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Abstract. We extend some recent work of D. McCarthy, proving rela-
tions among some Fourier coefficients of a degree 2 Siegel modular form
F with arbitrary level and character, provided there are some primes q
so that F is an eigenform for the Hecke operators T (q) and T1(q2).

1. Introduction

In a recent paper [3], McCarthy derives some nice results for Fourier coef-
ficients of degree 2 Siegel modular forms of level 1, extending some classical
results regarding elliptic modular forms. Most notably, McCarthy shows
that with F a degree 2, level 1 Siegel modular form that is an eigenform for
all the Hecke operators, and a(T ) denoting the T th Fourier coefficient of F ,
we have:

(a) If a(I) = 0 then a(mI) = 0 for every m ∈ Z+;
(b) If m,n ∈ Z+ with (m,n) = 1, then a(I)a(mnI) = a(mI)a(nI).

McCarthy’s approach begins with some formulas from [1], which are some-
what cumbersome.

In this note we use the formulas from [2] that give the action of Hecke
operators on Fourier coefficients of a Siegel modular form F , allowing for
arbitrary level and character, and giving a simpler proof of McCarthy’s
above results (with no restriction on the level or character). We work with
“Fourier coefficients” attached to lattices (as explained below), making it
simpler to work with the image of F under a Hecke operator. We also relax
our conditions on F , supposing it is an eigenform for at least some of the
local Hecke algebras. We show that for m,n ∈ Z+ with (m,n) = 1, we have

a(mnI) = 0 if a(mI) = 0

and

a(I)a(mnI) = a(mI)a(nI)

provided that n is a product of (powers of) primes q so that F is an eigenform
for T (q) and T1(q2) (Theorem 3.3; note that in level 1, McCarthy’s work
should also yield this result). Additionally, we can show that with p an odd

prime and D =

(
1

p

)
, for m,n ∈ Z+ with (m,n) = 1 we have

a(mnD) = 0 if a(D) = 0
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and
a(D)a(mnD) = a(mD)a(nD)

provided that n is a product of (powers of) odd primes q so that F is an

eigenform for T (q) and T1(q2), and either q = p or
(
−p
q

)
= −1 (Theorem

4.2; again, there is no restriction on the level or character).
We note that McCarthy also computes eigenvalues of the level 1 Eisenstein

series with regard to the Hecke operators T (pr) (p prime); as he notes, in [5]
we computed the eigenvalues of Eisenstein series of square-free levels with
regard to different generators of the local Hecke algebra, namely T (p) and

T̃1(p2) (p prime).

2. Preliminaries

We will use some language and notation commonly used in quadratic
forms theory: When Λ is a lattice whose quadratic form is given by the
matrix T (relative to some Z-lattice for Λ). We write Λ ' T . Now suppose
that Λ is a lattice with Λ ' T and m ∈ Q+; we write Λm to denote the
lattice Λ “scaled” by m, meaning that Λm ' mT . Also, the discriminant
of Λ is detT . Finally, with Λ,Ω lattices on the same unlerlying quadratic
space over Q, we write {Λ : Ω} to denote the invariant factors of Ω in Λ.

With F a degree 2 Siegel modular form of weight k, level N and character
χ, we can write F as a Fourier series:

F (τ) =
∑
T≥0

a(T ) exp(2πiTr(Tτ))

where the sum is over 2 × 2 symmetric, positive semi-definite, half-integral
matrices T (so the entries in T are half-integers with integers on the diago-

nal). Given G ∈ GL2(Z), we have γ =

(
G−1

tG

)
∈ Sp2(Z). Hence

χ(detG)F (τ) = F (τ)|γ

= (detG)kF (G−1τ tG−1)

= (detG)k
∑
T

a( tGTG) exp(2πiTr(Tτ)).

