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Abstract. Gauss proved a reciprocity theorem, showing the number of times a

ternary positive definite Z-lattice L primitively represents a positive integer d is
equal to the number of times the dual of L primitively represents binary quadratic

forms of discriminant d/ discL. In this note we extend this theorem to lattices of

arbitrary rank over the ring of integers O of a number field K, equipped with either
a positive definite or an indefinite quadratic form.

1. Introduction

In Arts. 278-292 [5], Gauss proved a reciprocity between the number of times a
positive definite ternary quadratic form with matrix Q primitively represents an in-
teger d and the number of times Q−1 primitively represents a binary quadratic form
of discriminant d/detQ. In 1949, Jones [7] and Pall [9] independently published
articles using matrix arguments to examine primitive representations of arbitrary
quadratic forms over Z; among other things, they recover Gauss’ result. In 1987,
Arenas [2] gave a new proof of Gauss’ result using exterior algebras. (See also
[11], where the author discusses reducing the number of variables in an equation
describing primitive representations of one quadratic form by another.)

The purpose of this note is to provide an elementary proof of Gauss’ theorem
and its generalisation to arbitrary rank lattices, over Z and over the ring of integers
of a number field, allowing both positive definite and indefinite quadratic forms.
Our argument utilises dual bases, which we believe makes transparent the duality
of Gauss’ theorem.

It should be noted that this result can surely be derived from Siegel’s deep and
beautiful results that give average representation numbers (or, in the indefinite
case, measures of representations) as products of local densities [10].

What we prove herein is as follows (precise definitions and a precise statement
of the theorem are given below). Let L be a rank m lattice over the ring of integers
of a number field, equipped with a non-degenerate quadratic form Q. When the
number field is Q and Q is positive definite, we show that the number of times L
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primitively represents rank n sublattices of discriminant d is the number of times
the dual of L primitively represents rank m−n sublattices of discriminant d/ discL
(n < m). When Q is indefinite, we prove the analogous result for “measures” of
the representations. For an arbitrary number field, the same results hold with the
discriminant of a lattice replaced by its volume. As an application, we show that
with L,K two rank 2k positive definite Z-lattices with discL = discK, the degree
n Koecher-Maass series for L and K are equal if and only if the degree 2k − n
Koecher-Maass series for the duals of L and K are equal (n < 2k).

The reader is referred to [8] for basic theory of quadratic forms, and to [1] and
[4] for basic theory of Siegel modular forms.

The author thanks Trevor Wooley for the heuristic used to count primitive rep-
resentations by L “in a box” in the case that Q is indefinite.

2. Definitions and statements of results

Let K be a number field with ring of integers O, and let L be a lattice on
a dimension m quadratic space V with quadratic form Q. The discriminant of
V = Kvv + · · ·+ Kvm equipped with a quadratic form Q is

disc(v1, . . . , vm) = det(B(vi, vj))

where B is the symmetric bilinear form associated to Q so that B(x, x) = Q(x) (so
discV is well-defined up to squares of non-zero elements of K). The discriminant

of a rank m free lattice Ov1 + · · · +Ovm is disc(v1, . . . , vm) (so it is well-defined
up to squares of units of O). In general, our lattices may not be free over O, but
a lattice L does have a decomposition L = A1v1 ⊕ · · · ⊕ Amvm for some fractional
ideals Ai and vectors vi so that (v1, . . . , vm) is a basis for V ; we define the volume
of L to be volL = (A1 · · · Am)2 disc(v1, . . . , vm). We consider here only regular
lattices L, meaning that volL 6= 0, or equivalently, discV 6= 0, and we define
L# = {v ∈ V : B(v, L) ⊆ O }.

We say that a sublattice J is a primitive sublattice of L, or that L primitively
represents J , if KJ ∩ L = J (or equivalently, if J is a direct summand of L).

Say Q is positive definite; when K = Q, we let

r∗n(L, d) = # {primitive sublattices J of L : rankJ = n, discJ = d } .

More generally, for any number field K and I a fractional ideal, let

r∗n(L, I) = # {primitive sublattices J of L : rankJ = n, volJ = I } .

When Q is indefinite and K = Q, we set

r∗n(L, d; t) = #
{

primitive sublattices J of L : rankJ = n,

discQJ = d, discRJ ≤ t
√

discRL
}



ON A RECIPROCITY THEOREM OF GAUSS 3

where R is a majorant of Q, t > 0. (So R is a positive definite quadratic form so
that, associating R and Q to matrices relative to a basis for V , R−1QR−1 = Q−1.)
Then we set

r∗n(L, d) = lim
t→∞

t1−m/2r∗n(L, d; t).

