
Journal of Number Theory 180 (2017) 349–359
Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Some relations on Fourier coefficients of degree 

2 Siegel forms of arbitrary level

Lynne H. Walling ∗

School of Mathematics, University of Bristol, University Walk, Clifton, Bristol 
BS8 1TW, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 August 2016
Received in revised form 14 
February 2017
Accepted 26 April 2017
Available online 14 June 2017
Communicated by D. Goss

MSC:
primary 11F46, 11F11

Keywords:
Hecke eigenvalues
Siegel modular forms

We extend some recent work of D. McCarthy, proving 
relations among some Fourier coefficients of a degree 2 Siegel 
modular form F with arbitrary level and character, provided 
there are some primes p so that F is an eigenform for the 
Hecke operators T (p) and T1(p2).

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In a recent paper [3], McCarthy derives some nice results for Fourier coefficients and 
Hecke eigenvalues of degree 2 Siegel modular forms of level 1, extending some classical 
results regarding elliptic modular forms. In particular, with F a degree 2, level 1 Siegel 
modular form that is an eigenform for all the Hecke operators T (p), T (p2) (p prime), 
and a(T ) denoting the T th Fourier coefficient of F , McCarthy shows that:
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(a) provided that a(I) = 1 and p is prime, the T (p)-eigenvalue λ(p) and the 
T (p2)-eigenvalue λ(p2) are described explicitly in terms of a(pI) and a(p2I);

(b) for r ≥ 1, a(I)a(pr+1I) is described explicitly in terms of a(I), a(pI), a(pr−1I), 

a 
(
pr−1

pr+1

)
, and a 

(
pr

(
(1 + u2)/p u

u p

))
where 1 ≤ u < p/2 with u2 �≡ 1 (p);

(c) if a(I) = 0 then a(mI) = 0 for all m ∈ Z+; further, if m, n ∈ Z+ with (m, n) = 1, 
then a(I)a(mnI) = a(mI)a(nI).

(As defined in Sec. 2, T2(p2) is the Hecke operator associated with the matrix 
diag(p, p, 1/p, 1/p), T1(p2) is the Hecke operator associated with the matrix diag(p, 1, 1/
p, 1), and T (p2) = T2(p2) + pk−3T1(p2) + p2k−6. In [2], for χ = 1, T (p2) is denoted 
by T̃2(p2).) McCarthy’s approach begins with some formulas from [1], which are some-
what cumbersome.

In this note we use the formulas from [2] that give the action of Hecke operators on 
Fourier coefficients of a Siegel modular form F , allowing for arbitrary level and char-
acter, and giving a simpler proof of McCarthy’s above results (with no restriction on 
the level or character). Here when we say that a modular form has weight k, level N
and character χ, we mean that it transforms with weight k and character χ under the 
congruence subgroup

Γ0(N ) =
{(

A B
C D

)
∈ Sp2(Z) : N|C

}
,

where Sp2(Z) is the symplectic group of 4 × 4 integral matrices. We work with “Fourier 
coefficients” attached to lattices (as explained below), making it simpler to work with the 
image of F under a Hecke operator. For p prime and degree 2, the local Hecke algebra 
is generated by T (p), T1(p2) and T2(p2). When N = 1, Proposition 5.1 of [2] gives a 
relation between these generators, from which we deduce that with p � N , T (p) and 
T1(p2) generate the local Hecke algebra, as do T (p) and T̃2(p2). However, when p|N , we 
have T2(p2) = (T (p))2. Hence in this note we use the local generators T (p) and T1(p2); 
to more easily apply the results of [2], we use the operator

T̃1(p2) = T1(p2) + χ(p)pk−3(p + 1)

in place of T1(p2).
Using some rather special aspects of working with degree 2 Siegel modular forms, we 

prove the following extensions of [3].

Theorem 1.1. Suppose that F is a degree 2 Siegel modular form of weight k ∈ Z+, level 
N and character χ with Fourier expansion

F (τ) =
∑

a(T ) exp(2πiTr(Tτ)).

T
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Also suppose that p is prime with F |T (p) = λ(p)F and F |T̃1(p2) = λ̃1(p2)F .