Thus a(tGTG) = χ(detG)(detG)ka(T ). So we can also write F as a “Fourier
series” supported on isometry classes of rank 2 even integral, positive semi-
definite lattices (so each of these lattices is equipped with an even integral,
positive semi-definite quadratic form):

F (τ) =
∑
cls Λ

c(Λ) e∗{Λτ}

where each lattice Λ is oriented if χ(−1)(−1)k = −1,

e∗{Λτ} =
∑
G

exp(πiTr( tGTΛGτ))

with TΛ an even integral matrix representing the quadratic form on Λ, G
varying over O(Λ)\GL2(Z) when χ(−1)(−1)k = 1 and over O+(Λ)\SL2(Z)
otherwise. (Here O(Λ) denotes the orthogonal group of Λ, and O+(Λ) =
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O(Λ) ∩ SL2(Z).) Note that if Λ is an oriented lattice and Ω is a sublattice
Λ, Ω inherits from Λ an orientation.

As discussed in [2], for each prime p we have a local Hecke algebra gen-
erated by the operators T (p) and T1(p2). Equivalently, this local Hecke

algebra is generated by T (p) and T̃1(p2) where

T̃1(p2) = pk−3T1(p2) + χ(p)pk−3(p+ 1).

Theorem 6.1 of [2] gives us the following.

Theorem 2.1. Let F be a degree 2 Siegel modular form of level N , character
χ, and lattice coefficients c(Λ). Then for any even integral lattice Λ, the Λth
coefficient of F |T (p) is

χ(p2)p2k−3c(Λ1/p) + χ(p)pk−2 ·
∑

{Λ:Ω}=(1,p)

c(Ω1/p) + c(Λp),

and the Λth coefficient of F |T̃1(p2) is

χ(p2)p2k−3 ·
∑

{Λ:Ω}=(1/p,1)

c(Ω) + χ(p)pk−1α1(Λ; p)c(Λ) +
∑

{Λ:Ω}=(1,p)

c(Ω)

where α1(Λ; p) is the number of isotropic lines in the quadratic space Λ/pΛ.

Note that with p a prime and m ∈ Z+ so that p - m, for any even integral
rank 2 lattice Λ we have α1(Λ; p) = α1(Λm; p) since scaling by m does not
change whether a line is isotropic modulo p.

3. Proof of main result

The next lemma is pivotal in our proof of our main result; when this
lemma generalizes, we can generalize our main result (as seen in Theorem
4.2).

Lemma 3.1. Suppose that F is a degree 2 Siegel modular form of weight k,
level N , and character χ, and let c(Λ) denote the Λth coefficient of F . With
∆ ' 2I, p prime and m ∈ Z+ so that p - m, we have∑

{∆:Ω}=(1/p,1)

c(Ωpm) =
∑

{∆:Ω}=(1,p)

c(Ωm/p) = η(p)c(∆m)

where

η(p) =


1 + χ(−1)(−1)k if p ≡ 1 (4),

0 if p ≡ 3 (4),

1 if p = 2.

Proof. Suppose that {∆ : Ω} = (1/p, 1). Then {∆ : pΩ} = (1, p); also, with

T a matrix so that Ωm/p ' m
p T , we have pΩm/p ' pmT . This proves that∑

{∆:Ω}=(1/p,1)

c(Ωpm) =
∑

{∆:Ω}=(1,p)

c(Ωm/p).
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With {x, y} a basis for ∆ relative to which ∆ ' 2I, the lattices with
invariant factors (1, p) in ∆ are

Z(x+ βy)⊕ Zpy ' 2

(
1 + β2 pβ
pβ p2

)
where β varies modulo p, and

Zpx⊕ Zy ' 2

(
p2

1

)
.

Suppose that Ω is one of these lattices. Then Ωm/p is even integral if and
only if Ω = Z(x + βy) ⊕ Zpy with β2 ≡ −1 (p). If p ≡ 3 (4), there are
no such β. Suppose that p ≡ 1 (4), and fix γ so that γ2 ≡ −1 (p). Set

Ω+ = Z(x+γy)⊕Zpy and Ω− = Z(x−γy)⊕Zpy. With T =

(
1 + γ2 pγ
pγ p2

)
,

we have

Ω+ ' 2T and Ω− ' 2

(
−1

1

)
T

(
−1

1

)
.

Hence c(Ω
m/p
− ) = χ(−1)(−1)kc(Ω

m/p
+ ). Also, 1

pT is integral with detT = 1.