More generally, for any number field K and fractional ideal I, we set

r∗n(L, I; t) = #
{

primitive sublattices J of L : rankJ = n,

volQJ = I, N(volRJ) ≤ t
√
N(volRL)

}
where N denotes the norm from K to Q, and we set

r∗n(L, I) = lim
t→∞

t1−m/2r∗n(L, I; t).

Theorem. Let L be a rank m lattice on V with quadratic form Q so that discV 6=
0. When K = Q and d ∈ Q, d 6= 0,

r∗n(L, d) = r∗m−n(L#, d/ discL)

for any n with 0 < n < m. More generally, for K any number field and I a
fractional ideal,

r∗n(L, I) = r∗m−n(L#, I/volL).

This implies the following.

Corollary. Let L,K be positive definite Z-lattices with the same discriminant and
even rank 2k. Then for 1 ≤ n < 2k,

ζn(L, s) = ζn(K, s) ⇐⇒ ζ2k−n(L#, s) = ζ2k−n(K#, s).

If L,K are unimodular, this says ζn(L, s) = ζn(K, s) for all n < 2k if ζn(L, s) =
ζn(K, s) for all n ≤ k.

Remarks.
(1) For general K, we can replace volumes by ideles of local discriminants in the

above theorem.
(2) In our definition of r∗n(L, I; t) we bound N(volRJ) by t

√
N(volRL) rather

than by t to reflect the number of lattice points of L in a box of a given
size. For example, if K = Q and K is a sublattice of L with index d, then
a fundamental parallelopiped of K contains d fundamental parallelopipeds of
L, and discK = d2 · discL.

(3) When Q is indefinite, we expect r∗n(L, I; t) � tm/2−1 (meaning r∗n(L, I; t) �
tm/2−1 and r∗n(L, I; t) � tm/2−1) based on the following heuristic (due to
Trevor Wooley): Say K = Q, and let R be a majorant for Q. Then with
C = (xij) an m×n matrix of indeterminates, det( tCRC) is a positive definite



4 LYNNE H. WALLING

polynomial in mn variables of degree 2n (each term in the n×n determinant
is quadratic). Then if

det( tCRC) ≤ t,

one expects that the variables are each typically of size � t1/(2n), and are
otherwise unrestricted.

The polynomial det( tCQC)− d has degree 2n and has mn variables, each typ-
ically of size � t1/(2n). Provided that this equation det( tCQC) − d is not highly
singular, one expects by Birch’s work on the circle method [3] that the number of
solutions will be

� c(t1/(2n))mn−2n

where c is given by a product of local densities. (Here we note that Birch’s theorem
becomes applicable once the codimension of the singular locus exceeds n22n+1,
which in present circumstances would demand that m > 22n+1. However, the
conclusion is expected to hold true under much milder conditions on m.) Then if
the equation possesses non-singular real and p-adic solutions for each prime p, the
number of solutions of the system is expected to be

� tm/2−1.

Notice that there may be an average of divisor functions hidden in this argument,
and this has the potential to generate a power of log t in the heuristic formula.

(4) Conjecturally, the measure r∗n(L, I) is independent of the choice of majorant
R. Proposition 4.3 of [6] shows that when n = 1 and K = Q,

r(L, d) = lim
t→∞

t1−m/2 ·#{x ∈ L : Q(x) = d, R(x) ≤ t }

is independent of the choice of majorant, and hence r∗1(L, d) is as well; the
proof involves having explicit knowledge of Fourier coefficients of nonholomor-
phic Eisenstein series.

3. Proofs

Proof of Theorem. Suppose J is a rank n sublattice of L so that volJ 6= 0 and
KJ ∩ L = J . Let v1, . . . , vn be a basis for KJ ; extend this to a basis v1, . . . , vm

for V = KL. By 81:3 of [8], there are xi ∈ Kv1 + · · · + Kvi, and fractional ideals
Ai so that L = A1x1 + · · ·+Amxm. Note that A1x1 + · · ·+Anxn = KJ ∩ L = J
(since Kx1 + · · ·+ Kxn = KJ). Let y1, . . . , ym be the basis dual to x1, . . . , xm. So
B(xi, yj) = δij , and

L# = A−1
1 y1 + · · ·+A−1

m ym.

Set M = A−1
n+1yn+1 + · · · + A−1

m ym and K = J + M . Since volJ 6= 0 and M =
KJ⊥ ∩ L#, we have K = J ⊥M and so volK = volJ · volM .