(a) We have

λ(p)a(mI) = χ(p)pk−2η(p)a(mI) + a(mpI),

where

η(p) =

⎧⎪⎪⎨
⎪⎪⎩

1 + χ(−1)(−1)k if p ≡ 1 (4),
0 if p ≡ 3 (4),
1 if p = 2.

(Thus when a(mI) �= 0, λ(p) is given explicitly in terms of p, a(mI) and a(pmI).) 
As well, we have

χ(p)pk−2λ̃1(p2)a(mI) = χ(p2)p2k−4(α(I; p) − p)a(mI)

+ λ(p)a(pmI) − a(p2mI)

where

α(I; p) =

⎧⎪⎪⎨
⎪⎪⎩

2 if p ≡ 1 (4),
0 if p ≡ 3 (4),
1 if p = 2.

(Thus when χ(p)a(mI) �= 0, λ̃1(p2) is given explicitly in terms of p, a(mI), a(pmI)
and a(p2mI).)

(b) Set ε = 1 + χ(−1)(−1)k. For r ≥ 1, a(mI)a(pr+1I) is given by

a(pmI)a(prI) − χ(p2)p2k−3a(mI)a(pr−1I)

+ εχ(p)pk−2a(mI)a
(
pr−1m

pr+1m

)

+ εχ(p)pk−2a(mI)
∑

1≤u<p/2
u2 �≡−1 (p)

a

(
prm

(
(1 + u2)/p u

u p

))
.

(c) Suppose that n is a product of powers of primes p so that F is an eigenform for T (p)
and T̃1(p2), and that m ∈ Z+ with (m, n) = 1. If a(mI) = 0 then a(mnI) = 0. Also, 
we have a(I)a(mnI) = a(mI)a(nI).

We also prove the following modest generalization.

Theorem 1.2. Suppose that F is a degree 2 Siegel modular form of weight k ∈ Z+, level 
N and character χ with Fourier expansion
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F (τ) =
∑
T

a(T ) exp(2πiTr(Tτ)).

Suppose that p is an odd prime, and set D =
(

1
p

)
. Let S be the set of odd primes so 

that for q ∈ S, F is an eigenform for T (q) and T̃1(q2), and either q = p or 
(

−p
q

)
= −1. 

Let n be a product of powers of primes in S. Then for any m ∈ Z+ so that (m, n) = 1, 
we have

a(D)a(mnD) = a(mD)a(nD).

Also, a(D)a(mnD) = 0 if a(mD) = 0.

We note that McCarthy applies his results to compute eigenvalues of the level 1 
Eisenstein series with regard to the Hecke operators T (pr) (p prime); as he notes, in 
[5] we computed the Hecke-eigenvalues of Eisenstein series of square-free levels for all 
primes p, allowing nontrivial character (then generalized in [6] for arbitrary level N and 
character χ, but only for primes p so that p2 � N ).

We further note that it seems that these results cannot be extended to higher degrees, 
as Lemma 3.1 (which is pivotal for our arguments) does not extend to higher degrees.

2. Preliminaries

We will use some language and notation commonly used in quadratic forms and 
modular forms theory. When Λ is a lattice whose quadratic form is given by the matrix 
T (relative to some Z-basis for Λ), we write Λ � T . Now suppose that Λ is a lattice with 
Λ � T and that m ∈ Q+; we write Λm to denote the lattice Λ “scaled” by m, meaning 
that Λm � mT . Also, the discriminant of Λ is detT . With Λ, Ω lattices on the same 
underlying quadratic space over Q, we write {Λ : Ω} to denote the invariant factors of 
Ω in Λ.

We set

h(2) = {X + iY : X,Y ∈ R2,2
sym : Y > 0 },

where R2,2
sym denotes the set of 2 × 2 symmetric matrices with real entries, and Y > 0

means that Y represents a positive definite quadratic form. For a ring R, we write Sp2(R)
for the group of 4 × 4 symplectic matrices with entries in R. Fixing a weight k ∈ Z+, for 

γ =
(
A B
C D

)
∈ Sp2(Q), we define

F (τ)|γ = (det γ)k/2 det(Cτ + D)−kF ((Aτ + B)(Cτ + D)−1).

When F is a degree 2 Siegel modular form of weight k, level N and character χ, this 

means that for γ =
(
A B
C D

)
∈ Γ0(N ), we have
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F (τ)|γ = χ(detDγ)F (τ).

