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Introduction. Given a totally positive quadratic form Q over a totally real num-
ber field K, one can obtain a Hilbert modular form by restricting Q to a lattice L and
forming the theta series attached to L; the Fourier coefficients of the theta series are the
representation numbers of Q on L. The space of Hilbert modular forms generated by all
theta series attached to lattices of the same weight, level and character is invariant under
a subalgebra of the Hecke algebra, hence one can (in theory) diagonalize this space of
modular forms with respect to an appropriate Hecke subalgebra and infer relations on the
representation numbers of the lattices. In a previous paper the author found such relations
by constructing eigenforms from theta series attached to lattices of even rank which are
“nice” at dyadic primes; the purpose of this paper is to extend the previous results to all
lattices.

We begin by proving a lemma (Lemma 1.1) which allows us to remove the restriction
regarding dyadic primes. Then using our previous work we find that associated to any
even rank lattice L is a family of lattices famL which is partitioned into nuclear families
(which are genera when the ground field is Q), and the averaged representation numbers
of these nuclear families satisfy arithmetic relations (Theorem 1.2).

In §2 we define “Fourier coefficients” attached to integral ideals for a half-integral
weight Hilbert modular form. Then in analogy to the case K = Q, we describe the effect
of the Hecke operators on these Fourier coefficients (Theorem 2.5).

In §3 we use theta series attached to odd rank lattices to construct eigenforms for the
Hecke operators; the results of §2 then give us arithmetic relations on the representation
numbers of the odd rank lattices. When the ground field is Q, we may assume Q(L) ⊆ Z

and then these relations may be stated as

r(genL, 2p2a) =
(
1−p

m−3
2 χ

L
(p)(−1|p)

m−1
2 (2a|p)+pm−2

)
r(genL, 2a)−pm−2r

(
genL,

2a
p2

)

where r(genL, 2a) is the average number of times the lattices in the genus of L represent
2a, m is the rank of L, p is a prime not dividing the level of L, and χ

L
is the character

attached to L (Corollary 3.7).

§1. Relations on representation numbers of lattices of even rank. Let V be
a vector space of even dimension m over K where K is a totally real number field of degree
n over Q; let Q be a totally positive quadratic form on V , L a lattice on V (so KL = V ),
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N the level of L and nL the norm of L as defined in [6]. Then the theta series

θ(L, τ) =
∑
x∈L

e2πiTr(Q(x)τ)

is a Hilbert modular form of weight m/2, level N and quadratic character χ
L

, and for P a

prime ideal such that P/| N , either the Hecke operator T (P) or the operator T (P2) maps
θ(L, τ) to a linear combination of theta series of the same weight, level and character (see
[6]; cf. [1]).

We derive relations on the representation numbers of the lattices in the “extended
family” of L; essentially, the extended family of L consists of all lattices which arise when
we act on the theta series attached to lattices in the genus of L with those Hecke operators
known to preserve the space spanned by theta series. We begin now by giving refined
definitions of a family and of an extended family; these definitions agree with those given
in [8] when the lattice in question is unimodular when localized at dyadic primes.

Definition. A lattice L′ is in the family of L, denoted famL, if L′ is a lattice on V α

where α is a totally positive element of K× which is relatively prime to N , such that for
all primes P|N we have L′P ' LαP , and for all primes P/| N we have L′P ' L

uP
P for some

uP ∈ O×P . Here LP = OPL, and V α (resp. LαP) denotes the vector space V (resp. the
lattice LP) equipped with the “scaled” quadratic form αQ. We say L′ ∈ famL is in the
nuclear family of L, fam+L, if there exists some totally positive unit u such that L′P ' LuP
for all primes P, and we say L′ is in the extended family of L, xfamL, if L′ is connected
to L with a prime-sublattice chain as defined in §3 of [8].

For ξ � 0, we define the representation numbers r(L, ξ) and r(xfamL, ξ) by

r(L, ξ) = #{x ∈ L : Q(x) = ξ }

and

r(fam+L, ξ) =
∑
L′

1
o(L′)

r(L′, ξ)

where o(L′) is the order of the orthogonal group of L′ (see [4]) and the sum runs over
a complete set of representatives of the isometry classes within fam+L. Note that if
u ∈ U = O× then Lu

2
is in the genus of L; since U+/U2 is finite (where U+ denotes the

group of totally positive units and U2 the subgroup of squares – see §61 of [3]) and each
genus has a finite number of isometry classes, it follows that fam+L has a finite number of
isometry classes.

We now show
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Lemma 1.1. The number of nucler families in famL is 2r where r ∈ Z.

Proof: As argued in the proof of Lemma 3.1 of [8], LP ' L
uP
P for any uP ∈ UP = O×P

when P is a prime not dividing 2N . Thus there can only be a finite number of primes Q
such that LQ 6' L

uQ
Q for all uQ ∈ UQ; let Q1, . . . ,Qt denote these “bad” primes for L.

For each Q = Qi (1 ≤ i ≤ t), set

StabQ(L) = {u ∈ UQ : LuQ ' LQ }.

Clearly StabQ(L) is a multiplicative subgroup of UQ, and U2
Q = {u2 : u ∈ UQ } ⊆

StabQ(L). Now, since [UQ : U2
Q] is a power of 2 (see 63:9 of [4]) it follows that [UQ :

StabQ(L)] is also a power of 2. Thus
∏t
i=1 UQi/StabQi(L) is a group of order 2s for

some s ∈ Z. We associate each nuclear family fam+L′ within famL to an element of∏t
i=1 UQi/StabQi(L) as follows. For L′ ∈ famL we know L′ is a lattice on V α for

some α ∈ K× with α ∈ UQi and L′Qi ' LαQi (1 ≤ i ≤ t); associate fam+L′ with
(. . . , α · StabQi(L), . . .). It is easily seen that this map is well-defined and injective. The
techniques used to prove Lemma 3.1 of [8] show that the nuclear families within famL
are associated with a multiplicatively closed subset of the product

∏t
i=1 UQi/StabQi(L);

since this product is a finite group, it follows that the nuclear families within famL are
associated with a subgroup of

∏t
i=1 UQi/StabQi(L). The order of

∏t
i=1 UQi/StabQi(L) is

2s, so there must be 2r nuclear families in famL where r ∈ Z. q.e.d.

