Hecke eigenforms and representation numbers of arbitrary rank lattices
LYNNE H. WALLING

Introduction. Given a totally positive quadratic form @) over a totally real num-
ber field K, one can obtain a Hilbert modular form by restricting ) to a lattice L and
forming the theta series attached to L; the Fourier coefficients of the theta series are the
representation numbers of () on L. The space of Hilbert modular forms generated by all
theta series attached to lattices of the same weight, level and character is invariant under
a subalgebra of the Hecke algebra, hence one can (in theory) diagonalize this space of
modular forms with respect to an appropriate Hecke subalgebra and infer relations on the
representation numbers of the lattices. In a previous paper the author found such relations
by constructing eigenforms from theta series attached to lattices of even rank which are
“nice” at dyadic primes; the purpose of this paper is to extend the previous results to all
lattices.

We begin by proving a lemma (Lemma 1.1) which allows us to remove the restriction
regarding dyadic primes. Then using our previous work we find that associated to any
even rank lattice L is a family of lattices famL which is partitioned into nuclear families
(which are genera when the ground field is Q), and the averaged representation numbers
of these nuclear families satisfy arithmetic relations (Theorem 1.2).

In §2 we define “Fourier coefficients” attached to integral ideals for a half-integral
weight Hilbert modular form. Then in analogy to the case K = Q, we describe the effect
of the Hecke operators on these Fourier coefficients (Theorem 2.5).

In §3 we use theta series attached to odd rank lattices to construct eigenforms for the
Hecke operators; the results of §2 then give us arithmetic relations on the representation
numbers of the odd rank lattices. When the ground field is Q, we may assume Q(L) C Z

and then these relations may be stated as

m—3 m—1

7 x, (p)(—1[p) =

2

r(genL,2p’a) = (1—p (2alp) +p™ ?)r(genL, 2a) —p™ *r <genL, —Z)
p

where r(genL,2a) is the average number of times the lattices in the genus of L represent

2a, m is the rank of L, p is a prime not dividing the level of L, and X is the character
attached to L (Corollary 3.7).

§1. Relations on representation numbers of lattices of even rank. Let V be
a vector space of even dimension m over K where K is a totally real number field of degree

n over Q; let @ be a totally positive quadratic form on V', L a lattice on V (so KL = V),
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N the level of L and nL the norm of L as defined in [6]. Then the theta series

Q(L, 7_) — Ze2m‘Tr(Q(w)7')
xeLl

is a Hilbert modular form of weight m /2, level N” and quadratic character X, » and for P a

prime ideal such that PJ N, either the Hecke operator T'(P) or the operator T'(P?) maps
0(L,T) to a linear combination of theta series of the same weight, level and character (see
6]; of. [1]).

We derive relations on the representation numbers of the lattices in the “extended
family” of L; essentially, the extended family of L consists of all lattices which arise when
we act on the theta series attached to lattices in the genus of L with those Hecke operators
known to preserve the space spanned by theta series. We begin now by giving refined
definitions of a family and of an extended family; these definitions agree with those given

in [8] when the lattice in question is unimodular when localized at dyadic primes.

Definition. A lattice L’ is in the family of L, denoted famlL, if L’ is a lattice on V¢
where « is a totally positive element of K* which is relatively prime to N, such that for
all primes P|N we have L, ~ L%, and for all primes P/ N we have L/, ~ L;Lf for some
u, € Of. Here Lp = OpL, and V* (resp. L$) denotes the vector space V (resp. the
lattice Lp) equipped with the “scaled” quadratic form a@Q. We say L’ € famL is in the
nuclear family of L, fam™ L, if there exists some totally positive unit « such that L/, ~ L%
for all primes P, and we say L’ is in the extended family of L, xfamL, if L’ is connected
to L with a prime-sublattice chain as defined in §3 of [8].
For £ > 0, we define the representation numbers r(L,¢) and r(xfamL, §) by

r(L,§) =#{rel: Qx)=¢}

and
1 /
r(fam™ L, &) = Z o)) r(L,¢€)

Ll

where o(L’) is the order of the orthogonal group of L’ (see [4]) and the sum runs over
a complete set of representatives of the isometry classes within fam*L. Note that if
w €U = O then L* is in the genus of L; since U™ /U? is finite (where U™ denotes the
group of totally positive units and U? the subgroup of squares — see §61 of [3]) and each
genus has a finite number of isometry classes, it follows that fam™ L has a finite number of

isometry classes.

We now show



Lemma 1.1. The number of nucler families in fam[L is 2" where r € Z.

