AUTOMORPHIC FORMS AND SUMS OF
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ABSTRACT. We develop some of the theory of automorphic forms in the function field
setting. As an application, we find formulas for the number of ways a polynomial
over a finite field can be written as a sum of k squares, k > 2. As a consequence, we
show every polynomial can be written as a sum of 4 squares. We also show, as in
the classical case, that these representation numbers are asymptotic to the Fourier
coefficients of the basic Eisenstein series.

Given a finite field F, with ¢ odd, we want to determine how many ways a
polynomial in F,[T] can be written as a sum of k squares. For kK > 3 (or k =2, —1
not a square in F,), the sum of k squares is an indefinite quadratic form, so there
are infinitely many ways to write any polynomial over F, as a sum of k squares.
Hence we refine our question; we seek a formula for the restricted representation
numbers 7 (a, m) where r; (o, m) denotes the number of ways a polynomial « of
degree n can be written as a sum of squares of £ polynomials whose degrees are
strictly bounded by m > 3.

In the 1940’s Carlitz and Cohen studied this problem with n = 2m — 2 or
m = 2n — 3. Using the circle method, Cohen obtained exact formulas ([C1], [C2])
but it is not clear whether these numbers are nonzero. More recently Serre showed
these numbers are nonzero for k = 3 (see [E-H]). In [M-W] elementary methods were
used to give formulas in terms of Kloosterman sums (with no restriction as to the
relation between m and n). Then Car [Car| refined the use of the circle method to
obtain asymptotic formulas, showing that virtually every diagonal quadratic form
represents any given polynomial « provided m is sufficiently large (here dega =
2m — 2 or 2m — 3).

In this paper we develop the theory of automorphic forms of integral and half-
integral weights on the “upper half-plane” § = SLy(F,((7)))/SL2(F,[[+]]) under
the action of the full modular group I' = SLy(F,[T]). (Note that this is not the
upper half-plane used by Weil; instead of SL, Weil used GL to define ), and unlike

the classical case, these two definitions of §) are not equivalent. Furthermore, the

Hoffstein and Walling partially supported by NSF and NSA
1

Typeset by AMS-TEX



2 JEFFREY HOFFSTEIN, KATHY D. MERRILL AND LYNNE H. WALLING

theta series we use does not transform uniformly on Weil’s upper half-plane.) Using
Poincare series and a power of the (normalized) theta series presented in Proposition
2.13 of [H-R], we very easily compute 7 (c, m), obtaining generalizations of Cohen’s
results. Again, it is not obvious from these formulas that these numbers are nonzero
when m < dega < 2m — 2. As an application of the spectral theory developed
herein, we show that, as in the classical case, the main term of ry(a, m) is given by
the Fourier coefficient of the Eisenstein series at s = k/4 (where we have removed
the singularity if £ = 3 or 4). From this we conclude that r(a,m) # 0 for m
sufficiently large, subject only to the necessary condition that m > (dega)/2. This
gives confirmation to the belief that Eisenstein series closely approximate theta
series, whatever the setting.

We begin by reviewing the definitions and Fourier expansions of Eisenstein series
(see Definition 2.5 and Proposition 2.11 [H-R] for the case of half-integral weight)
and by developing some spectral theory (cf. §3.7 of [T]) to obtain the Fourier
expansions of a set of Poincare series that span the space of automorphic forms.
The discrete nature of § in the function field setting makes these computations
significantly easier than in the classical setting. Indeed, we use the following two

trivial observations to great advantage:

(1) D= {(TO T(_)m) :m>0 } is a fundamental domain for I'\ §), and

(2) A function on D is supported only on its Oth Fourier coefficient.
It immediately follows that there are no nonzero cusp forms for I', and that the
functional equation satisfied by the Oth coefficient of the Eisenstein series F/; implies
the functional equation for Es. Furthermore, for each zy € D, it is easy to construct
Poincare series P,, whose support in D consists only of {zp}. Thus by observation
(2) one only needs the Oth coefficient of an automorphic form restricted to D, f|p,
to write the automorphic form f as a sum of the Poincare series, yielding formulas
for all the coefficients of f (Theorem 2). Applying this to #%(z), the kth power of
the (normalized) analogue of the classical theta function, we obtain precise formulas

for r;(a,m). In particular (Corollary 2), when « # 0 and m > degq,

gm=2+1(] eqfk/Q)gl_k/Q(a, €) if k is even,
Te(a,m) = m(k—2)+1/1 _ 1—k i i
q (1= q' ") Fx—1)/2(c,€) if kis odd

where € = +1, o is the divisor function (twisted by €), and F' is (essentially) the
Dirichlet series that appears in the Fourier coefficients of the metaplectic Eisenstein

series (see Proposition 2.11 of [H-R]). From this we find that any polynomial « can
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be written as a sum of 4 squares with degrees bounded by 1/2 the degree of «.
Finally, since it is not transparent that ry(a, m) # 0 for m < dega < 2m — 2, we
estimate the L?-function 6% — E} /4 to show that, when g # 3 of k > 5, r.(a, m) # 0
for m sufficiently large and is asymptotic to the Fourier coefficient of the Eisenstein
series, as in the classical case (Theorem 4).

We note here that together with techniques used in [W] and [H-W], we expect the
methods used herein can be extended to yield precise formulas for the representation
numbers of any quadratic form on a function field.

The authors are extremely grateful for the referee’s careful reading and helpful

suggestions.