We can write F as a Fourier series:

F (τ) =
∑
T≥0

a(T ) exp(2πiTr(Tτ))

where the sum is over 2 × 2 symmetric, positive semi-definite, half-integral matrices T
(so the entries in T are half-integers with integers on the diagonal). Given G ∈ GL2(Z), 

we have γ =
(
G−1

tG

)
∈ Γ0(N ). Hence

χ(detG)F (τ) = F (τ)|γ

= (detG)kF (G−1τ tG−1)

= (detG)k
∑
T

a( tGTG) exp(2πiTr(Tτ)).

Thus a(tGTG) = χ(detG)(detG)ka(T ). So we can also write F as a “Fourier series” 
supported on isometry classes of even integral, positive semi-definite lattices: For Λ an 
even integral lattice with Z-basis {x, y}, set c(Λ) = a(TΛ) where, relative to the given 
basis for Λ, we have Λ � 2TΛ. When χ(−1) �= (−1)k, we equip Λ with an orientation, 
meaning that with G ∈ GL2(Z), (x y)G is a basis for the oriented lattice Λ if and only 
if detG = 1. Then

F (τ) =
∑
cls Λ

c(Λ) e∗{Λτ}

where cls Λ varies over all isometry classes of (oriented) even integral, positive semi-
definite lattices, and

e∗{Λτ} =
∑
G

exp(2πiTr( tGTΛGτ))

where G varies over O(Λ)\GL2(Z) when χ(−1) = (−1)k, and G varies over O+(Λ)\
SL2(Z) otherwise. (Here O(Λ) denotes the orthogonal group of Λ, and O+(Λ) = O(Λ) ∩
SL2(Z).)

Still suppose that F is a Siegel modular form of degree 2, weight k, level N and 
character χ. For p prime, we define T (p), T1(p2), and T2(p2) as follows. Take δ(p) =
diag(p, p, 1, 1), δ1(p2) = (p, 1, 1/p, 1), and δ2(p2) = diag(p, p, 1/p, 1/p). With Γ = Γ0(N ), 
we set

F |T (p) = pk−3
∑
γ

χ(γ)F |δ(p)−1γ

where γ varies over (δ(p)Γδ(p)−1 ∩ Γ)\Γ, and for j = 1, 2, we set
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F |Tj(p2) = pj(k−3)
∑
γ

χ(γ)F |δj(p2)−1γ

where γ varies over (δj(p2)Γδj(p2)−1 ∩ Γ)\Γ. Note that replacing δ(p) or δj(p2) by a 
scalar multiple of itself does not change the definition of the associated Hecke operator. 
Note also that in [2], we did not normalize Tj(p2) by pj(k−3), as is usually done in other 
texts, and has been done in the above formula for T1(p2). With T̃1(p2) = T1(p2) +
χ(p)pk−3(p + 1), Theorem 6.1 of [2] gives us the following.

Theorem 2.1. Let F be a degree 2 Siegel modular form of weight k, level N , character χ, 
and lattice coefficients c(Λ). Then for any even integral lattice Λ, the Λth coefficient of 
F |T (p) is

χ(p2)p2k−3c(Λ1/p) + χ(p)pk−2 ·
∑

{Λ:Ω}=(1,p)

c(Ω1/p) + c(Λp),

and the Λth coefficient of F |T̃1(p2) is

χ(p2)p2k−3 ·
∑

{Λ:Ω}=(1/p,1)

c(Ω) + χ(p)pk−2α(Λ; p)c(Λ) +
∑

{Λ:Ω}=(1,p)

c(Ω).

With Q the quadratic form on Λ, we equip Λ/pΛ with the quadratic form 1
2Q, and α(Λ; p)

is the number of isotropic lines in the quadratic space Λ/pΛ. There are p + 1 lines in 
Λ/pΛ, and each of these lines is generated either by y + pΛ or by (x + uy) + pΛ for 
some u with 0 ≤ u < p. So with Λ � 2I, α(Λ; 2) = 1, α(Λ; p) = 2 when p ≡ 1 (4), and 
α(Λ; p) = 0 when p ≡ 3 (4). When Λ � 2T with p|T , α(Λ; p) = p + 1.

