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We develop an algorithm for determining an explicit set of coset represen-
tatives (indexed by lattices) for the action of the Hecke operators T (p), Tj(p

2)
on Siegel modular forms of fixed degree and weight. This algorithm associates
each coset representative with a particular lattice Ω, pΛ ⊆ Ω ⊆ 1

p
Λ where Λ

is a fixed reference lattice. We then evaluate the action of the Hecke opera-
tors on Fourier series. Since this evaluation yields incomplete character sums
for Tj(p

2), we complete these sums by replacing this operator with a linear
combination of T`(p

2), 0 ≤ ` ≤ j. In all cases, this yields a clean and simple
description of the action on Fourier coefficients.

1. INTRODUCTION

Given a weight k, degree n Siegel modular form F , it is easy to see that
we can write F as a series supported on isometry classes of even integreal,
positive semi-definite lattices:

F (τ) =
∑
clsΛ

c(Λ)e∗{Λτ}

* Second author supported by NSF
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where, with T any matrix representing the quadratic form on Λ, O(Λ) the
orthogonal group of Λ and e{Tτ} = exp(πiTr(Tτ)),

e∗{Λτ} =
∑

G∈O(Λ)\GLn(Z)

e{T [G]τ}.

(Actually, when k is odd, we equip Λ with an “orientation,” and G varies
over O+(Λ)\SLn(Z); see the discussion at the beginning of the next sec-
tion.)

In this paper, we evaluate the action of the Hecke operators T (p) and
Tj(p2) on the Fourier coefficients of F . To do this, we first develop an
algorithm for determining the coset representatives giving the action of the
Hecke operators. This algorithm simultaneously computes the coset rep-
resentatives and associates each representative with a particular lattice Ω,
pΛ ⊆ Ω ⊆ 1

pΛ (where Λ is a reference lattice, fixed throughout the algo-
rithm). Having written F as a series supported on lattices, it is relatively
simple to then evaluate the action of these coset representatives. However,
this evaluation involves some incomplete character sums. To complete these
and thereby have a clean description of the Fourier coefficients of the image
of F , we replace Tj(p2) by T̃j(p2), a linear combination of T`(p2), 0 ≤ ` ≤ j.
(So the T̃j(p2) generate the same algebra as the Tj(p2).) Then we find that
the Λ-th coefficient in the Fourier expansion of F |T̃j(p2) is given by∑

pΛ⊆Ω⊆ 1
pΛ

pEj(Λ,Ω)αj(Λ,Ω)c(Ω),

where Ej and αj are explicitly computed constants reflecting the geometry
of Ω and Λ, and c(Ω) is the Ω-th coefficient of F (see Theorem 4.1). A
similar expression for the action of T (p) is given in Theorem 4.2 (this latter
result was also obtained by Maass in [3]). We also describe the action of
the Hecke operators when the Siegel modular form has non-trivial level and
character (see Theorem 6.1).

We conclude the introduction with the formal definition of the Hecke
operators and some basic notation.

Previously, descriptions of the coset representatives have been given by,
for example, Freitag [3, Theorem 3.9] and Andrianov [1, Lemmas 3.3.32-
3.3.33]. The coset representatives for T (p) are given explicitly enough to
enable easy analysis of the action of T (p); this is not the case for the Tj(p2).
While one could begin with these prior descriptions of coset representatives
to obtain an explicit set of representatives, we find it simpler to start from
the beginning.

Let Γ = Spn(Z). For each prime p, there are n + 1 operators T (p) and
Tj(p2), 1 ≤ j ≤ n, that generate the local Hecke algebra. We associate
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T (p) with the matrix δ =
(
pIn

In

)
, and each Tj(p2) with the matrix

δ = δj =
(
δj

δ−1
j

)
where δj =

(
pIj

In−j

)
. Then the action of the

operator is defined by mapping F to

(det δ)k/2
∑

γ∈(Γ′∩Γ)\Γ

F |δ−1γ,

where Γ′ = δΓδ−1. Note that Andrianov [1, Section 3.3] defines the oper-
ators Tj(p2) via the double coset Γpδ−1

n−jΓ; this is equivalent to the defi-
nition given above with the caveat that we’ve interchanged the roles of j
and n− j. (In truth, in our formal definition for T (p) we will introduce an
extra normalizing factor of p−n(n+1)/2. Additional normalizing factors will
be introduced when we define the operate T̃j(p2) as well.)

Also, for a Z-lattice ∆ = Za1 ⊕ · · · ⊕ Zan, ai ∈ Zj,1, we write rankp(∆)
and spanp(∆) to denote the rank and span of {a1, . . . ,an} where ai denotes
the canonical image of ai in V = (Z/pZ)j,1. We use the symbol {Λ : ∆}
to denote the invariant factors of ∆ in Λ (see [5, 81:11]) and the symbol
mult{Λ:∆}(r) for the multiplicity of r in the invariant factors.

Except in Section 6, we consider Siegel forms of “level 1”, i.e. forms for
the full modular group Spn(Z).

2. LATTICE INTERPRETATION OF TJ(P 2)

A weight k, degree n Siegel modular form F has a Fourier expansion
supported on symmetric even integral n× n matrices T with T ≥ 0. (This
is classical; for example see Freitag [3, p.43] or Andrianov [1, 2.3.1,2.3.4].)
We consider each T to be a quadratic form on a rank n Z-lattice Λ relative
to some basis for Λ. As T varies, the pair (Λ, T ) varies over all isometry
classes of rank n lattices with even integral positive semi-definite quadratic
forms. Also, the isometry class of (Λ, T ) is that of (Λ, T ′) if and only if
T ′ = T [G] for some G ∈ GLn(Z). Since F (τ [G]) = (detG)kF (τ) for all
G ∈ GLn(Z), it follows that c(T [G]) = (detG)kc(T ), where c(T ) denotes
the T -th Fourier coefficient of F . Hence, using the language of lattices,
when k is even we can rewrite the Fourier expansion of F in the form

F (τ) =
∑
clsΛ

c(Λ)e∗{Λτ},

where c(Λ) = c(T ) for any matrix T representing the quadratic form on Λ.
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When k is odd, we consider two “orientations” of Λ. So with Λ ' T
relative to a basis for Λ with orientation σ, we set c(Λ, σ) = c(T ) and

e∗{(Λ, σ)τ} =
∑

G∈O+(Λ)\SLn(Z)

e{T [G]τ}.