§1. Preliminaries. Let F = [F, be a finite field of odd order ¢ = p” and let T" be
an indeterminate. Set A = F[T] and K = F(T'). Consider the valuation |- | = |- |s
defined by

oo/ 3| = qeea—desh where a, B € A;

we agree that |0| = —oco. Now let K, denote the completion of K with respect to
the valuation |-|; so Koo = F((7)). We extend the function deg to Ko in the obvious
way; so degy = ord,y where 7 = 1. Let O = {a € Koo : |a| <1} = F[[5]].
Then SLs (O ) is the maximal compact subgroup of S L2 (K ); we define an “upper
half-plane” $ by

H=85Ly(K)/SLy(Ox).

The group I' = SLs(A) acts on $) by left multiplication. We have the following

elementary lemma.

Lemma 1.

(a) (Iwasawa decomposition) The set

T 2m+1
{(0 T_m).mEZ,mGT A}

1s a complete set of representatives for $).
(b) (Fundamental domain) The set

(7 ) mes)

is a complete set of representatives for I'\ 9.
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Proof. First, to establish (a), take z = (CCL 2

(a b) ( ! 0) if dege < degd,
d -5 1 -

( b> < CEZ 1) if degd < degc
c d -1 0

where z = 2/ means z and 2’ represent the same coset of $. Thus z is equivalent

w oz
0 w!

with w, 2’ € Ko, w # 0. Now, w = T™u for some m € Z and u € O . So

_(w x u b 0 _ (T !
*=lo w! 0 w)-\o 1™

for some z” € Ko. Writing 2" as T~™(z + T?™v) where x € T*™ A v € O,

we see that
_ ™  Z" I —v) _ ™ T~ ™
*=Vto 7)\o 1)=\o 1m)

™ :L‘T_m) _ (Tm/ /T

) € SLy(Ky). Then

w
Il
* O

to a matrix of the form

o 1™ o T
T2mH1A g/ € T2 +1A. Then

—1 ’ ’ ’ ’
™ oT~™ ™ TN (T (g2
I I e T e L PP

Thus T =™, T" ™ € (O, which implies m = m/. So T-™~"(z' —z) =

T2 (2 — 1) € Os. We know z,2" € T?*™ 1A, so

Now suppose z = ( ) where m,m' € Z, x €

T2 (2 — 1) € O NTA = {0} .
Hence x = 2/, and the representation is unique.

From (a), the proof of (b) follows easily from the observations that (0 _01)

1
and {(g uC_L1> ca€MNue FX} generate I', and for z = (Tg x;:m ) €9,
x € T172mA,
(Tm 0 ) .
if x =0,
o T—™

L
Z_ 1 0 - (Tn—m _%Tm—n

> if x #0, degx = —n. O
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62. Fourier Series. Suppose f : $ — C is invariant under the action of I',, on

9 where I'oy = {(3 u(zl) :aEA,UEIW}. Then for a fixed y = T™, we can

-1
consider f,, defined by f,(x) = f ((g xyy_l ) ) , as a function on the finite abelian

(additive) subgroup T**2mA /A of K., /A. Thus elementary Fourier analysis shows
N
that f can be written as a Fourier series as follows: For z = Z :L‘jTj € Ky, let
j=—00

e{x} = exp(2miTr(x1)/p) where Tr denotes the trace from F to Z/pZ. Then we

have
F((350)) = 2 entraetsn,

BET2A

Whﬂﬁ(%ﬁﬂjmﬂ:ZXom(ﬂT%"ﬁﬂ+mnEL£T1WmAﬂyf((jgn fgf21)>e{—5$)

Remarks. Note that since c¢(f,y) = 0 whenever 8y* ¢ Ou, we have that the
Fourier series for f is finite for any fixed y, and in particular, f(z) = co(y) for

1 u
0 1

(y xy‘l) _ (y (:v+uy2)y‘1)‘
0 y! 0 y~ !

Thus for f to be well-defined, we must have cf g(y) = 0 whenever Sy € Oy. In

degy > 0. Note also that for any u € O, ( ) € SLy(Oy) so

~1
particular, this means that f(z) = ¢o(f,y) for z = (‘g xyy_l ) with degy > 0.

§3. Automorphic Forms. The analogue of the classical (unnormalized) theta
series is

02) = Y Xou (5% {2}

BeTA

where x,,_ is the characteristic function of O. In [M-W] the authors studied
restricted representation numbers by studying the kth power of this function (for

k even and ¢ prime), for

0% (2) = Z re(a, m)e{T?a?x}

a€A
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(where y = Imz = T7"). In Proposition 2.13 of [H-R], the authors realized a

normalization 6(z) of the above theta series as a residue of an Eisenstein series:

0(z) = (y)ly|"/*0(2)

and (as in Definition 2.2 of [H-R])
~(T™) = qm/Z/e{Tma:2}dx//e{ac2}dx

where the integrals are over “sufficiently large” (fractional) ideals of O.,. (Here dx
denotes additive Haar measure normalized so the measure of O, is 1, and hence
the measure of P2 is ¢~ since 1 = erow/mgﬂo f%g}; dz.) We will evaluate ~(y)
in Lemma 2 below.

Let f: 9 — C. We say f is an automorphic form of weight k if f transforms
under I' = SLy(A) as does the kth power of 6. That is, f is an automorphic form
of weight k if for all § € SLy(A) we have

f(02) = =—=f(2).