For a prime P/| 2N , define

ε
L

(P) =
{

1 if L/PL is hyperbolic,
−1 otherwise;

define
λ(P) = N(P)

k
2 (N(P)k−1 + 1) if ε

L
(P) = 1, and

λ(P2) = N(P)k(N(P)k−1 − 1)2 if ε
L

(P) = −1.

For A ⊆ O such that ordP(A) is even whenever ε
L

(P) = −1, set ε
L

(A) =
∏
P|A

ε
L

(P)ordPA,

and set

λ(Pa)λ(Pb) =
min{a,b}∑
c=0

N(P)c(2k−1)λ(Pa+b−2c)

and λ(A) =
∏
P|A

λ
(
PordP(A)

)
. Now the arguments of [8] can be used to extend Theorem

3.9 of [8] to include any even rank lattice L, giving us
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Theorem 1.2. Let L be any lattice on V where dimV = 2k (k ∈ Z+). Take ξ ∈ nL, ξ � 0,

and write ξ(nL)−1 =MM′ where M and M′ are integral ideals such that (M, 2N ) = 1
and ordPM is even whenever P is a prime such that ε

L
(P) = −1. Then

r(fam+L, 2ξ) = λ(M)N
K/Q

(M)−k/2 r(fam+L′, 2ξ)

−
∑

A⊇M+M′
A6=O

ε
L

(A)N
K/Q

(A)k−1 r(fam+AL, 2ξ)

where nL′ =M · nL and L′ is connected to L by a prime-sublattice chain.

§2. Hecke operators on forms of half-integral weight. In this section we
develop some of the theory of half-integral weight Hilbert modular forms. To read about
the general theory of Hilbert modular forms, see [2].

Let N be an integral ideal such that 4O ⊆ N , and let I be a fractional ideal; then as
in [8] we define

Γ0(N , I2) =
{
A ∈

(
O I−2∂−1

NI2∂ O

)
: detA ∈ U = O×, detA� 0

}
.

We also define

Γ̃0(N , I2) =
{
Ã =

[
A,

θ(I, Aτ)
θ(I, τ)

]
: A ∈ Γ0(N , I2), detA ∈ U2

}

where θ(I, τ) =
∑
α∈I

e(2α2τ) with e(βτ) = eπiTr(βτ), and U2 = {u2 : u ∈ U = O× }. As

shown in §3 of [6], when A ∈ Γ0(N , I2) and detA = 1, θ(I, Aτ)/θ(I, τ) is a well-defined
automorphy factor for A, and it is easily seen that for u ∈ U , θ(I, u2τ) = θ(I, τ). Thus

we can define a group action of Γ̃0(N , I2) on f : Hn → C by

f
∣∣
m
2
Ã(τ) = f

∣∣Ã(τ) =
(
θ(I, Aτ)
θ(I, τ)

)−m
f(Aτ).

(Here H denotes the complex upper half-plane.) For χ
N

a numerical character modulo the

ideal N and m an odd integer, we let Mm
2

(
Γ̃0(N , I2), χ

N

)
denote the space of Hilbert

modular forms f which satisfy

f
∣∣
m
2
Ã(τ) = χ

N
(a) f(τ)
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for all Ã =
˜(
a b
c d

)
∈ Γ̃0(N , I2). Notice that by definition, f

∣∣ ˜(
u 0
0 u−1

)
(τ) = f(u2τ) =

f
∣∣ ˜(
u2 0
0 1

)
(τ) for any u ∈ U , so Mm

2

(
Γ̃0(N , I2), χ

N

)
= {0} unless χ

N
(u) = 1 for all

u ∈ U . For P a prime, P/| N , we define the Hecke operator

T (P2) :Mm
2

(
Γ̃0(N , I2), χ

N

)
→Mm

2

(
Γ̃0(N ,P2I2), χ

N

)
as follows. Let

{
Ãj

}
be a complete set of coset representatives for

(
Γ̃1(N , I2) ∩ Γ̃1(N ,P2I2)

)∖
Γ̃1(N ,P2I2)

where

Γ̃1(N , I2) =

{ ˜(
a b
c d

)
∈ Γ̃0(N , I2) : a ≡ 1 (mod N )

}
.

Then for f ∈Mm
2

(
Γ̃0(N , I2), χ

N

)
, define

f
∣∣T (P2) = N(P)

m
2 −2

∑
j

f
∣∣Ãj .

Clearly T (P2) is well-defined and f
∣∣T (P2) ∈Mm

2

(
Γ̃0(N ,P2I2), χ

N

)
. Similar to the case

of integral weight, we also define operators

S(P) :Mm
2

(
Γ̃0(N , I2), χ

N

)
→Mm

2

(
Γ̃0(N ,P2I2), χ

N

)
by

f
∣∣S(P) = f

∣∣ [C,N(P)−
1
2
θ(I, Cτ)
θ(PI, τ)

]

where C ∈
(

P P−1I−2∂−1

NPI2∂ O

)
, detC = 1, and aC ≡ 1 (mod N ). The proof

of Proposition 6.1 of [6] shows that N(P)−
1
2 θ(I, Cτ)/θ(PI, τ) is a well-defined automor-

phy factor for C, and it is easy to check that S(P) is well-defined and that f
∣∣S(P) ∈

Mm
2

(
Γ̃0(N ,P2I2), χ

N

)
. (Note that the restrictions on d in Proposition 6.1 of [6] are un-

necessary, but one must then use the extended transformation formula from §4 of [7].) In
fact, S(P) is an isomorphism, so by setting S(P−1) = S(P)−1 and S(J1)S(J2) = S(J1J2),
we can inductively define S(J ) for any fractional ideal J relatively prime to N .
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Lemma 2.1. Suppose A ∈
(

P P−1I−2∂−1

NPI2∂ P−1

)
such that detA = 1 and aA ≡

1 (mod N ). Then for f ∈Mm
2

(
Γ̃0(N , I2), χ

N

)
,

f
∣∣ [A,N(P)−

1
2
θ(I, Aτ)
θ(PI, τ)

]
= f

∣∣S(P).

