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Abstract. We develop some of the theory of automorphic forms in the function field

setting. As an application, we find formulas for the number of ways a polynomial

over a finite field can be written as a sum of k squares, k ≥ 2. As a consequence, we
show every polynomial can be written as a sum of 4 squares. We also show, as in

the classical case, that these representation numbers are asymptotic to the Fourier
coefficients of the basic Eisenstein series.

Given a finite field Fq with q odd, we want to determine how many ways a
polynomial in Fq[T ] can be written as a sum of k squares. For k ≥ 3 (or k = 2, −1
not a square in Fq), the sum of k squares is an indefinite quadratic form, so there
are infinitely many ways to write any polynomial over Fq as a sum of k squares.
Hence we refine our question; we seek a formula for the restricted representation
numbers rk(α,m) where rk(α,m) denotes the number of ways a polynomial α of
degree n can be written as a sum of squares of k polynomials whose degrees are
strictly bounded by m > n

2 .
In the 1940’s Carlitz and Cohen studied this problem with n = 2m − 2 or

m = 2n − 3. Using the circle method, Cohen obtained exact formulas ([C1], [C2])
but it is not clear whether these numbers are nonzero. More recently Serre showed
these numbers are nonzero for k = 3 (see [E-H]). In [M-W] elementary methods were
used to give formulas in terms of Kloosterman sums (with no restriction as to the
relation between m and n). Then Car [Car] refined the use of the circle method to
obtain asymptotic formulas, showing that virtually every diagonal quadratic form
represents any given polynomial α provided m is sufficiently large (here degα =
2m− 2 or 2m− 3).

In this paper we develop the theory of automorphic forms of integral and half-
integral weights on the “upper half-plane” H = SL2(Fq(( 1

T )))/SL2(Fq[[ 1
T ]]) under

the action of the full modular group Γ = SL2(Fq[T ]). (Note that this is not the
upper half-plane used by Weil; instead of SL, Weil used GL to define H, and unlike
the classical case, these two definitions of H are not equivalent. Furthermore, the
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theta series we use does not transform uniformly on Weil’s upper half-plane.) Using
Poincare series and a power of the (normalized) theta series presented in Proposition
2.13 of [H-R], we very easily compute rk(α,m), obtaining generalizations of Cohen’s
results. Again, it is not obvious from these formulas that these numbers are nonzero
when m < degα ≤ 2m − 2. As an application of the spectral theory developed
herein, we show that, as in the classical case, the main term of rk(α,m) is given by
the Fourier coefficient of the Eisenstein series at s = k/4 (where we have removed
the singularity if k = 3 or 4). From this we conclude that rk(α,m) 6= 0 for m
sufficiently large, subject only to the necessary condition that m > (degα)/2. This
gives confirmation to the belief that Eisenstein series closely approximate theta
series, whatever the setting.

We begin by reviewing the definitions and Fourier expansions of Eisenstein series
(see Definition 2.5 and Proposition 2.11 [H-R] for the case of half-integral weight)
and by developing some spectral theory (cf. §3.7 of [T]) to obtain the Fourier
expansions of a set of Poincare series that span the space of automorphic forms.
The discrete nature of H in the function field setting makes these computations
significantly easier than in the classical setting. Indeed, we use the following two
trivial observations to great advantage:

(1) D =
{(

Tm 0
0 T−m

)
: m ≥ 0

}
is a fundamental domain for Γ\H, and

(2) A function on D is supported only on its 0th Fourier coefficient.
It immediately follows that there are no nonzero cusp forms for Γ, and that the
functional equation satisfied by the 0th coefficient of the Eisenstein series Es implies
the functional equation for Es. Furthermore, for each z0 ∈ D, it is easy to construct
Poincare series Pz0 whose support in D consists only of {z0}. Thus by observation
(2) one only needs the 0th coefficient of an automorphic form restricted to D, f |D,
to write the automorphic form f as a sum of the Poincare series, yielding formulas
for all the coefficients of f (Theorem 2). Applying this to θk(z), the kth power of
the (normalized) analogue of the classical theta function, we obtain precise formulas
for rk(α,m). In particular (Corollary 2), when α 6= 0 and m > degα,

rk(α,m) =

{
qm(k−2)+1(1− εq−k/2)σ1−k/2(α, ε) if k is even,

qm(k−2)+1(1− q1−k)F(k−1)/2(α, ε) if k is odd

where ε = ±1, σ is the divisor function (twisted by ε), and F is (essentially) the
Dirichlet series that appears in the Fourier coefficients of the metaplectic Eisenstein
series (see Proposition 2.11 of [H-R]). From this we find that any polynomial α can
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be written as a sum of 4 squares with degrees bounded by 1/2 the degree of α.
Finally, since it is not transparent that rk(α,m) 6= 0 for m ≤ degα ≤ 2m − 2, we
estimate the L2-function θk−Ek/4 to show that, when q 6= 3 of k ≥ 5, rk(α,m) 6= 0
for m sufficiently large and is asymptotic to the Fourier coefficient of the Eisenstein
series, as in the classical case (Theorem 4).

We note here that together with techniques used in [W] and [H-W], we expect the
methods used herein can be extended to yield precise formulas for the representation
numbers of any quadratic form on a function field.

The authors are extremely grateful for the referee’s careful reading and helpful
suggestions.

§1. Preliminaries. Let F = Fq be a finite field of odd order q = pr and let T be
an indeterminate. Set A = F[T ] and K = F(T ). Consider the valuation | · | = | · |∞
defined by

|α/β| = qdegα−degβ where α, β ∈ A;

we agree that |0| = −∞. Now let K∞ denote the completion of K with respect to
the valuation |·|; so K∞ = F(( 1

T )). We extend the function deg to K∞ in the obvious

way; so degy = ordπy where π = 1
T . Let O∞ = {α ∈ K∞ : |α| ≤ 1 } = F[[ 1

T ]].
Then SL2(O∞) is the maximal compact subgroup of SL2(K∞); we define an “upper
half-plane” H by

H = SL2(K∞)/SL2(O∞).

The group Γ = SL2(A) acts on H by left multiplication. We have the following
elementary lemma.

Lemma 1.

(a) (Iwasawa decomposition) The set

{(
Tm xT−m

0 T−m

)
: m ∈ Z, x ∈ T 2m+1

A

}

is a complete set of representatives for H.