We say an automorphic form f is a cusp form if f(z) = > ser2a cg(f,y) e{Bx}, ie.
B0

co(f,y) =0 for all y.
We thank both Wolfgang Schmidt and Eric Rains for showing us two different
ways of evaluating a Gauss sum over a finite field with p” elements. (Here we simply

quote the result; we are happy to provide these proofs to any interested reader.)
Lemma 2. Forall§ €T, 6(62)/0(z) = £1. Also, with g = p",
1 if 2|m,

AT =9 (1) if2 fm, p=1( mod 4),
(=1)"/=1" if2 fm, p=3 ( mod 4).

Proof. By Theorem 2.3 of [M-W] (which extends naturally to include the current
setting),

N N g if x =0,
MO = V5= ot ysare) it 0 g —
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where (z,,/F) indicates whether x,, is a square in F. So

0(0z)  /zy(Imdz)|Iméz|'/?
0(z)  ~(Imz)[Imz[/2

We first evaluate y(Imz).

For m > 0 we have

/Tmooo e{T "z }dx = Z /@OO e{T~™( + z0)?}dao

2ET™ O /P
= Z e{T_ml’Q}/ dzg

2ETM O /P Oco

m 2

=Y eqT ™ (Z uT>

u; €F =1
= Z (S {i uium_H_iT}

u; €F =1

{ ?:/12 > u,cF (ZUE]F e{QUiUT}) if 2|m,
25 er (Coenef2unT)) (S, cpe{u?T}) if 2 fim.

(Here the sum on u corresponds to i = (m + 1)/2.) Since v — e{2uvT} is a

nontrivial character when u; # 0, we get

m/2 if 2
/ e{T—me}dx _ { q o , 1 |m,
TmOu gmY2y peflu®T} if2 fm.

A similar argument shows

/ e{z?}dx = Z e{z?} dzog =q¢™¢ ™ = 1.
TmO s

2ETM O /P P

So for m > 0,
1 if 2|m,
g VY epe{uT} if 2 fm.

(Thus when 2 fm, v(T~™) is a Gauss sum.) Evaluating the Gauss sum yields the

V(T™™) = {

result on ~.
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For m > 0 we also have

/ e{T™z*}dx = Z e{T™z*} dzg

Ooo 2€0 /P P

=q " Z e{T_m£U2},

and this last sum we just evaluated. Hence for all m € Z we have

1 if 2|m,
1(T™) = {

qg /2 Suere{u?T}h if 2 fm.
Again, evaluating the Gauss sum yields the result on .

. 0 -1 . . ™ =™ . om—1
Nowtake5—(1 O>andwr1tez—( 0 T_m>W1thx€T A, or

x = T?™ (which, under the right action of SLy(O4), is equivalent to x = 0); let
n = degz. Then T?™/z € SLy(O4) s0

ee (33 (b )= (0 )

AT ") ()"
AT Ty

Hence

0(52)/0(z) =

Since ((1) _01> and ((1) 1) generate I', it follows that 6(dz)/6(z) = £1 for all
bel. O

Remark. Given an automorphic form f of weight k£, we can normalize f to a

weight 0 or weight 1/2 automorphic form g by setting

(2) = { [Tmz|*/2 f(2) if k is even,
= y(Imz)*|Imz|*/2 f(z) if k is odd.

For this reason, we now only consider these two weights.

Theorem 1. There are no nonzero cusp forms.

" 0
o T—™

have f(z) = ¢o(f,T"™) = 0. Hence f is 0 on a fundamental domain for I'\ $ and so

f is identically 0. [J

Proof. Say f is a cusp form. We know that for any z = ( ), m > 0, we
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§4. Weight 0 Eisenstein Series. For s € C with s > 1, we define the weight
0 Eisenstein series to be

E(z)= ) |Imdz*

0€l\T

0 y !
convergent for s > 1, we consider s € R, s > 1. Since each element of §) is in the
" 0
o T—™

which is what we do in the following computation.

-1
where s € C with s > 1, z € §, and Im (y 4 ) = y. To show Ej is absolutely

I'-orbit of some z = ( ) with m > 0, it suffices to consider only such z,

. . . b
First, notice that the cosets of ', \I" are represented by matrices (CCL d) where

(c,d) varies over relatively prime pairs of elements of A with ¢ monic or (¢,d) =

(0,1). Also, ¢ = 0 only when we consider the coset of I, and d = 0 only when we

consider the coset of ((1) _01

have (¢T%™)/d € Oy so (recalling that $ = SLy (Ko )/SL2(0Ox)),
a b (1 b/d 1/d 0
c d)*"\o 1 c d)~
_ (1 b/d T /d 0 1 0
—\0 1 crm™ o d/Tm —(eT?™)/d 1
_(T™/d *
a 0 a/rm )
Similarly, when ¢,d # 0, m > 0 and degd < 2m + degc,
a b L= (¢ b . d/(cT?™) 1
c d “\c d -1 0
[ 1/(cT™) o«
N 0 crm )
The above equivalence also holds when d = 0, for then ¢ =1 and
0 —1 _ (0 -1 0 1
1 0)°=\1 0)°\-1 0
(T 0
B o 1m

(UG )

). When ¢,d # 0, m > 0 and degd > 2m + degc, we
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Hence for z, s as above,

Eo(z) =™ + ) Yoo Tdr Y Yo /e,

c monic (c,d)=1 c monic (c,d)=1
degd>2m-+dege degd<2m-+degce

Now,

Z |n|—2s _ (1 . q1—23)—1

neA
m monic

SO

Z Z ‘Tm/d’2s _ q2ms(1 - q1—23) Z |d‘_28

c monic (e,d)=1 ¢ monic
degd>2m+dege degd>2m-+dege

_ q2ms(1 _ q1—25) Z qZ(q . 1)q(T—|—£+2m)(1—25)

£>0
r>0

q2m—2ms (q o 1)
=7

Also,

Z Z |1/(ch)|25 _ q—2m8(1 . q1—23) Z qé(l—Qs)qé—i—Qm

¢ monic ¢ monic £>0
degd<2m-+tdegce -

q2m72ms (1 o q172s)
=)

Notice that this shows E; is absolutely convergent for s € C, ®s > 1, and that for

such s and m > 0,

™ 0 = ome L A0 =07%) o o

One easily sees that E is invariant under the action of T'.