Proof: Let C be a matrix as in the definition of S(P); so

f
∣∣ [A,N(P)−

1
2
θ(I, Aτ)
θ(PI, τ)

] ∣∣S(P)−1

= f
∣∣ [A,N(P)−

1
2
θ(I, Aτ)
θ(PI, τ)

] ∣∣ [C−1, N(P)
1
2
θ(PI, C−1τ)

θ(I, τ)

]
= f

∣∣ [AC−1,
θ(I, AC−1τ)

θ(I, τ)

]
= f

since
[
AC−1, θ(I, AC−1τ)/θ(I, τ)

]
∈ Γ̃1(N , I2). q.e.d.

We now use this lemma to give us a useful description of T (P2) when P/| N .

Lemma 2.2. For P a prime, P/| N , and f ∈Mm
2

(
Γ̃0(N , I2), χ

N

)
we have

N(P)2−m2 f
∣∣T (P2) =

∑
b

f
∣∣ [( 1 b

0 1

)
, 1
]

+
∑
β

f
∣∣S(P)

∣∣
( 1 β

0 1

)
, N(P)

1
2

 ∑
α∈PI/P2I

e(−2βα2)

−1


+ f
∣∣S(P2)

where b runs over P−2I−2∂−1/I−2∂−1 and β runs over (P−3I−2∂−1/P−2I−2∂−1)×.

Proof: Since for α ∈ K× the mapping f 7→ f
∣∣ [(α−2 0

0 1

)
, N(α2)

1
4

]
is an isomorphism

from the space Mm
2

(
Γ̃0(N , I2), χ

N

)
onto Mm

2

(
Γ̃0(N , α2I2), χ

N

)
, we may assume I ⊆

O. Choose a ∈ P − P2 such that aO is relatively prime to N and a ≡ 1 (mod N ). Let
{bk} be a set of coset representatives for (P−2I−2∂−1/P−1I−2∂−1)× such that bkP2I2∂ is
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relatively prime to aO; then for each k, use strong approximation to choose ck ∈ NP2I2∂

and dk ∈ O such that adk − bkck = 1. Take A′ =
(
a′ b′

c′ d′

)
∈ Γ1(N ,P2I2) such that

a′ ∈ P2, P/| d′, and a′d′ − b′c′ = 1, and take {b′′j } to be a set of representatives for

P−2I−2∂−1/I−2∂−1. Then one easily sees that{ ˜(
1 bj
0 1

)}
∪

{ ˜(
a′ b′

c′ d′

)}
∪

{ ˜(
a bk
ck dk

)}

is a complete set of coset representatives for
(

Γ̃1(N ,P2I2) ∩ Γ̃1(N , I2)
)∖

Γ̃1(N ,P2I2).

Take f ∈Mm
2

(
Γ̃0(N , I2), χ

N

)
. Then

f
∣∣Ã′ = f

∣∣ [A′, θ(PI, A′τ)
θ(PI, τ)

]
and the transformation formula (2) in §2 of [6] shows that

θ(PI, A′τ)
θ(PI, τ)

=
(
c′ + d′ 1τ

) 1
2 τ

1
2 (d′)−

1
2

∑
α∈PI/d′PI

e

(
b′

d′
2α2

)
.

(Recall that, as remarked earlier, we need not restrict d as [6], but we need to then use
the extended transformation formula as it appears in [7].) On the other hand,

f
∣∣S(P2) = f

∣∣ [A′, N(P)−1 θ(I, A′τ)
θ(P2I, τ)

]
and following the derivation in the proof of Proposition 6.1 of [6] we find that

θ(I, A′τ)
θ(P2I, τ)

=
(
c′ + d′ 1τ

) 1
2 τ

1
2 (d′)−

1
2

∑
α∈P2I/d′P2I

e

(
b′

d′
2α2

) ∑
α∈d′I/P2d′I

e

(
b′

d′
2α2

)
.

By Proposition 3.2 of [6],
∑

α∈d′I/d′P2I

e

(
b′

d′
2α2

)
= N(P); also, since P/| d′,

∑
α∈P2I/d′P2I

e

(
b′

d′
2α2

)
=

∑
α∈PI/d′PI

e

(
b′

d′
2α2

)
.

Thus f
∣∣Ã′ = f

∣∣S(P2).
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Now choose ν ∈ P−1I−1∂−1 such that (νPI∂, dkP) = 1 for all k. Fix some k; for

simplicity write Ak =
(
a b
c d

)
. Set β = β′ν2 where β′ ∈ P−1∂ is chosen such that

aβ + b ∈ P−1I−2∂−1; we will show that

f
∣∣Ãk∣∣ [( 1 β

0 1

)
, 1
]

= N(P)
1
2

 ∑
α∈PI/P2I

e(2βα2)

−1

f
∣∣S(P),

and then the lemma will follow. Now,

f
∣∣S(P) = f

∣∣
Ak ( 1 β

0 1

)
, N(P)−

1
2

θ

(
I, Ak

(
1 β
0 1

)
τ

)
θ(PI, τ)

 ;

again following the proof of Proposition 6.1 of [6] we find that

N(P)−
1
2

θ

(
I, Ak

(
1 β
0 1

)
τ

)
θ(PI, τ)

=
(
c+ (cβ + d) 1

τ

) 1
2 τ

1
2 (cβ + d)−

1
2 N(P)−

1
2

∑
α∈I/(cβ+d)PI

e

(
aβ + b

cβ + d
2α2

)
and since a(cβ + d)− c(aβ + b) = 1 and e

(
a(aβ + b)2α2

)
= 1,

=
(
c+ (cβ + d) 1

τ

) 1
2 τ

1
2 (cβ + d)−

1
2 N(P)−

1
2

∑
α∈I/(cβ+d)PI

e

(
−c(aβ + b)2

cβ + d
2α2

)

=
(
c+ (cβ + d) 1

τ

) 1
2 τ

1
2 (cβ + d)−

1
2 N(P)−

1
2

∑
α∈O/(cβ+d)P

e

(
− cν2

cβ + d
2α2

)

(note that νPI∂ is relatively prime to (cβ + d)P). Now, d is relatively prime to 4 since
4|c; thus by reciprocity of Gauss sums (Theorem 161 of [3]) we have

(cβ + d)−
1
2 N(P)−

1
2

∑
α∈O/(cβ+d)P

e

(
− cν2

cβ + d
2α2

)

= i−
n
2 N(cν2P∂)−

1
2

∑
α∈O/cν2P∂

e

(
cβ + d

cν2
2α2

)
and using the techniques of §3 of [6],
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= i−
n
2 N(cν2P∂)−

1
2

∑
α∈P/cν2P∂

e

(
cβ + d

cν2
2α2

) ∑
α∈cν2∂/cν2P∂

e

(
cβ + d

cν2
2α2

)
.