Then we can rewrite the Fourier expansion of F in the form

F (τ) =
∑
clsΛ

c(Λ, σ)e∗{Λτ}

where the sum runs over all oriented isometry classes.
Now fix j ≤ n and let δj and Γ′ be associated to the operator Tj(p2),

as defined above. Our goal is to find coset representatives for the quotient
(Γ′∩Γ)\Γ. To this end, let M ∈ Γ, and the top j rows of M be denoted by
Mj = (A|B) = (a1, . . . ,an|b1, . . . ,bn). So the ai,bi represent the columns
of Mj . We will reduce this (by right multiplication by elements of Γ) to a
special form which we will then show is in the desired intersection, Γ′ ∩ Γ.

Set Λ = Zx1⊕· · ·⊕Zxn, a formal Z-lattice, and let Λ# = Zy1⊕· · ·⊕Zyn.
(Later xi will be replaced by ai, and yi by bi.) When we write ΛC, C a
matrix, we mean the formal Z-lattice generated by the basis (x1, . . . , xn)C.

Our algorithm for computing the coset representative for a given M is
described in the following steps.

Step 1. We focus on the rank of (a1, . . . ,an) modulo p. First, let
r0 be the rank of these columns modulo p. Necessarily, r0 ≤ j. By

multiplying Mj on the right by a matrix of the form
(
E

E

)
, with E

a permutation matrix, we can put our matrix into the form (A0, A1|B),
where A0 is j × r0 and its columns are linearly independent modulo p.

Then, using a matrix of the form
Ir0 X

In−r0

Ir0
−tX In−r0

 ,

with X of size r0× (n−r0) chosen modulo p, we can convert the A-part
of the matrix to have the form (A0, pA1) where A0 is of size j × r0.
Effectively we solve the system

A0X +A1 ≡ 0 (mod p).

The top j rows of our matrix now has the form (A0, pA1|B).
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Note that the matrix E is not uniquely determined by M . To remedy
this, we provide an alternate description of this step as follows.

Step 1’. Equivalently, let Ω0 = ker(Λ→ Λ(A) mod p) where Mj =
(a1, . . . ,an|b1, . . . ,bn) = (A|B) and Λ→ Λ(A) mod p denotes the map
that takes xi to ai. Thus Λ = Λ0 ⊕ ∆1, Ω0 = pΛ0 ⊕ ∆1, where
rankZ∆1 = n − r0. Note that ∆1 is uniquely determined modulo
pΛ. Take any (change of basis) matrix C0 ∈ GLn(Z) such that Ω0 =

ΛC0

(
pIr0

In−r0

)
. So ∆1 = ΛC0

(
0 · Ir0

In−r0

)
. Thus, with re-

newed notation, Mj

(
C0

tC−1
0

)
has the form (a1, . . . ,an|b1, . . . ,bn) =

(A0, pA1|B).

Note that while C1 is not uniquely determined by M , the lattice Ω1

is.
Step 2. By Lemma 7.2, rankp(a1, . . . ,ar0 ,br0+1, . . . ,bn) = j so

that by multiplying by a matrix of the form
Ir0

En−r0

Ir0
En−r0

 ,

where En−r0 is a permutation matrix, we will guarantee that the rankp(a1, . . . ,ar0 ,br0+1, . . . ,bj) =
j. This permutation does not affect the first r0 columns of either the
A or B part of our matrix but does permute the next n− r0 columns.
We now write the top j rows as

(A0, pA1, pA3|B0, B1, B3)

where A0 and B0 are of size j×r0, A1 and B1 are of size j×(j−r0),and
A3 and B3 are of size j × (n− j) with rankp(A0, B1) = j. (The choice
of the subscript notation will be clear in a moment.)

By Lemma 7.2, the columns of B0 are in spanpA = spanpA0. We
now force all the columns of B3 to be in spanpA. We can do this by
using a matrix of the form

Ir0
Ij−r0
−tX In−j

Ir0
Ij−r0 X

In−j


,
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where X is size (j − r0) × (n − j). Effectively, we are replacing B3 by
B1X +B3, where B3 ≡ A0X

′ −B1X (mod p).

This matrix multiplication has no effect on A0 or B1 so that the
property rankp(A0, B1) = j remains in effect. The r0+1 to nth columns
of the A-part are combined, but still preserve the property that all the
columns are divisible by p.

Now (with renewed notation) the top j rows of our matrix have the
form

(A0, pA1, pA3|B0, B1, B3),

with B0, B3 ⊆ spanpA0 and A3, B3 of size j × (n− j).

Step 2’. With C0 as in Step 1’, we have Mj

(
C0

tC−1
0

)
=

(a1, . . . ,an|b1, . . . ,bn) = (A0, pA1|B). Simultaneously, we obtained
splittings Λ = Λ0 ⊕∆1, Ω0 = pΛ0 ⊕∆1 with ∆1 uniquely determined
modulo pΛ. This splitting of Λ corresponds to a splitting Λ# = Λ′0⊕Λ′1
with Λ′0 determined uniquely modulo pΛ#. (Here C0 carries (x1, . . . , xn)
to a basis for the splitting Λ0 ⊕∆1, and tC−1

0 carries (y1, . . . , yn) to a
basis for the splitting Λ# = Λ′0 ⊕ Λ′1; thinking of (y1, . . . , yn) as the
basis dual to (x1, . . . , xn), it is clear that C0, C−1

0 behave as claimed.)
We let U be the subspace of V = (Z/pZ)j,1 spanned by a1, . . . ,ar0 , and
we take