Proof: As argued in the proof of Lemma 3.1 of [8], Lp ~ L;P for any u, € Up = O

when P is a prime not dividing 2. Thus there can only be a finite number of primes Q

such that Lo # L;Q for all u, € Ug; let Qy,...,Q; denote these “bad” primes for L.
For each Q = Q; (1 <i <t), set

StabQ(L) = {U - Z/[Q : Lqé ~ LQ }

Clearly Stabg(L) is a multiplicative subgroup of Ug, and Llé ={u?: uwely} C
Stabg(L). Now, since [Ug : UZ] is a power of 2 (see 63:9 of [4]) it follows that [Ug :
Stabg(L)] is also a power of 2. Thus H§:1 Ug,/Stabg, (L) is a group of order 2° for
some s € Z. We associate each nuclear family fam' L’ within famL to an element of
[1._,Ug,/Stabg, (L) as follows. For L' € famL we know L' is a lattice on V¢ for
some o € K* with a € Ug, and Ly, ~ LY (1 < i < t); associate fam™ L’ with
(...,a- Stabg,(L),...). It is easily seen that this map is well-defined and injective. The
techniques used to prove Lemma 3.1 of [8] show that the nuclear families within famZL
are associated with a multiplicatively closed subset of the product [[/_, Uo,/Stabg,(L);
since this product is a finite group, it follows that the nuclear families within fam/Z are
associated with a subgroup of [['_, Uo,/Stabg,(L). The order of [['_, Ug,/Stabg, (L) is

2% so there must be 2" nuclear families in fam/L where r € Z. q.e.d.

For a prime Pf 2N/, define

1 if L/PL is hyperbolic,
—1 otherwise;

2P = {

define

|

A(P) = N(P)Z(N(P)*' +1) ife,(P) =1, and
A(P?) = N(P)F(N(P)F 1 —1)? if e, (P) = —1.

For A C O such that ordp(.A) is even whenever ¢, (P) = —1, set €, (A) = H e, (P)ordrA,
P|lA
and set
min{a,b}

)\('Pa))\(Pb) _ Z N(fp)c(2k—1))\(7)a+b—2c)

c=0

and A\(A) = H)\ (Pord”(A)> . Now the arguments of [8] can be used to extend Theorem
PlA
3.9 of [8] to include any even rank lattice L, giving us
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Theorem 1.2. Let L be any lattice on V where dimV = 2k (k € Z, ). Take§ € nL, £ > 0,
and write £(nL)~! = MM’ where M and M’ are integral ideals such that (M,2N) =1

and ordp M is even whenever P is a prime such that €, (P) = —1. Then

r(fam™ L, 26) = A(M)N, (M) 7*/2 r(fam™ L', 2¢)

K/Q
= > e (AN, (A)F ! r(fam™ AL, 2¢)
AQX;—EM’

where nL’ = M -nL and L’ is connected to L by a prime-sublattice chain.

62. Hecke operators on forms of half-integral weight. In this section we
develop some of the theory of half-integral weight Hilbert modular forms. To read about
the general theory of Hilbert modular forms, see [2].

Let AV be an integral ideal such that 40 C N, and let Z be a fractional ideal; then as
in [8] we define

9 o 172071 “
oWV, Z%) =< A€ NT29 o cdetAeUU =0%, det A>0 ;.

We also define

0(Z, AT)

To(N,Z?) = {Z: {A, 0T } . AeTo(N,7?), det A € U? }

where 0(Z,7) = Z e(2a%7) with e(87) = ™17 and U? = {u?: ucU = O* }. As
acl

shown in §3 of [6], when A € T'g(N,Z?) and det A = 1, 0(Z, A7)/0(Z,7) is a well-defined

automorphy factor for A, and it is easily seen that for u € U, 6(Z,u7) = 6(Z,7). Thus

we can define a group action of Ty (N,Z?) on f: H" — C by

0(Z, At

gt = 1140 = (5525 sean),

(Here 'H denotes the complex upper half-plane.) For X, 2 numerical character modulo the

ideal V' and m an odd integer, we let M <f o(NV,Z?), XN) denote the space of Hilbert

modular forms f which satisfy




for all A = (CCL 2) € To(N,Z2). Notice that by definition, /| (g u(_)l ) (1) = f(u?r) =

2 0 ~
f‘(% 1)(7’) for any u € U, so Mz (FO(N,I2),XN) = {0} unless x (u) =1 for all

u € Y. For P a prime, P| N, we define the Hecke operator
T(P?): Mu (fo(/\f,ﬁ),xN) — M (IN“o(NJ’QIQ),XN)
as follows. Let {g]} be a complete set of coset representatives for
(fl(/v, )N (N, 7»212)) \fn(/v, P212)

where

—_—

T (N,72%) = {(Z Z) eTo(N,Z%): a=1 (mod N) }
Then for f € Mm <f0(N,IQ),XN>, define

JIT(PH) = N(P)E2 3 f|4;.