For α ∈ P,
cβ + d

cν2
2α2 ≡ d

cν2
2α2 (mod 2∂−1) (since β = ν2β′ with β′ ∈ P−1∂) so

∑
α∈P/cν2P∂

e
(
cβ + d

cν2
2α2

)
=

∑
α∈P/cν2P∂

e

(
d

cν2
2α2

)

=
∑

α∈O/cν2∂

e

(
d

cν2
2α2

)

(note that ordPcν2∂ = 0). Also,
cβ + d

cν2
2α2 ≡ 2β

(α
ν

)2

(mod 2∂−1) for α ∈ cν2∂, so

∑
α∈cν2∂/cν2P∂

e

(
cβ + d

cν2
2α2

)
=

∑
α∈cν2∂/cν2P∂

e

(
2β
(α
ν

)2
)

=
∑

α∈PI/P2I

e(2βα2).

On the other hand, formula (1) of [6] and the techniques used above show that

θ

(
PI, Ak

(
1 β
0 1

)
τ

)
θ

(
PI,

(
1 β
0 1

)
τ

)
=
(
c+ (cβ + d) 1

τ

) 1
2 τ

1
2 d−

1
2

∑
α∈PI/dPI

e

(
−cb

2

d
2α2

)

=
(
c+ (cβ + d) 1

τ

) 1
2 τ

1
2 d−

1
2

∑
α∈O/dO

e

(
−cν

2

d
2α2

)
and by reciprocity of Gauss sums,

=
(
c+ (cβ + d) 1

τ

) 1
2 τ

1
2 i−

n
2 N(cν2∂)−

1
2

∑
α∈O/cν2∂

e

(
d

cν2
2α2

)
.

q.e.d.
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Our goal in this section is to determine the effect of the Hecke operators on the Fourier
coefficients of a half-integral weight form. When K = Q, we know that for

f(τ) =
∑
n≥0

a(n)e(2nτ) ∈Mm
2

(
Γ̃0(N), χ

)
,

we have f(τ)
∣∣T (p2) =

∑
n≥0

b(n)e(2nτ) where

b(n) = a(p2n) + χ(p)p
m−3

2 (−1|p)
m−1

2 (n|p)a(n) + χ(p2)pm−2a(n/p2).

By defining “Fourier coefficients” attached to integral ideals, we expect to get a similar
description of the effect of the Hecke operators on any half-integral weight Hilbert modular
form. This, in fact, is one of the things Shimura does for integral weight forms in [5]; so
mimicing Shimura, we decompose a space of half-integral weight Hilbert modular forms as
described below.

Whenever I and J are fractional ideals in the same (nonstrict) ideal class, the mapping

f → f
∣∣ [(α−2 0

0 1

)
, N(α2)

1
4

]
is an isomorphism from the space Mm

2

(
Γ̃0(N , I2), χ

N

)
ontoMm

2

(
Γ̃0(N ,J 2), χ

N

)
where α is any element of K× such that αI = J (notice that

this isomorphism is independent of the choice of α). Hence we can consider T (P2) and
S(P) as operators on the space

Mm
2

(N , χ
N

) =
h′∏
λ=1

Mm
2

(
Γ̃0(N , I2

λ), χ
N

)

where I1, . . . , Ih′ represent all the distinct (nonstrict) ideal classes such that I2
1 , . . . , I

2
h′

represent distinct strict ideal classes (see §61 of [3]). Just as in the case where m is even
(see Lemma 1.1 and Proposition 1.2 of [7]), we have

Mm
2

(N , χ
N

) = ⊕
χ
Mm

2
(N , χ)

where the sum is over all Hecke characters χ extending χ
N

with χ∞ = 1,

Mm
2

(N , χ) =

{F ∈Mm
2

(N , χ
N

) : F
∣∣S(J ) = χ∗(J )F for all fractional ideals J , (J ,N ) = 1 },

10



and χ∗ is the ideal character induced by χ. (For J a fractional ideal relatively prime to
N , χ∗(J ) = χ(ã) where ã is an idele of K such that ãP = 1 for all primes P|N∞, and
ãO = J . Also note that there are Hecke characters χ extending χ

N
with χ∞ = 1 since

χ
N

(u) = 1 for all u ∈ U .)
When defining “Fourier coefficients” attached to integral ideals for an integral weight

form F , Shimura uses the fact that for u ∈ U+,

F
∣∣ (u 0

0 1

)
= F.

In the case of half-integral weight forms, we have no analogous equation. However, we can
decompose Mm

2
(N , χ

N
) as follows.

Let K+ = {a ∈ K : a � 0 } and K̇2 = {a2 : a ∈ K, a 6= 0 }; set G = K+/K̇2 and

H = U+K̇2/K̇2
(
≈ U+/U2

)
. For each character φ ∈ Ĝ =the character group of G, define

Mm
2

(N , χ
N
, φ) ={

F ∈Mm
2

(N , χ
N

) : F
∣∣ [(u 0

0 1

)
, 1
]

= φ(u)F for all u ∈ U+

}
.

Then we have

Lemma 2.3. With the above definitions,

Mm
2

(N , χ
N

) = ⊕
φ
Mm

2
(N , χ

N
, φ)

where the sum runs over a complete set of representatives φ for Ĝ/H⊥ with H⊥ = {φ ∈
Ĝ : φ|H = 1 }. Each space Mm

2
(N , χ

N
, φ) is invariant under all the Hecke operators

T (P2) where P is a prime ideal not dividing N .

Remark. The restriction map defines an isomorphism from Ĝ/H⊥ onto Ĥ ≈ ̂U+/U2, but

there is no canonical way to extend an element of ̂U+/U2 to an element of Ĝ/H⊥.