(b) (Fundamental domain) The set

{(
Tm 0
0 T−m

)
: m ≥ 0

}

is a complete set of representatives for Γ\H.
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Proof. First, to establish (a), take z =
(
a b
c d

)
∈ SL2(K∞). Then

z ≡


(
a b

c d

)(
1 0
− c
d 1

)
if degc ≤ degd,(

a b

c d

)( d
c 1
−1 0

)
if degd < degc

where z ≡ z′ means z and z′ represent the same coset of H. Thus z is equivalent
to a matrix of the form (

w x′

0 w−1

)
with w, x′ ∈ K∞, w 6= 0. Now, w = Tmu for some m ∈ Z and u ∈ O∞×. So

z ≡
(
w x′

0 w−1

)(
u−1 0

0 u

)
≡
(
Tm x′′

0 T−m

)
for some x′′ ∈ K∞. Writing x′′ as T−m(x + T 2mv) where x ∈ T 2m+1

A, v ∈ O∞,
we see that

z ≡
(
Tm x′′

0 T−m

)(
1 −v
0 1

)
≡
(
Tm xT−m

0 T−m

)
.

Now suppose z ≡
(
Tm xT−m

0 T−m

)
≡
(
Tm

′
x′T−m

′

0 T−m
′

)
where m,m′ ∈ Z, x ∈

T 2m+1
A, x′ ∈ T 2m′+1

A. Then(
Tm xT−m

0 T−m

)−1(
Tm

′
x′T−m

′

0 T−m
′

)
=
(
Tm

′−m (x− x′)T−m′−m
0 Tm−m

′

)
∈ SL2(O∞).

Thus Tm
′−m, Tm−m

′ ∈ O∞, which implies m = m′. So T−m
′−m(x′ − x) =

T−2m(x′ − x) ∈ O∞. We know x, x′ ∈ T 2m+1
A, so

T−2m(x′ − x) ∈ O∞ ∩ TA = {0} .

Hence x = x′, and the representation is unique.

From (a), the proof of (b) follows easily from the observations that
(

0 −1
1 0

)
and

{(
u a
0 u−1

)
: a ∈ A, u ∈ F×

}
generate Γ, and for z =

(
T−m xTm

0 Tm

)
∈ H,

x ∈ T 1−2m
A,

−1
z

=
(

0 −1
1 0

)
z ≡


(
Tm 0
0 T−m

)
if x = 0,(

Tn−m − 1
xT

m−n

0 Tm−n

)
if x 6= 0, degx = −n. �
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§2. Fourier Series. Suppose f : H→ C is invariant under the action of Γ∞ on

H where Γ∞ =
{(

u α
0 u−1

)
: α ∈ A, u ∈ Fx

}
. Then for a fixed y = Tm, we can

consider fy, defined by fy(x) ≡ f
((

y xy−1

0 y−1

))
, as a function on the finite abelian

(additive) subgroup T 1+2m
A/A of K∞/A. Thus elementary Fourier analysis shows

that f can be written as a Fourier series as follows: For x =
N∑

j=−∞
xjT

j ∈ K∞, let

e{x} = exp(2πiTr(x1)/p) where Tr denotes the trace from F to Z/pZ. Then we
have

f

((
y xy−1

0 y−1

))
=

∑
β∈T 2A

cβ(f, y)e{βx},

where cβ(f, Tm) = χO∞ (βT 2m)p1+2m
∑
x∈T 1+2mA/A f

((
Tm xT−m

0 T−m

))
e{−βx).

Remarks. Note that since cβ(f, y) = 0 whenever βy2 6∈ O∞, we have that the
Fourier series for f is finite for any fixed y, and in particular, f(z) = c0(y) for

degy ≥ 0. Note also that for any u ∈ O∞,
(

1 u
0 1

)
∈ SL2(O∞) so

(
y xy−1

0 y−1

)
≡
(
y (x+ uy2)y−1

0 y−1

)
.

Thus for f to be well-defined, we must have cf,β(y) = 0 whenever βy2 6∈ O∞. In

particular, this means that f(z) = c0(f, y) for z =
(
y xy−1

0 y−1

)
with degy ≥ 0.

§3. Automorphic Forms. The analogue of the classical (unnormalized) theta
series is

θ̃(z) =
∑
β∈TA

χO∞ (β2y2) e{β2x}

where χO∞ is the characteristic function of O∞. In [M-W] the authors studied
restricted representation numbers by studying the kth power of this function (for
k even and q prime), for

θ̃k(z) =
∑
α∈A

rk(α,m)e{T 2α2x}
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(where y = Imz = T−m). In Proposition 2.13 of [H-R], the authors realized a
normalization θ(z) of the above theta series as a residue of an Eisenstein series:

θ(z) = γ(y)|y|1/2θ̃(z)

and (as in Definition 2.2 of [H-R])

γ(Tm) = qm/2
∫

e{Tmx2}dx/
∫

e{x2}dx

where the integrals are over “sufficiently large” (fractional) ideals of O∞. (Here dx
denotes additive Haar measure normalized so the measure of O∞ is 1, and hence
the measure of Pm

∞ is q−m since 1 =
∑
x∈O∞/Pm

∞

∫
Pm
∞

dx.) We will evaluate γ(y)

in Lemma 2 below.

Let f : H → C. We say f is an automorphic form of weight k if f transforms

under Γ = SL2(A) as does the kth power of θ̃. That is, f is an automorphic form
of weight k if for all δ ∈ SL2(A) we have

f(δz) =
θ̃k(δz)

θ̃k(z)
f(z).

We say an automorphic form f is a cusp form if f(z) =
∑

β∈T2A
β 6=0

cβ(f, y) e{βx}, i.e.

c0(f, y) = 0 for all y.

We thank both Wolfgang Schmidt and Eric Rains for showing us two different
ways of evaluating a Gauss sum over a finite field with pr elements. (Here we simply
quote the result; we are happy to provide these proofs to any interested reader.)

Lemma 2. For all δ ∈ Γ, θ(δz)/θ(z) = ±1. Also, with q = pr,

γ(T−m) =


1 if 2|m,
(−1)r+1 if 2 6 |m, p ≡ 1 ( mod 4),

(−1)r+1
√
−1

r
if 2 6 |m, p ≡ 3 ( mod 4).

Proof. By Theorem 2.3 of [M-W] (which extends naturally to include the current
setting),

θ̃(δz)/θ̃(z) =
√
z =

{
qm if x = 0,
qn/2(xn/F)n/γ(Tn) if x 6= 0, degx = n
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where (xn/F) indicates whether xn is a square in F. So

θ(δz)
θ(z)

=
√
zγ(Imδz)|Imδz|1/2

γ(Imz)|Imz|1/2
.

We first evaluate γ(Imz).

For m ≥ 0 we have∫
TmO∞

e{T−mx2}dx =
∑

x∈TmO∞/Pm
∞

∫
O∞

e{T−m(x+ x0)2}dx0

=
∑

x∈TmO∞/Pm
∞

e{T−mx2}
∫
O∞

dx0

=
∑
ui∈F

e

T−m
(

m∑
i=1

uiT
i

)2


=
∑
ui∈F

e

{
m∑
i=1

uium+1−iT

}

=

{ ∏m/2
i=1

∑
ui∈F

(∑
v∈F e{2uivT}

)
if 2|m,∏(m−1)/2

i=1

∑
ui∈F

(∑
v∈F e{2uivT}

) (∑
u∈F e{u2T}

)
if 2 6 |m.