Lemma 3. Es(2) =) 5, b5y, s) e{T?Bx} where

g1 =q7%) oo

b — 2s EA: s

0(y75) ’y’ + (1 _q2—25) |y‘

and for 3 # 0 with T?B'y = By? € Ouo, n = degB’, m = —degy > n + 2,

ba (y,8) = ¢' 7™ (1 — ¢~ 2%) (qmZ 7Y — =M=y 6y L (8).
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Here

n

os(B)= Y lal =) d“n(p)

alp’ £=0

where 3 = BT 2 and 7(3') = #{monic |3 : dega = }.

Proof. The preceding computation proves the lemma for bo(7", s) with m > 0. So
now take m > 0; we compute bg(T~™,s) for § = T?3', ' € A and deg < 2m.
(Recall that for deg8 > 2m we have bg(T~™,s) = 0 since then xo_ (87 2™) = 0.)

Set z = <T6 xgm ) with © € PBoo /P2, we take x = T~2™ as the represen-

1 0

: 2m
tative of P27, For ¢ # 0 and degd > dege, (_C/(TQm(ca? +d)) 1

(¢ 4):

When degd < dege, z—d/c runs over PBoo /P2 as x does, and ( ! 0) €

~1/(T?mz) 1
(&)= ("5 )

Thus, using Fourier transform,

) € SLy(0x)

SO

(uang+@>]m@2+®>_

SLy(Ox), so

e =a S w (T et
S o>

2s
T XTI
Imé( 0 Tm>
S€T o \I' z€P oo /P

e{—px}
_ q1—2m—2ms Z e{—ﬁx}
TEPoo /P2

_|_q1—2m Z Z Z |de]_2se{—ﬁa:}

c monic (¢, d)=1 g 2m
degd>degc emm/mm

A DY Y. [Tex|*e{—pr}.

¢ monic (¢, d)=1 g¢ 2m
degd<degc (»Boo/gpoo
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First say 3 = 0. Then

Z Z ’de‘—2s _ q—2ms(1 _ q1—2s) Z |d’—2s

¢ monic (¢, d)=1 ¢ monic
degd>dege degd>degc

_ q—2ms<1 _ q1—25) Z qﬁ(q _ 1)q(Z+T)(1—25)

£>0
r>0

_ q—ZmS(q _ 1)
T=¢7)

Also, by separating the sums on x and ¢ we find

q1—2m Z Z Z ‘Tmcx|—23

¢ monic (c,d)=1 g 2m
degd<degc G‘Bm/mm

— q1—2m(1 . q1—2s)q—2ms Zq£(2—2s) q4ms + Z (q _ 1)q2m—r—1q27"s
>0 1<r<2m

q2ms—2m—|—1(1 _ q1—23) T (q _ 1)q—2ms(q(2m—1)(25—1) _ 1)
1) '

Consequently,

- - a1 =47%) e
ba(T™™ — 2ms m(2s )
o(T™™,8) =q + =0k

Now say 3 = 'T? # 0 with n = deg3 < 2m—2. Then, writing 3’ = Z?:o BT,

n 2m—1
Z e{—ﬁ:z:} = Z (& —ZﬁjTj+2 Z OéiTii
2EP oo /P2M o €F, j=0 i=1
= Z e{—Z@;O@'—lT}
o, €F, i=0
=1 D e{-pu1}
i=0 uek,
=0

(since for some i, 3; # 0). Also, since Z e{fd/c} = 0 unless ¢ divides [,

deA
degd<degc

Yoo D lde{fd/cr =1 -¢"7F) ) a7 (s

¢ monic (e, d)=1 £>0

degd<degc
= (1—¢'"7*)o1-2:(3).
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Next,
2m—1
o lale{=prt=q¢""+ > ¢ > BT +x0)}
€P o /P2 r=1 ueﬂ";
zoe Pt/ B
2m—1
:q4ms+ Z q2rsq2m—l—r Z e{—ﬁuT_r}
r=n+1 u€elFy

since zg — e{—Bxo} is the trivial character on P71 /P27 if and only if r > n + 1.
When r = n+ 1, the sum on u yields —1, and when r > n + 2 the sum on u yields

q — 1. Hence by substituting and simplifying, we find that

bﬁ(T_m, 8) — ql—m(l o q—ZS)(qm(Qs—l) - q(”H_m)(QS_l))01—25(5/)5

Corollary 1. E can be analytically continued to C with a pole at s = 1. Then we

have the functional equation
9(s)Es = g(1 — s)Er—s

where g(s) = ¢~ 2°T'(25)¢(2s), I'(25) = (1 — ¢~ 2%)7, and (2s) = (1 — ¢*25)~ L.

Proof. One sees from the preceding lemma that F, can be analytically continued

with a simple pole at s = 1. Then one sees that for any s # 1 and any z =

m 0
>
( 0 T_m),m_O,Wehave

ES(Z) = bo(Tm,S) = %bo(TTn, 1— S) = %Eﬁ_s(z).