Note that with p a prime and m ∈ Z+ so that p � m, for any even integral rank 2 
lattice Λ we have α(Λ; p) = α(Λm; p) since scaling by m does not change whether a line 
is isotropic in Λ/pΛ.

3. Proof of Theorem 1.1

The next lemma is pivotal in our proof of Theorem 1.1; when this lemma generalizes, 
we can generalize this theorem (as seen in Theorem 1.2).

Lemma 3.1. Suppose that F is a degree 2 Siegel modular form of weight k, level N , 
character χ, and lattice coefficients c(Λ). With Δ � 2I, p prime and m ∈ Z+ so that 
p � m, we have

∑
{Δ:Ω}=(1/p,1)

c(Ωpm) =
∑

{Δ:Ω}=(1,p)

c(Ωm/p) = η(p)c(Δm)

where, as in Theorem 1.1,
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η(p) =

⎧⎪⎪⎨
⎪⎪⎩

1 + χ(−1)(−1)k if p ≡ 1 (4),
0 if p ≡ 3 (4),
1 if p = 2.

Proof. Suppose that {Δ : Ω} = (1/p, 1). Then {Δ : pΩ} = (1, p); also, with T a matrix 
so that Ωm/p � m

p T , we have pΩm/p � pmT . This proves that

∑
{Δ:Ω}=(1/p,1)

c(Ωpm) =
∑

{Δ:Ω}=(1,p)

c(Ωm/p).

Let {x, y} be a basis for Δ relative to which Δ � 2I, and suppose that {Δ : Ω} = (1, p). 
Thus Ω = Z(x + uy) ⊕Zpy for 0 ≤ u < p or Ω = Zpx ⊕Zy. Hence Ωm/p is even integral 
if and only if Ω = Z(x + uy) ⊕ Zpy with u2 ≡ −1 (p). If p ≡ 3 (4), there are no such 
u. Suppose that p ≡ 1 (4), and fix u so that u2 ≡ −1 (p). Set Ωu = Z(x + uy) ⊕ Zpy

and Ω−u = Z(x −uy) ⊕Zpy. Then Ω1/p
u and Ω1/p

−u are integral with determinant 1. Thus 
by Exercise 5 p. 77 of [4], there is some G ∈ GL2(Z) so that tGTG = I. Therefore 
c(Ωm/p

u ) = χ(detG)(detG)kc(Δm). When p = 2, Ωm/2 is even integral only for Ω1 =

Z(x + y) ⊕ Z2y � 2 
(

1 1
1 2

)
. Since tG 

(
1 1
1 2

)
G = I for G =

(
1 −1
0 1

)
, we have 

c(Ω1/2
1 ) = c(Δ). Thus when p = 2, the sum on Ω is c(Ωm/2) = c(Δm). �

In the next proposition we use Lemma 3.1 to establish some very useful identities.

Proposition 3.2. Suppose that F is a degree 2 Siegel modular form of weight k, level N , 
character χ, and lattice coefficients c(Λ). Also suppose that F |T (p) = λ(p)F and 
F |T̃1(p2) = λ̃1(p2)F . Set η(1) = 0, κ(1) = 1. With Δ � 2I and m ∈ Z+ so that p � m, 
for r ≥ 1 we inductively define η(pr) and κ(pr) as follows: η(p) is as in Lemma 3.1, 
κ(p) = λ(p) − χ(p)pk−2η(p), and for r ≥ 2,

η(pr) = λ̃1(p2)κ(pr−2) − χ(p2)p2k−3η(pr−2) − χ(p)pk−2α(Δpr−2
; p)κ(pr−2)

and

κ(pr) = λ(p)κ(pr−1) − χ(p2)p2k−3κ(pr−2) − χ(p)pk−2η(pr).

Then we have ∑
{Δ:Ω}=(1/p,1)

c(Ωprm) =
∑

{Δ:Ω}=(1,p)

c(Ωpr−2m) = η(pr)c(Δm) (1)

and

c(Δprm) = κ(pr)c(Δm). (2)
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Proof. Recall that the value of α(Δ; p) is computed after Theorem 2.1; note that for 
r ≥ 1, α(Δpr ; p) = p + 1 as then Δpr

/pΔpr is totally isotropic and contains p + 1 lines. 
Also, note that the first equality in Equation (1) is easily verified by replacing Ω by pΩ. 
We now compute η(pr) and κ(pr).