Ω′1 = ker
(
Λ# → Λ#(B) mod p→ V/U

)
;

here Λ# → Λ#(B) mod p denotes the map taking yi to bi, and Λ#(B) mod
p → V/U denotes the canonical projection map. By Lemma 7.2,
b1, . . . ,br0 are in the span of a1, . . . ,ar0 , so Λ′0 ⊆ Ω′1. Also by Lemma 7.2,
Ω′1/pΛ

# has dimension n − j + r0. So we can find a change of basis
matrix C1 such that

Ω′1 = Λ#tC−1
1

 Ir0
pIj−r0

In−j


with Λ′0 = Λ#tC−1

1

(
Ir0

0

)
. So tC−1

1 carries (y1, . . . , yn) to a basis

for a splitting Λ# = Λ′0 ⊕ Λ′2 ⊕ Λ′3; note that Λ′0 ⊕ Λ′3 is uniquely
determined modulo pΛ#. Also, C1 carries (x1, . . . , xn) to a basis for
the corresponding splitting

Λ = Λ0 ⊕∆2 ⊕ Λ3
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with ∆2 uniquely determined modulo pΛ. (Here ∆1 has been split as
∆2 ⊕ Λ3.) Set

Ω1 = ΛC1

 pIr0
Ij−r0

pIn−j

 ;

so ∆1 = ΛC1

(
0
In−r0

)
and Ω1 = pΛ0⊕∆2⊕ pΛ3 (so C1 is a refine-

ment of C0, and since ∆2 is uniquely determined modulo pΛ, Ω1 is well
defined).

Thus, with renewed notation, Mj

(
C1

tC−1
1

)
has the form

(a1, . . . ,an|b1, . . . ,bn) = (A0, pA1, pA3|B0, B1, B3),

with B0, B3 ⊆ spanpA0.

Step 3. We next look at the rank of the A-part of our matrix mod-
ulo p2. More precisely, we consider rankp(A0, A1), denoted by r0 + r1.
Let r2 = j − r0 − r1. We can find a permutation which permutes the
columns of the A-part so that the first r0 + r1 columns are linearly
independent modulo p2. Such a permutation matrix will have the form

P =

 Ir0
Er1+r2

In−j

 .

The effect of multiplying (A0, pA1, pA3|B0, B1, B3) by
(
P

P

)
is to

simultaneously permute the r0 + 1, . . . , j columns of A1 and of B1, but
the relationship between A0 and B1 is not affected. This puts the top
j rows of our matrix in the form

(A0, pA1, pA2, pA3, |B0, B1, B2, B3),

where rankp(A0, A1) = r0 +r1, and the old A1 (resp. B1) has been split
into parts A1 and A2 (resp. B1 and B2). The new matrices A1, B1 are
of size j × r1, and A2, B2 are of size j × r2.
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We now solve the congruence −A2 ≡ A0X0 + A1X1 (mod p), then

we multiply (A0, pA1, pA2, pA3|B0, B1, B2, B3) by
(
C

tC−1

)
where

C =


Ir0 pX0

Ir1 X1

Ir2
In−j

 .

(So X0 is of size r0 × r2, X1 of size r1 × r2.) Thus pA2 gets replaced
by something completely divisible by p2. This will combine columns of
our new B2 with the B1, but we still have that rankp(A0, B1, B2) = j,
and (with renewed notation) our matrix is now of the form

(A0, pA1, p
2A2, pA3, |B0, B1, B2, B3),

where rankpA0 = r0, rankp(A0, A1) = rankp(A0, B1) = r0 + r1, and
B0, B3 ⊆ spanpA0.

Step 3’. Recall that Ω1 = pΛ0⊕∆2⊕pΛ3 where Λ = Λ0⊕∆2⊕Λ3;
say (renewing our notation) the (x1, . . . , xn) is a basis corresponding to
this splitting of Λ. Also, we have

Mj

(
C1

tC−1
1

)
= (a1, . . . ,an|b1, . . . ,bn) = (A0, pA1, pA3|B0, B1, B3).

Let pΩ2 = ker
(

Ω1 → 1
pΩ1(A) mod p

)
where Ω1 → 1

pΩ1(A) mod p de-

notes the map taking xi to ai. (So 1
pΩ1(A) mod p is spanned by the

images in V of the columns of A0, A1 and pA3.) With our earlier nota-
tion, Λ0(A) mod p has dimension r0, and 1

p (pΛ0 ⊕∆2) (A) mod p has
dimension r0 + r1. Thus

pΩ2 = p2Λ0 ⊕ pΛ1 ⊕ Λ2 ⊕ pΛ3

where Λ2 is determined uniquely modulo pΩ1, and rankZΛ2 = r2 =
j − r0 − r1. Take a (change of basis) matrix C2 ∈ GLn(Z) such that

Ω0 = ΛC2

(
pIr0

In−r0

)

Ω1 = ΛC2

 pIr0
In−j−r0

pIn−j


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pΩ2 = ΛC2


p2Ir0

pIr1
Ir2

pIn−j

 .

(So C2 refines our choice of C1.)

Thus, Mj

(
C2

tC−1
2

)
has the form

(A0, pA1, p
2A2, pA3, |B0, B1, B2, B3)

where rankpA0 = r0, rankp(A0, A1) = rankp(A0, B1) = r0 + r1, and
B0, B3 ⊆ spanpA0.

Remark 2. 1. Knowing Ω2 and Λ1, we can reconstruct Ω0 and Ω1,
for Ω0 = Ω2 ∩ Λ, and Ω1 = Λ1 + p(Λ + Ω2). Note that Λ1 + p(Λ + Ω2)
is an r1 dimensional subspace of (Ω2 ∩Λ)/p(Ω2 + Λ), and that distinct
pairs (Ω2,Ω1) correspond to distinct pairs (Ω2,Λ1).

While C2 is not uniquely determined by M , the lattice Ω2 is.
Step 4. With C2 as above, we have

Mj

(
C2

tC−1
2

)
= (A0, pA1, p

2A2, pA3, |B0, B1, B2, B3).

We solve A0Y3 ≡ −B3 (mod p), with Y3 unique modulo p since A0 has
maximal p-rank.