(Here the sum on u corresponds to i = (m + 1)/2.) Since v 7→ e{2uivT} is a
nontrivial character when ui 6= 0, we get

∫
TmO∞

e{T−mx2}dx =
{
qm/2 if 2|m,

q(m−1)/2
∑
u∈F e{u2T} if 2 6 |m.

A similar argument shows

∫
TmO∞

e{x2}dx =
∑

x∈TmO∞/Pm
∞

e{x2}
∫

Pm
∞

dx0 = qmq−m = 1.

So for m ≥ 0,

γ(T−m) =
{

1 if 2|m,

q−1/2
∑
u∈F e{u2T} if 2 6 |m.

(Thus when 2 6 |m, γ(T−m) is a Gauss sum.) Evaluating the Gauss sum yields the
result on γ.
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For m ≥ 0 we also have∫
O∞

e{Tmx2}dx =
∑

x∈O∞/Pm
∞

e{Tmx2}
∫

Pm
∞

dx0

= q−m
∑

x∈TmO∞/O∞

e{T−mx2},

and this last sum we just evaluated. Hence for all m ∈ Z we have

γ(Tm) =
{

1 if 2|m,

q−1/2
∑
u∈F e{u2T} if 2 6 |m.

Again, evaluating the Gauss sum yields the result on γ.

Now take δ =
(

0 −1
1 0

)
and write z =

(
Tm xT−m

0 T−m

)
with x ∈ T 2m−1

A, or

x = T 2m (which, under the right action of SL2(O∞), is equivalent to x = 0); let
n = degx. Then T 2m/x ∈ SL2(O∞) so

δz ≡
(

0 −1
1 0

)
z

(
1 0

−T 2m/x 1

)
=
(
Tm/x ∗

0 T−mx

)
.

Hence

θ(δz)/θ(z) =
γ(Tm−n)(xn/F)n

γ(Tm)γ(Tn)
= ±1.

Since
(

0 −1
1 0

)
and

(
1 1
0 1

)
generate Γ, it follows that θ(δz)/θ(z) = ±1 for all

δ ∈ Γ. �

Remark. Given an automorphic form f of weight k, we can normalize f to a
weight 0 or weight 1/2 automorphic form g by setting

g(z) =
{ |Imz|k/2f(z) if k is even,

γ(Imz)k|Imz|k/2f(z) if k is odd.

For this reason, we now only consider these two weights.

Theorem 1. There are no nonzero cusp forms.

Proof. Say f is a cusp form. We know that for any z =
(
Tm 0
0 T−m

)
, m ≥ 0, we

have f(z) = c0(f, Tm) = 0. Hence f is 0 on a fundamental domain for Γ\H and so
f is identically 0. �
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§4. Weight 0 Eisenstein Series. For s ∈ C with <s > 1, we define the weight
0 Eisenstein series to be

Es(z) =
∑

δ∈Γ∞\Γ

|Imδz|2s

where s ∈ C with <s > 1, z ∈ H, and Im
(
y xy−1

0 y−1

)
= y. To show Es is absolutely

convergent for <s > 1, we consider s ∈ R, s > 1. Since each element of H is in the

Γ-orbit of some z =
(
Tm 0
0 T−m

)
with m ≥ 0, it suffices to consider only such z,

which is what we do in the following computation.

First, notice that the cosets of Γ∞\Γ are represented by matrices
(
a b
c d

)
where

(c, d) varies over relatively prime pairs of elements of A with c monic or (c, d) =
(0, 1). Also, c = 0 only when we consider the coset of I, and d = 0 only when we

consider the coset of
(

0 −1
1 0

)
. When c, d 6= 0, m ≥ 0 and degd ≥ 2m+ degc, we

have (cT 2m)/d ∈ O∞ so (recalling that H = SL2(K∞)/SL2(O∞)),(
a b
c d

)
z =

(
1 b/d
0 1

)(
1/d 0
c d

)
z

≡
(

1 b/d
0 1

)(
Tm/d 0
cTm d/Tm

)(
1 0

−(cT 2m)/d 1

)
=
(
Tm/d ∗

0 d/Tm

)
.

Similarly, when c, d 6= 0, m ≥ 0 and degd < 2m+ degc,(
a b
c d

)
z ≡

(
a b
c d

)
z

(
d/(cT 2m) 1
−1 0

)
=
(

1/(cTm) ∗
0 cTm

)
.

The above equivalence also holds when d = 0, for then c = 1 and(
0 −1
1 0

)
z ≡

(
0 −1
1 0

)
z

(
0 1
−1 0

)
=
(
T−m 0

0 Tm

)
=
(

1/(cTm) ∗
0 cTm

)
.
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Hence for z, s as above,

Es(z) = q2ms +
∑

c monic

∑
(c,d)=1

degd≥2m+degc

|Tm/d|2s +
∑

c monic

∑
(c,d)=1

degd<2m+degc

|1/(cTm)|2s.

Now, ∑
n∈A

n monic

|n|−2s = (1− q1−2s)−1

so ∑
c monic

∑
(c,d)=1

degd≥2m+degc

|Tm/d|2s = q2ms(1− q1−2s)
∑

c monic
degd≥2m+degc

|d|−2s

= q2ms(1− q1−2s)
∑
`≥0
r≥0

q`(q − 1)q(r+`+2m)(1−2s)

=
q2m−2ms(q − 1)

(1− q2−2s)
.

Also, ∑
c monic

∑
c monic

degd<2m+degc

|1/(cTm)|2s = q−2ms(1− q1−2s)
∑
`≥0

q`(1−2s)q`+2m

=
q2m−2ms(1− q1−2s)

(1− q2−2s)
.

Notice that this shows Es is absolutely convergent for s ∈ C, <s > 1, and that for
such s and m ≥ 0,

Es

((
Tm 0
0 T−m

))
= q2ms +

q(1− q−2s)
(1− q2−2s)

q2m−2ms.

One easily sees that Es is invariant under the action of Γ.

Lemma 3. Es(z) =
∑
β′∈A bβ(y, s)e{T 2βx} where

b0(y, s) = |y|2s +
q(1− q−2s)
(1− q2−2s)

|y|2−2s

and for β 6= 0 with T 2β′y = βy2 ∈ O∞, n = degβ′, m = −degy ≥ n+ 2,

bβ′(y, s) = q1−m(1− q−2s)(qm(2s−1) − q(n+1−m)(2s−1)) σ1−2s(β′).
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Here

σs(β′) =
∑
α|β′

α monic

|α|s =
n∑
`=0

q`sτ`(β′)

where β′ = βT−2 and τ`(β′) = #{monic α|β′ : degα = ` }.