Proof: Given F ∈Mm
2

(N , χ), set

Fφ =
1

[U+ : U2]

∑
u∈U+/U2

φ(u)F
∣∣ [(u 0

0 1

)
, 1
]
.

One easily verifies that F ∈Mm
2

(N , χ
N
, φ). Also,

∑
φ∈Ĝ/H⊥

Fφ =
1

[U+ : U2]

∑
u∈U+/U2

∑
φ

φ(u)

F
∣∣ [(u 0

0 1

)
, 1
]

= F

11



since duality shows that
∑
φ φ(u) is only nonzero when u = 1. Furthermore, for φ1, φ2 ∈ Ĝ,

Mm
2

(N , χ
N
, φ1) andMm

2
(N , χ

N
, φ2) either are equal or have trivial intersection, depend-

ing on whether φ1φ2 ∈ H⊥. Thus Mm
2

(N , χ
N

) = ⊕φMm
2

(N , χ
N
, φ) as claimed.

Now, given u ∈ U+, P a prime ideal not dividing N , and {Ãj} a set of coset repre-
sentatives for (

Γ̃1(N , I2) ∩ Γ̃1(N ,P2I2)
)∖

Γ̃1(N ,P2I2),

we see that
{(

u−1 0
0 1

)
Aj

(
u 0
0 1

)}
is a set of coset representatives for

(
Γ1(N , I2) ∩ Γ1(N ,P2I2)

)∖
Γ1(N ,P2I2).

Standard techniques for evaluating Gauss sums show that

θ(I, Ajuτ)
θ(I, uτ)

= (u|dj)
θ(I, Auj τ)
θ(I, τ)

where Aj =
(
aj bj
cj dj

)
and Auj =

(
u−1 0

0 1

)
Aj

(
u 0
0 1

)
. Since dj ≡ ajdj ≡ v2 (mod N )

for some v ∈ U , the Law of Quadratic Reciprocity (Theorem 165 of [3]) shows that (u|dj) =
1; hence [(

u−1 0
0 1

)
, 1
]
Ãj

[(
u 0
0 1

)
, 1
]

= Ãuj

and thus T (P2) acts invariantly on the space Mm
2

(N , χ
N
, φ). q.e.d.

Unfortunately, we also have

Lemma 2.4. Given φ ∈ Ĝ and P a prime ideal not dividing N , we have

S(P) :Mm
2

(N , χ
N
, φ)→Mm

2
(N , χ

N
, φψP )

where ψP is an element of Ĝ such that ψP (u) = (u|P) for all u ∈ U+. Consequently, given

any Hecke character χ extending χ
N

(with χ∞ = 1),

Mm
2

(N , χ) ∩Mm
2

(N , χ
N
, φ) = {0}

unless U+ = U2.

Proof: Let C =
(
∗ ∗
∗ d

)
be a matrix as in the definition of S(P); so detC = 1, and

F
∣∣S(P) = f

∣∣ [C,N(P)−
1
2
θ(I, Cτ)
θ(PI, τ)

]
12



for f ∈ Mm
2

(Γ̃0(N , I2), χ
N

). Then for u ∈ U+, the techniques used to prove Proposition
6.1 of [6] show that

[(
u−1 0

0 1

)
, 1
] [
C,N(P)−

1
2
θ(I, Cτ)
θ(PI, τ)

] [(
u 0
0 1

)
, 1
]

=
[
Cu, (u|d)(u|P)N(P)−

1
2
θ(I, Cuτ)
θ(PI, τ)

]

where Cu =
(
u−1 0

0 1

)
C

(
u 0
0 1

)
. Since d ≡ 1 (mod N ) (recall the definition of

S(P)) we see again by the Law of Quadratic Reciprocity that (u|d) = 1. Hence for
F ∈Mm

2
(N , χ

N
, φ),

F
∣∣S(P)

∣∣ [(u 0
0 1

)
, 1
]

= (u|P) F
∣∣ [(u 0

0 1

)
, 1
] ∣∣S(P) = φ(u)(u|P) F

∣∣S(P),

showing that F
∣∣S(P) ∈Mm

2
(N , χ

N
, φψP ).

Now, to finish proving the lemma, we simply observe that there are an infinite number
of primes P such that (u|P) = −1 if u ∈ U+ − U2 (see 65:19 of [4]). q.e.d.

The preceding two lemmas compel us to define “Fourier coefficients” attached to
integral ideals as follows.

Given F = (. . . , fλ, . . .) ∈ Mm
2

(N , χ
N

) where fλ(τ) =
∑
ζ aλ(ζ)e(2ζτ), φ ∈ Ĝ and

M 6= 0 an integral ideal, we define the M, φ-Fourier coefficient of F by:

(i) a(M, φ) = 1
[U+:U2]

∑
u∈U+/U2 φ(ξu)aλ(ξu)N(Iλ)−

m
2 ifM = ξI−2

λ for some λ and

some ξ � 0;

(ii) a(M, φ) = 0 if M cannot be written as ξI−2
λ (with ξ � 0);

(iii) a(0, φ) = aλ(0)N(Iλ)−
m
2 if aλ(0)N(Iλ)−

m
2 = aµ(0)N(Iµ)−

m
2 for all λ, µ.

Thus forM = ξI−2
λ , ξ � 0, a(M, φ) is N(Iλ)−

m
2 times the ξ-Fourier coefficient of the

λ-component of Fφ. Since F =
∑
φ Fφ, the collection of all the M, φ-Fourier coefficients

(φ ∈ Ĝ/H⊥) characterize any form F whose 0, φ-Fourier coefficients can be defined.

We now describe the effect of the Hecke operators on these Fourier coefficiets.

Theorem 2.5. Let F = (. . . , fλ, . . .) ∈Mm
2

(N , χ) where χ is a Hecke character extending

χ
N

with χ∞ = 1. Take P to be a prime ideal not dividingN , and take ψP ∈
̂(K+/K̇2) such

that ψP (ξ) = (ξ|P) for all ξ ∈ K+ with ordPξ = 0. Let a(M, ∗) and b(M, ∗) denote the

13



M, ∗-Fourier coefficients of F and of F
∣∣T (P2) (respectively). Then for any φ ∈ ̂(K+/K̇2),

we have

b(M, φ) =

a(P2M, φ) + χ∗(P)N(P)
m−3

2 (−1|P)
m−1

2 a(M, φψP )
+χ∗(P2)N(P)m−2a(MP−2, φ) if P/| M,

a(P2M, φ) + χ∗(P2)N(P)m−2a(MP−2, φ) if P|M.

