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We develop an algorithm for determining an explicit set of coset represen-
tatives (indexed by lattices) for the action of the Hecke operators T'(p), T (p?)
on Siegel modular forms of fixed degree and weight. This algorithm associates
each coset representative with a particular lattice Q, pA € Q C LA where A

is a fixed reference lattice. We then evaluate the action of the Hecke opera-
tors on Fourier series. Since this evaluation yields incomplete character sums
for T (p?), we complete these sums by replacing this operator with a linear
combination of Ty(p?), 0 < £ < j. In all cases, this yields a clean and simple
description of the action on Fourier coefficients.

1. INTRODUCTION

Given a weight k, degree n Siegel modular form F, it is easy to see that
we can write F' as a series supported on isometry classes of even integreal,
positive semi-definite lattices:

F(r) = c(A)e*{Ar}

clsA

* Second author supported by NSF
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where, with 7" any matrix representing the quadratic form on A; O(A) the
orthogonal group of A and e{T'7} = exp(miTr(TT)),

e*{AT} = > e{T[G]7}.

GeO(A)\GL,(Z)

(Actually, when k is odd, we equip A with an “orientation,” and G varies
over O1(A)\SL,,(Z); see the discussion at the beginning of the next sec-
tion.)

In this paper, we evaluate the action of the Hecke operators T'(p) and
T;(p?) on the Fourier coefficients of F. To do this, we first develop an
algorithm for determining the coset representatives giving the action of the
Hecke operators. This algorithm simultaneously computes the coset rep-
resentatives and associates each representative with a particular lattice 2,
pA C Q C %A (where A is a reference lattice, fixed throughout the algo-
rithm). Having written F' as a series supported on lattices, it is relatively
simple to then evaluate the action of these coset representatives. However,
this evaluation involves some incomplete character sums. To complete these
and thereby have a clean description of the Fourier coefficients of the image
of F, we replace T} (p?) by T;(p?), a linear combination of T;(p?), 0 < £ < j.
(So the fj (p?) generate the same algebra as the T} (p?).) Then we find that
the A-th coefficient in the Fourier expansion of F |1~“j(p2) is given by

Yo P AVay(a,Q)e(@),

PACQCIA

where F; and a; are explicitly computed constants reflecting the geometry
of Q@ and A, and ¢(Q) is the Q-th coefficient of F' (see Theorem 4.1). A
similar expression for the action of T'(p) is given in Theorem 4.2 (this latter
result was also obtained by Maass in [3]). We also describe the action of
the Hecke operators when the Siegel modular form has non-trivial level and
character (see Theorem 6.1).

We conclude the introduction with the formal definition of the Hecke
operators and some basic notation.

Previously, descriptions of the coset representatives have been given by,
for example, Freitag [3, Theorem 3.9] and Andrianov [1, Lemmas 3.3.32-
3.3.33]. The coset representatives for T(p) are given explicitly enough to
enable easy analysis of the action of T'(p); this is not the case for the T} (p?).
While one could begin with these prior descriptions of coset representatives
to obtain an explicit set of representatives, we find it simpler to start from
the beginning.

Let I' = Sp,,(Z). For each prime p, there are n 4+ 1 operators T'(p) and
T; (p?), 1 < j < n, that generate the local Hecke algebra. We associate
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pl,

T(p) with the matrix § = )7 and each T;(p?) with the matrix

I,
9; pl; :
J = éj = 5ol where §; = 7 . Then the action of the
j n—j

operator is defined by mapping F' to

(detg)*/2 >~ F|5'y,

ye(T’'N)\I'

where IV = §T'6 L. Note that Andrianov [1, Section 3.3] defines the oper-
ators T} (p?) via the double coset Fpégijf‘; this is equivalent to the defi-
nition given above with the caveat that we’'ve interchanged the roles of j
and n — j. (In truth, in our formal definition for T'(p) we will introduce an
extra normalizing factor of p~™("+1)/2, Additional normalizing factors will
be introduced when we define the operate T} (p?) as well.)

Also, for a Z-lattice A = Za; & - -- & Za,, a; € Z7'', we write rank,(A)
and span,, (A) to denote the rank and span of {ay, . ..,a,} where a; denotes
the canonical image of a; in V = (Z/pZ)?'. We use the symbol {A : A}
to denote the invariant factors of A in A (see [5, 81:11]) and the symbol
multga.ay(r) for the multiplicity of 7 in the invariant factors.

Except in Section 6, we consider Siegel forms of “level 17, i.e. forms for
the full modular group Sp,,(Z).