Clearly T(P?) is well-defined and f|T(P?) € Mz (fo (N, P?1?), XN) . Similar to the case

of integral weight, we also define operators

S(P): M (fO(N,ﬁ),XN) — Mo (fo(MPQﬁ),XN)

by
. _% H(I, CT)
fIS(P) = f| [C,N(P) W}
where C € P PTI2o detC =1, and ac =1 (mod N). The proof
NPI?0 @ ’ ’ = '

of Proposition 6.1 of [6] shows that N(P)~20(Z,C7)/0(PZ,) is a well-defined automor-
phy factor for C, and it is easy to check that S(P) is well-defined and that f|S(P) €

Mm (fo (N, P?2I?), XN)’ (Note that the restrictions on d in Proposition 6.1 of [6] are un-
necessary, but one must then use the extended transformation formula from §4 of [7].) In
fact, S(P) is an isomorphism, so by setting S(P~1) = S(P)~! and S(J1)S(J2) = S(T1T2),

we can inductively define S(J) for any fractional ideal J relatively prime to N.
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P PTiI29!
NP2 P

1 (mod N). Then for f € Mum (fo(N,I2),XN>,

Lemma 2.1. Suppose A € < ) such that det A = 1 and ay =

f {A,N@)—%zgy’;:ﬂ )

Proof: Let C be a matrix as in the definition of S(P); so

f] {A,N(P)—%izéi’;}:ﬂ |S(P)~!

1 6 I, AT
=] {A’N(P)iegm, r;

9(Z, AC~17)
0(Z,T) ]

O(PZ,C17)
0(Z, 1)

} | {cl,N(P)%
= f| {AC_l,
=f

since [AC™1,0(Z,AC™'7)/0(Z,7)] € Ty (N, Z2). q.e.d.

We now use this lemma to give us a useful description of T'(P?) when PJ N.

Lemma 2.2. For P a prime, P| N, and f € Mm (fo(N,Iz),XN> we have
o_m 9 1 b
v et =30 (o 1))
b

SWHE f),mmé( 3 e(%a?))
B8

a€PI/P3T

+ f|S(P?)

where b runs over P72772071 /7720~ and 3 runs over (P37 2071 /P~272971)*.

0 1

from the space Mm (fo(./\/', 12),XN> onto Mm <f0(/\/, a?7?), XN), we may assume Z C

O. Choose a € P — P? such that aQ is relatively prime to A" and a =1 (mod N). Let
{by} be a set of coset representatives for (P~2Z-2071 /P~1Z72071)* such that b, P?Z?%0 is

Proof: Since for a € K* the mapping f +— f‘ [(a ) ,N(aQ)i] is an isomorphism
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relatively prime to aQ; then for each k, use strong approximation to choose ¢, € N'P?Z20
/ /
and dp € O such that ady, — brpc, = 1. Take A’ = (CCL, Z,

a’ € P?, P|d, and a'd — b'¢ = 1, and take {b7} to be a set of representatives for
P~2772071/Z7207!. Then one easily sees that

(G A Dl )

is a complete set of coset representatives for (fl(/\/, P2712) N T (N, IQ)) \fl(N, P2I2).

) € I'1 (N, P2Z?) such that

Take f € Mm (fo(./\/',I2),XN). Then

[ = ] [A,7 9(731,/1'7)}

O(PZL, )
and the transformation formula (2) in §2 of [6] shows that
0(PZ,A'T) / r1Vs L =2 v,
AP 2T (¢4 @ L)E o3 (d) 2 0a?).
o - R T @) 2 el

a€PI/d'PT

(Recall that, as remarked earlier, we need not restrict d as [6], but we need to then use

the extended transformation formula as it appears in [7].) On the other hand,

75(P?) = f] [A’,N(P)‘l o, Al”]

O(P2Z, )

and following the derivation in the proof of Proposition 6.1 of [6] we find that

0Z,A'r) ., /1\s 1 -1 v, o, b o
G(PQI,T)_(C+dT) T2 (d') Z e d/2a Z e d/2a :

a€P2I/d'"P?T a€d'T/P3d'T

b/
By Proposition 3.2 of [6], Z e (—/2a2> = N(P); also, since PJ d’,
a€d'T/d'P2T

b 9 b’ 9
Z e<52a>: Z e(EZQ).
a€P2I/d'P2T a€PI/d'"PT

Thus f|A' = f|S(P?).