Next, we solve A0Y
′
0 ≡ −B0 (mod p); so Y ′0 is uniquely determined

modulo p. Also, since M
(
C2

tC−1
2

)
∈ Γ, we know B0

tA0 ≡ Y ′0 [tA0]

(mod p) is symmetric modulo p, and hence we can choose Y ′0 symmetric
over Z.

Similarly,

M

(
C2

tC−1
2

) In

Y ′0 0 Y3

0
tY3

0 In

 ∈ Γ,

so we can solve (A0, A1)Y ≡ −( 1
p (B0 + A0Y

′
0) + A3

tY3, B1) (mod p)
uniquely modulo p with a symmetric r0 + r1 dimensional matrix Y .

Decompose Y =
(
Y ′′0 Y2
tY2 Y1

)
with Y ′′0 symmetric of dimension r0 and

set Y0 = Y ′0 + pY ′′0 . Note that since the columns of A0, B1 are linearly
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independent over Z/pZ, rankp of the columns of B1−A0Y2 must equal
rankp of the columns of B1, which is r1. Then since A1Y1 ≡ B1 − A0Y2

(mod p), rankp of the columns of A1Y1 must be r1, and so the r1 × r1

matrix Y1 is invertible over Z/pZ (i.e. p 6 | detY1). Notice that in this
construction, the column structure of Mj uniquely determines Y1, Y2, Y3

modulo p and Y0 modulo p2.

In this way we construct a matrix X of whose inverse has the form

X−1 =



Ir0 Y0 pY2 0 Y3
1
pIr1

tY2 Y1 0
1
p2 Ir2 0 0 Ir2

In−j
tY3

Ir0
pIr1

p2Ir2
In−j


so that

Mj

(
C2

tC−1
2

)
X−1

has the form

(A0, A1, A2, pA3, |p2B0, p
2B1, p

2B2, pB3). (1)

However, X 6∈ Γ. Write

X =
(
D −B′
0 D−1

)
=


Dj −Y ′ −Y ′3

In−j −tY ′3
D−1
j

In−j

 .

Since (Dj ,−Y ′) is a coprime symmetric pair, there exist matrices U, V

such that
(
Dj −Y ′
U V

)
∈ Spj(Z) and hence

X ′ =


Dj −Y ′ −Y ′3

In−j −tY ′3
U V −UY ′3

0 In−j

 ∈ Γ. (2)



! Please write \titlerunninghead{<(Shortened) Article Title>} in file ! 11

Certainly,

M

(
C2

tC−1
2

)
X ′−1 ∈ Γ.

Also, the top j rows of the product have the form

(A0, pA1, p
2A2, pA3, |B0, B1, B2, B3),

so by Lemma 7.1, this product is in Γ′.

Furthermore, it is easy to see that

X ′ = X ′′X, where X ′′ ∈ Γ′. (3)

Thus for each M ∈ Γ, we have used the column structure of Mj to
produce a coset representative in a particular form. Since left multiplication
by an element of Γ′ ∩ Γ does not change the column structure of Mj , the
algorithm produces a complete (nonredundant) set of coset representatives.
This argument proves the following.

Proposition 2.1. Each coset of (Γ′ ∩ Γ)\Γ is identified with

1.a lattice Ω (Ω2 in the above notation) such that pΛ ⊆ Ω ⊆ 1
pΛ and

r0 + r2 ≤ j where r0 = mult{Λ:Ω}(p) and r2 = mult{Λ:Ω}(1/p);
2.a subspace Λ1+p(Ω+Λ) of (Ω∩Λ)/p(Ω+Λ), rankΛ1 = r1 = j−r0−r2;

3.a matrix B′ =


Y0 Y2 0 Y3

ptY2 Y1 0
0 0 I
tY3

 where Y0 is unique modulo p2, sym-

metric, r0 × r0; Y1 is unique and invertible modulo p, symmetric, r1 × r1;
Y2 is unique modulo p, r0 × r1; and Y3 is unique modulo p, r0 × n− j.

By (3), the action of a representative for this coset is given by the product(
D B′

0 D−1

)(
C−1

tC

)
where D = D(Ω) is the diagonal matrix given

in Step 4, determined by Ω, and C = C(Ω,Λ1) is a change of basis matrix
C2 as in Step 3’.

Notice also that given any triple (Ω,Λ1, B
′) meeting these conditions,

(D,B′) is a coprime symmetric pair; hence
(
D B′

U V

)(
C−1

tC

)
∈ Γ

for some U, V .
The following is now immediate.
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Corollary 2.1. For F a Siegel modular form of degree n, we have

F |Tj(p2) =
∑

(Ω,Λ1,B′)

F

∣∣∣∣( δ−1
j

δj

)(
D B′

D−1

)(
C−1

tC

)

where (Ω,Λ1, B
′) varies over all triples meeting the three conditions of

Proposition 2.1 and D = D(Ω), C = C(Ω,Λ1).

3. LATTICE INTERPRETATION OF T (P )

Recall that for T (p), we seek the coset representatives for (Γ′ ∩ Γ)\Γ,
where

Γ′ =
(
pIn

In

)
Γ
( 1

pIn
In

)
.

A similar, but simpler, algorithm can be used in this case. Namely, we
use Step 1 to put the top n rows into the form (A0, pA1|B), where A0 has
maximal rank modulo p. Next we use a relaxation of Step 4 to put the top
n rows into the form (A0, A1|pB). The rest of the argument is essentially
the same.

In this way we prove the following (cf. Maass [4]).

Proposition 3.1. For F a Siegel modular form of degree n, we have

F |T (p) = pn(k−n−1)/2
∑

(Ω,B′)

F

∣∣∣∣( 1
pI

I

)(
D B′

D−1

)(
C−1

tC

)

where (Ω, B′) varies over all pairs meeting the following conditions:

1.Ω is a lattice such that pΛ ⊆ Ω ⊆ Λ; set r = mult{Λ:Ω}(p).

2.B′ is a matrix of the form
(
Y

I

)
where Y is symmetric, r × r and

determined modulo p.