2. LATTICE INTERPRETATION OF T;(P?)

A weight k, degree n Siegel modular form F' has a Fourier expansion
supported on symmetric even integral n x n matrices T with 7" > 0. (This
is classical; for example see Freitag [3, p.43] or Andrianov [1, 2.3.1,2.3.4].)
We consider each T to be a quadratic form on a rank n Z-lattice A relative
to some basis for A. As T varies, the pair (A,T) varies over all isometry
classes of rank n lattices with even integral positive semi-definite quadratic
forms. Also, the isometry class of (A,T) is that of (A,7”) if and only if
T’ = T[G] for some G € GL,(Z). Since F(7[G]) = (det G)*F(7) for all
G € GL,(Z), it follows that ¢(T[G]) = (det G)¥¢c(T), where ¢(T') denotes
the T-th Fourier coefficient of F'. Hence, using the language of lattices,
when k is even we can rewrite the Fourier expansion of F' in the form

F(r) =) c(A)e*{Ar},

clsA

where ¢(A) = ¢(T) for any matrix T representing the quadratic form on A.
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When £k is odd, we consider two “orientations” of A. So with A ~ T
relative to a basis for A with orientation o, we set ¢(A, o) = ¢(T") and

e{(A,o)T} = Z e{T[G]7}.

GEO+(A\SL, (Z)

Then we can rewrite the Fourier expansion of F' in the form

F(r)= Z c(A,o)e"{AT}

clsA

where the sum runs over all oriented isometry classes.

Now fix j < n and let §; and I be associated to the operator T} (p?),
as defined above. Our goal is to find coset representatives for the quotient
(T"NT)\I'. To this end, let M € T'; and the top j rows of M be denoted by
M; = (A|B) = (a1, ...,a,|b1,...,by,). So the a;, b; represent the columns
of M;. We will reduce this (by right multiplication by elements of I') to a
special form which we will then show is in the desired intersection, I" N T.

Set A = Za1®- - -®7Zx,, a formal Z-lattice, and let A# = Zy, & - - B Zys,.
(Later x; will be replaced by a;, and y; by Bi.) When we write AC, C' a
matrix, we mean the formal Z-lattice generated by the basis (x1,...,z,)C.

Our algorithm for computing the coset representative for a given M is
described in the following steps.

STEP 1. We focus on the rank of (ay,...,a,) modulo p. First, let
ro be the rank of these columns modulo p. Necessarily, r¢ < j. By

multiplying M; on the right by a matrix of the form , with £

E
a permutation matrix, we can put our matrix into the form (4g, A1|B),
where Ag is j X rg and its columns are linearly independent modulo p.

Then, using a matrix of the form

I, X

0

In—ro

I,
_tX Infro

with X of size 1o X (n —1¢) chosen modulo p, we can convert the A-part

of the matrix to have the form (Ay,pA;) where Ay is of size j X rg.

Effectively we solve the system

ApX + A1 =0 (mod p).

The top j rows of our matrix now has the form (Ag, pA;|B).
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Note that the matrix F is not uniquely determined by M. To remedy
this, we provide an alternate description of this step as follows.

STEP 1’. Equivalently, let 2y = ker(A — A(A) mod p) where M; =
(ai,...,a,|b1,...,by) = (A|B) and A — A(A) mod p denotes the map
that takes x; to @;. Thus A = Ag ® A1, Qp = pAg ® A;, where
rankzA; = n — rg. Note that A; is uniquely determined modulo
pA. Take any (change of basis) matrix Cy € GL,,(Z) such that Qy =

AC (pL"O . So A; = AC ( 0 Iy I ) Thus, with re-
n—ro n—ro
newed notation, M; ( Co to-1 ) has the form (ay,...,a,|b1,...,by) =
0
(AOapAllB)

Note that while C is not uniquely determined by M, the lattice 2y
is.
STEP 2. By Lemma 7.2, ranky,(aq,...,a,,bry+1,-..,bp) = j s0
that by multiplying by a matrix of the form
I,

0

Enfro

I,
E’n—’!‘o

where E,,_,, is a permutation matrix, we will guarantee that the rank,(as, ..., am,, brot1,---

7. This permutation does not affect the first ry columns of either the
A or B part of our matrix but does permute the next n — ry columns.
We now write the top j rows as

(Ao, pA1,pAs| By, By, Bs)

where Ay and By are of size j x 9, A1 and By are of size j X (j —rp),and
As and Bs are of size j x (n — j) with rank,(Ao, B1) = j. (The choice
of the subscript notation will be clear in a moment.)

By Lemma 7.2, the columns of By are in span,A = span,A,. We
now force all the columns of Bj to be in span,A. We can do this by
using a matrix of the form

I,

0
Ij—T’o
—tx I

L

J—ro

In—j

.bj)



J.L. HAFNER, L.H. WALLING

where X is size (j — o) X (n — j). Effectively, we are replacing Bs by
B1X + B3, where B3 = Ao X' — B1 X (mod p).

This matrix multiplication has no effect on Ay or By so that the
property rank, (Ao, B1) = j remains in effect. The 7941 to nth columns
of the A-part are combined, but still preserve the property that all the
columns are divisible by p.

Now (with renewed notation) the top j rows of our matrix have the
form

(Ao, pA1,pAs|Bo, By, Bs),
with By, B3 C span, A and As, Bz of size j x (n — j).