Now choose v € P71Z719~! such that (vPZd,d,P) = 1 for all k. Fix some k; for

simplicity write Ay = <Z Z

aB+bec P 1T7207!; we will show that

14| (5 7). =~

and then the lemma will follow. Now,

). Set 8 = B'v? where 3/ € P10 is chosen such that

N[

> e280%) |  f|S(P),

a€PI/P3T

1 g .
flsey =gl {4 (3 7) wepys Q(I’f;’zgzﬁﬂl) )|

again following the proof of Proposition 6.1 of [6] we find that

o 122 (3 1))

O(PZ,T)

1
2

N|=

= (c+(cB+d)L)? 7% (cB+d)"F N(P)~

b
Z e (aﬂ +d2a2)
a€Z/(cB+d)PT cf+

and since a(cf + d) — c¢(aB +b) = 1 and e(a(af + b)2a?) =1,

1 _1 _1 (aB+0)?_ ,
= (c+(Btd)z) 7% (B+d)"2 N(P)"> e(—ciM)
aEI/(c%Fd)PI cf+d
1 1 1 2
= (c+ (cB+d)2)F 7% (cB+d)"* N(P)"* e<— v 2a2)
an/%er)P Cﬁ +d

(note that vPZ0 is relatively prime to (¢8 + d)P). Now, d is relatively prime to 4 since
4|e; thus by reciprocity of Gauss sums (Theorem 161 of [3]) we have

CV2
(¢B+d)~7 N(P) 2 > e(—cﬁwz(f)

a€O/(cB+d)P
n 1 d
=i72 N(c*Po) 2 Z e (Cﬁ—z 2a2>
a€O/cv2Po v

and using the techniques of §3 of [6],



._n 2 _1 Cﬂ‘f‘d 2 Cﬁ—f—d 2
=i 2 N(cv*P0)" 2 Z e( -~ 2a> Z e( o 207 ).

a€P/cv?2Pd a€cv?d/cv?Po
d d
For o € P, 0[37—22042 = —22a2 (mod 20~ 1) (since B = V2B’ with 5/ € P~13) so
cv cv
Brd. d
3 ( 2a): 3 e<ﬁza
a€P/cv? PO a€P/cv2Pd
d
= > o)
cv
a€Q/cv?0
d 2
(note that ordpcr?d = 0). Also, cﬁ—}; 20° = 23 (2) (mod 2071) for a € cv?0, so
cv v
d 2
STy e s (a(2))
cv v
a€cv?d/cv?Po a€cv?2d/cv?Po
= Z e(2Ba?).
a€PI/P?T

On the other hand, formula (1) of [6] and the techniques used above show that

o(pzac(} 1))
1)

1 2
= (c—l—(cﬂ—i—d)%)ET% d=s Z e(—%&xz)
a€PI/dPT
2
= (c+ (B + d)%)% T2 d”2 Z e <—%2a2)
a€0/do

and by reciprocity of Gauss sums,

Nl

= (c+ (cf+d)2) 73073 N(aw?9) "2 Z e (%2@2) :

a€O/cv?2d



Our goal in this section is to determine the effect of the Hecke operators on the Fourier

coefficients of a half-integral weight form. When K = Q, we know that for

F) =" a(n)e(2nr) € M (fo(N), X) ,

n>0

we have f(7)|T(p?) = Z b(n)e(2nt) where

m—3 m—1

= (=1p)"=

b(n) = a(p®n) + x(p)p (nlp)a(n) + x(p*)p™ 2a(n/p*).

By defining “Fourier coefficients” attached to integral ideals, we expect to get a similar
description of the effect of the Hecke operators on any half-integral weight Hilbert modular
form. This, in fact, is one of the things Shimura does for integral weight forms in [5]; so
mimicing Shimura, we decompose a space of half-integral weight Hilbert modular forms as
described below.

Whenever Z and J are fractional ideals in the same (nonstrict) ideal class, the mapping

_92 _
f—=f [(a() (1)) ,N(aQ)il is an isomorphism from the space Mm (FO(N,IQ),XN>

onto Mm (fo (N, T?), XN) where « is any element of K* such that oZ = J (notice that

this isomorphism is independent of the choice of ). Hence we can consider T'(P?) and

S(P) as operators on the space

h/
My W,x,) =[] My (T 23, x, )
A=1
where Z1,...,Zy represent all the distinct (nonstrict) ideal classes such that I7,..., 12,

represent distinct strict ideal classes (see §61 of [3]). Just as in the case where m is even

(see Lemma 1.1 and Proposition 1.2 of [7]), we have

M%(./\/’,XN) = %M%(/\AX)
where the sum is over all Hecke characters x extending x = with x_ =1,

Mg (V. x) =
{(FreMzWN,x,,): F|S(T)=x"(J)F for all fractional ideals J, (J,N) =1},
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and x* is the ideal character induced by x. (For J a fractional ideal relatively prime to
N, x*(J) = x(a) where a is an idele of K such that a, = 1 for all primes P|Noo, and
aO = J. Also note that there are Hecke characters y extending X with y_ = 1 since
X, (u)=1foralluel.)

When defining “Fourier coefficients” attached to integral ideals for an integral weight
form F, Shimura uses the fact that for u € U™,

F| (8 (1’) ~F.