Proof: Take ρ, γ ∈ K× such that I2
λP2 = ρ2I2

µ and I2
λP4 = γ2I2

η . Then by Lemma 2.2

the µ-component of F
∣∣T (P2) is

N(P)
m
2 −2

(
fλ
∣∣∑
b

[(
1 b
0 1

)
, 1
]

+ χ∗(P)fµ
∣∣ [( ρ2 0

0 1

)
, N(ρ2)−

1
4

] ∣∣∑
β

[(
1 β
0 1

)
,

N(P)
1
2∑

α e(−2βα2)

]

+ χ∗(P2)fη
∣∣ [( γ2 0

0 1

)
, N(γ2)−

1
4

])∣∣ [( ρ−2 0
0 1

)
, N(ρ2)

1
4

]

where b runs over P−2I−2
λ ∂−1/I−2

λ ∂−1, β runs over (P−3I−2
λ ∂−1/P−2I−2

λ ∂−1)×, and α

runs over IλP/IλP2. (Recall that F ∈ Mm
2

(N , χ) so fλ
∣∣S(I)

∣∣ [(ω2 0
0 1

)
, N(ω2)−

1
4

]
=

χ∗(I)fσ where ωI2I2
λ = I2

σ.) It is easily seen that

fλ
∣∣∑
b

[(
1 b
0 1

)
, 1
] ∣∣ [( ρ−2 0

0 1

)
, N(ρ2)−

1
4

]
(τ)

= N(IλPI−1
µ )−

m
2 N(P2)

∑
ξ∈P2I2

λ

aλ(ξ)e(2ξρ−2τ)

= N(IλPI−1
µ )−

m
2 N(P2)

∑
ξ∈I2

µ

aλ(ρ2ξ)e(2ξτ),

and that

fη
∣∣ [( γ2 0

0 1

)
, N(γ2)−

1
4

] ∣∣ [( ρ−2 0
0 1

)
, N(ρ2)

1
4

]
(τ)

= N(PIµI−1
η )

m
2

∑
ξ∈P2I2

η

aη(ξρ2γ−2)e(2ξτ).

14



Now we work a little:

fµ
∣∣ [( ρ2 0

0 1

)
, N(ρ2)−

1
4

] ∣∣∑
β

[(
1 β
0 1

)
,

N(P)
1
2∑

α e(−2βα2)

] ∣∣ [( ρ−2 0
0 1

)
, N(ρ2)

1
4

]

= N(P)−
m
2

∑
β

(∑
α

e(−2βα2)

)m ∑
ξ∈I2

µ

aµ(ξ)e(2ξβρ2)e(2ξτ).

Taking β0 ∈ P−3I−2
λ ∂−1 − P−2I−2

λ ∂−1, standard techniques for evaluating Gauss sums
show us that

∑
β

(∑
α

e(−2βα2)

)m
e(2ξβρ2) =

∑
β′∈O/P

(−β′|P)m
(∑

α

e(2β0α
2)

)m
e(2ξβ0β

′ρ2)

and
(∑

α e(2β0α
2)
)2 = N(P)(−1|P). So

∑
β

(∑
α

e(−2βα2)

)m
e(2ξβρ2)

= N(P)
m−1

2 (−1|P)
m+1

2

 ∑
β′∈O/P

(β′|P)e(2β′β0ξρ
2)

(∑
α

e(2β0α
2)

)

which is equal to 0 when ξ ∈ PI2
µ. When ξ 6= PI2

µ and ν ∈ I−1
µ − PI−1

µ , β′ξν2 runs over
O/P as β′ does; in this case

∑
β′∈O/P

(β′|P)e(2β′β0ξρ
2) =

∑
β′

(β′ξν2|P)e(2β′β0ξ
2ν2ρ2) = (ξν2|P)

∑
α∈PIλ/P2Iλ

e(2β0α
2).

Thus

fµ
∣∣∑
β

( 1 ρ2β
0 1

)
, N(P)

1
2

(∑
α

e(−2βα2)

)−1
 (τ)

= N(P)
1
2 (−1|P)

m−1
2

∑
ξ∈I2

µ

(ξν2|P)aµ(ξ)e(2ξτ).

This means that for M = ξI−2
µ , ξ � 0,
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b(M, φ) =
N(Iµ)−

m
2

[U+ : U2]
N(P)

m
2 −2

·
(
N(P)2−m2 N(Iµ)

m
2 N(Iλ)−

m
2

∑
u∈U+/U2

φ(ξu)aλ(uξρ2)

+ χ∗(P)N(P)
1
2 (−1|P)

m−1
2

∑
u∈U+/U2

φ(ξu)(uξν2|P)aµ(uξ)

+ χ∗(P2)N(P)
m
2 N(Iµ)

m
2 N(Iη)−

m
2

∑
u∈U+/U2

φ(ξu)aη(uξρ2γ−2)
)
.

Noting that (uξν2|P) = 0 when P|M, the theorem now follows from the definition of the
M, φ-Fourier coefficients of F . q.e.d.

Corollary 2.6. If F ∈Mm
2

(N , χ) is an eigenform for all T (P2) (P/| N ) whose 0, ∗-Fourier

coefficients can be defined and are nonzero, then

F
∣∣T (P2) = (1 + χ∗(P2)N(P)m−2)F.