SteEP 2°. With Cy as in STEP 1’, we have M; (CO tCl) =
0

(a1,...,a,|b1,...,b,) = (Ag,pA1|B). Simultaneously, we obtained
splittings A = Ag & A1, Qo = pAg P Ay with Ay uniquely determined
modulo pA. This splitting of A corresponds to a splitting A% = A ® A}
with A} determined uniquely modulo pA#. (Here Cy carries (v, ..., T,)
to a basis for the splitting Ag @ Ay, and *C; ! carries (yi,...,yn) to a
basis for the splitting A# = A} @ A/; thinking of (y1,...,yn) as the
basis dual to (x1,...,x,), it is clear that Cy, C; ' behave as claimed.)
We let U be the subspace of V = (Z/pZ)7! spanned by ay, ..., a,,, and
we take

Q) = ker (A* — A#*(B) mod p — V/U);

here A# — A#(B) mod p denotes the map taking y; to b;, and A#(B) mod
p — V/U denotes the canonical projection map. By Lemma 7.2,
by,...,b,, arein thespanofay,...,a,,, so Aj C Q). Also by Lemma 7.2,
Q4 /pA* has dimension n — j + 9. So we can find a change of basis

matrix C7 such that

I,
Q) = A*iC! pli—r,
I

I,

with Aj) = A#*C ! ( . So tCy! carries (y1,...,yn) to a basis

for a splitting A#* = A{ @ A} @& A}; note that Aj @ A4 is uniquely
determined modulo pA#. Also, C carries (1,...,2,) to a basis for
the corresponding splitting

A=Ay DAy D A3
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with Ay uniquely determined modulo pA. (Here A; has been split as
As @ As.) Set

Ql - ACl ijro ;
p‘[nfj

soAlecl(O

ment of Cy, and since A is uniquely determined modulo pA, Q2 is well
defined).

) and Q1 = pAg ® Ay @ pAs (so C) is a refine-

I’IL—TU

Thus, with renewed notation, M ( G o1 ) has the form
1

(alv e 7an|b1; .. abn) = (AOapAlapA?)lBOaBl)BS)a

with By, Bs C span,,Ao.

STEP 3. We next look at the rank of the A-part of our matrix mod-
ulo p2. More precisely, we consider rank,(Ag, A1), denoted by ro + r1.
Let ro = j — g — r1. We can find a permutation which permutes the
columns of the A-part so that the first g + r1 columns are linearly
independent modulo p?. Such a permutation matrix will have the form

I,
P = ET1+T2
I
o P .
The effect of multiplying (Ao, pA1, pAs|Bo, By, Bs) by p ) to
simultaneously permute the rq + 1, ..., j columns of A; and of By, but

the relationship between Ay and Bj is not affected. This puts the top
4 rows of our matrix in the form

(A07pAlapA2apA37 ‘B()vBla B27 B3)7

where rank, (Ao, A1) = ro+r1, and the old A, (resp. Bi) has been split
into parts A; and As (resp. B; and Bs). The new matrices A, B; are
of size j x r1, and Ay, By are of size j X ro.
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We now solve the congruence —As = ApXo + 41X (mod p), then

we mlﬂtlply (A07PA17PA2717A3|BO’31732733) by ( ¢ tcfl ) where
I’ro pXO
B I, Xy
C= I,

In_;

(So Xy is of size rg x rq, X; of size r; X ro.) Thus pAy gets replaced
by something completely divisible by p?. This will combine columns of
our new By with the Bj, but we still have that rank, (Ao, B1, B2) = j,
and (with renewed notation) our matrix is now of the form

(A07pA1ap2A27pA37 |B07 B17B2a B3)7

where rank, Ay = rg, rank,(Ag, A1) = rank,(Ag,B1) = ro + r1, and
Bo, B3 C span, Ao.

STEP 3’. Recall that Ql = pAo ) Ag EBpAg where A = AO P Ag @Ag,
say (renewing our notation) the (z1,...,x,) is a basis corresponding to
this splitting of A. Also, we have

C
Mj ( ! tcl—l ) = (alu"'aan|b17-~'7bn) = (A07pA17pA3‘BO7B1aBS)'

Let pQy = ker (Ql — %Ql(A) mod p) where Q0 — %Ql(A) mod p de-
notes the map taking z; to a;. (So %Ql(A) mod p is spanned by the
images in V of the columns of Ay, A; and pAs.) With our earlier nota-
tion, Ag(A) mod p has dimension rg, and % (pAo @ As) (A) mod p has
dimension rg + r1. Thus

Q2 = p?Ao @ pA1 ® Ay ® pAs

where As is determined uniquely modulo p€2;, and rankzA; = ro =
j —ro —ry. Take a (change of basis) matrix Cy € GL,(Z) such that

I,
Q :Aca(p ;o )

I,
ACQ Infjfro

pln—j

0
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P = AC pln

(So Cs5 refines our choice of C1.)

Thus, M; ( s to-1 > has the form
2

(A07pA17p2A27pA37 ‘B07 Bla B27 B3)

where rank, Ay = rg, rank,(Ag, A1) = rank,(Ag,B1) = ro + r1, and
Bo,Bg - spanpAO.

Remark 2. 1. Knowing 5 and A, we can reconstruct £y and €,
for Qo = Q2N A, and Q1 = Ay 4+ p(A + Q2). Note that Ay + p(A + Q)
is an . dimensional subspace of (2 N A)/p(Q2 + A), and that distinct
pairs (Qs9, ;) correspond to distinct pairs (22, Aq).