In the case of half-integral weight forms, we have no analogous equation. However, we can

decompose Mz (N, x ) as follows.
Let Kt ={aeK: a>0}and K2={a?: a €K, a#0 }; set G = K+/K? and
H = U+K2/K2 (z L{+/L{2). For each character ¢ € G =the character group of GG, define
M%(N, XNagb) =

{FEM%(N,XN): F| Kg ?) ,1} = ¢(u)F for all u € Ut }

Then we have

Lemma 2.3. With the above definitions,

Mip(NVx,) = & My (W, x,..9)

where the sum runs over a complete set of representatives ¢ for G JH* with H- = {¢ €
G : ¢lg =1 }. Each space M%(J\/’, XN,¢) is invariant under all the Hecke operators
T(P?) where P is a prime ideal not dividing N .

Remark. The restriction map defines an isomorphism from G /H* onto H~U+ JU?, but

there is no canonical way to extend an element of U+ /U? to an element of G/H=L.

Proof: Given F € M= (N, ), set
1 — u 0
fom g, 2, 2006 1))
ueUt /U?
One easily verifies thatFG/\/l%(N, XN,¢>). Also,
1 — u 0
2 Fesgrap 2 |\ 2@ Fl{y 1) =F
¢€§/HL weldt /U2 ¢
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since duality shows that > é ¢(u) is only nonzero when u = 1. Furthermore, for ¢, ¢ € @,
M (N, x ) ¢1) and Mm (N, X, ¢2) either are equal or have trivial intersection, depend-

ing on whether ¢1¢, € H+. Thus Mz (N, X, ) =®s Mz (N,x, ,¢) as claimed.

Now, given u € U™, P a prime ideal not dividing A, and {EJ} a set of coset repre-

sentatives for

(Trv,22) n Ty v, P222) ) \Ta (v, P27%),

u ™t 0 u 0 . .
we see that 0 1 Aj 0 1 is a set of coset representatives for

(T (N, Z2) N Ty (N, P2T2)) \rl(/\/, P212).

Standard techniques for evaluating Gauss sums show that

Q(I, AjUT)
0(Z,ur)

0(Z, Ayr)

= (uld;) 0T.7)

oy -1
where A4; = <Zj fé) and A} = (UO ?)Aj (3 (1)) . Since dj = ajd; = v?* (mod N)

for some v € U, the Law of Quadratic Reciprocity (Theorem 165 of [3]) shows that (u|d;) =

1; hence
u=l 0 ~ u 0 =
(o D) A1G )=
and thus T(P?) acts invariantly on the space Mz (N, X, 9)- q.e.d.

Unfortunately, we also have

Lemma 2.4. Given ¢ € G and P a prime ideal not dividing N, we have
S(P) : Mz(N,x,.,¢) = Mz(N,x,.,o¢,)

where 1), is an element of G such that ., (u) = (u|P) for all u € UT. Consequently, given
any Hecke character x extending x (with x_, = 1),

Mz (N, x) "Mz (N, x,.,¢) = {0}
unless UT = U>.

Proof: Let C = (I *) be a matrix as in the definition of S(P); so det C' = 1, and

d

N

F|S(P) = f| [C,N(P)_ —
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for f € Mm (To(N,T2), X, )- Then for u € U™, the techniques used to prove Proposition
6.1 of [6] show that

(o ) lever ez 1 0) ]

e ouf)]

:[C“,(u\d)(U\P)NU’) 0(PZ,7)

—1
where C% = (uo (1)> C (1(; ?) Since d = 1 (mod N) (recall the definition of

S(P)) we see again by the Law of Quadratic Reciprocity that (u|d) = 1. Hence for
FeMzWN,x,,9),

rse)l (5 1) ] =wrr e [(5 7)) 1) = swilp) Flse),

showing that F‘S(P) € Mn(N,x,,,¢1).
Now, to finish proving the lemma, we simply observe that there are an infinite number
of primes P such that (u|P) = —1if u e U — U? (see 65:19 of [4]). q.e.d.

The preceding two lemmas compel us to define “Fourier coefficients” attached to
integral ideals as follows.

Given F' = (..., fa,...) € M=z (N,x ) where fi(1) = > - ax(()e(2(T), ¢ € G and
M # 0 an integral ideal, we define the M, ¢-Fourier coefficient of F' by:

(i) a(M,¢) = [u+71u2] D et u d(Eu)ay(Eu)N(Zy)~ % if M = €T, ? for some A and
some & > 0;

(ii) a(M, @) = 0 if M cannot be written as £Z, % (with & > 0);

(iii) a(0,¢) = ax(0)N(Z»)~ % if ax(0)N(Z\)~2 = a,(0)N(Z,)~ 2 for all A, u.