Here C = C(Ω) is a change of basis matrix so that Ω = ΛC
(
pIr

In−r

)
and D = D(Ω) =

(
Ir

pIn−r

)
.

4. THE ACTION OF THE HECKE OPERATORS
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Let F be a Siegel modular form of weight k and degree n, and write

F (τ) =
∑
T

c(T )e{Tτ}

where T varies over all symmetric, even integral, n×n matrices with T ≥ 0.
With δ = δj , Corollary 2.1 gives us

F |Tj(p2)(τ) =
∑
T

(Ω,Λ1,B′)

det
(
δ−1D

)k
c(T )e{T [δ−1DC−1]τ}e{Tδ−1B′Dδ−1},

where D = D(Ω), C = C(Ω,Λ1). Write B′ as in Condition 3. of Proposi-
tion 2.1; then

δ−1(B′D)δ−1 =


Y0/p

2 Y2/p 0 Y3/p
tY2/p Y1/p 0

0 0 I
tY3/p

 .

For any Ω and Λ1, let P = P (Ω) be the permutation matrix such that

B̃ = tP
(
δ−1B′Dδ−1

)
P =


Y0/p

2 Y2/p Y3/p 0
tY2/p Y1/p
tY3/p

0 I

 . (4)

With D̃ = D̃(Ω) = tP
(
δ−1D

)
P =

 1
pIr0

I
pIr2

, and C̃ = C̃(Ω,Λ1)=

CP , we have

Ω = ΛC̃D̃−1

(although the basis of Ω is ordered differently) and

Λ1 = ΛC̃

 0 · Ir0
Ir1

0 · I

 .

Thus by interchanging the sums on T and Ω and replacing T by T [tP (Ω)],
we get c(T [tP (Ω)]) = c(T ), and

F |Tj(p2)(τ) =
∑

(Ω,Λ1)
T

pk(r2−r0)c(T )e{T
[
D̃C̃−1

]
τ}
∑
B̃

e{TB̃}, (5)
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where B̃ varies over the matrices of the form in (4), with rankpY1 = r1 =
j−r0−r2. Note that det

(
δ−1D

)
= pr2−r0 and recall that r0 = mult{Λ:Ω}(p)

and r2 = mult{Λ:Ω}(1/p).
The invertibility condition on Y1 modulo p means that the exponential

sum on B̃ is an incomplete character sum. To complete this sum, we will
replace Tj by a new operator which is a linear combination of the Tt for
0 ≤ t ≤ j, where T0 is the identity operator. More specifically, we make
the following definition.

Definition 4.1. With the notation above, define the operator T̃j by

T̃j(p2) = pj(k−n−1)
∑

0≤t≤j

βp(n− t, j − t)Tt(p2)

where

βp(m, `) =
∏̀
i=1

pm−`+i − 1
pi − 1

is the number of `-dimensional subspaces of an m-dimensional space over
Z/pZ.

We need a bit more notation. For pΛ ⊆ Ω ⊆ 1
pΛ, let αj (Λ,Ω) be the

number of totally isotropic subspaces of (Ω ∩ Λ)/p(Ω + Λ) with dimension
d− n+ j where d = dim(Ω ∩Λ)/p(Ω + Λ), and the quadratic form on this
quotient is 1

2Q modulo p. (So αj(∗) = 0 if d−n+j < 0.) In Proposition 4.1
and the remarks following we give explicit formulas for these αj . Also, set

Ej(Λ,Ω) = k (m(1/p)−m(p) + j) +m(p) (m(p) +m(1) + 1)

+
1
2
mj(1) (mj(1) + 1)− j(n+ 1).

where m(a) = mult{Λ:Ω}(a) and mj(a) = m(a)− n+ j.
We can now prove our main theorem.

Theorem 4.1. With F as above,

F |T̃j(p2)(τ) =
∑
clsΛ

 ∑
pΛ⊆Ω⊆ 1

pΛ

pEj(Λ,Ω)αj(Λ,Ω)c(Ω)

 e∗{Λτ}.

Here clsΛ varies over all classes of (oriented) integral lattices. (Note that
c(Ω) = 0 unless Ω is even integral. Also, when k is odd, by c(Ω) we really
mean c(Ω, σ) where σ is the orientation on Ω induced by that on Λ. Since
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an orientation σ on Λ induces a compatible orientation, which we also call
σ, on any lattice Ω in the space QΛ, we can suppress the reference to the
orientation without causing confusion.)

Proof. First suppose k is even. With Definition 4.1 and equation (5),
we have

F |T̃j(p2)(τ)

=
∑

0≤t≤j

βp(n− t, j − t)
∑

(Ω,∆1)
T

pk(r2−r0)c(T )e{T
[
D̃C̃−1

]
τ}
∑
B̃

e{TB̃},

where the sums on Ω,∆1, B̃ are as in equation (5) but with j replaced by
t and Λ1 replaced by ∆1. Since there are no ∆1 meeting these conditions
when r0 + r2 > t, we can interchange the sums on Ω and t to get

F |T̃j(p2)(τ) (6)

=
∑
Ω,T

∑
0≤t≤j

∆1

pk(r2−r0)c(T )e{T
[
D̃C̃−1

t

]
τ}βp(n− t, j − t)

∑
B̃

e{TB̃},

where Ω is limited by the condition r0 + r2 ≤ j, and ∆1 satisfies the
condition rankZ∆1 = t− r0 − r2, C̃t = C̃(Ω,∆1).

Now take t < r1; by Lemma 7.3, as we vary G over incongruent modulo p
matrices in GLr1(Z) and Y1 over incongruent modulo p symmetric matrices
in GLt(Z), the product

tG

(
Y1

0

)
G = Y ′1

varies over all modulo p symmetric r1× r1 matrices with rankpY ′1 = t. Let

G̃ =

 Ir0
tG

I

 .

Replacing T by T
[
tG̃
]
, we have c

(
T
[
tG̃
])

= c(T ), G̃D̃ = D̃G̃, and

C̃tG̃
−1 simply represents another choice for the matrix C̃t = C̃(Ω,∆1).