While Cj is not uniquely determined by M, the lattice €25 is.
STEP 4. With C5 as above, we have

C
M; ( ? o ) = (Ao,pA1,p*As,pAs, | By, By, B, Bs).

We solve AgYs = — B3 (mod p), with Y5 unique modulo p since Ag has
maximal p-rank.

Next, we solve AgYy = —By (mod p); so Yy is uniquely determined
modulo p. Also, since M ( o o ) e I, we know By'Ay = Y[t Ao)

(mod p) is symmetric modulo p, and hence we can choose Y symmetric
over Z.

Similarly,
Yy 0Ys
Cy I, O
M ( ¢ 02,1 ) ty, e,
0| I,
so we can solve (Ap, 41)Y = —(%(BO + AoYy) + A3'Y3, By) (mod p)
uniquely modulo p with a symmetric ry 4+ r; dimensional matrix Y.
1
Decompose Y = ( 3;9 EY;Q ) with Yy’ symmetric of dimension r¢ and
2 ¥

set Yy = Yy + pYy’. Note that since the columns of Ay, B are linearly
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independent over Z/pZ, rank,, of the columns of By — AgY> must equal
rank, of the columns of By, which is 71. Then since 4;Y; = By — ApY>
(mod p), rank, of the columns of A;Y7 must be r1, and so the r1 X rq
matrix Y7 is invertible over Z/pZ (i.e. p JdetY7). Notice that in this
construction, the column structure of M; uniquely determines Y7, Ys, Y3
modulo p and Yy modulo p2.

In this way we construct a matrix X of whose inverse has the form

I, Yo pYo O Y3
%Irl Yo, Y 0
1%17"2 0 0 I,
X1 = Iy |"Ys
I,
plr,
p*1,,
In—j
so that
Cs ) —1
M; 11X
J ( t02 1

has the form

(A07 A17 AvaA?n |p2307p2317p2327pB3)'

However, X ¢ I'. Write

D, R
X:(D _B/>: I, | —Yy
0 D! Dj—1

In—;

Since (Dj, —Y") is a coprime symmetric pair, there exist matrices U,V

. V!
such that (l()j 5/ > € Sp;(Z) and hence
D; —tY’/ -Yy
) I | —'Y3
X' = el (2)
U vV -UY]

N
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C

M ( 2

Also, the top j rows of the product have the form

g ) X'lel.

(AOapAlap2A27pA37 |B0a BlaBQa B3)7

so by Lemma 7.1, this product is in T".

Furthermore, it is easy to see that

X' = X"X, where X" €T". (3)

Thus for each M € I', we have used the column structure of Mj; to
produce a coset representative in a particular form. Since left multiplication
by an element of IV N T does not change the column structure of M, the
algorithm produces a complete (nonredundant) set of coset representatives.
This argument proves the following.

PROPOSITION 2.1. Fach coset of (I" NT)\T is identified with

1.a lattice Q (Qq in the above notation) such that pA C Q C %A and
ro + 12 < j where ro = multyy.0y(p) and ro = multa.oy(1/p);
2.a subspace A1 +p(Q+A) of (QNA)/p(Q+A), rankA; =r; = j—ro—ro;

Yo Y2 0 Y3
¢

3.a matriz B’ = pS/Q }(/)1 ?. where Yy is unique modulo p?, sym-
th

metric, ro X To; Y1 1S unique and invertible modulo p, symmetric, r1 X r1;
Ys is unique modulo p, ro X r1; and Y3 is unique modulo p, ro X n — j.

By (3), the action of a representative for this coset is given by the product

D B c!
(0o ) (7 e
in Step 4, determined by 2, and C' = C(, A1) is a change of basis matrix
Cs as in Step 3.

Notice also that given any triple (Q,A;, B’) meeting these conditions,

/ -1
(D, B’) is a coprime symmetric pair; hence (5 ‘B; ) (C tC) el

where D = D(Q) is the diagonal matrix given

for some U, V.
The following is now immediate.
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COROLLARY 2.1. For F a Siegel modular form of degree n, we have

FITi(p*) = ) FKW 5j) (D zf:l) (C_l tC)

(©2,A1,B")

where (Q, A1, B") varies over all triples meeting the three conditions of
Proposition 2.1 and D = D(Q), C = C(Q, Ay).

3. LATTICE INTERPRETATION OF T(P)
Recall that for T'(p), we seek the coset representatives for (I N I)\T,

where
1
r_ ply, ;In
v () ()

A similar, but simpler, algorithm can be used in this case. Namely, we
use Step 1 to put the top n rows into the form (Ag, pA;|B), where Ay has
maximal rank modulo p. Next we use a relaxation of Step 4 to put the top
n rows into the form (Ag, A1|pB). The rest of the argument is essentially
the same.

In this way we prove the following (cf. Maass [4]).

PROPOSITION 3.1. For F' a Siegel modular form of degree n, we have
o1 D B c!
_ n(k—n—1)/2
i () (7 22 ( o)
(Q,B")
where (2, B') varies over all pairs meeting the following conditions:
1.Q is a lattice such that pA C Q C A; set r = multyx.0y(p).