Proof. The preceding computation proves the lemma for b0(Tm, s) with m ≥ 0. So
now take m > 0; we compute bβ(T−m, s) for β = T 2β′, β′ ∈ A and degβ ≤ 2m.
(Recall that for degβ > 2m we have bβ(T−m, s) = 0 since then χO∞(βT−2m) = 0.)

Set z =
(
T−m xTm

0 Tm

)
with x ∈ P∞/P

2m
∞ ; we take x = T−2m as the represen-

tative of P2m
∞ . For c 6= 0 and degd ≥ degc,

(
1 0

−c/(T 2m(cx+ d)) 1

)
∈ SL2(O∞)

so (
a b
c d

)
z ≡

(
1/(Tm(cx+ d)) ∗

0 Tm(cx+ d)

)
.

When degd < degc, x−d/c runs over P∞/P
2m
∞ as x does, and

(
1 0

−1/(T 2mx) 1

)
∈

SL2(O∞), so (
a b
c d

)
z ≡

(
1/(Tmcx) ∗

0 Tmcx

)
.

Thus, using Fourier transform,

bβ(T−m, x) = q1−2m
∑

x∈P∞/P2m
∞

Es

((
T−m xTm

0 Tm

))
e{−βx}

= q1−2m
∑

δ∈Γ∞\Γ

∑
x∈P∞/P2m

∞

∣∣∣∣Imδ(T−m xTm

0 Tm

)∣∣∣∣2s e{−βx}

= q1−2m−2ms
∑

x∈P∞/P2m
∞

e{−βx}

+ q1−2m
∑

c monic

∑
(c,d)=1

degd≥degc

∑
x∈P∞/P2m

∞

|Tmd|−2se{−βx}

+ q1−2m
∑

c monic

∑
(c,d)=1

degd<degc

∑
x∈P∞/P2m

∞

|Tmcx|−2se{−βx}.
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First say β = 0. Then∑
c monic

∑
(c,d)=1

degd≥degc

|Tmd|−2s = q−2ms(1− q1−2s)
∑

c monic
degd≥degc

|d|−2s

= q−2ms(1− q1−2s)
∑
`≥0
r≥0

q`(q − 1)q(`+r)(1−2s)

=
q−2ms(q − 1)
(1− q2−2s)

.

Also, by separating the sums on x and c we find

q1−2m
∑

c monic

∑
(c,d)=1

degd<degc

∑
x∈P∞/P2m

∞

|Tmcx|−2s

= q1−2m(1− q1−2s)q−2ms
∑
`≥0

q`(2−2s)

q4ms +
∑

1≤r≤2m

(q − 1)q2m−r−1q2rs


=
q2ms−2m+1(1− q1−2s) + (q − 1)q−2ms(q(2m−1)(2s−1) − 1)

(1− q2−2s)
.

Consequently,

b0(T−m, s) = q−2ms +
q(1− q−2s)
(1− q2−2s)

qm(2s−2).

Now say β = β′T 2 6= 0 with n = degβ′ ≤ 2m−2. Then, writing β′ =
∑n
j=0 βjT

j ,

∑
x∈P∞/P2m

∞

e{−βx} =
∑
αi∈Fq

e

−
n∑
j=0

βjT
j+2

2m−1∑
i=1

αiT
−i


=
∑
αi∈Fq

e

{
−

n∑
i=0

βiαi−1T

}

=
n∏
i=0

∑
u∈Fq

e{−βiuT}

= 0

(since for some i, βi 6= 0). Also, since
∑
d∈A

degd<degc

e{βd/c} = 0 unless c divides β′,

∑
c monic

∑
(c,d)=1

degd<degc

|c|−2se{βd/c} = (1− q1−2s)
∑
`≥0

q−2`sτ`(β′)

= (1− q1−2s)σ1−2s(β′).
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Next,

∑
x∈P∞/P2m

∞

|x|−2se{−βx} = q4ms +
2m−1∑
r=1

q2rs
∑
u∈F×q

x0∈P
r+1
∞ /P2m

∞

e{−β(uT−r + x0)}

= q4ms +
2m−1∑
r=n+1

q2rsq2m−1−r
∑
u∈F×q

e{−βuT−r}

since x0 7→ e{−βx0} is the trivial character on Pr+1
∞ /P2m

∞ if and only if r ≥ n+ 1.
When r = n+ 1, the sum on u yields −1, and when r ≥ n+ 2 the sum on u yields
q − 1. Hence by substituting and simplifying, we find that

bβ(T−m, s) = q1−m(1− q−2s)(qm(2s−1) − q(n+1−m)(2s−1))σ1−2s(β′).�

Corollary 1. Es can be analytically continued to C with a pole at s = 1. Then we
have the functional equation

g(s)Es = g(1− s)E1−s

where g(s) = q−2sΓ(2s)ζ(2s), Γ(2s) = (1− q−2s)−1, and ζ(2s) = (1− q1−2s)−1.

Proof. One sees from the preceding lemma that Es can be analytically continued
with a simple pole at s = 1. Then one sees that for any s 6= 1 and any z =(
Tm 0
0 T−m

)
, m ≥ 0, we have

Es(z) = b0(Tm, s) =
g(1− s)
g(s)

b0(Tm, 1− s) =
g(1− s)
g(s)

E1−s(z).

Since Es and g(1−s)
g(s) E1−s are equal on a fundamental domain, they are equal on all

of H. �

§5. Weight 1/2 Eisenstein Series. For <s > 1, set

Ẽs(z) =
∑

δ∈Γ∞\Γ

γ(Imδz)
θ(z)
θ(δz)

|Imδz|2s.

(Recall that θ(z)
θ(δz) = ±1.) Then from Proposition 2.11 of [H-R] we have
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Lemma 4. Ẽs(z) =
∑
β′∈A b̃β′(y, s)e{T 2βx} where

b̃0(y, s) = γ(y)|y|2s +
q(1− q1−4s)
(1− q3−4s)

γ(y)|y|2−2s

and for β′ 6= 0 with T 2β′y = βy2 ∈ O∞, we define b̃′β(y, s) as follows. Write

β′ = β0β
2
1 where β0 is square-free. For δ ∈ A monic, let χ

β0
(δ) =

(
β0
δ

)
εdegδ where

ε =
{
γ(T )k if k is even,
γ(T )k−1 if k is odd;

set
a(s, β′) =

∑
δ1δ2|β1

δ1,δ2 monic

χ
β0

(δ1)µ(δ1)|δ1|
1
2−2s|δ2|2−4s.