Thus (by an algorithmic process, or by Exercise 5, p. 77 [4]), there is some

G ∈ GL2(Z) so that tGTG = I. Therefore c(Ω
m/p
+ ) = χ(detG)(detG)kc(∆m).

When p = 2, the lattices with invariant factors (1, 2) in ∆ are

Zx⊕ Z2y ' 2

(
1

4

)
, Z2x⊕ Zy ' 2

(
4

1

)
,

and

Z(x+ y)⊕ Z2y ' 4

(
1 0
1 1

)(
1 1
0 1

)
.

When scaled by m/2, these first two lattices are not even integral, but the
last one is and is isometric to ∆m. Thus when p = 2, the sum on Ω is

c(Ωm/2) = c(∆m).

�

We use this lemma to prove a relation between c(∆prm) and c(∆m) where
∆ ' 2I andm ∈ Z+ so that p - m. The argument is inductive, and it requires
a relation between certain sums, and so we include this in the statement of
the proposition.

Proposition 3.2. Suppose that F is a degree 2 Siegel modular form of
weight k, level N , and character χ, and let c(Λ) denote the Λth coefficient

of F . Also suppose that that F is an eigenform for T (p) and T̃1(p2) where p
is a prime. Then with ∆ ' 2I and m ∈ Z+ so that p - m, for every integer
` ≥ 0 we have∑

{∆:Ω}=(1/p,1)

c(Ωp`m) =
∑

{∆:Ω}=(1,p)

c(Ωp`−2m) = η(p`)c(Λm)

and c(∆p`m) = κ(p`)c(∆m) where η(p`), κ(p`) depend only on p, λ(p), λ̃1(p2).
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Proof. Let λ(p) and λ̃1(p2) be the eigenvalues of F under T (p) and T̃1(p2).
Note that the first equality in the displayed equation is easily verified by
replacing Ω by pΩ.

(Case ` = 0:) It is easy to see that κ(1) = 1. So suppose that we have

{∆ : Ω} = (1, p). Then disc Ωp−2m = 4m2/p2. Hence when p 6= 2, Ωm/p

cannot be integral, so c(Ωm/p) = 0. When p = 2, we see from the discussion

at the end of the proof of Lemma 3.1 that Ωm/4 is not even integral for any
Ω with {∆ : Ω} = (1, 2). Thus η(1) = 0.

(Case ` = 1:) By Lemma 3.1,∑
{∆:Ω}=(1,p)

c(Ωm/p) = η(p)c(∆m)

where η(p) is dependent only on p. By Theorem 2.1 we have

λ(p)c(∆m) = χ(p2)p2k−3c(∆m/p) + χ(p)pk−2
∑

{∆:Ω}=(1,p)

c(Ωm/p) + c(∆pm).

We see that ∆m/p is not even integral, so c(∆m/p) = 0. Thus with Lemma
3.2, we have

c(∆pm) = κ(p)c(∆m)

where κ(p) = λ(p)− η(p), and so κ(p) depends only on p and λ(p).
(Induction step:) Suppose that r ≥ 2 and that the proposition holds for

all ` with 0 ≤ ` < r. First, from Theorem 2.1 we have

λ̃1(p2)c(∆pr−2m) =χ(p2)p2k−3
∑

{∆:Ω}=(1/p,1)

c(Ωpr−2m)

+ χ(p)pk−2α1(∆pr−2m; p)c(∆pr−2m) +
∑

{∆:Ω}=(1,p)

c(Ωpr−2m).

Thus ∑
{∆:Ω}=(1,p)

c(Ωpr−2m) =
∑

{∆:Ω}=(1/p,1)

c(Ωprm) = η(pr)c(∆m)

where

η(pr) = λ̃1(p2)κ(pr−2)− χ(p2)p2k−3η(pr−2)− χ(p)pk−2α1(∆pr−2
; p)κ(pr−2).

(Recall that at the end of Sec. 2 we discussed why α1(Λp`m; p) = α1(Λp`m; p).)

Note that for r ≥ 3, α1(∆pr−2
; p) = p+ 1, the number of lines in ∆/p∆. For

r = 2,

α1(∆pr−2
; p) =


2 if p ≡ 1 (4),

0 if p ≡ 3 (4),

1 if p = 2.