Each matrix C̃(Ω,∆1) can be viewed as a choice of C̃(Ω,Λ1) for any lattice
Λ1 containing ∆1 with rankZΛ1 = j − r0 − r2, via

∆1 = Λ1G

(
It

0

)
.
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As remarked in Lemma 7.3, the number of such Λ1 (equivalently, G or G̃)
is βp(t, r). Hence the effect of replacing the operator Tj(p2) by T̃j(p2) is to
remove the condition that Y1 have full rank modulo p.

Thus

F |T̃j(p2)(τ) =
∑

Ω,Λ1,T

pk(r2−r0)c(T )e{T [D̃C̃−1]τ} ×

∑
Y0 (mod p2)

Y1,Y2,Y3 (mod p)

e

T

Y0/p

2 Y2/p Y3/p 0
tY2/p Y1/p
tY3/p

0 I


 . (7)

Evaluating the character sum gives us

F |T̃j(p2)(τ) =
∑

Ω,Λ1,T

pEj(Λ,Ω)c(T )e{T [D̃C̃−1]τ},

where Ω and Λ1 vary as above, and T ∈ U0 = U0(r0, r2), i.e. T = T0 + tT0

where T0 is upper triangular and satisfies

T0 ≡


0 p∗ p∗ ∗
p∗
∗
∗

 (mod p2).

Fix r0, r2 (i.e., fix D̃). For G,G′ ∈ GLn(Z), ΛGD̃−1 = ΛG′D̃−1 if and
only if G′ ∈ GU where

U = GLn(Z) ∩

 Z
r0,r0 Z

r0,n−r0−r2 Z
r0,r2

pZn−r0−r2,r0 Z
n−r0−r2,n−r0−r2 Z

n−r0−r2,r2

p2
Z
r2,r0 pZr2,n−r0−r2 Z

r2,r2

 .

Thus the sublattices Ω = pΛ0 ⊕ ∆1 ⊕ 1
pΛ2 with {Λ : Ω} = (r2, n − r0 −

r2, r0) are in one-to-one correspondence with coset representatives {G} for
GLn(Z)/U. Similarly, for fixed such Ω, the dimension r1 = j − r0 − r2

subspaces Λ1 of (Ω ∩ Λ)/p(Ω + Λ) are in one-to-one correspondence with
coset representatives {H} for W/W′, where

W = GLn(Z) ∩


 Ir0

∗
Ir2

 ,
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and

W′ = GLn(Z) ∩


 Ir0

G1

Ir2

 , G1 ∈
(

Z
r1,r1 Z

r1,n−j

pZn−j,r1 Z
n−j,n−j

) .

(So for these choices for r0, r2, the matrices C̃ are of the form GH.) Thus
for fixed Ω and G such that Ω = ΛGD̃−1 we have∑

Λ1
T∈U0

c(T )e{T [D̃C̃−1(Ω,Λ1)]τ} =
∑
H

T∈U0

c(T )e{T [D̃H−1G−1]τ}.

Note that D̃H−1 = H−1D̃ and recall that c(T ) = c(T [H]); thus replacing
T by T [H] we have∑

Λ1
T∈U0

c(T )e{T [D̃C̃−1(Ω,Λ1)]τ} =
∑
T

∑
H

T [H−1]∈U0

c(T )e{T [D̃G−1]τ}.

Identify T with Ω; so by our choice of G, T [D̃G−1] is identified with Λ.
Then, presuming T and T [D̃] are both even integral, the number of H with
T [H−1] ∈ U0 is αj(Λ,Ω).

Thus for k even,

F |T̃j(p2)(τ) =
∑
clsΛ

pΛ⊆Ω⊆ 1
p

Λ

c(Ω)αj(Λ,Ω)e∗{Λτ}

(recall that c(Ω) = 0 unless Ω is even integral).
When k is odd, the argument is the same. Notice that we can always

choose our lattices C = C(Λ,Ω) to have determinant 1. Then the orienta-
tion σ on Λ induces a compatible orientation, which we again call σ, on Ω
(recall that Ω = ΛCD). Were we to take C with detC = −1 then C would
induce on Ω the orientation σ, but we would also pick up a factor of −1 =
detC. Since c(Ω, σ) = −c(Ω, σ), the result is independent of our choice of
detC.

Similarly, Proposition 3.1 provides an alternate proof of Maass’ result [4].

Theorem 4.2. With F as above,

F |T (p)(τ) =
∑

cls(Λ)

∑
pΛ⊆Ω⊆Λ

pE(Λ,Ω)c(Ω1/p)e∗{Λτ},

where where E(Λ,Ω) = m(1)k + m(p)(m(p) + 1)/2 − n(n + 1)/2, m(a) =
mult{Λ:Ω}(a), and Ω1/p denotes that lattice Ω scaled by 1

p (so when Q is
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the quadratic form associated to Ω, 1
pQ is the quadratic form associated to

Ω1/p).

The next proposition gives us a tool to explicitly evaluate the terms
αj(Λ,Ω) in the statement of Theorem 4.1.

Proposition 4.1. Let V be a d-dimensional space over Z/pZ. Set r =
dimR where R = radV . Then the number of dimension l totally isotropic
subspaces of V is

r∑
t=0

βp(r, t)
l−t−1∏
i=0

pr−t
φp(d− r − 2i, µ)

pl−t−i − 1
,

where φp(d, µ) is the number of isotropic vectors in a regular space W of
dimension d and µ = 1 if W is hyperbolic and equals −1 otherwise. In
particular,

φp(d, µ) =
{
pd−1 − 1 if 2 6 | d
(pd/2 − µ)(pd/2−1 + µ) if 2|d,

Proof. The proof is simple combinatorics. For a fixed t, 0 ≤ t ≤ r, the
βp term counts the number of t-dimensional subspaces Rt of R. The second
product counts the number of l−t dimensional totally isotropic subspaces of
V/Rt which are independent of R/Rt. (Andrianov [1, Prop A.2.14] does a
similar computation in the case V is regular. See also Artin [2, pp143–
146].)

