
ACTION OF HECKE OPERATORS

ON SIEGEL THETA SERIES I

Lynne H. Walling

Abstract. We apply the Hecke operators T (p) and T̃j(p
2) (1 ≤ j ≤ n, p prime) to a

degree n theta series attached to a rank 2k Z-lattice L, n ≤ k, equipped with a positive

definite quadratic form in the case that L/pL is hyperbolic. We show that the image
of the theta series under these Hecke operators can be realized as a sum of theta

series attached to certain closely related lattices, thereby generalizing the Eichler
Commutation Relation (similar to some work of Freitag and of Yoshida). We then

show that the average theta series (averaging over isometry classes in a given genus)

is an eigenform for these operators. We show the eigenvalue for T (p) is ε(k − n, n),
and the eigenvalue for T ′j(p

2) (a specific linear combination of T0(p2), . . . , Tj(p
2))

is pj(k−n)+j(j−1)/2β(n, j)ε(k − j, j) where β(∗, ∗), ε(∗, ∗) are elementary functions
(defined below).

1. Introduction and statements of results

Let L be a rank 2k Z-lattice (k ∈ Z+) equipped with a positive definite quadratic
form Q. So L = Zv1⊕· · ·⊕Zv2k and with B the symmetric bilinear form associated
to Q so that Q(v) = B(v, v), A =

(
B(vi, vj)

)
is a symmetric matrix with

Q(a1v1 + · · ·+ a2kv2k) = (a1 · · · a2k)A

 a1
...
a2k

 .

By scaling Q if necessary, we can assume Q(L) ⊆ 2Z (so L is even integral). Set

θ(L; τ) =
∑

C∈Z2k,n

e{ tCACτ}

where τ ∈ Hn (so τ = X+iY , X,Y real, symmetric n×n matrices with Y > 0) and
e{∗} = exp(πiTr(∗)). Then θ(L; τ) is a Siegel modular form of weight k, degree n,
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level N and character χ where N is the smallest positive integer so that NA−1 is
an even integral matrix, and for primes p not dividing N ,

χ(p) =
{

1 if L/pL is hyperbolic,
−1 otherwise

(see [1]). Also, one sees that

θ(L; τ) =
∑
T

r(A, T ) e{Tτ}

where T varies over all symmetric positive semi-definite even integral n×n matrices,
and

r(A, T ) = #{C ∈ Z2k,n : tCAC = T }.

So (v1, . . . , v2k)C varies over all (x1, . . . , xn), xi ∈ L. Let Λ be the (formal) direct
sum Zx1 ⊕ · · · ⊕ Zxn equipped with the (possibly semi-definite) quadratic form
given by T = (B(xi, xj)). Let

e{Λτ} =
∑
G

e{T [G]τ}

where G varies over GLn(Z) (or, if k is odd, we equip Λ with an orientation and
let G vary over SLn(Z)). Then as the Λ vary, we have

θ(L; τ) =
∑
Λ

e{Λτ}.

When n = 1 and p is a prime not dividing the level N of L, the Eichler Commu-
tation Relation (see [8]; cf. [10]) says that if χ(p) = 1 then

θ(L; τ)|T (p) = κ
∑
K

θ(K1/p; τ)

where κ is an explicit constant, and K varies over preimages in L of all maximal
totally isotropic subspaces of L/pL; here K1/p refers to the lattice K equipped with
the scaled quadratic form 1

pQ. (L/pL is a quadratic space with induced quadratic
form Q mod p; a subspace C is totally isotropic if Q(C) = 0 in Z/pZ.) If χ = 1,
then K1/p ∈ genL, meaning that for all primes q, ZqK1/p ' ZqL, and consequently
with

θ(genL) =
∑

clsL′∈genL

1
o(L′)

θ(L′),

o(L′) the order of the orthogonal group of L′, we have

θ(genL)|T (p) = (pk−1 + 1) θ(genL).
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If χ 6= 1 then θ(genL) is an eigenform for some of the T (p) and for all T (p2) (p a
prime not dividing the level of L). (θ(genL) is an eigenform for T (p) if χ(p) = 1,
and for all primes q|N , either

(
p
q

)
= 1 or ZqL has no modular components of odd

rank.)
So now assume 2 ≤ n ≤ k, and p is a prime not dividing N , the level of L. We

have n + 1 Hecke operators associated to p, named T (p), Tj(p2) (1 ≤ j ≤ n). For
T one of these operators, there is an associated matrix δ so that

F |T = pη
∑
γ

F |δ−1γ

where γ runs over (Γ ∩ Γ′)\Γ, Γ = Γ1(N), Γ′ = δΓδ−1, and pη is a normalizing

factor. Here δ =
(
pIn

In

)
and η = n(k − n− 1)/2 when T = T (p);

δ =


pIj

In−j
1
pIj

In−j


and η = 0 when T = Tj(p2). (Later we normalize particular linear combinations of
the Tj(p2).)