Let W = W (0) be the Whittaker function (defined in Proposition 2.11 of [H-R]); so
with n′ = −degβy2 and η = ±1 according to whether the lead coefficient of β is a
square,

W (βy2) =



(1+ηq
1
2−2s)

(1−q2−4s)

[
(1− q2(n′+1)(1−2s))− ηq 1

2−2s(1− q2n′(1−2s))
]

if n′ is even,
(1−q1−4s)
(1−q2−4s) (1− q2(n′+1)(1−2s))

if n′ is odd.

Then b̃β(y, s) = γ(y)|y|2−2sq2−4sL(2s − 1
2 , χβ0

)a(s, β′)W (βy2)(1 − q1−4s)−1. Fur-

thermore, Ẽs can be analytically continued with a pole at s = 3/4 and satisfies the
functional equation

g̃(s)Ẽs = g̃(1− s)Ẽ1−s

where g̃(s) = q1−4sΓ(4s−1)ζ(4s−1), Γ(s) = (1−q−2s)−1, and ζ(s) = (1−q1−2s)−1.

§6. Mellin Transform and Poincare Series. Let ψ : K×∞/O∞
× → C have

finite support; extend ψ to be a function on K×∞. We define the Mellin transform
of ψ, Mψ : C→ C, by

Mψ(s) =
∫
K
×
∞

ψ(y) |y|2sd×y

where d×y denotes multiplicative Haar measure normalized so that
∫
O×∞ d×y = 1.
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Lemma 5. Let ψ be as above.
(a) Mψ(s) =

∑
m∈Z ψ(Tm)q2ms.

(b) (Inverse Mellin transform) Let C denote the complex plane contour given by
s = σ + it, 0 ≤ t ≤ π

ln q with σ > 1 fixed. With u = q−2s and y ∈ K×∞,

ψ(y) =
1

2πi

∫
C

Mψ(−s) |y|2s du
u
.

Proof. The equality stated in (a) follows immediately from the equality∫
K
×
∞

ψ(y) |y|2sd×y =
∑
m∈Z

ψ(Tm)q2ms

∫
TmO×∞

d×y.

To establish the equality stated in (b), we let n = degy. Then, recalling that ψ is
finitely supported, we have

1
2πi

∫
C

Mψ(−s) |y|2s du
u

=
∑
m∈Z

ψ(Tm) · 1
2πi

∫
C

um−n
du
u

= ψ(Tn) = ψ(y). �

With ψ as above, we define the weight 0 Poincare series Pψ : H→ C by

Pψ(z) =
∑

δ∈Γ∞\Γ

ψ(Imδz),

and we define the weight 1/2 Poincare series P̃ψ : H→ C by

P̃ψ(z) =
∑

δ∈Γ∞\Γ

γ(Imδz)
θ(z)
θ(δz)

· ψ(Imδz).

Thus for δ ∈ Γ, Pψ(δz) = Pψ(z) and P̃ψ(δz) = θ(δz)
θ(z) P̃ψ(z). (Again, recall that

θ(δz)
θ(z) = ±1.)

Theorem 2. For j ≥ 0, define ψj : K×∞/O∞
× → C by ψj(Tm) =

{
1 if j = m,
0 otherwise.

(a) (Weight 0 case) Pψj(z) =
∑

β′∈A
degβ′≤2m−2

aj,β′(y)e{T 2β′x} where

aj,0(T−m) =



1 if −m = j > 0,
q + 1 if m = j = 0,
q1−2m if m = j > 0,
q−2j−1(q2 − 1) if m > j,
0 otherwise,
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and for β′ ∈ A with β′ 6= 0 and degβ′ ≤ 2m− 2,

aj,β′(T−m) = q−m−j
(
qτm−j(β′)− τm−1−j(β′)− qτm−1+j(β′) + τm+j(β′)

)
.

Here τ`(β′) = #{monic α|β′ : degα = ` }. (Note that aj,β′(T−m) = 0 if
j > m.) Furthermore, if f is any weight 0 automorphic form then

f(z) =
∑
j≥0

c0(f, T j)
aj,0(T j)

Pψj(z)

where c0(f, ∗) denotes the 0th Fourier coefficient of f .

(b) (Weight 1/2 case) P̃ψj(z) =
∑
β′∈A ãj,β′(y)e{T 2β′x} where

ãj,0(T−m) =



γ(Tm) if −m = j > 0,
q + 1 if m = j = 0,
γ(Tm)q−(m+3j)/2−1(q2 − 1) if m > j and m− j is even,
γ(Tm)q1−2m if m = j,
0 otherwise,

and for β′ ∈ A with β′ 6= 0 and degβ ≤ 2m− 2,

ãj,β′(T−m) = γ(Tm)q1−(3m+j)/2

·
(
Rm−j(β′)−Rm−2−j(β′)− q1−jRm−1+j(β′) + q−1−jRm+j(β′)

)
.

Here

S`(β′) =
∑

degα=`

(
β0

α

)(
−1
q

)`
,

T`(β′) =
∑

δ′δ2|β2
1

degδ′δ2=`

qdegδ

(
β0

δ′

)
µ(δ′),

R`(β′) =
∑̀
r=0

S`−r(β′)Tr(β′)

where α, δ, and δ′ are monic polynomials in A and µ denotes the Möbius
function. (Note that aj,β′(T−m) = 0 if j > m.) Furthermore, if f is any
weight 1/2 automorphic form then

f(z) =
∑
j≥0

c0(f, T j)
ãj,0(T j)

P̃ψj(z)
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where c0(f, ∗) denotes the 0th Fourier coefficient of f .

Proof. Say ψ : K×∞/O∞
× → C has finite support. Using inverse Mellin transform

(with u = q−2s), we see

Pψ(z) =
∑

δ∈Γ∞\Γ

1
2πi

∫
C

Mψ(−s)|Imδz|2s du
u

and since for any z ∈ H there are finitely many δ ∈ Γ∞\Γ with Imδz ∈supportψ,

Pψ(z) =
1

2πi

∫
C

Mψ(−s)
∑

δ∈Γ∞\Γ

|Imδz|2s du
u

=
1

2πi

∫
C

Mψ(−s)Es(z)
du
u
.

For fixed z =
(
y xy−1

0 y−1

)
we know Pψ(z) and Es(z) are given by finite Fourier

series (recall that cβ′(f, y) = 0 whenever T 2β′y2 6∈ O∞) so

Pψ(z) =
∑
β′∈A

(
1

2πi

∫
C

Mψ(−s)bβ′(y, s)
du
u

)
e{T 2β′x}.

Now, Mψj(−s) = uj so with the preceding lemma it is trivial to compute aj,β′ .
Let f : H→ C be a weight 0 automorphic form; write f(z) =

∑
cβ′(y)e{T 2β′x}.