Since Fs and %El_s are equal on a fundamental domain, they are equal on all
of . O

§5. Weight 1/2 Eisenstein Series. For Jts > 1, set

Es(2) = Z 7(1m52)06((;z)) [Tméz|S.
§ET o\

(Recall that 90((;2)) = +1.) Then from Proposition 2.11 of [H-R] we have
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Lemma 4. E,(z) = > prenbp (v, s)e{T?Bz} where

bo(y, s) = v(y)|yl* + %V(Z/)!y

’2—23

and for ' # 0 with T?B'y = By? € O, we define Z'B(y,s) as follows. Write

B' = Bof? where By is square-free. For § € A monic, let X5 () = <%> €d°89 where

{ y(T)* if k is even,
€ —
V(T)*=t if k is odd;

set

a(s,3) = Dy, (61)u(01)|01[ 27262274

5162181
81,02 monic

Let W = W©) be the Whittaker function (defined in Proposition 2.11 of [H-R]); so
with n' = —degBy? and n = £1 according to whether the lead coefficient of 3 is a

square,
( (HT;IQ%_;:) (1 — @' +0(=28)) _pad—2s(1 _ qzn’(1—2s))]
o
W(Bu2) — if n’ is even,
(By) (1—q'~*) 2(n’+1)(1—2s
m(l — g% 3 ))
\ if n’ is odd.

Then Eg(y,s) = v(y)|y|>25¢> 1 L(2s — %,Xﬁo)a(s,ﬁ’)W(ﬁy2)(l —qt=4)7L Pur-
thermore, E, can be analytically continued with a pole at s = 3/4 and satisfies the

functional equation

9(s)Es = g(1 — S)El—s
where §(s) = ¢1 74T (4s—1)((4s—1), T'(s) = (1—¢ %)L, and {(s) = (1—q'72%)~L.
§6. Mellin Transform and Poincare Series. Let ¢ : KX /Oy " — C have

finite support; extend ¢ to be a function on K. We define the Mellin transform
of ¥, My : C — C, by

Mo = [ vl oy

where d*y denotes multiplicative Haar measure normalized so that [ ox ¥y =1.
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Lemma 5. Let v be as above.
(a) M(s) =3,,en V(T™)d*™.
(b) (Inverse Mellin transform) Let C' denote the complex plane contour given by
s=oc+1it, 0<t< ﬁ with o > 1 fized. With u = q~2° and y € KX,

M 28
sz W(—s) Iyl

Proof. The equality stated in (a) follows immediately from the equality

/ w ‘y‘stXy_ Z w Tm 2ms/T o dxy

MmEZ

To establish the equality stated in (b), we let n = degy. Then, recalling that 1 is
finitely supported we have

du
M 25 Tm um =
3 M=) 1o -3 v o [
=y(IT") =v(y). O
With ¢ as above, we define the weight 0 Poincare series Py : $§ — C by

Pp(z)= > ¢(Imdz),

d€l\I'

and we define the weight 1/2 Poincare series /P\QZ : 9 — C by

Pi(z) = Z v(Imdz) 90((522)) - (Imdz).
SET\T

Thus for § € T, Pyp(0z) = Pyy(z) and Py(8z) = 99(55)/]5\@5(2). (Again, recall that
0(dz

1 ifj=m
0 otherwise.
(a) (Weight 0 case) Pj(z) =Y.  wen  ajp(y)e{T?B x} where

degB’/<2m—2

Theorem 2. Forj >0, define ; : KX /Oso™ — C by ¢;(T™) = {

(1 if —m=j>0,
g+1 ifm=j=0,
ajo(T™™) =4 ¢'7*" ifm=j3>0,

¢ N g* = 1) ifm>j,
. 0 otherwise,
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and for B’ € A with 5’ # 0 and degB’ < 2m — 2,
a5 (T™") = a7 (qrn5(8) = Tm1-5(8") = aTm-115(8) + 75 (8

Here 7,(f") = #{monic a|f’ : dega = ¢ }. (Note that ajg (T~™) = 0 if

j > m.) Furthermore, if f is any weight 0 automorphic form then

f2) =Sl by

j>0 aj70(Tj>

where co(f,*) denotes the 0th Fourier coefficient of f.
(b) (Weight 1/2 case) /ﬁqzj(z) =D sen a;p (y)e{T?B'z} where

(1) if =m =j >0,
q+1 ifm=j=0,
ajo(T™™) = A(T™)qg~m+39)/2=1 (g2 — 1) ifm > j and m — j is even,
WT™)g =2 if m=j,
L 0 otherwise,

and for 3" € A with 5’ # 0 and degB < 2m — 2,

@ (T7™) = A(T™)g!~ Ot/

: (Rm—j(ﬁ') — Rin—2-j(B) — ¢" 7 Ryp—14;(B) + q_l_ijﬂ'(ﬁ'))-

w5 B

dega=¢

@)= Y a0 () )

8’52 Iﬁf
degs’52=¢

Here

l
Re(B) = Se—r(8)TH(5)
r=0

where a,d, and &' are monic polynomials in A and p denotes the Mobius
function. (Note that a; g (T~"™) = 0 if j > m.) Furthermore, if f is any
weight 1/2 automorphic form then

fz) =T By

=5 a0(17)
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where co(f,*) denotes the Oth Fourier coefficient of f.