Remark 4. 1. To evaluate αj(Λ,Ω), we first observe that

Λ = Λ0 ⊕ Λ1 ⊕ Λ2

Ω = pΛ0 ⊕ Λ1 ⊕
1
p

Λ2

and

Λ ∩ Ω/p(Λ + Ω) ' Λ1/pΛ1.

So, in the proposition, take V = Λ1/pΛ1 and ` = m(1)− n+ j.

5. A SIMPLE RELATION BETWEEN OPERATORS
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Proposition 5.1. With T̃j(p2) as defined in Definition 4.1 (so T̃n(p2)
is the so-called average Hecke operator), we have

T̃n(p2) = T (p)2 −
∑

0≤j<n

pk(n−j)+j(j+1)/2−n(n+1)/2T̃j(p2).

Proof. With

F (τ) =
∑

cls(Λ)

c(Λ)e∗{Λτ},

and T any Hecke operator, we write

F |T (τ) =
∑

cls(Λ)

c|T (Λ)e∗{Λτ}.

By Theorem 4.2,

c|T (p)2(Λ) =
∑

pΛ⊆Λ′⊆ 1
pΛ

 ∑
p(Λ+Λ′)⊆Ω⊆Λ∩Λ′

Ω1/p integral

pE(Λ,Ω)+E(Ω,pΛ′)

 .c(Λ′)

Fix Λ′ and setm0 = mult{Λ:Λ′}(1/p), m1 = mult{Λ:Λ′}(1), m2 = mult{Λ:Λ′}(p).
Ω1/p being integral is equivalent to Ω/p(Λ + Λ′) being a totally isotropic
subspace of (Λ ∩ Λ′)/p(Λ + Λ′). We have dim(Λ ∩ Λ′)/p(Λ + Λ′) = m1;
then for j ≤ n, the number of Ω in the second summation above with
dim Ω/p(Λ + Λ′) = m1 − (n− j) is αj(Λ,Λ′). For such Ω,

E(Λ,Ω) = (m0 +m1 − n+ j)k + (m2 + n− j)(m2 + n− j + 1)/2,
E(Ω, pΛ′) = (m0 + n− j)k + (m2 +m1 − n+ j)(m2 +m1 − n+ j + 1)/2.

By simple algebra, the sum of these two expressions is

k(n− j) + j(j + 1)/2− n(n+ 1)/2 + Ej(Λ,Λ′).

This and Theorem 4.1 complete this proof.

6. SIEGEL MODULAR FORMS WITH LEVEL

Say that F is a Siegel moudlar form with level N and character χ modulo
N ; that is, F satisfies the transformation law

F |M = χ(detDM )F,
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for any M =
(
AM BM
CM DM

)
∈ Γ0(N), where

Γ0(N) =
{
M ∈ Spn(Z) : M ≡

(
∗ ∗
0 ∗

)
(mod N)

}
(and limτ→i∞ F (τ) < ∞). Then in the definition of the Hecke operators
we take Γ = Γ0(N), Γ′ = δΓδ−1 and for the operator T associated to δ we
define

F |T = (det δ)k/2
∑
γ

χ(detDγ)F |δ−1γ

where γ runs over a set of representatives for (Γ′ ∩ Γ)\Γ. Since F |δ−1γ′ =
χ(detDγ′)F |δ−1 for γ′ ∈ Γ′, F |T is well-defined. (As before, we include an
additional normalizing factor of p−n(n+1)/2 in the definition of T (p).)

For 1 ≤ j ≤ n, define

T̃j(p2) = pj(k−n−1)
∑

0≤t≤j

χ(pj−t)βp(n− t, j − t)Tt(p2).

(So when p|N , T̃j(p2) = pj(k−n−1)Tj(p2).)

Theorem 6.1. Let F be a Siegel modular form of level N , character χ
with coefficients c(Λ).

(1)The Λth coefficient of F |T (p) is∑
pΛ⊆Ω⊆Λ

χ([Ω : pΛ])pE(Λ,Ω)c(Λ1/p).

(2)For each 1 ≤ j ≤ n, the Λth coefficient of F |T̃j(p2) is∑
pΛ⊆Ω⊆ 1

pΛ

χ(pj−n[Ω : pΛ])pEj(Λ,Ω)αj(Λ,Ω)c(Ω).

Proof. We first consider F |T̃j(p2). To find the coset representatives for
Tj(p2), we essentially proceed as for level 1 but we point out where there
are differences in the construction of these representatives.

Proceed as before through Step 4, constructing the matrices C2 and X

such that Mj

(
C2

tC−1
2

)
X−1 has the same form as in (1).
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First suppose p|N . Then X takes the form (because r0 = j) given by

X =


Ij Y0 Y3

In−j
tY3 0

Ij
In−j

 ∈ Γ0(N)

and

F |Tj(p2) =
∑

Ω,Y0,Y3

F

∣∣∣∣( δ−1
j

δj

)
X

(
C−1

C

)
,

where Ω varies over lattices such that pΛ ⊆ Ω ⊆ Λ with [Λ : Ω] = pj ,

Ω = ΛC
(
pIj

I

)
, Y3 varies over all j × n− j matrices modulo p, and Y0

varies over all j × j symmetric matrices modulo p2. Thus

F |Tj(p2) = pj(−k+n+1)
∑
Λ,Ω

c(Ω)e{Λτ},

where Λ runs over all isometry classes of integral rank n lattices with pos-
itive semi-definite quadratic form, and Ω runs over all lattices such that
pΛ ⊆ Ω ⊆ Λ, [Λ : Ω] = pj . Hence, the Λth coefficient of F |T̃j(p2) is as
claimed.

Now suppose p 6 | N . Then constructing X ′ as in (2) is a bit more delicate,
because we need X ′ ∈ Γ0(N), i.e., U ≡ 0 (mod N). We know (Dj ,−Y ′)
is a coprime symmetric pair, so (Dj ,−NY ′) is as well. Thus there are

matrices U ′, V such that
(
Dj −NY ′
U ′ V

)
∈ Spj(Z), and so with U = NU ′,

X ′ =


Dj −Y ′ −Y ′3

In−j −tY ′3
U V −UY ′3

0 In−j

 ∈ Γ0(N).