§3. Relations on representation numbers of odd rank lattices. Let L be a
lattice of rankm overO wherem is odd; since lattices of rank 1 are already well understood,
we restrict our attention here to the case where m ≥ 3. Then, as shown in Theorem 3.7 of
[6], θ(L, τ) =

∑
x∈L e(Q(x)τ) is a Hilbert modular form of weight m

2 , level N and character

χ
L

for the group {Ã ∈ Γ̃0(N , I2) : detA = 1 } where I is the smallest fractional ideal such

that nL ⊆ I2 (so for every prime P, ordPnL · I−2 is minimal), N = (nL#)−1I−2, and χ
L

is a quadratic character modulo N . (Here L# denotes the dual lattice of L, and nL is the
fractional ideal generated by { 1

2Q(x) : x ∈ L }; note that Proposition 3.4 of [6] shows that

4O|N .) Since θ(L, u2τ) = θ(L, τ) for any u ∈ U , we have θ(L, τ) ∈Mm
2

(Γ̃0(N , I2), χ
L

).

Lemma 3.1. Let P be a prime ideal not dividing N . Then setting LP = OPL, we have

LP ' π2
〈
1, . . . , 1, εP

〉
for some π ∈ KP and εP ∈ O×P .

Proof: Since 4O|N , P must be nondyadic. Then from the remarks immediately preceding
92:1 of [4], we see that LP '

〈
α1, . . . , αm

〉
where α1, . . . , αm ∈ KP . Since P/| N and

(nL#)−1(nL)−1|N , we know that P/| (nL#)−1(nL)−1 and hence LP is modular; thus by
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92:1 of [4], LP ' ρ
〈
1, . . . , 1, εP

〉
for some εP ∈ O×P and ρ ∈ KP such that ρOP = nLP .

Furthermore, since N = (nL#)−1I−2 and P/| N , the fractional ideal nL# and hence nL

must have even order at P, so we may choose ρ = π2 with π ∈ KP . q.e.d.

Notice that in the preceding lemma the square class of εP is independent of the choice
of π; thus we can make the following

Definition. With P a prime, P/| N , let εP ∈ O×P be as in Lemma 3.1; set ε
L

(P) = (2εP |P)
where (∗|∗) is the quadratic residue symbol. For an integral ideal A relatively prime to N ,
set

ε
L

(A) =
∏
P|A

ε
L

(P)ordP(A).

A straightforward computation analogous to that used to prove Lemma 3.8 of [8] proves

Lemma 3.2. For a ∈ K× with a relatively prime to N , χ
L

(a) = ε
L

(aO).

Next we have

Proposition 3.3. Let P be a prime, P/| N . Then

θ(L, τ)
∣∣S(P) = N(P)

m
2 ε

L
(P)θ(PL, τ) and so θ(L, τ)

∣∣S(P2) = N(P)mθ(P2L, τ).

Proof: Following the proof of Proposition 6.1 of [6] and using the extended transformation

formula from §4 of [7], we find that for A =
(
a b
c d

)
∈
(

P P−1I−2∂−1

NPI2∂ O

)
with

detA = 1 and d ≡ 1 (mod N ),

θ(L,Aτ) =
(
c+ d 1

τ

)m
2 τ

m
2 d−

m
2

∑
x∈PL/dPL

e

(
b

d
Q(x)

) ∑
x∈dL/dPL

e

(
b

d
Q(x)

)
· θ(PL, τ),

and

θ(I, Aτ) =
(
c+ d 1

τ

) 1
2 τ

1
2 d−

1
2

∑
α∈PI/dPI

e

(
b

d
2α2

) ∑
α∈dI/dPI

e

(
b

d
2α2

)
· θ(PI, τ).

Thus

θ(L, τ)
∣∣S(P) = N(P)

m
2

∑
x∈PL/dPL

e

(
b

d
Q(x)

) ∑
α∈PI/dPI

e

(
b

d
2α2

)−m

·
∑

x∈dL/dPL

e

(
b

d
Q(x)

) ∑
α∈dI/dPI

e

(
b

d
2α2

)−m θ(PL, τ).

17



We know from Lemma 3.1 that LP ' π2
〈
1, . . . , 1, εP

〉
where εP ∈ O×P ; thus Propositions

3.1-3.3 and the arguments used to prove Theorem 3.7 of [6] show that

∑
x∈dL/dPL

e

(
b

d
Q(x)

) ∑
α∈dI/dPI

e

(
b

d
2α2

)−m = (2εP |P) = ε
L

(P)

and that ∑
x∈PL/dPL

e

(
b

d
Q(x)

) ∑
α∈PI/dPI

e

(
b

d
2α2

)−m = χ
L

(d) = 1

(since d ≡ 1 (mod N ) and χ
L

is a character modulo N ). q.e.d.

With this we prove

Proposition 3.4. Let the notation be as above. Then

θ(L, τ)
∣∣T (P2) = ε

L
(P)N(P)

m
2 κ−1

∑
K

θ(K, τ) + ε
L

(P)N(P)
m
2 (1−N(P)

m−3
2 )θ(PL, τ)

where

κ =
{

1 if m = 3
N(P)

m−5
2 · · ·N(P)0(N(P)

m−3
2 + 1) · · · (N(P) + 1) if m > 3

and the sum runs over all P2-sublattices K of L (i.e. over all sublattices K of L such that

nK = P2 · nL and the invariant factors {L : K} = (O, . . . ,O,P,P2, . . . ,P2) with O and

P2 each appearing m−1
2 times). Furthermore, each P2-sublattice K of L lies in the genus

of PL, and hence θ(PL, τ), θ(K, τ) ∈Mm
2

(
Γ̃0(N ,P2I2), χ

L

)
.

Proof: An easy check shows that the Hecke operator T (P2) defined in [6] is, in the
notation of this paper, T (P2)S(P−2). Thus Theorem 7.4 of [6] together with the preceding
proposition shows that θ(L, τ)

∣∣T (P2) is as claimed. (N.B.: Part 2 of Theorem 7.4 has the
wrong constants; for m = 2k + 1 with m odd the theorem should read

θ(L, τ)
∣∣T (P2) = N(P)−

m
2 κ−1

∑
K

θ(P−2K, τ) +N(P)−
m
2 (1−N(P)

m−3
2 )θ(P−1L, τ)

where the sum runs over all P2-sublattices K of L and κ is as above.)
Now let K be a P2-sublattice of L. Since nK = nPL, discK = discPL and PLP

is modular, it follows that KP is modular as well, and that KP ' PLP . Clearly we
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have KQ = LQ = PLQ where Q is any prime other than P; thus K ∈ genPL, the
genus of PL. Finally, Theorem 7.4 of [6] shows that θ(P−2K, τ) and θ(P−1L, τ) lie

in Mm
2

(
Γ̃0(N ,P−2I2), χ

L

)
, so θ(K, τ) = N(P)−mθ(P−2K, τ)

∣∣S(P2) and θ(PL, τ) =

N(P)−mθ(P−1L, τ)
∣∣S(P2) lie in Mm

2

(
Γ̃0(N ,P2I2), χ

L

)
as claimed. q.e.d.