) . Y . .
2.B' is a matriz of the form ( ) where Y is symmetric, r X r and

I
determined modulo p.

Here C' = C () is a change of basis matriz so that Q@ = AC (p]r I )

andD:D(Q):(IT ol >

4. THE ACTION OF THE HECKE OPERATORS
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Let F' be a Siegel modular form of weight k£ and degree n, and write

F(r) = e(T)e{Tr}

T

where T varies over all symmetric, even integral, n X n matrices with T' > 0.
With 0 = d;, Corollary 2.1 gives us

F|T;(p = ) det( " o(T)e{T[6" ' DC~Yr)e{Ts  B'Ds "1},

T
(Q.A1.B")

where D = D(Q), C = C(2,A;). Write B’ as in Condition 3. of Proposi-
tion 2.1; then

Yo/p* Ya/p 0 Y3/p
t

Ayprs—1 | Ye/p Yi/p O

Y B'D)S ' = 0 0" 7

"Ys/p
For any Q and A4, let P = P(£2) be the permutation matrix such that

Yo/p? Ya/p Y3/p 0

7 - - Ya/p Yi/p
B=tP(5~'B'Ds )P = 2/P 11 . 4
( ) 'Ys/p )
0 I
o 5 1ro o
With D = D(Q) =P (§-'D) P = I ,and C = C(Q, Ay) =
pl,,
CP, we have
Q=ACD?

(although the basis of 2 is ordered differently) and

(0.1,
Ay =AC I,
0-1

Thus by interchanging the sums on T and € and replacing T by T['P(Q)],
we get c¢(T[PP(Q)]) = ¢(T), and

FIT;(0%)(7) = Y o m)e(T)e{T [DC| 7} Y e{TBY,  (5)
B

(©2,A1)
T
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where B varies over the matrices of the form in (4), with rank,Y) =1 =
j—ro—r2. Note that det (§*1D) = p"7"% and recall that ro = mult{a.q;(p)
and ro = mults.03(1/p).

The invertibility condition on ¥7 modulo p means that the exponential
sum on B is an incomplete character sum. To complete this sum, we will
replace T; by a new operator which is a linear combination of the T} for
0 <t < j, where Tj is the identity operator. More specifically, we make
the following definition.

DEFINITION 4.1.  With the notation above, define the operator Tj by

Ti(p?) =0 3 By(n—t,5 — OT(p?)

0<t<j

where
¢
ﬂp(mv E) = H

is the number of /-dimensional subspaces of an m-dimensional space over
Z/pZ.

We need a bit more notation. For pA C Q C %A, let a; (A, Q) be the
number of totally isotropic subspaces of (2N A)/p(©2 + A) with dimension
d—n+ j where d = dim(Q N A)/p(2 + A), and the quadratic form on this
quotient is %Q modulo p. (So a;(x) =0if d—n+j < 0.) In Proposition 4.1
and the remarks following we give explicit formulas for these ;. Also, set

E;(A,Q) = k(m(1/p) —m(p) + j) + m(p) (m(p) + m(1) + 1)
+ %mj(l) (m;j(1)+1) —jn+1).
where m(a) = multy.oy(a) and m;(a) = m(a) — n + j.
We can now prove our main theorem.

THEOREM 4.1. With F' as above,

FITpHm) =Y | 3 pPDa(A,Q)e(Q) | e*{Ar}.

clsA \pACQC %A

Here clsA wvaries over all classes of (oriented) integral lattices. (Note that
c(Q) = 0 unless Q is even integral. Also, when k is odd, by c(Q2) we really
mean c(Q, o) where o is the orientation on Q induced by that on A. Since
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an orientation o on A induces a compatible orientation, which we also call
o, on any lattice Q in the space QA, we can suppress the reference to the
orientation without causing confusion.)

Proof. First suppose k is even. With Definition 4.1 and equation (5),
we have

F|T;(p*)(7)
= Y Bpln—tj—t) Y pHT(T)e{T [56—1} 73> e{TB},
0<t<j (9,TA1> B

where the sums on ©, Ay, B are as in equation (5) but with j replaced by
t and A; replaced by Aj. Since there are no A; meeting these conditions
when rg 4+ r9 > t, we can interchange the sums on {2 and t to get

FIT;(p*)(7) (6)
= 3 3 BT [DET ThBy(n — 5 — 1) D e{TEB),
QT osAtlsJ' B

where 2 is limited by the condition rg + ro < j, and A; satisfies the
condition rankz Ay =t — 19 — ro, Cy = C(2, Aq).
Now take ¢ < r1; by Lemma 7.3, as we vary G over incongruent modulo p

matrices in GL,, (Z) and Y; over incongruent modulo p symmetric matrices
in GL4(Z), the product
‘a < n 0 > G=Y]

varies over all modulo p symmetric 71 X 71 matrices with rank,Yy = ¢. Let

~ ITO
G = G
I

Replacing T by T [té], we have C(T [té]) = ¢(T), GD = DG, and

CyG~! simply represents another choice for the matrix C, = C(Q,Aq).
Each matrix C(92, A1) can be viewed as a choice of C (2, A;) for any lattice
A; containing Ay with rankzAy = j — rg — 1o, via

_ I
Al—A1G< 0).
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As remarked in Lemma 7.3, the number of such A; (equivalently, G or é)
is B,(t,r). Hence the effect of replacing the operator T}(p?) by Tj(p?) is to
remove the condition that Y; have full rank modulo p.