Then for each z =
(
Tm 0
0 T−m

)
, m ≥ 0,

f(z) =
∑
j≥0

c0(f, T j)
aj,0(T j)

Pψj(z).

For each z ∈ H, the sum on j is actually finite. Hence
∑
j≥0

c0(f,T j)
aj,0(T j) Pψj(z) con-

verges and defines a weight 0 automorphic form that agrees with f on a fundamental
domain, so it must equal f .

The case where the weight is 1/2 is analogous; we first rewrite the Fourier co-
efficients of the Eisenstein series by making use of its functional equation. Let
F (s, β′) = Fs(β′) = L(s, χ

β0
)a(s, β′). Write β′ = β0β

2
1 where β0 is square-free. For

degβ′ odd,

F

(
2s− 1

2
, β′
)

= (qu)degβ′−1 · F
(

2(1− s)− 1
2
, β′
)
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and for degβ′ even,

F

(
2s− 1

2
, β′
)

= (qu)degβ′−2 (1− ηq1/2−2s)
(1− ηq−3/4+2s)

· F
(

2(1− s)− 1
2
, β′
)

where v ∈ F is the lead coefficient of β′ and η = sgn(−v) where sgn(−v) = ±1,
according to whether −v is a square in F. Note that F (s, β′) =

∑
`≥0R`(β

′)q`s,

and R`(β′) = 0 when ` > degβ′. Consequently, for β′ 6= 0 with T 2β′y2 ∈ O∞,

b̃′β(y, s) = γ(y)(1− q1−4s) ·
∑
t≥0

Rt(β′)
(
q1−2m+t/2−2s(t−m) − q−1−3t/2−2s(m−t−2)

)
.

Now we proceed as in the weight 0 case. �

As an application, we consider sums of squares. Notice that for k ≥ 2,

θk(z) = γk(y)|y|k/2
∑
α∈A

rk(α,m) e{αT 2x}

where −m = degy and

rk(α,m) = #{(α1, . . . , αk) : αi ∈ A, degαi < m,
∑
i

α2
i = α }.

Applying the preceding theorem, we immediately get

Corollary 2. Fix k,m ∈ Z+ with k ≥ 2. Let ε =
{
γ(T )k if k is even,
γ(T )k−1 if k is odd.

Then for α 6= 0 and m > degα,

rk(α,m) =

{
qm(k−2)+1(1− εq−k/2)σ1−k/2(α, ε) if k is even,

qm(k−2)+1(1− q1−k)F(k−1)/2(α, ε) if k is odd

where

σs(α, ε) =
∑

monic α′|α

(εqs)degα′ =
∑
j≥0

εjτj(α)qjs

and

Fs(α, ε) =
∑
j≥0

εjRj(α)q−js.
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For α ∈ A, α 6= 0, with m ≤ degα ≤ 2m− 2,

rk(α,m) =


qm(k−2)+1(1− εq−k/2)

∑m−1
j=0 εjqj(1−k/2)

(
τj(α)− τ2m−1−j(α)

)
if k is even,

qm(k−2)+1(1− q1−k)
∑m−2
j=0 εjqj(1−k)

(
Rj(α)− qj+2−mR2m−2−j(α)

)
if k is odd

where Rj(α) is defined in the preceding theorem. Finally,

rk(0,m) =



qm(k−2)+1 + εmq
mk
2 −1(q − 1)

+q
mk
2 −1 · (q2−1)(εm+1q

k
2−2−qm( k2−2))

1−εqk/2−2 if 2|k, k 6= 4,

qm(k−2)+1 + (q − 1)q
m(k−1)

2 −1

+q
m(k−1)

2 −1 · (q2−1)(qk−3−q
m(k−3)

2 )
1−qk−3 if 2 - k, k 6= 3, 2|m,

γk(T )qm(k−2)+1

+γk(T )q
m(k−1)

2 −1 (q2−1)(q
(k−3)

2 −q
m(k−3)

2 )
1−qk−3 if k 6= 3, 2 - km,

q2m + q2m−1m(q2 − 1) if k = 4,

qm + qm−1m( q
2−1
2 ) if k = 3, 2|m,

γ(T )(qm+2 + qm−1( (m−1)(q2−1)
2 ) if k = 3, 2 - m.

Proof. Write θk(z) =
∑
β′∈A cβ′(θ

k, y)e{T 2β′x}. We know that for any z ∈ H,

θk(z) =

{ ∑
j≥0

(
c0(θk, T j)/aj,0(T j)

)
Pψj(z) if k is even,∑

j≥0

(
c0(θk, T j)/ãj,0(T j)

)
P̃ψj(z) if k is odd.

Also, for fixed z ∈ H,

Pψj(z) =
∑
β′∈A

degβ′≤−2degy−2

aj,β′(y)e{T 2β′x} and P̃ψj(z) =
∑
β′∈A

degβ′≤−2degy−2

ãj,β′(y)e{T 2β′x}.

Thus

cβ′(θk, y) =

{ ∑−2degy
j=0

(
c0(θk, T j)/aj,0(T j)

)
aj,β(y) if k is even,∑−2degy

j=0

(
c0(θk, T j)/ãj,0(T j)

)
ãj,β(y) if k is odd.

Note that for j ≥ 0 and k even,

c0(θk, T j)
aj,0(T j)

=

{
1
q+1 if j = 0,

εjqjk/2 if j > 0.
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Similarly, for j ≥ 0 and k odd,

c0(θk, T j)
ãj,0(T j)

=

{
1
q+1 if j = 0,

εjqjk/2 if j > 0.

The theorem now easily follows by using the formulas for the aj,β′ and the ãj,β′ . �

Specializing to the case k = 4 and α irreducible or an element of F, we see
that the restricted representation number is nonzero for any m > 1

2degα; since the
product of two sums of four squares is again a sum of four squares, we obtain the
following analogue of the classical result on sums of four squares.

Corollary 3. For any α ∈ A and m > 1
2degα, rk(α,m) 6= 0.

§7. Spectral Decomposition. Since it is not clear whether rk(α,m) 6= 0
when m ≤ degα < 2m− 1 and k ≥ 3, we use spectral decomposition to show that
rk(α,m) is (essentially) asymptotic to the Fourier coefficients of the Eisenstein
series Ek/4(z) as degα→∞. (When k = 3 or 4, we need to remove the singularity
from the Eisenstein series to get this result.)

To develop the spectral decomposition, we follow classical arguments (see, for
example, Theorem 1 in §3.7 of [T]).