Completely analogous to Lemma 3.2 of [8], we have

Lemma 3.5. Let o(L′) denote the order of O(L′), the orthogonal group of the lattice L′,

and define

θ(genL, τ) =
∑
L′

1
o(L′)

θ(L′, τ)

where the sum runs over a complete set of representatives L′ for the distinct isometry

classes in genL, the genus of L. Then for a prime P/| N ,

θ(genL, τ)
∣∣T (P2) = N(P)

m
2 ε

L
(P)(1 +N(P)m−2)θ(genPL, τ).

As in §2, choose fractional ideals I1, . . . , Ih′ representing the distinct (nonstrict) ideal
classes such that I2

1 , . . . , I2
h′ are in distinct strict ideal classes; for convenience, we assume

that I1 = O and that each Iλ is relatively prime to N . Define the extended genus of L,
xgenL, to be the union of all genera genIL where I is a fractional ideal; set

Θ(xgenL, τ) = (. . . , N(IλI)
m
2 θ(genIλL, τ), . . .).

Then we have

Theorem 3.6. Let χ be the Hecke character extending χ
L

such that χ∞ = 1 and χ∗(A) =
ε
L

(A) for any fractional ideal A which is relatively prime to N . Then

Θ(xgenL, τ) ∈Mm
2

(N , χ) ⊆
∏
λ

Mm
2

(
Γ̃0(N , I2

λI2), χ
L

)
and for every prime P/| N ,

Θ(xgenL, τ)
∣∣T (P2) = ε

L
(P)(1 +N(P)m−2)Θ(xgenL, τ).

Proof: Take J to be a fractional ideal relatively prime to N . Then for each λ we have
J Iλ = αIµ for some µ and some α ∈ K×. By Proposition 3.1 we have

N(Iλ)
m
2 θ(genIλL, τ)

∣∣S(J )
∣∣ [(α−2 0

0 1

)
, N(α2)

1
4

]
= ε

L
(J )N(α−1J Iλ)

m
2 θ(gen(α−1J IλL), τ)

= ε
L

(J )N(Iµ)
m
2 θ(genIµL, τ);
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since we have chosen χ such that χ∗(J ) = ε
L

(J ), we have Θ(xgenL, τ) ∈Mm
2

(N , χ).
Now take P to be a prime, P/| N , and take α ∈ K× such that PIλ = αIµ. Then by

Lemma 3.5,

N(Iλ)
m
2 θ(genIλL, τ)

∣∣T (P2)
∣∣ [(α−2 0

0 1

)
, N(α2)

1
4

]
= ε

L
(P)(1 +N(P)m−2)N(α−1IλP)

m
2 θ(gen(α−1PIλL), τ)

= ε
L

(P)(1 +N(P)m−2)N(Iµ)
m
2 θ(genIµL, τ).

q.e.d.

This theorem allows us to infer relations on averaged representation numbers which
we define as follows.

Set

r(L′, ξ) = #{x ∈ L′ : Q(x) = ξ }, and r(genL, ξ) =
∑
L′

1
o(L′)

r(L′, ξ)

where the sum runs over a complete set of representatives L′ for the isometry classes within

genL. For φ ∈ ̂(K+/K̇2), set

r(genL, ξ, φ) =
1

[U+ : U2]

∑
u∈U+/U2

φ(uξ) r(genL, uξ).

Then with the notation of §2, theM, φ-Fourier coefficient of Θ(xgenL, τ) is r(genIλL, 2ξ, φ)
whereM = ξI−2

λ , ξ � 0. Note that for any fractional ideal J , we can find some α ∈ K and
some λ such that J = αIλ; then for ξ ∈ nL, ξ � 0, and M = ξI−2

λ I−2, the J , φ-Fourier
coefficient of Θ(xgenL, τ) is

r(genIλL, 2α−2ξ, φ) = r(genαIλL, 2ξ, φ) = r(genJL, 2ξ, φ).

Also, r(genL, 0) = r(genJL, 0), so the 0, φ-Fourier coefficients of Θ(xgenL, τ) are defined
to be r(genL, 0). Now Theorems 2.5 and 3.6 together with Corollary 3.7 give us

Corollary 3.7. Let ξ ∈ nL, ξ � 0. Set M = ξI−2 (where I is the smallest fractional

ideal such that nL ⊆ I2). Let P be a prime ideal not dividing N , and let φ be any element

of ̂(K+/K̇2). If P/| M, then

(1 +N(P)m−2) r(genL, 2ξ, φ)

= r(genP−1L, 2ξ, φ) + ε
L

(P)N(P)
m−3

2 (−1|P)
m−1

2 r(genL, 2ξ, φψP )

+N(P)m−2 r(genPL, 2ξ, φ)
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where ψP is an element of ̂(K+/K̇2) such that ψP (ζ) = (ζ|P) for any ζ ∈ K+ with

ordPζ = 0. If P|M, then

(1 +N(P)m−2)r(genL, 2ξ, φ) = r(genP−1L, 2ξ, φ) +N(P)m−2 r(genPL, 2ξ, φ).

In the case that K = Q, we have

r(genL, 2p2a) =
(
1−p

m−3
2 χ

L
(p)(−1|p)

m−1
2 (2a|p)+pm−2

)
r(genL, 2a)−pm−2r

(
genL,

2a
p2

)

for any a ∈ Z+; note that χ
L

(p) = (2discL|p).

Remark. If P/| (nL#)−1(nL)−1 but P|N , then the preceding corollary can be used to
give us relations on the averaged representation numbers of xfamLα where α � 0 with
ordPα odd. Since r(fam+IµLα, αξ) = r(fam+IµL, ξ), the above corollary can be extended
to include all primes P/| (nL#)−1(nL)−1.
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