Write X ′ =
(
A′ B′

C ′ D′

)
; then since X ′ is sympletic, A′tD′ ≡ I (mod N).

Thus χ(detD′) = χ(detA′) = χ(pr1+2r2). We know r0 + r1 + r2 = j, so
χ(detD′) = χ(pj−r0+r2). So

F |Tj(p2) =
∑
C2,X′

χ(pj−r0+r2)F
∣∣∣∣δ−1
j X ′

(
C−1

2
tC2

)
,
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where C2, X
′ vary as before.

Let X ′′ = X ′X−1. Then writing δ−1
j X ′′δj as

(
A′′ B′′

C ′′ D′′

)
, we see that

C ′′ ≡ 0 (mod N), A′′ = I and so D′′ ≡ I (mod N). Hence, F |δ−1
j X ′ =

F |δ−1
j X ′′X = F |δ−1

j X. Therefore,

F |Tj(p2) =
∑

Ω,Λ1,B′

χ(pj−r0+r2)F
∣∣∣∣( δ−1

j

δj

)(
D B′

D−1

)(
C−1

tC

)
,

where Ω,Λ1, B
′ vary as in Corollary 2.1, D = D(Ω) and C = C(Ω,Λ1).

Next we proceed as before to evaluate the action of Tj(p2) on the Fourier
coefficients of F . The argument is virtually identical except for the intro-
duction of the character in the above formula and in the definition of T̃j(p2).
Consequently,

F |T̃j(p2)(τ) = pj(k−n+1)
∑

Ω,Λ1,T

χ(pj−r0+r2)pk(r2−r0)c(T )e{T [D̃C̃−1]τ} ×

∑
Y0 (mod p2)

Y1,Y2,Y3 (mod p)

e

T

Y0/p

2 Y2/p Y3/p 0
tY2/p Y1/p
tY3/p

0 I


 .

(Here the notation is as in (7).) Hence, after evaluating the character
sum and identifying T with Ω, we find the Λth coefficient of F |T̃j(p2) is as
claimed.

Similarly,

F |T (p) = pn(k−n−1)/2
∑
Ω,B′

χ(detD)F
∣∣∣∣( 1

pI

I

)(
D B′

D−1

)(
C−1

tC

)
,

where Ω, B′, D,C are as in Proposition 3.1. Here detD = pn−r when
[Λ : Ω] = pr. Consequently, the Λth coefficient of F |T (p) is∑

pΛ⊆Ω⊆Λ

χ([Ω : pΛ])pE(Λ,Ω)c(Ω1/p),

as claimed.

7. LEMMAS
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Lemma 7.1. Let M ∈ Γ and let Mj denote the top j rows of M (j ≤ n).
Suppose Mj = (A0, pA1|p2B0, pB1) with A0, B0 integral j × j matrices,
A1, B1 integral j × n− j matrices. Then M ∈ Γ′.

Proof. Write M =
(
A B
C D

)
=


A0 pA1 p2B0 pB1

A′1 A2 B′1 B2

C0 C1 D0 D1

C ′1 C2 D′1 D2

 . Since (A,B)

is a coprime pair, we must have rankpA0 = j. Also, AtB ≡
(

0 A0
tB′1

0 ∗

)
mod

p and AtB is symmetric; hence B′1 ≡ 0 mod p. Finally, I = AtD −BtC ≡(
∗ A0

tD′1
∗

)
mod p, so D′1 ≡ 0 mod p.

Lemma 7.2. Let M ∈ Γ. Suppose Mj = (A0, pA1|B0, B1) with A0, B0

integral j×r matrices, rankpA0 = r, and A1, B1 integral j×n−r matrices.
Then B0 ⊆ spanpA0 and rankp(A0, B1) = j.

Proof. Since rankpA0 = r, we can find E ∈ GLj(Z) so that EA0 =(
Ir
0

)
. Then

M ′ =


E

In−j

tE−1

In−j

M ∈ Γ

with M ′j = (EA0, pEA1, EB0, EB1). We know EB0
tA0

tE is symmet-
ric, and EB0

tA0
tE ≡ (EB0, 0) mod p. Hence the bottom j − r rows of

EB0 must be 0 (modulo p), so (EA0, EB0) ≡
(
Ir ∗
0 0

)
mod p. Thus

rankp(A0, B0) = rankp(EA0, EB0) = r = rankpA0, i.e. B0 ⊆ spanpA0.
Also, M ∈ GL2n(Z) hence rankpM = 2n. Thus rankp(A0, pA1, B0, B1) =

rankpMj = j, and so rankp(A0, B1) must be j.

Lemma 7.3. Let V be an r dimensional space over Z/pZ (p prime)
with an ordered basis {v1, . . . , vr}. Fix a nonnegative integer s < r. For
each dimension s subspace U of V , fix a matrix GU ∈ GLr(Z/pZ) so that

V G−1
U

(
0
Is

)
= U . Then for symmetric t = r − s dimensional matrices
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M,N ∈ GLt(Z/pZ) and U,W dimension s subspaces of V ,

tGU

(
M

0

)
GU = tGW

(
N

0

)
GW

if and only if U = W and M = N .

Proof. Suppose A = tGU

(
M

0

)
GU = tGW

(
N

0

)
GW for some

(dimension s) U,W and (nonsingular) M,N . Thus A defines a quadratic
form Q on V relative to the basis {v1, . . . , vr}. We have V G−1

U = U ′ ⊕ U ,

and relative to this decomposition of V , tG−1
U AG−1

U =
(
M

0

)
represents

Q. Hence U is the radical of V relative to Q. Similarly, V G−1
W = W ′ ⊕W ,

and tG−1
W AG−1

W =
(
N

0

)
represents Q relative to this decomposition.

Hence W is the radical of V relative to Q. This means that U = W and
so GU = GW ; hence M = N .

The converse is trivial.
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