Suppose f, g : H→ C such that for all δ ∈ Γ,

f(δz)
f(z)

=
(
θ(δz)
θ(z)

)k
=
g(δz)
g(z)

,

where k ∈ Z+. Then we define

〈
f, g
〉

=
∫

Γ\H
f(z)g(z)dµ(z)

where dµ is the measure on Γ\H giving the γ-orbit of z =
(
Tm 0
0 T−m

)
(m ≥ 0)

pointmass

q(q − 1)
|StabΓz|

=

{
1
q+1 if m = 0,

q−2m if m > 0.

Lemma 6. Let ψ : K×∞/O∞
× → C have finite support; extend ψ in the natural

way to a function on K×∞. Then

〈
Pψ,Es

〉
= Mψ(s− 1) +

g(1− s)
g(s)

Mψ(−s)
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and 〈
P̃ψ, Ẽs

〉
= Mψ(s− 1) +

g̃(1− s)
g̃(s)

Mψ(−s).

Here g(s), g̃(s) are as defined in Corollary 1 and Lemma 4.

Proof. We have

〈
Pψ,Es

〉
=
∫

Γ\H

∑
δ∈Γ∞\Γ

ψ(Imδz)Es(z)dµ(z)

=
∫

Γ\H

∑
δ∈Γ∞\Γ

ψ(Imδz)Es(δz)dµ(z).

Since |StabΓz| < ∞ for each z ∈ H and ψ(Imz) 6= 0 for only finitely many z ∈
Γ∞\H, there are finitely many pairs z ∈ Γ\H, δ ∈ Γ∞\Γ with ψ(Imδz) 6= 0; thus

〈
Pψ,Es

〉
=

∑
δ∈Γ∞\Γ

∫
δD
ψ(Imz)Es(z)dµ(z)

where D =
{(

Tm 0
0 T−m

)
: m ≥ 0

}
is a fundamental domain for Γ\H. For

z ∈ H with |Imz| < 1 there are elements of Γ − Γ∞ that stabilize z; so for such z,
z ∈ δD for several choices of δ ∈ Γ∞\Γ. Thus we define dν to be the measure on

Γ∞\H giving the Γ∞-orbit of z =
(
Tm 0
0 T−m

)
pointmass

q(q − 1)
|StabΓ∞z|

=
{
q if m < 0,
q−2m if m ≥ 0.

(So we multiply the µ-pointmass of z by |StabΓz|
|StabΓ∞z|

= |StabΓ∞\Γ(z)|.) Hence

〈
Pψ,Es

〉
=
∫

Γ∞\H
ψ(Imz)Es(z)dν(z)

=
∑
m≥0

ψ(Tm)q−2mEs

(
Tm 0
0 T−m

)

+ q ·
∑
m<0

ψ(Tm)
∑

x∈T 2m−1A∩P∞

Es

(
Tm xT−m

0 T−m

)
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and recognizing the sum on x as Fourier transform,

〈
Pψ,Es

〉
=
∑
m∈Z

ψ(Tm)q−2mb0(Tm, s)

= Mψ(s− 1) +
g(1− s)
g(s)

Mψ(−s).

Similarly one computes
〈
P̃ψ, Ẽs

〉
. �

Lemma 7.
〈
Pψ, 1

〉
= Mψ(−1) and

〈
P̃ψ, θ

〉
= Mψ(−3/4).

Proof. This is similar to the proof of the preceding lemma.〈
Pψ, 1

〉
=
∫

Γ\H

∑
δ∈Γ∞\Γ

ψ(Imδz)dµ(z)

=
∫

Γ∞\H
ψ(Imz)dµ(z)

=
∑
m∈Z

ψ(Tm)q−2m.

Similarly,

〈
P̃ψ, θ

〉
=
∫

Γ\H

∑
δ∈Γ∞\Γ

γ(Imδz)
θ(z)
θ(δz)

ψ(Imδz)θ(z)dµ(z)

and since θ(z)
θ(δz) = ±1,

〈
P̃ψ, θ

〉
=
∫

Γ\H

∑
δ∈Γ∞\Γ

γ(Imδz)dµ(z)ψ(Imδz)θ(δz)dµ(z)

=
∫

Γ∞\H
γ(Imz)ψ(Imz)θ(z)dµ(z)

=
∑
m∈Z

γ(Tm)ψ(Tm)c0(θ, Tm)q−2m

=
∑
m∈Z

ψ(Tm)q−3m/2. �
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Theorem 3. Let C be the contour s = 1/2 + it, 0 ≤ t < π/ ln q. With u = q−2s,

Pψ(z) =
1

4πi

∫
C

〈
Pψ,Es

〉
Es(z)du +

〈
Pψ, 1

〉
Ress=1Es(z)

and

P̃ψ(z) =
1

4πi

∫
C

〈
P̃ψ, Ẽs

〉
Ẽsdu +

〈
P̃ψ, θ

〉
Ress=3/4Ẽs.

Proof. Let C′ be the contour s = σ + it, 0 ≤ t < π/ ln q with σ > 1 fixed. Then
using inverse Mellin transform,

Pψ(z) =
∑

δ∈Γ∞\Γ

1
2πi

∫
C′
Mψ(−s)|Imδz|2s du

u

=
1

2πi

∫
C′
Mψ(−s)Es(z)

du

u
.

Now move the contour from C′ to C, running over the pole of Es at s = 1. Thus

Pψ(z) =
1

2πi

∫
C
Mψ(−s)Es(z)

du

u
+Mψ(−1)Ress=1Es(z).

The functional equation of Es gives us∫
C
Mψ(−s)Es(z)

du

u
=

1
2

∫
C
Mψ(−s)

(
Es(z) +

g(1− s)
g(s)

E1−s(z)
)
du

u

and replacing s by 1− s in the second part of the integral ,

∫
C
Mψ(−s)Es(z)

du

u
=

1
2

∫
C

(
Mψ(−s) +

g(s)
g(1− s)

Mψ(1− s)
)
Es(z)

du

u
.

(Note that s 7→ 1− s takes C onto C, reversing orientation.) Noting that s = 1− s
yields the result. A similar computation holds for P̃ψ. �

Standard arguments now yield

Corollary 4. For f ∈ L2(Γ\H) an automorphic form of weight 0,

f(z) =
1

4πi

∫
c

〈
f,Es

〉
Es(z)

du

u
+
〈
f, 1
〉
Ress=1Es(z).
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For f ∈ L2(Γ\H) an automorphic form of weight 1/2,

f(z) =
1

4πi

∫
c

〈
f, Ẽs

〉
Ẽs(z)

du

u
+
〈
f, θ
〉
Ress=3/4Ẽs(z).

When k ≥ 5, the difference between θk and the Eisenstein series at s = k/4 is
an L2-function. However, when k = 3 or 4 the Eisenstein series has a removable
singularity at s = k/4. Thus we let R = lims→1(1− q2−2s)Es and set

E′ = lim
s→1

(
Es −

1
1− q2−2s

R

)
.