Thus for M = EI/\_Q, £>0,a(M,¢)is N(Zy)~ = times the &-Fourier coefficient of the
A-component of Fy. Since F' = ) s Fo the collection of all the M, ¢-Fourier coefficients
(¢ € G /H%) characterize any form F whose 0, ¢-Fourier coefficients can be defined.

We now describe the effect of the Hecke operators on these Fourier coefficiets.

Theorem 2.5. Let F'= (..., fx,...) € M= (N, x) where x is a Hecke character extending

X, with x. = 1. Take P to be a prime ideal not dividing ', and take ¢, € (K+/K2) such
that 1, (&) = (¢|P) for all £ € Kt with ordp = 0. Let a(M, *) and b(M, %) denote the
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M, =-Fourier coefficients of F and of F|T(P?) (respectively). Then for any ¢ € (K+/K?2),

we have

{a(P2M,¢)+X*(7> N(P)™z" (=1|P)" a(M, ¢1p,,)
b(M, ¢) = +x* (PN (P)"2a(MP~2, ¢) ifPf M,
a(P?M, ¢) + x*(P?)N(P)™ 2a(MP2, ¢) if P|M.

Proof: Take p,v € K* such that Z3P? = p*Z2 and I3P* = 4°Z. Then by Lemma 2.2
the y-component of F|T(P?) is

(s )
(% o) Z[(0 2520
@il |(G ﬁ’),N(ﬂ-%D![(p: 1)

where b runs over P22, 2971 /72071, B runs over (P73, %071 /P21, 2071)%, and a

}:

N

N[

2
runs over ZyP/I\P?. (Recall that F € M=z (N, x) so f1]S(Z)] [(ua (1)> ,N(w?)~

x*(Z)f, where wI?Z3 =Z2.) It is easily seen that

fm( DA HCe 5 e

N(IPZ, )" FN(P?) > aa(©e(26p°7)

£eP12

= N(I\PZ, ") "2 N(P?) ) ax(p®)e(27),

¢e1?

Al

|

and that



Now we work a little:

(3 ) IS0 ) ] [0 ) ]

1

= NP FY (Z e(—2ﬁa2)> > au(§)e(266p%)e(267).
E

a ce1?

Taking 3y € P~5Z; 2071 — P2Iy 29~1, standard techniques for evaluating Gauss sums

show us that

Z(Ze(—wo?)) e(28p°) = Y (=B'P)" (Zwm) e(26/0' p°)

B B'e0/P

«

and (Za 6(25()0z2))2 = N(P)(—1|P). So

Z(Ze(—Qﬂoﬂ)) e(2¢0p%)
I6] [e%
mfl ( > (ﬁ’P>e(25’ﬁoép2>) (Ze(2ﬁ0a2>>

= N(P)"= (-1IP)

B'eO/P

which is equal to 0 when £ € PZ2. When § # PZ> and v € ;' — PZ ', f'{v? runs over
O/P as ' does; in this case

> (BIP)e(28'Bosp?) = D (B P)e(28 5o p?) = (&2P) Y e(2B00?).

B'e€eO/P a€PIy/P3Iy

Thus

(PYE(—1[P)* T D (v*|P)au(€)e(27).

¢e1?

This means that for M = 51;2, E>0,
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Noting that (uév?|P) = 0 when P|M, the theorem now follows from the definition of the
M, ¢-Fourier coefficients of F'. q.e.d.

Corollary 2.6. IfF € Mmn (N, x) is an eigenform for all T(P?) (Pf N') whose 0, x-Fourier

coefficients can be defined and are nonzero, then
F|T(P?) = (1+ x*(P*)N(P)™ ?)F.

63. Relations on representation numbers of odd rank lattices. Let L be a
lattice of rank m over O where m is odd; since lattices of rank 1 are already well understood,
we restrict our attention here to the case where m > 3. Then, as shown in Theorem 3.7 of
6], 0(L,7) = > o e(Q(x)7) is a Hilbert modular form of weight %, level N and character

x, for the group {AeTo(N,I2): det A =1} where T is the smallest fractional ideal such
that nL C Z? (so for every prime P, ordpnL -Z~2 is minimal), N' = (nL#)~!'Z~2 and X,
is a quadratic character modulo A. (Here L# denotes the dual lattice of L, and nL is the
fractional ideal generated by {2Q(z) : x € L }; note that Proposition 3.4 of [6] shows that

40|N.) Since §(L,u?r) = O(L, ) for any u € U, we have (L, 7) € M%(fo(./\/’, %), x, )-

Lemma 3.1. Let P be a prime ideal not dividing N'. Then setting Lp = OpL, we have
Lp~7*(1,...,1,¢,)

for some m € Kp and €, € OF.