In particular, this means that η(pr) depends only on p, λ(p), and λ̃1(p2).
Also from Theorem 2.1 we have

λ(p)c(∆pr−1m) =χ(p2)p2k−3c(∆pr−2m)

+ χ(p)pk−2
∑

{∆:Ω}=(1.p)

c(Ωpr−2m) + c(∆prm).
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Therefore c(∆prm) = κ(pr)c(∆m) where

κ(pr) = λ(p)κ(pr−1)− χ(p2)p2k−3κ(pr−2)− χ(p)pk−2η(pr).

Thus by the induction hypothesis and the result from the previous para-

graph, κ(pr) depends only on p, λ(p), and λ̃1(p2). �

Our main result is now easy to prove.

Theorem 3.3. Suppose that F is a degree 2 Siegel modular form of level N
and character χ with Fourier expansion

F (τ) =
∑
T

a(T ) exp(2πiTr(Tτ)).

Let S be the set of primes so that for p ∈ S, F is an eigenform for T (p) and

T̃1(p2). Let n be a product of powers of primes in S. Then for any m ∈ Z+

with (m,n) = 1, we have

a(mnI) = 0 if a(mI) = 0,

and in any case we have

a(I)a(mnI) = a(mI)a(nI).

Proof. Write n = pe11 · · · p
et
t where p1, . . . , pt are distinct elements of S. For

any m′ ∈ Z+ with (n,m′) = 1, repeated applications of Proposition 3.2 gives
us

a(m′nI) = κ(pe11 ) · · ·κ(pett )a(m′I).

Thus (taking m′ = m) we have a(mnI) = 0 if a(mI) = 0. Further (taking
m′ = 1), we have

a(nI) = κ(pe11 ) · · ·κ(pett )a(I)

and hence a(I)a(mnI) = a(mI)a(nI).
�

4. A modest generalization

As previously noted, the key to proving our main result is Lemma 3.1.
We can extend this lemma to some extent, as follows.

Lemma 4.1. Suppose that F is a degree 2 Siegel modular form of weight
k, level N , and character χ, and let c(Λ) denote the Λth coefficient of F .

Suppose that p is an odd prime and ∆ ' 2

(
1

p

)
. For m ∈ Z+ with p - m,

we have ∑
{∆:Ω}=(1/p,1)

c(Ωpm) = χ(−1)(−1)kc(∆m).

For q an odd prime with
(
−p
q

)
= −1 we have∑

{∆:Ω}=(1/q,1)

c(Ωqm) = 0.
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Proof. Let {x, y} be a Z-basis for ∆ relative to which ∆ '
(

2
2p

)
. Then

the only lattice Ω so that {∆ : Ω} = (1, p) and Ωm/p is even integral is

Ω = Zpx⊕ Zy ' 2p

(
p

1

)
= 2p

(
0 1
1 0

)(
p

1

)(
0 1
1 0

)
.

Hence ∑
{∆:Ω}=(1/p,1)

c(Ωpm) =
∑

{∆:Ω}=(1,p)

c(Ωm/p) = χ(−1)(−1)kc(∆m).

With q an odd prime with
(
−p
q

)
= −1, there is no lattice Ω so that

{∆ : Ω} = (1, q) and Ωm/q is even integral, and hence∑
{∆:Ω}=(1/q,1)

c(Ωqm) = 0.

�

From this, one mimics the proofs of Proposition 3.2 and Theorem 3.3 to
obtain the following.

Theorem 4.2. Suppose that F is a degree 2 Siegel modular form of level N
and character χ with Fourier expansion

F (τ) =
∑
T

a(T ) exp(2πiTr(Tτ)).

Suppose that p is an odd prime, and set D =

(
1

p

)
. Let S be the set of

odd primes so that for q ∈ S, F is an eigenform for T (q) and T̃1(q2), and

either q = p or
(
−p
q

)
= −1. Let n be a product of powers of primes in S.

Then for any m ∈ Z+ so that (m,n) = 1, we have

a(mnD) = 0 if a(mD) = 0,

and in any case we have

a(D)a(mnD) = a(mD)a(nD).
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