Thus
F|T;(p = Y pHTe(T)e{T[DC T} x
QAT
Yo/p* Ya/p Ys/p O
Yao/p Y1/p
Z 2 e T 'Y, /p . (7
Yy (mod p2) 0 I
Yl,Yz,Y3 (mod p)

Evaluating the character sum gives us

F|T;(p = Y pPitO¢ T)e{T[DC~ ']},
QAl

where  and A; vary as above, and T' € Uy = Ug(rg,r2), i.e. T =Ty +T)
where Ty is upper triangular and satisfies

0 px px x

*
Ty = p . (mod p?).

Fix 19,7 (i.e., fix D). For G, G’ € GL,(Z), AGD™' = AG'D~ if and
only if G’ € GU where

7,rosTo 7,ro,m—Tro—"r2 7,r05T2
U — GLn (Z) N pZ’n—T’o—’r‘gﬂ’o Zn—ro—rg,n—ro—rg Zn—T‘U—T’Q,’r‘Q
pQZTmTo pZTHN o2 Tr2T2

Thus the sublattices 2 = pAg ® A1 @ %Ag with {A : Q} = (ro,n —rg —
r9,70) are in one-to-one correspondence with coset representatives {G} for
GL,(Z)/U. Similarly, for fixed such , the dimension r; = j — rg — ro
subspaces A; of (2N A)/p(Q + A) are in one-to-one correspondence with
coset representatives {H} for W /W’  where

Iy,
W =GL,(Z)Nn * ,



! Please write \titlerunninghead{<(Shortened) Article Title>} in file! 17

and

I, —Jj
Zrl,rl Zﬁ,n J
=GL, (Z) n Gl I ’ Gy € <pZ7L—j,7"1 gn—in—j )

2

(So for these choices for rg,rs, the matrices C are of the form GH.) Thus
for fixed Q and G such that @ = AGD~! we have

> eM)e{T[DCHQ A} = Y o(T)e{T[DH G ']7}.

Ay H
TeUg TeUg
Note that DH~* = H~D and recall that ¢(T) = ¢(T[H]); thus replacing
T by T[H] we have

> e(T)e{T[DCH(, Ay) T}_Z > eM)e{T[DG T}

TIE\%JO T[H q]er
Identify T with ; so by our choice of G, T[ﬁG‘l] is identified with A.
Then, presuming 7" and T [f)] are both even integral, the number of H with
TH™' € Ug is a;(A, Q).
Thus for k even,

FITp)(r) = Y. c(Q)ay(A,Q)e* {Ar}

clsA
pAQQg%A

(recall that ¢(2) = 0 unless (2 is even integral).

When £ is odd, the argument is the same. Notice that we can always
choose our lattices C' = C'(A, Q) to have determinant 1. Then the orienta-
tion o on A induces a compatible orientation, which we again call o, on Q
(recall that @ = ACD). Were we to take C' with det C' = —1 then C would
induce on € the orientation &, but we would also pick up a factor of —1 =
det C. Since ¢(2,0) = —¢(Q,7), the result is independent of our choice of

detC. |
Similarly, Proposition 3.1 provides an alternate proof of Maass’ result [4].
THEOREM 4.2. With F' as above,

F|T(p) Z Z EA92) Ql/p)e*{AT},

cls(A) pACQCA

where where E(A, Q) = m(1)k + m(p)(m(p) + 1)/2 —n(n+1)/2, m(a) =
mult(a.0)(a), and QUP denotes that lattice Q scaled by % (so when @ is
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the quadratic form associated to €, %Q 18 the quadratic form associated to
Ql/r).

The next proposition gives us a tool to explicitly evaluate the terms
a; (A, Q) in the statement of Theorem 4.1.

PROPOSITION 4.1. Let V' be a d-dimensional space over Z/pZ. Set r =
dim R where R = radV. Then the number of dimension [ totally isotropic
subspaces of V is

r l—t—1

Sty [ o o2,

l—t—i _ 1
t=0 =0 p

where ¢p(d, 1) is the number of isotropic vectors in a regular space W of
dimension d and p = 1 if W is hyperbolic and equals —1 otherwise. In
particular,

o if2 fd
bp(d, ) = { (Y% — W) (p¥?>~t + ) if 2|d,

Proof. The proof is simple combinatorics. For a fixed ¢, 0 < ¢ < r, the
Bp term counts the number of ¢-dimensional subspaces R; of R. The second
product counts the number of [—¢ dimensional totally isotropic subspaces of
V/R; which are independent of R/R;. (Andrianov [1, Prop A.2.14] does a
similar computation in the case V is regular. See also Artin [2, ppl143—
146].) 1

Remark 4. 1. To evaluate a; (A, Q), we first observe that

A
Q

Ao ® AL DA,
1
PAo B A1 & I_7A2

and
ANQ/p(A+Q) ~ Ay /pA.