Proof: Since 40|N, P must be nondyadic. Then from the remarks immediately preceding
92:1 of [4], we see that Lp ~ <a1,...,am> where aq,...,a,, € Kp. Since PJ N and
(nL#)~Y(nL)"N, we know that P/ (nL#)~}(nL)~! and hence Lp is modular; thus by

16



92:1 of [4], Lp =~ p<1,...,1,67,> for some ¢, € OF and p € Kp such that pOp = nLp.
Furthermore, since N’ = (nL#)71Z~2 and PJ N, the fractional ideal nL# and hence nL

must have even order at P, so we may choose p = 72 with 7 € Kp. q.e.d.

Notice that in the preceding lemma the square class of €,, is independent of the choice

of 7; thus we can make the following

Definition. With P a prime, P{ N, let e, € OF be as in Lemma 3.1; set ¢, (P) = (2¢,,|P)
where (x|x) is the quadratic residue symbol. For an integral ideal A relatively prime to N,

set
e, (A) = [[ e (P)rer™Y.
PlA
A straightforward computation analogous to that used to prove Lemma 3.8 of [8] proves

Lemma 3.2. For a € K* with a relatively prime to N, x, (a) = £, (aO).

Next we have
Proposition 3.3. Let P be a prime, P N. Then
0(L,7)|S(P) = N(P)%e,(P)(PL,7) and so §(L,7)|S(P?) = N(P)™0(PL, 7).
Proof: Following the proof of Proposition 6.1 of [6] and using the extended transformation
_fa b P P-l7-29-1 :
formula from §4 of [7], we find that for A = (c d> € (NPIQa 0 ) with
detA=1andd=1 (modN),
o m b b
_ 1\ 2 5 45 _ —_ .
O(L, A1) = (c+dL)? 72d Z e (dQ(fL‘)) Z e (dQ(fL‘)) O(PL,T),

2€PL/dPL x€dL/dPL

and

0(Z, Ar) = (c+di)? 73d~* > 6(22a2) > e(gzaZ)-e)(m,T).

a€PI/dPT a€dZ/dPT
Thus
O(L,7)|[S(P)=N(P)Z > e (%(@) Y e (onﬁ)
’ d d
2€PL/APL a€PI/dPT
g e (QQ(I)) g e (92042) O(PL,T).
d d ’
x€dL/dPL a€dZ/dPT



We know from Lemma 3.1 that Lp ~ 7r2<1, oo 1 67,> where €, € O3; thus Propositions
3.1-3.3 and the arguments used to prove Theorem 3.7 of [6] show that

b b,
> (o) X e(f)] —ear-am
z€dL/dPL a€dZ/dPT
and that
Z e éQ(ac) Z e é2a2 =x (d)=1
d d L

x€PL/dPL a€PI/dPL

(since d =1 (mod N) and x, is a character modulo NV). q.e.d.

With this we prove
Proposition 3.4. Let the notation be as above. Then

m—3

(L, 7)|T(P?) =, (P)N(P)% 5" > 0(K,7)+¢c,(P)N(P)% (1 - N(P)"= )0(PL,7)
K
where
] ifm=23
A {N(P)m25 - N(P)UN(P)™2" +1)---(N(P)+1) ifm>3

and the sum runs over all P2-sublattices K of L (i.e. over all sublattices K of L such that
nK = P?.nL and the invariant factors {L : K} = (O,...,0,P,P? ..., P?) with O and

P? each appearing mT_l times). Furthermore, each P?-sublattice K of L lies in the genus

of PL, and hence 0(PL,7),0(K,T) € Mm <fo(/\/, 77212)»@)-

Proof: An easy check shows that the Hecke operator T(P?) defined in [6] is, in the
notation of this paper, T'(P?)S(P~2). Thus Theorem 7.4 of [6] together with the preceding
proposition shows that 6(L, 7)|T(P?) is as claimed. (N.B.: Part 2 of Theorem 7.4 has the

wrong constants; for m = 2k 4+ 1 with m odd the theorem should read

m—3

O(L,7)|T(P*) = N(P)"2x~' > (P *K,7)+ N(P)"%(1—- N(P)"= )0(P'L,7)

where the sum runs over all P2-sublattices K of L and  is as above.)
Now let K be a P2-sublattice of L. Since nK = nPL, discK = discPL and PLp
is modular, it follows that Kp is modular as well, and that Kp ~ PLp. Clearly we
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have Ko = Lo = PLg where Q is any prime other than P; thus K € genPL, the
genus of PL. Finally, Theorem 7.4 of [6] shows that §(P~2K,7) and O(P~'L,7) lie

in M (fo(/\/',P_QF),XL), so 6(K,r) = N(P)~™8(P~2K,7)|S(P?) and 6(PL,7) =

N(P)=™0(P~'L,7)|S(P?) lie in Mxn (fo(/\/', P212?), XL> as claimed. q.e.d.