Proof. Say v : KX /Os ™ — C has finite support. Using inverse Mellin transform

(with u = ¢—2%), we see

- > / Map(— |1m5zy2sd“

561“00\1“

and since for any z € §) there are finitely many ¢ € ', \I' with Imédz Esupport),

du
Pi(z) = 5 / Map(— [Tméz|% — ”

5EI‘OO\F
= M
27 / (= )

For fixed z = (‘g xy ) we know Pt (z) and FEs(z) are given by finite Fourier
y) =

series (recall that 05/( = 0 whenever T23'y? & Oo) so

Pue) = 5 (omi L A0smutr ) ) ety

Now, M;(—s) = w/ so with the preceding lemma it is trivial to compute aj g -
Let f: § — C be a weight 0 automorphic form; write f(z) = >_ ¢/ (y)e{T?5'z}.

T 0
Thenforeachz—( 0 T_m),mZO,

o) =S L) py )

For each z € §), the sum on j is actually finite. Hence > .- ZO(J(;) P1;(z) con-
verges and defines a weight 0 automorphic form that agrees with f on a fundamental
domain, so it must equal f.

The case where the weight is 1/2 is analogous; we first rewrite the Fourier co-
efficients of the Eisenstein series by making use of its functional equation. Let
F(s,0") = Fs(0) = L(s,xﬁo)a(s,ﬁ’). Write 3 = B3 where (3 is square-free. For
degf’ odd,

F (23 — %,ﬁ') = (qu)degﬁ,_1 - F (2(1 —s5) — %,5’)



18 JEFFREY HOFFSTEIN, KATHY D. MERRILL AND LYNNE H. WALLING
and for deg3’ even,

1, egp—2 (1 —1g"/>>) L 5

where v € F is the lead coefficient of 3’ and n = sgn(—v) where sgn(—v) = +1,
according to whether —v is a square in F. Note that F'(s,') = >, Re(8")q",

and Ry(3') = 0 when £ > deg3’. Consequently, for 3’ # 0 with T?5'y? € O,

g%(y’ S) _ 'Y(y)(l _ q174s) . ZRt(ﬁ/) <q172m+t/2728(t7m) _ q7173t/2725(m7t72)>'

t>0

Now we proceed as in the weight 0 case. [

As an application, we consider sums of squares. Notice that for k > 2,

0% (2) = v" (W)|yl"? > ri(e,m) e{aT?x}
a€A

where —m = degy and

re(a,m) = #{(a1,... ,ax) 1 a; € A, dega; < m, Za? =a }.

Applying the preceding theorem, we immediately get

y(T)* if k is even,

Corollary 2. Fix k,m € Z ith k > 2. Let e =
Y & SRR IS S WHRE = 2. e e {V(T)’“_l if k is odd.

Then for a # 0 and m > dega,

g (1 — Eq_k/Q)Ul_k/z(Oé, €) if k is even,
ri(a,m) = m(k=2)+1(1 _ k[ ke is odd
q (1= ¢"" ") Fg—1yjo(eye) ifkiso

where

o= ST () =3 e

monic o/ |« 7>0

and

Fi(a,e) = Z e Rj(a)g™7*.

Jj=20
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Forae A, a# 0, with m < degae < 2m — 2,

( m— | 4J (1=
g =D — eqk/2) ijol el gi(1=k/2) <Tj(a) — sz,l,j(a)>
if k is even,
(1= g ) Y g0 (Ry(a) = ¢ R o (@)
iof k is odd

ri(a,m) =

\

where R;(a) is defined in the preceding theorem. Finally,

( qm(k—2)—|—1 + qumTk—l(q _ 1)

k k
—1)(m gz 2—gm(3 %)

mk _ .
41 AL if 2|k, k # 4,

m(k—1) 1

¢TI 4 (g 1)g

q—m(’;*1>—1 C(@®=1)(¢" g
1,ql~c—3

m(k—3)
2

if 21k, k3, 2|m,
rk(O,m) = ,yk:(T)qm(ka)+1

(k—3) m(k—3)
2

()™ D T g B ) ik £ 3, 24 km,
™+ q*™tm(g? — 1) if k=4,
g™ + g m (L) if k=3, 2lm,
L AT (™ + g (=) ifk=3,2¢m.

Proof. Write 0% () = ZB’EA cpr (0%, y)e{T?B x}. We know that for any z € H,
A 250 (co(0%,T7)/a;jo(T7)) P;(z) if k is even,

0%(z) = = . R

) >0 (co(0%,T7)/aj0(T7)) Py;(z) if kis odd.

Also, for fixed z € 9,
Pyi(z)= > ape{T?fz} and  Poi(z)= Y. Gaye{T*Fz}.
B’ eA B’ €A
degB’ < —2degy—2 degB’/ < —2degy—2
Thus
) Zj_jgegy (co(0%,T9)/a;0(T7)) aja(y) if kis even,
Cg! YY) = . .
’ S 20BY (0 (0%, T9) ;.0(T9)) s p(y) if K is odd.

Note that for 7 > 0 and k even,

o, T) [ g ifi=0,
ajo(T7) k2 if § > 0.
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Similarly, for 7 > 0 and k odd,

o, ) [ g5 ifi=0,
ajo(17) gk if §> 0.

The theorem now easily follows by using the formulas for the a; g and the a; g. O

Specializing to the case kK = 4 and « irreducible or an element of F, we see
that the restricted representation number is nonzero for any m > %dega; since the
product of two sums of four squares is again a sum of four squares, we obtain the

following analogue of the classical result on sums of four squares.
Corollary 3. For any o € A and m > %dega, ri(a,m) # 0.