So, in the proposition, take V.= A1 /pA; and £ = m(1) —n + j.

5. A SIMPLE RELATION BETWEEN OPERATORS
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PROPOSITION 5.1.  With Tj(pz) as defined in Definition 4.1 (so T,,(p?)
is the so-called average Hecke operator), we have

T.(p?) = T(p)? — Z pFr=DFIGHD2=n(nd D2 (2),

0<j<n

Proof. With
F(r)= ) c(A)e*{Ar},

cls(A)

and T any Hecke operator, we write

FIT(r)= Y c|T(A)e*{Ar}.

cls(A)

By Theorem 4.2,

ATEPW = Y ST PR | ()

pACA'/CLA | p(a+AHCQCANA!
- Ql/P integral

Fix A" and set mo = multp.x3(1/p), m1 = multp.aq(1), mo = multys.ay (p).
Q'/P being integral is equivalent to ©/p(A + A’) being a totally isotropic
subspace of (AN A")/p(A+ A’). We have dim(A N A")/p(A + A) = my;
then for j < n, the number of 2 in the second summation above with
dimQ/p(A+ A') =my — (n —j) is o;(A, A’). For such €,

E(AQ) = (mo+mi—n+)k+(ma+n—j)(ma+n—j+1)/2
E(Q,pA') = (mo+n—75)k+ (ma+mi—n+j)(ma+mi —n+j+1)/2.

By simple algebra, the sum of these two expressions is

k(n—3)+j(G+1)/2—n(n+1)/2+ E;(A,A).

This and Theorem 4.1 complete this proof. |

6. SIEGEL MODULAR FORMS WITH LEVEL

Say that F' is a Siegel moudlar form with level N and character y modulo
N; that is, F' satisfies the transformation law

FlM = X(det D]\/[)F7
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AM BM

for any M = (CM D

) € I'y(NV), where

FO(N):{MeSpn(Z): M= (; I) (modN)}

(and lim,_, ;o0 F(T) < 00). Then in the definition of the Hecke operators
we take I' =To(N), IV = 006! and for the operator T associated to § we
define
F|T = (det§)**> "X(det D,)F|3 ™'y
Bt

where v runs over a set of representatives for (IV NT)\T. Since F|§~ 'y =
x(det D )F|§~" for v/ € T', F|T is well-defined. (As before, we include an
additional normalizing factor of p~"("*+1/2 in the definition of T'(p).)

For 1 < j < n, define

Ti(p*) =% D 3 X )B(n—t, 5 — T(p?).
0<i<j
(So when p|N, Tj(p?) = p/ =1y (p?).)

THEOREM 6.1. Let F' be a Siegel modular form of level N, character x
with coefficients c(A).

(1)The Ath coefficient of F|T(p) is

D ([ pADpPEDe(AP),
PACQCA

(2)For each 1 < j < n, the Ath coefficient of F|1~“j(p2) is

o x@ T pADpP MV (A, Q)e(Q).
pACQC LA

Proof. We first consider F' |Tj(p2) To find the coset representatives for
T;(p?), we essentially proceed as for level 1 but we point out where there
are differences in the construction of these representatives.

Proceed as before through Step 4, constructing the matrices Co and X

such that M; ( s to1 ) X! has the same form as in (1).
2
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First suppose p|N. Then X takes the form (because rg = j) given by

I; Yo Y3
I, Ya 0
X = € To(NV)
I
In_;

and

= 5 (7 ) ()

Q,YO,YS
where Q varies over lattices such that pA € Q C A with [A : Q] = p7,
Q=AC (ij I >, Y3 varies over all j X n — j matrices modulo p, and Yj

varies over all j x j symmetric matrices modulo p2. Thus

FITy(p*) = P FH 0 N " e(Q)efAr},
AQ

where A runs over all isometry classes of integral rank n lattices with pos-
itive semi-definite quadratic form, and Q runs over all lattices such that
pA C Q C A, [A: Q] = p/. Hence, the Ath coefficient of F|Tj(p?) is as
claimed.

Now suppose p J N. Then constructing X’ as in (2) is a bit more delicate,
because we need X’ € T'g(N), i.e., U =0 (mod N). We know (D;, —Y")
is a coprime symmetric pair, so (Dj, —NY”) is as well. Thus there are

L /
matrices U’, V such that < 53 J‘\;Y ) € Sp;(Z), and so with U = NU’,
D; Y vl
I |-tV
X' = A € To(N).
U ‘ vV UYy
0 In-;
A B
Write X' = <C’ Y >; then since X' is sympletic, A’"*D’ = I (mod N).

Thus X(det D’) = x(det A’) = x(p"72"2). We know ro + 71 + 12 = j, S0
X(det D) = x(p’~"*"2). So

j—ro+12 — C_l
PG = 3 el (40 g )

C2, X'
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where Cy, X’ vary as before.