(Case r = 0:) With κ(1) = 1, it is clear that c(Δ) = κ(1)c(Δ). So suppose that we 
have {Δ : Ω} = (1, p). Then discΩm/p2 = 4m2/p2. Hence when p �= 2, Ωm/p cannot be 
integral, so c(Ωm/p) = 0. When p = 2, we see from the discussion at the end of the proof 
of Lemma 3.1 that Ωm/4 is not even integral for any Ω with {Δ : Ω} = (1, 2). Thus 
Equation (1) holds with η(1) = 0.

(Case r = 1:) In Lemma 3.1 we showed that Equation (1) holds with η(p) as de-
fined therein. We know that c(Δm/p) = 0 since Δm/p is not even integral, and so by 
Theorem 2.1 and the above conclusion we have

κ(p)c(Δm) = λ(p)c(Δm) − χ(p)pk−2η(p)c(Δm).

(Induction step:) Suppose that r ≥ 2 and that the proposition holds for all � with 
0 ≤ � < r. First, from Theorem 2.1 and the induction hypothesis we have∑

{Δ:Ω}=(1,p)

c(Ωpr−2m) = (λ̃1(p2)κ(pr−2) − χ(p2)p2k−3η(pr−2))c(Δm)

− χ(p)pk−2α(Δpr−2
; p)κ(pr−2)c(Δm)

= η(pr)c(Δm).

Hence we also have

c(Δprm) = (λ(p)κ(pr−1) − χ(p2)p2k−3κ(pr−2) − χ(p)pk−2η(pr))c(Δm)

= κ(pr)c(Δm).

Thus induction on r proves the proposition. �
We also have the following helpful result.

Proposition 3.3. Suppose that F is a degree 2 Siegel modular form of weight k, level N , 
character χ, and lattice coefficients c(Λ); recall that c(Λ) = a(TΛ) where Λ � 2TΛ. Fix 
a prime p and r ≥ 1; take Δ � 2I relative to a Z-basis {x, y}. Set ε = 1 + χ(−1)(−1)k. 
Then with η(p) as defined in Lemma 3.1 and η(pr+1) as defined in Proposition 3.2, we 
have

η(p)a(prI) − η(pr+1)a(I)

= −εa

(
pr−1m

pr+1m

)
− ε

∑
1≤u<p/2
u2 �≡−1 (p)

a

(
prm

(
(1 + u2)/p u

u p

))
.
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Proof. By Proposition 3.2, η(pr+1)c(Δ) =
∑

{Δ:Ω}=(1,p) c(Ωpr−1). With Ω so that {Δ :
Ω} = (1, p), we either have Ω = Z(x + uy) ⊕ Zpy for 0 ≤ u < p, or Ω = Zpx ⊕ Zy. 

Then for u �= 0, we have Ωu = Z(x + uy) ⊕ Zpy � 2pr+1
(

((1 + u2)/p u
u p

)
; from our 

above discussion on Fourier coefficients of a Siegel modular form F , we have c(Ω1/p
u ) =

χ(−1)(−1)kc(Ω1/p
−u ). Similarly,

c((Zpx⊕ Zy)1/p) = χ(−1)(−1)kc((Zx⊕ Zpy)1/p).

Further, if p is odd and u2 ≡ −1 (p), then by Exercise 5 p. 77 of [4], there is some 
G ∈ GL2(Z) so that

tG

(
(1 + u2)/p u

u p

)
G = I;

hence with G′ = diag(−1, 1)G, we get

tG′
(

(1 + u2)/p −u
−u p

)
G′ = I,

and thus c(Ω1/p
u ) + c(Ω1/p

−u ) = (1 + χ(−1)(−1)k)c(Δpr ). Similarly, when p = 2, Ω1 �

2r+2m 
(

1 1
1 2

)
, which can be diagonalized using the matrix G =

(
1 −1
0 1

)
, and so 

c(Ω1/2
1 ) = c(Δpr ). Using the definition of η(p), the proposition now follows. �

Theorem 1.1 is now easy to prove. Take Δ � 2I; recall that c(Δprm) = a(prmI). The 
first claim of (a) follows immediately from Theorem 2.1 and Lemma 3.1. To prove the 
second claim in (a), we first use Theorem 2.1 to get

λ̃1(p2)c(Δm) = χ(p)pk−2α(Δ; p)c(Δm) +
∑

{Δ:Ω}=(1,p)

c(Ω) (3)

and

λ(p)c(Δpm) = χ(p2)p2k−3c(Δ) + χ(p)pk−2
∑

{Δ:Ω}=(1,p)

c(Ω) + c(Δp2
). (4)

Solving Equation (4) for the sum on Ω and substituting into χ(p)pk−2· Equation (3)
yields the second claim in (a).