Now write xi =
∑

j aijyj . Let A be the n× n matrix with i, j-entry aij ; so

(x1 · · ·xn yn+1 · · · ym) = (y1 · · · ym)
(
A 0
∗ I

)
.
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The matrix (B(xi, xj)) takes (y1 . . . ym) to (x1 . . . xm); so A is the upper left n× n
block of this matrix and hence detA = disc(x1, . . . , xn). Also,

volK = (A1 · · · AnA−1
n+1 · · · A−1

m )2 · disc(x1, . . . , xn, yn+1, . . . , ym)

= (A1 · · · AnA−1
n+1 · · · A−1

m )2 · (detA)2 · disc(y1, . . . , ym)

= (A1 . . .An)4 · (detA)2 · volL#.

We have volJ = (A1 · · · An)2 · detA, so volK = (volJ)2volL# and hence

volM = volJ · volL# = volJ/volL.

Observe that the primitive rank n sublattices J of L with volJ = I are in one-
to-one correspondence with the primitive rank m − n sublattices M of L# with
volM = I/volL via the relation M = KJ⊥ ∩ L#, J = KM⊥ ∩ L.

When Q is positive definite, we know the representation numbers attached to
isometry classes are finite, and the number of isometry classes of a given volume is
finite; this proves the theorem in this case.

So say Q is indefinite; take R a majorant for Q (so R is positive definite, and asso-
ciating Q and R with matrices relative to x1, . . . , xm, RQ−1R = Q). Let y′1, . . . , y

′
m

be a basis dual to x1, . . . , xm relative to R. So (y′1, . . . , y
′
m) = (x1, . . . , xm)R;

thus as above, with M ′ = A−1
n+1y

′
n+1 + · · · + A−1

m y′m, volRM ′ = volRJ/volRL.
On the other hand, (B(yi, yj)) = Q−1RQ−1 = R−1 = (B(y′i, y

′
j)). In particular,

this means disc(y′n+1, . . . , y
′
m) = disc(yn+1, . . . , ym) and so volRM = volRM ′ =

volRJ/volRL. Consequently r∗n(L, I; t) = r∗m−n(L#, I/volQL; t) for all t > 0, and
thus r∗n(L, I) = r∗m−n(L#, I/volQL).

The same argument holds with volumes replaced by (ideles of local) discrimi-
nants. �

Proof of Corollary. The theta series of degree n attached to L is

θn(L; τ) =
∑

C∈Z2k,n

exp(πiTr( tCDCτ))

where D = (B(xi, xj)) is a matrix for Q on L, and τ is in the degree n Siegel upper
half-plane. Thus

θn(L; τ) =
∑
T

r(D,T ) exp(πiTr(Tτ)),

T varying over n× n positive semi-definite symmetric matrices and

r(D,T ) = #{C ∈ Z2k,n : tCDC = T }.

Particularly when Q(L) ⊆ 2Z, this theta series is one of the prototypical examples
of a degree n Siegel modular form of weight m/2 and some level N and character
χ. The Koecher-Maass series for θn(L; τ) is

ζn(L; s) =
∑
T

r(D,detT )
o(T )

(detT )−s
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where T varies over GLn(Z)-inequivalent symmetric n × n matrices with nonzero
determinant (the series is known to converge absolutely for <s sufficiently large).
Letting r(L, J) be the number of distinct sublattices of L isometric to J , one easily
verifies that r(L, J) = r(D,T )/o(T ) where T is a matrix representing the quadratic
form on J , and o(T ) = o(J) is the order of the orthogonal group O(T ) = O(J).
Thus

ζn(L, s) =
∑
clsJ

r(L, J) discJ−s =
∑
d>0

rn(L, d)d−s

where

rn(L, d) = # {primitive sublattices J of L : rankJ = n, discJ = d } .

We claim that the rn(L, d) are determined by the r∗n(L, d′), and vice-versa. To
see this, first note that given a rank n sublattice J of L,

J ′ = KJ ∩ L

is the unique primitive rank n sublattice of L containing J . Also, if [J ′ : J ] = `
then discJ = `2 · discJ ′. Thus

rn(L, d) =
∑
`2|d

η(`)r∗n(L, d/`2)

where η(`) is the number of index ` sublattices J of a rank n lattice J ′. Note that
since J ′/`J ′ is finite, so is η(`). (Also, η is multiplicative: Say J is a sublattice of
J ′ with [J ′ : J ] = pr`, p prime with p - `. Then J ′′ = p−rJ ∩J ′ is the unique lattice
such that J ′ ⊆ J ′′ ⊆ J with [J : J ′′] = `, [J ′′ : J ′] = pr.)

This relation between rn and r∗n implies that

rn(L, d) = rn(K, d) ∀d > 0 ⇐⇒ r∗n(L, d) = r∗n(K, d) ∀d > 0.

Thus, by the Theorem,

rn(L, d) = rn(K, d) ∀d > 0 ⇐⇒ rm−n(L#, d) = rm−n(K#, d) ∀d > 0,

proving the Corollary. �
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