) is the same as 3 + 14.) Pictorially, 3 + (5 + 9) denotes the number
of dots we have when we have 3 dots followed by 5 + 9 dots.

A definition of multiplication: The expression 5 · 8 refers to the quantity obtained by
taking 5 copies of 8 objects. More generally, say m and n represent natural numbers; the
expression m · n refers to the quantity obtained by taking m copies of n objects.

Another assumption: We assume that when we multiply together two natural numbers,
we obtain another natural number. For instance, 5 · 8 is 40, another natural number.

Notation: The notation (3 · 5) · 9 refers to the quantity obtained by muliplying 3 · 5 by
9. (So (3 · 5) · 9 is the same as 15 · 9.) Similarly, 3 · (5 · 9) denotes the quantity obtained
by multiplying 3 by the quantity 5 · 9. (So 3 · (5 · 9) is the same as 3 · 45.) More generally,
with k,m and n denoting natural numbers, (k ·m) · n denotes the quantity obtained by
multiplying the quantity k ·m with n. Similarly, k · (m · n) denotes the quantity obtained
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by multiplying k by the quantity m · n.
Notation: When two expressions denote the same quantity, we say they are equal. We
use the symbol = to mean “is equal to.”

Terminology: Since 24 = 6 · 4, we say 24 is divisible by 6. We also say that 6 divides 24,
and that 6 is a divisor of 24. Similarly, since 27 = 9 · 3, we say 27 is divisible by 9, and
9 is a divisor of 27. More generally, when n is a natural number that is equal to 6 times
another natural number (i.e.

n = 6 · k

for some natural number k), we say that n is divisible by 6 and that 6 is a divisor of n.
More generally still, when m and n are natural numbers and n is equal to m times another
natural number (i.e.

n = m · k

for some natural number k), we say that n is divisible by m and that m is a divisor of n.

A definition of subtraction: Suppose we have 5 objects, then we subtract, or remove, 3
of these objects; the remaining number of objects is denoted by 5− 3. Pictorially, imagine
drawing 5 dots, then crossing out 3 dots; the remaining number of dots is 5 − 3. More
generally, suppose we have n objects where n is a natural number at least as big as 3,
and then we remove 3 of the objects; the remaining number of ojects is n− 3. Pictorially,
suppose we draw n dots and then we cross out 3 dots; the remaining number of dots is
n − 3. More generally still, suppose we have n objects, where n is a natural number,
and then we remove k of the objects where k is a natural number not exceeding n; the
remaining number of objects is n− k.

Another assumption: Suppose k and n are natural numbers, and suppose k is smaller
than n. Then we assume that n− k is another natural number. For instance, 5 and 3 are
natural numbers and 3 is smaller than 5; 5− 3 is 2, which is another natural number.
Terminology: The numbers

0, 1,−1, 2,−2, 3,−3, 4,−4, 5,−5, . . .

are called the integers. The numbers

−1,−2,−3,−4,−5, . . .

are called the negative integers.

More assumptions: Negative numbers are often useful to express orientation, i.e. to
distinguish forward from reverse. We interpret the symbol − to mean “in reverse.” So for
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instance, imagine being on a very long, straight path where a forward direction is indicated.
To take 5 steps, we move forward 5 steps. To take −5 steps, we move in reverse 5 steps
(so we move backward 5 steps). Notice that when you take 7 steps then −3 steps (i.e.
when you move forward 7 steps then backward 3 steps), then you are in the same place
as when you take −3 steps then 7 steps. Similarly, when you take 5 steps then −12 steps,
then you are in the same place as when you take −12 steps then 5 steps. More generally,
we assume that, for x and y integers, when you take x steps then y steps, you are in the
same place as when you take y steps then x steps. So we are assuming addition of integers
is commutative, i.e. x+y = y+x for any integers x and y. Also, when you take

(
7+(−3)

)
steps followed by 5 steps, you are in the same place as when you take 7 steps followed by(
(−3) + 5

)
steps. More generally, we assume that addition of integers is associative, i.e.

(x+ y) + z = x+ (y + z) for any integers x, y and z.

Terminology: We say that 3 divides −12 (or equivalently, that 3 is a divisor of −12 or
that −12 is divisible by 3) since −12 = 3 · (−4). More generally, we say that 3 divides an
integer n if n = 3 · q for some integer q. More generally still, we say that an integer m
divides another integer n if n = m · q for some integer q.

Terminology: We call a natural number even when it is divisible by 2. The odd natural
numbers are those not divisible by 2. So the odd natural numbers are between the even
natural numbers, and thus each even natural number is preceded by an odd natural number.

Notation: When a natural number n is even, we write 1
2 · n to denote half of n. For

instance, 1
2 · 6 = 3, and 1

2 · 10 = 5. More generally, if n is even then n = 2 · k for some
natural number k; then

1
2
· n = k.

Terminology: Since each natural number n is equal to 1 · n, 1 is called a multiplicative
identity. A natural number greater than 1 is called prime if it is divisible only by 1 and
itself. (For example, 2, 3, 7 and 17 are prime; 15 and 9 are not.)

Terminology: We say a natural number d is a divisor of another natural number n if n
is divisible by d, i.e. n = d · k for some natural number k. We say d is a common divisor
of m and n if d is both a divisor of m and of n. We say a common divisor d of m and n is
the greatest common divisor if d is larger than every other common divisor of m and n.

Abbreviation: “gcd” stands for “greatest common divisor.”

Notation: Given integers a, b, the notation a ≡ b (mod 7) means that 7 divides a− b. For
instance, 3 ≡ 10 (mod 7) and −12 ≡ 5 (mod 7). More generally, given a natural number
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m and integers a, b, the notation a ≡ b (mod m) means that m divides a− b. (The symbol
≡ is shorthand for “is congruent to”, and “mod” is shorthand for “modulo”.)

Notation: We write n2 to denote n ·n, n3 to denote n ·n ·n, n4 to denote n ·n ·n ·n, etc.
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