§7. Spectral Decomposition. Since it is not clear whether ri(a,m) # 0
when m < dega < 2m — 1 and k > 3, we use spectral decomposition to show that
ri(a,m) is (essentially) asymptotic to the Fourier coefficients of the Eisenstein
series Ey/4(2) as degar — 0o. (When k = 3 or 4, we need to remove the singularity
from the Eisenstein series to get this result.)

To develop the spectral decomposition, we follow classical arguments (see, for
example, Theorem 1 in §3.7 of [T]).

Suppose f,g: $H — C such that for all 6 € T,

)

f(62) _ <9(5z))’“ _ 9(82)
ERRNE) 9(2)

where k € Z,. Then we define

(f.9) = F(2)g(z)dp(z)

T'\9

where du is the measure on I'\$) giving the y-orbit of z = (TO T9m> (m >0)

pointmass

ag—1) _ [ gz iHm=0,
|Stabrz| g 2™ if m>0.

Lemma 6. Let ¢ : KX /Oy™ — C have finite support; extend 1) in the natural

way to a function on KX . Then

9L=5) pry(-s)

(PY,Es) = My(s—1) + )
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and
g(1-753)
9(3)

(Py, Eg) = Mp(5— 1) + M(-3).

Here g(s),g(s) are as defined in Corollary 1 and Lemma 4.

Proof. We have

(PY,E,) = U(1m02) B, )dp(2)
P\9 ser.. \r

_ / S (Iméz) B, (02)dp(2).
I\% ser_\r

Since |Stabrz| < oo for each z € $ and ¥ (Imz) # 0 for only finitely many z €
' \$, there are finitely many pairs z € T'\9, § € I'o\I" with ¢(Iméz) # 0; thus

(Py, E, Z/wlmz Ea(2)dp(2)

€T \T

where D = {(TO T9m> :m>0 } is a fundamental domain for I'\$. For

z € § with |Imz| < 1 there are elements of I' — T', that stabilize z; so for such z,

z € dD for several choices of § € I'oo\I'. Thus we define dv to be the measure on

[ \$ giving the I'w-orbit of z = (TO T_m> pointmass
q¢—1) [ 4q it m <0,
|Stabr_z| | ¢72™ ifm >0.

(So we multiply the p-pointmass of z by &;%71;;’2'2' = [Stabr_\r(2)|.) Hence

(P, Ey) = Y(Imz)E,(2)dv(2)
oo\f?
s (5 0)

PRI AL F(Tf xf__f)

m<0 z€T?2m—1ANP
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and recognizing the sum on x as Fourier transform,

(P, Es) =Y (T™)q > "bo(T™, s)

MEZL

g(1-73)

=My(E—1)+ .G

Mip(=3).

Similarly one computes <F@Z, E:> 0
Lemma 7. (P, 1) = Mi(—1) and (P, 0) = Mip(—3/4).

Proof. This is similar to the proof of the preceding lemma.

(P, 1) = / Y(Iméz)du(z)
T\ ser o \T
— [ wm)du(z)
Foo\$
=) (T
meZ
Similarly,
(Py,0) = ~(Iméz) ((g)zp(lm(sz)@du(z)
\% 5er \T
and since 9((z)) = 41,
(Py,0) = ~(Tmd2)dp(2)1(Tm2)0(52)dp(2)
'\% 5er \T

- / y(Imz)(Im2)B (=) dpa(2)
o \H

= Y AT)P(T™)e (0, T )™

MmeEZ

=) w(T™e 2 O

mEeZ
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Theorem 3. Let C be the contour s =1/2+it, 0 <t < w/Inq. With u = q~2°,

1
4mi

Py(z) = /<P@ZJ, s) Bg(z)du + (Py,1)Ress—1E4(z)

and

. 1 —_—~ ~ — —
Pi(z) = rm/c<P¢,Es> Bodu + (P, 0) Ress—a/aF.

Proof. Let C' be the contour s = o +it, 0 <t < w/Ilnq with ¢ > 1 fixed. Then

using inverse Mellin transform,

1 Jdu
Py(z)= ) i o Mp(—s)[Imdz|? o
0€l\T
1 du
= — [ Miyp(—s)Es(2)—.
21 Jer V(=9)Eu(2)S,

Now move the contour from C’ to C, running over the pole of Es at s = 1. Thus

2m/M¢ )_+M1/1( 1)Ress=1F;(2).

The functional equation of E; gives us

foar =5 [ (B0 + 4R E0)

and replacing s by 1 — s in the second part of the integral ,

[aram0% =5 [ (av-0+ - arv - 9) B 2

g(1—s) u
(Note that s — 1 — s takes C onto C, reversing orientation.) Noting that s =1—73
yields the result. A similar computation holds for j’\zz 0
Standard arguments now yield

Corollary 4. For f € L*(T'\$) an automorphic form of weight 0,

1
4mi

du

16 = 3 [(RB) BT + () ResaBulo)
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For f € L*(T\$) an automorphic form of weight 1/2,

du

- L/ (£ Bs) Ea(2)— + (£,0)ResemsjaBa(2).

4

f(z)

When k > 5, the difference between 6% and the Eisenstein series at s = k/4 is
an L2-function. However, when k& = 3 or 4 the Eisenstein series has a removable
singularity at s = k/4. Thus we let R = lims_1(1 — ¢>72*)E, and set

1
/AT .
B = gmi (ES [Epre=H R) .

Similarly, we let R= limg_,3/4(1 — q3_43)£N73 and set

~ 1 ~
E = 1l EFEs——R).
s—1>r3r}4 ( 1-— q3_45 )

For k > 5, we set

B 0% (2) — v*(Imz) By 4(2) if k is even,
fl=) = 0% (z) — ’yk_l(Imz)Ek/4(z) if k£ is odd.