Similarly, we let R̃ = lims→3/4(1− q3−4s)Ẽs and set

Ẽ′ = lim
s→3/4

(
Es −

1
1− q3−4s

R̃

)
.

For k ≥ 5, we set

f(z) =

{
θk(z)− γk(Imz)Ek/4(z) if k is even,

θk(z)− γk−1(Imz)Ẽk/4(z) if k is odd.

When k = 4 we set f(z) = θ4(z) − E′(z) and when k = 3 we set f(z) = θ3(z) −
γ2(Imz)Ẽ′(z). Thus f is an automorphic form of weight 0 or 1/2, and one easily
sees that f is L2.

Lemma 8. Set

ε =
{
γk(T ) if k is even,
γk−1(T ) if k is odd.

When k is even, k ≥ 4,

〈
f,Es

〉
=
εq1+k/2−2s(1− q1−2s)(1− q−k/2)(1 + εq1−k/2)(1− εq2−k/2)

(1− q2−2s)(1− εqk/2−2s)(1− εq2−k/2−2s)(1− q2−k/2)
.

(To evaluate this when k = 4, one first considers the case that ε = 1 and reduces

(1− εq2−k/2)/(1− q2−k/2) to 1; then one sets k = 4.) When k is odd, k ≥ 3,

〈
f, Ẽs

〉
=

q1+k/2−2s(1− q2−4s)(1− q1−k)
(1− q3−4s)(1− qk/2−2s)(1− q2−k/2−2s)

.
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Proof. When k is even,
〈
f,Es

〉
= 1

q+1c0(f, T 0)b0(T 0, s)+
∑
m≥1 q

−2mc0(f, Tm)b0(Tm, s)

where c0 denotes the 0th coefficient of f and b0 that of Es. Note that when k = 4,
m ≥ 0,

c0(f, Tm) = m− m+ 1
q2

,

and when k ≥ 6 with k even,

c0(f, Tm) =
−εmq1+m(2−k/2)(1− q−k/2)

(1− q2−k/2)
.

Similarly, when k = 3, m ≥ 0,

c0(f, Tm) = εm
(
m

2
qm/2 − m+ 2

2q

)
,

and when k ≥ 5 with k odd,

c0(f, Tm) =
−εmγ(Tm)q1+m(2−k/2)(1− q1−k)

(1− q3−k)
.

The lemma easily follows. �

In Corollary 2 we found precise formulas for rk(α,m). We now show that, as in
the classical case, rk(α,m) is asymptotic to the Fourier coefficient of the Eisenstein
series (with the singularity removed in the case k = 3 or 4). This yields another
proof that, at least for m sufficiently large, the restricted representation numbers
are nonzero for any m > 1

2degα.

Theorem 4. For α a square-free element of A, k ≥ 3, and m ≥ 0 so that n =
degα ≤ 2m− 2,

rk(α,m) =
{
qmk/2bT 2α(T−m, k/4) +O(qm(k/2−1)4m) if k is even,

εmqmk/2b̃T−m(T 2α, k/4) +O(qm(k/2−1)4m) if k is odd.

In particular, except for q = 3 when k = 3 or 4, rk(α,m) 6= 0 for m sufficiently
large.

Proof. Let β = β′T 2 where β′ ∈ A has degree n. For k even and <s = 1/2,

∣∣〈f,Es〉∣∣ ≤ 2q(1 + εq1−k)(1− εq2−k/2)
(q − 1)(1− q1−k/2)(1− q2−k/2)

.
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Also, ∣∣bβ(T−m, k/4)
∣∣ ≥ q1+m(k/2−2)(1− q−k/2)(1− q1−k/2)σ1−k/2(β′).

Except when q = 3 and k = 4,∣∣bβ(T−m, k/4)
∣∣ > ∣∣cβ(T−m)

∣∣
whenever m is large enough.

Now consider k odd; suppose β′ is square-free. Then for k odd and <s = 1/2,

∣∣〈f, Ẽs〉∣∣ ≤ 2q(1− q1−k)
(q − 1)(1− q1−k/2)2

.

Using the Riemann hypothesis over function fields, we have

L

(
4s− 1

2
, χβ′

)
= (1− ηq1/2−2s)

D∏
i=1

(1− αiq1/2−2s)

where η = ±1, D = n − 2 if n is even and D = n − 1 if n is odd, and |αi| = q1/2.
Thus

∣∣L(4s− 1
2

, χβ′

) ∣∣ ≤ { (1 + q1−2s)n−2(1 + q1/2−2s) if n is even,
(1 + q1−2s)n−1 if n is odd

and

∣∣L(4s− 1
2

, χβ′

) ∣∣ ≥ { (1− q1/2−2s)(1− q1 − 2s)n−2 if n is even,
(1− q1−2s)n−1 if n is odd.

So for <s = t ≥ 1/2,

(1− q1/2−2t)(1− q1−2t)n−2 ≤
∣∣L(4s− 1

2
, χβ′

) ∣∣ ≤ (1 + q1/2−2t)(1− q1−2t)n−2

when n is even and

(1− q1−2t)n−1 ≤
∣∣L(4s− 1

2
, χβ′

) ∣∣ ≤ (1− q1−2t)n−1

when n is odd. Also,

(1− q−1)2 ≤
∣∣W (β′y2)(1− q2−4s)

∣∣ ≤ 2(1 + q−1/2)2
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when n is even, and

(1− q−2) ≤
∣∣W (β′y2)(1− q2−4s)

∣∣ ≤ 2(1 + q−1)

when n is odd. Hence

∣∣ 1
4πi

∫
C

〈
f, Ẽs

〉
bβ(y, s)

du

u

∣∣ ≤


2n−2q1−m(1+q1−k)(1+q−1/2)2(1+q1−k/2)
(1−q1−k/2)(1−q−1/2)

if n is even,

2n−2q1−m(1+q1−k)(1+q1−k/2)
(1−q1−k/2)

if n is odd.

Also, for s = k/4, k ≥ 3,∣∣bβ(y, k/4)
∣∣

≥
{
q1+m(k/2−2)(1− q1/2−k/2)(1− q1−k/2)n−2(1− q−1)2 if n is even,

q1+m(k/2−2)(1− q1−k/2)n−1(1− q−2) if n is odd,

≥
{
q1+m(k/2−2)(1− q−1)3(1− q−1/2)n−2 if n is even,

q1+m(k/2−2)(1− q−2)(1− q−1/2)n−1 if n is odd.

(Note that for k = 3, bβ(y, 3/4) is the β coefficient of Ẽ′ since β′ is square-free.) So

except when k = 3 and q = 3, rk(β′,m) = qmk/2cβ(T−m, k/4) 6= 0 for m sufficiently
large. �
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