Completely analogous to Lemma 3.2 of [8], we have

Lemma 3.5. Let o(L’) denote the order of O(L'), the orthogonal group of the lattice L',

and define

BgenL, ) =Y ﬁe(y,ﬂ

L/
where the sum runs over a complete set of representatives L' for the distinct isometry

classes in genL, the genus of L. Then for a prime P| N,

m
2

O(genL, 7)|T(P?) = N(P)%¢, (P)(1+ N(P)" ?)0(genPL, 7).

As in §2, choose fractional ideals 71, . .., I} representing the distinct (nonstrict) ideal
classes such that Z7,...,Z7, are in distinct strict ideal classes; for convenience, we assume
that Z; = O and that each Z, is relatively prime to N. Define the extended genus of L,

xgenl, to be the union of all genera genZ L where 7 is a fractional ideal; set

O(xgenL,7) = (..., N(Z»I) ? 6(genZ L, 7),...).
Then we have

Theorem 3.6. Let x be the Hecke character extending x, such that x, = 1 and x*(A) =
e, (A) for any fractional ideal A which is relatively prime to N'. Then

O(xgenL,7) € M= (N, x) C HM% (fo(N,I§IQ)aXL>
A

and for every prime P| N,
O(xgenL, 7)|T(P?) =, (P)(1+ N(P)" ?)O(xgenL, 7).

Proof: Take J to be a fractional ideal relatively prime to /. Then for each A\ we have
JZI\ = oZ, for some p and some oo € K*. By Proposition 3.1 we have

|

I

N(Z)) % 0(genZy L, 7)|S(T)] [(0‘62 (1)) N (a?)

e, (J)N(a Y TT\) 2 0(gen(a L TI\L), T)
e, (J)N(Z,) % 0(genT, L, 7);
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since we have chosen x such that x*(J) = ¢,(J), we have O(xgenL,7) € M= (N, x).
Now take P to be a prime, P| N, and take a € K* such that PZ) = aZ,. Then by
Lemma 3.5,

e, (P)A 4+ N(P)" ?)N(a 'TyP) 2 6(gen(a '*PI\L), )
e, (P)YA+ N(P)"?)N(Z,) 2 6(genZ,L,T).

S

N(Z)) % 6(genT, L, 7)| T(P?)] Ko‘gz ?) N(a?)

m
2

q.e.d.

This theorem allows us to infer relations on averaged representation numbers which
we define as follows.
Set

1
o(L')

r(L' ) =#{zr el : Qxz)=¢}, and r(genL, &) = Z

L/

r(L',¢)

where the sum runs over a complete set of representatives L’ for the isometry classes within
genL. For ¢ € (K+/K2), set

1

r(genl, &, ¢) = TEE]

> b(u€) r(genL, u).

weU+ Ju?

Then with the notation of §2, the M, ¢-Fourier coefficient of ©(xgenL, 1) is r(genZ, L, 2§, ¢)
where M = {7, 2 £€> 0. Note that for any fractional ideal 7, we can find some o € K and
some A such that J = aZy; then for £ € nL, £ > 0, and M = 51;21_2, the J, ¢-Fourier
coefficient of ©(xgenL, 7) is

r(genIAL, 20[_267 d)) = r(genaIALa 257 ¢) = r(genjL7 267 ¢>

Also, r(genL,0) = r(genJ L, 0), so the 0, p-Fourier coefficients of ©(xgenL, 7) are defined
to be r(genL,0). Now Theorems 2.5 and 3.6 together with Corollary 3.7 give us

Corollary 3.7. Let £ € nL, £ > 0. Set M = £Z~2 (where T is the smallest fractional
ideal such that nL C I?). Let P be a prime ideal not dividing N, and let ¢ be any element

of (K:/\K2) If P| M, then
(1+N(P)"?) r(genL, 2€, ¢)

m—3

= (—1|P)“F r(genL,2¢, ¢,

=r(genP 'L, 2¢,¢) + ¢, (P)N(P)
+ N(P)™ 2 r(genPL, 2¢, ¢)
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where v, is an element of (K+/K2) such that v,(¢) = (¢|P) for any ¢ € K* with
ordp¢ = 0. If P|M, then

(1+ N(P)™" ?)r(genL,2¢, ¢) = r(genP 'L, 2¢,¢) + N(P)™ 2 r(genPL, 2¢, §).
In the case that K = Q, we have

m—1

m—3 m— m— 2a
r(genL,2p’a) = (1-p = x, (p)(~1lp) "= (2alp) +p™ *)r(genL,2a) —p™ *r <genL,?)

for any a € Z; note that x (p) = (2discL|p).

Remark. If Pf (nL#)~!(nL)~! but P|N, then the preceding corollary can be used to
give us relations on the averaged representation numbers of xfamL® where o > 0 with
ordpa odd. Since r(fam+IuLo‘, af) = r(faerIML, €), the above corollary can be extended
to include all primes PJ (nL#)~!(nL)~ .
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