7 v —1 s —1 A" B"
Let X" = X’X~". Then writing é- X éj as

C// D//
C" =0 (mod N), A” =TI and so D” = I (mod N). Hence, F\éj_lX’ =
F|§;'X"X = F|5; ' X. Therefore,

FITi(p*) = Y. x(pj"“‘)*”)F‘((sj_l 5j> (D DB/1> (C_l tc),

Q,A1,B’

), we see that

where Q, A1, B’ vary as in Corollary 2.1, D = D(Q2) and C = C(Q, Aq).

Next we proceed as before to evaluate the action of Tj(p?) on the Fourier
coefficients of F'. The argument is virtually identical except for the intro-
duction of the character in the above formula and in the definition of T} (p?).
Consequently,

FIT;(p?)(r) = p/ =0 37y (pFrotre)phre=ro)o(1)e{T[DC 7} x

Q,A1,T

Yo/p? Ya/p Ys/p O
ST Ya/p Yi/p
Y d p2 tYE},/p
Y1 1392 F;;O(rfoc; P) 0 I

(Here the notation is as in (7).) Hence, after evaluating the character
sum and identifying T with Q, we find the Ath coefficient of F|Tj(p?) is as
claimed.

Similarly,

(ki ir D B c-!
FIT(p) = p"* ””Zx(detD)F‘(p I)( Dl)( tO)’

Q,B’

where Q, B, D,C are as in Proposition 3.1. Here det D = p"~" when
[A: Q] =p". Consequently, the Ath coefficient of F|T'(p) is

> x([2: pApP A7),

pACQCA

as claimed. |

7. LEMMAS
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LEMMA 7.1. Let M €T and let M; denote the top j rows of M (j < n).
Suppose M; = (Ao, pA1|p*Bo,pBi1) with Ao, By integral j x j matrices,
Ay, By integral j X n — j matrices. Then M € T".

Ao pAr p*By pBi
: (A B\ | A A B} B .
Proof. Write M = <C D> =\ e, o, Do D | Since (4, B)

C! C, D, D,

0
p and A'B is symmetric; hence B} = 0 mod p. Finally, [ = A'D — B!C' =

t Ty
(* AO*D1>modp7 so D =0modp. |

. . . . Ayt B,
is a coprime pair, we must have rank, Ayg = j. Also, A'B = ( 0 0* L ) mod

LEMMA 7.2. Let M € I'. Suppose Mj = (Ao,pAl‘Bo,Bl) with Ag, Bo
integral j xr matrices, rank,Ag = 1, and Ay, By integral j X n—r matrices.
Then By C span,Ag and rank,(Ag, B1) = j.

Proof.  Since rank,Ay = r, we can find £ € GL;(Z) so that EAy =

I,
( 0 ).Then

M = MeT

I,

with MJ’ = (FAo,pFEA1,EBy, EB;). We know EBytAptE is symmet-
ric, and EBg'A¢'E = (EBy,0) mod p. Hence the bottom j — r rows of

EBy must be 0 (modulo p), so (EAg, EBy) = <IOT ;) mod p. Thus

rank, (Ao, Bo) = rank,(E Ao, EBy) = r = rank, A, i.e. By C span,Ap.
Also, M € GL2,(Z) hence rank, M = 2n. Thus rank, (Ao, pA1, By, B1) =

rank, M, = j, and so rank,(Ay, By) must be j. |

LEMMA 7.3. Let V be an r dimensional space over Z/pZ (p prime)
with an ordered basis {v1,...,v.}. Fix a nonnegative integer s < r. For
each dimension s subspace U of V', fix a matriz Gy € GL,.(Z/pZ) so that
VG(;1 < 0 I ) = U. Then for symmetric t = r — s dimensional matrices

S
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M,N € GL{(Z/pZ) and U,W dimension s subspaces of V,

(" Jor-ron (¥ o

if and only if U =W and M = N.

M N

0 0
(dimension s) U,W and (nonsingular) M, N. Thus A defines a quadratic
form @ on V relative to the basis {vy,...,v.}. We have VG;' =U' @ U,

Proof. Suppose A =Gy Gy = 'Gw Gw for some

and relative to this decomposition of V, tGI;lAGl}l = 0 represents
Q. Hence U is the radical of V relative to ). Similarly, VGI},1 =WaoWw,
and tGI}}AG‘}} = N 0) represents () relative to this decomposition.

Hence W is the radical of V relative to . This means that U = W and
so Gy = Gw; hence M = N.

The converse is trivial. |

REFERENCES

1. A. N. Andrianov, “Quadratic Forms and Hecke Operators”, Grundlehren der Math-
ematischen Wissenschaften 286, Springer-Verlag, 1987.

2. E. Artin, “Geometric Algebra,” Interscience Publishers, Inc., 1988.

3. E. Freitag, “Siegelsche Modulfunktionen”, (Grundl. Math. Wiss. No. 254) Berlin
Heidelberg New York, Springer, 1983.

4. H. Maass, Die Primzahlen in der Theorie der Siegelschen Modulformen, Math. Ann.
124 (1951), 87-122.

5. O.T. O’Meara, “Introduction to Quadratic Forms”, Springer-Verlag, New York, 1973.