To prove (b), we first use Theorem 2.1 and Proposition 3.2 to obtain

a(pr+1I) = λ(p)a(prI) − χ(p2)p2k−3a(pr−1I)

− χ(p)pk−2η(pr+1)a(I).



358 L.H. Walling / Journal of Number Theory 180 (2017) 349–359
Next we multiply this equation by a(mI), use Theorem 1.1(a) to substitute for 
λ(p)a(mI), and use Proposition 3.3 to substitute for η(p)a(prI) − η(pr−1I)a(I); (b) 
now immediately follows.

For (c), suppose that n = pe11 · · · pett where p1, . . . , pt are distinct primes so that F
is an eigenform for T (pi) and T̃1(p2

i ) (1 ≤ i ≤ t). For any m′ ∈ Z+ with (n, m′) = 1, 
repeated applications of Proposition 3.2 gives us

a(m′nI) = κ(pe11 ) · · ·κ(pett )a(m′I).

Thus (taking m′ = m) we have a(mnI) = 0 if a(mI) = 0. Further (taking m′ = 1), we 
have

a(nI) = κ(pe11 ) · · ·κ(pett )a(I)

and hence a(I)a(mnI) = a(mI)κ(pe11 ) · · ·κ(pett )a(I) = a(mI)a(nI).

4. Proof of Theorem 1.2

As previously noted, the key to proving Theorem 1.1 is Lemma 3.1. We can extend 
this lemma to some extent, as follows.

Lemma 4.1. Suppose that F is a degree 2 Siegel modular form of weight k, level N , and 
character χ, and let c(Λ) denote the Λth coefficient of F . Suppose that p is an odd prime 

and Δ � 2 
(

1
p

)
. For m ∈ Z+ with p � m, we have

∑
{Δ:Ω}=(1/p,1)

c(Ωpm) = χ(−1)(−1)kc(Δm).

For q an odd prime with 
(

−p
q

)
= −1 and q � m, we have

∑
{Δ:Ω}=(1/q,1)

c(Ωqm) = 0.

Proof. Let {x, y} be a Z-basis for Δ relative to which Δ �
(

2
2p

)
. Then the only 

lattice Ω so that {Δ : Ω} = (1, p) and Ωm/p is even integral if

Ω = Zpx⊕ Zy � 2p
(
p

1

)
= 2p

(
0 1
1 0

)(
1

p

)(
0 1
1 0

)
.

With γ = diag
((

0 1
1 0

)
,

(
0 1
1 0

))
, we have F |γ = χ(−1)F and consequently 

c 
(

2m
(
p

1

))
= χ(−1)(−1)kc 

(
2m

(
1

p

))
. Hence
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∑
{Δ:Ω}=(1/p,1)

c(Ωpm) =
∑

{Δ:Ω}=(1,p)

c(Ωm/p) = χ(−1)(−1)kc(Δm).

With q an odd prime with 
(

−p
q

)
= −1 and q � m, there is no lattice Ω so that 

{Δ : Ω} = (1, q) and Ωm/q is even integral, and hence
∑

{Δ:Ω}=(1/q,1)

c(Ωqm) = 0. �

To prove Theorem 1.2, we begin by making the following definitions. Set η(1) = 0, 
κ(1) = 1. For q ∈ S (as defined in the statement of Theorem 1.2), define η(q) as in 
Lemma 4.1, and set κ(q) = λ(q) − χ(q)qk−2η(q). For r ≥ 2, we define η(qr) and κ(qr)
using the inductive formulas from Proposition 3.2 (so η(qr), κ(qr) are determined by η(q), 
λ(q) and λ̃1(q2)). Then mimicking the proofs of Proposition 3.2 and Theorem 1.1(c) easily 
yields Theorem 1.2.
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