When k = 4 we set f(z) = 0%(2) — E’(2) and when k = 3 we set f(2) = 03(2) —
v2(Imz)E’(z). Thus f is an automorphic form of weight 0 or 1/2, and one easily
sees that f is L2.

Lemma 8. Set
B F(T) if k is even,
AT ifk s odd.

When k is even, k > 4,

1+k/2—2§(1 _ q1—2§)<1 _ q—k/2)(1 + eql—k/2)<1 _ eq2—k:/2)

_ 4«
(fiEs) = (1 — q225)(1 — eqF/2-25)(1 — eq2—F/2-25) (1 — g2~ F/2)

(To evaluate this when k = 4, one first considers the case that € = 1 and reduces
(1 —eq>*/2) /(1 — ¢*>*/2) to 1; then one sets k = 4.) When k is odd, k > 3,

q1+k/2—2§(1 . q2—4§)(1 o ql—k)
— B395) (1 — ¢h/2-25) (1 — 2~ k/2-%5)

<f’E5> - (1
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Proof. When k is even, (f, E5) = qulco(f, T)bo(T°,5)+ 3 051 ¢ ™o (f, T™)bo(T™, )

where ¢y denotes the Oth coefficient of f and by that of E5. Note that when k£ = 4,
m > 0,

m+ 1

cO(fva) =m — qQ 9

and when £ > 6 with k even,

_qu1+m(2—k/2)(1 _ q—kz/2)
(1—q*7+/2)

CO(f7 Tm) =

Similarly, when k£ = 3, m > 0,

m m + 2
T — ¢m [ 2 m/2
CO(f7 ) € (2q 2q )7

and when k£ > 5 with k£ odd,

—Gm’}/(Tm)q1+m(2_k/2)(1 . ql—k)

CO(fva) = (1 _qg_k)

The lemma easily follows. [

In Corollary 2 we found precise formulas for r;(a, m). We now show that, as in
the classical case, r(«, m) is asymptotic to the Fourier coefficient of the Eisenstein
series (with the singularity removed in the case k = 3 or 4). This yields another
proof that, at least for m sufficiently large, the restricted representation numbers

are nonzero for any m > %dega.
Theorem 4. For o a square-free element of A, k > 3, and m > 0 so that n =

dega < 2m — 2,

G b o (T™™, k/4) 4+ O(qmF/2=14m) if k is even,

re(a,m) = ~
(e, m) {emqu/%T_m(Tzoz,k/él)+O(qm(k/2_1)4m) if k is odd.

In particular, except for ¢ = 3 when k = 3 or 4, riy(a,m) # 0 for m sufficiently

large.

Proof. Let 3 = (3'T? where 3’ € A has degree n. For k even and Rs = 1/2,

2q(1 + €eq'~%)(1 — eg®>*/2)
[ e

|<f’E8>} < (q
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Also,
(06 (T~™, k/4)] = ¢ T2 (1 — g2 (1 = ¢! M%) o1y ().
Except when ¢ = 3 and k£ =4,
0(T™" k/4)| > |es(T™)]

whenever m is large enough.

Now consider k odd; suppose 3’ is square-free. Then for k odd and Rs = 1/2,

1—k>

= 29(1—¢q
|<f’ ES>} < (q _ 1)(1 _ ql—k/2>2'

Using the Riemann hypothesis over function fields, we have

4s —1 D
L( > 7X,8') —(1— 1/2 2s) H 1/2—23)

1=1

where = +1, D =n — 2 if n is even and D = n — 1 if n is odd, and |a;| = ¢*/?
Thus

(10 ) 2 { )
5 X8 (1+ gl=2s)n1 if n is odd

and

4s — 1 (1—¢"/?72%)(1 —¢* — 25)"2 if n is even,
}L » X B/ | > 1-25\n—1 . .
2 (1 —qg =" if n is odd.

So for Rs =t >1/2,

_ 48 - ]_ _ _ n—
(1 q1/2 Qt)(l 1- 2t |[ ( 7X3’) | < (1 q1/2 2t)(1 ql 2t) 2
When n iS even and
48 - ]_ n—

when n is odd. Also,

(1 - q—1)2 < |W(6/y2)(1 - q2—4s)| < 2(1 +q—1/2)2
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when n is even, and
1—q¢ ) <|WEY)L - )| <2(1+q¢7")
when n is odd. Hence

2n72q17m(1+q17k:)(1+q71/2)2(1+q17k:/2)

L/ <f E’ >b (y S)d_u| < (1—q1=k/2)(1—q—1/2) if n is even,
" : B v 2n72q17m(1+q11::)2(1+q17k/2) if n is odd.
(1—q'—*/2)

Also, for s = k/4, k > 3,

|bs(y, k/4)]
{ q1—|—m(k/2—2) 1
- q1+m(k/2—2) 1

(

(
{ gl tmk/2-2) (1

(

q1+m(k/272) 1

g PR = g R =21 — g7 1)? if n s even,
1=k/2)n—1(1 _ g=2) if n is odd,
331 —q~Y/2)"=2 if n is even,

-1
>
(1 — ¢ Y"1 if n s odd.

q
q
q
(Note that for k = 3, bg(y, 3/4) is the 3 coefficient of E' since 3 is square-free.) So

except when k = 3 and ¢ = 3, ri(8',m) = qu/zcﬂ(T_m, k/4) # 0 for m sufficiently
large. [
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