Say F is a degree n, weight k Siegel modular form (with some level and charac-

ter). For C ∈ GLn(Z),
(
C−1

tC

)
∈ Spn(Z); consequently we can write

F (τ) =
∑
T

c(T )e{Tτ} =
∑
clsΛ

c(Λ)e∗{Λτ}

where clsΛ varies over all isometry classes of even integral rank n positive semi-
definite lattices (oriented when k is odd), e∗{Λτ} =

∑
C e{ tCTCτ} where Λ ' T ,

C ∈ O(T )\GLn(Z) if k is even, and C ∈ O+(T )\SLn(Z) if k is odd. (Here O(T ) is
the orthogonal group of T .)

Theorem 1.1: Action of Hecke operators on Fourier coefficients.
(1) ([6]) The coefficient of e∗{Λτ} in F |T (p) is∑

pΛ⊆Ω⊆Λ

pE(Λ,Ω)c(Ω1/p)

where E(Λ,Ω) = m(1)k +m(p)(m(p) + 1)/2− n(n+ 1)/2, m(a) = mult{Λ:Ω}(a).
(2) ([5]) Set T̃j(p2) = pj(k−n−1)

∑
0≤`≤j β(n − `, j − `)T`(p2) where β(m, t) =∏t−1

i=0
pm−i−1
pt−i−1 , the number of t-dimensional subspaces of an m-dimensional space

over Z/pZ, and T0(p2) = 1. The coefficient on e∗{Λτ} in F |T̃j(p2) is∑
pΛ⊆Ω⊆ 1

pΛ

pEj(Λ,Ω)αj(Λ,Ω)c(Ω).
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Here αj(Λ,Ω) is the number of codimension n − j totally isotropic subspaces of
Λ∩Ω/p(Λ + Ω), and Ej(Λ,Ω) = k(m(1/p)−m(p) + j) +m(p)(m(p) +m(1) + 1) +
mj(1)(mj(1) + 1)/2− j(n+ 1), mj(1) = m(1)− n+ j.

In [5] we proved this by computing a set of coset representatives giving the
action of each Hecke operator. We encountered incomplete character sums, so
we introduced the modified operators T̃j(p2). In this paper, we apply these coset
representatives to θ(L), obtaining

Theorem 2.1. Let p be a prime with χ(L) = 1. Set

β(m, r) =
r−1∏
i=0

(pm−i − 1)
(pr−i − 1)

(the number of r-dimensional subspaces of an m-dimensional space over Z/pZ),
and set

ε(m, r) =
r−1∏
i=0

(pm+i + 1).

(1) θ(L; τ)|T (p) =
1

ε(0, k − n)

∑
K

θ(K; τ/p) where K varies over the preimages

in L of all maximal, totally isotropic subspaces of L/pL.
(2) Fix j and set

ui = ui(j) = (−1)ipi(i−1)/2β(n− j + i, i),

vi = vi(j) = (−1)iβ(k − n+ i− 1, i)ε(k − j, i).
Then with

T ′j(p
2) =

j∑
i=0

uiT̃j(p2),

we have

θ(L)|T ′j(p2) =
j∑
i=0

vi

( ∑
Kj−i

θ(Kj−i)
)

where Kj−i varies over all lattices K satisfying pL ⊆ K ⊆ 1
pL, mult{L:K}( 1

p ) =
mult{L:K}(p) = j − i, K ∈ genL.

Note that the sets {T (p), Tj(p2)}, {T (p), T̃j(p2)}, {T (p), T ′j(p
2)} (0 ≤ j ≤ n)

generate the same (local) Hecke algebra.
Averaging over the isometry classes in the genus of L, we get the average theta

series
θ(genL) =

1
massL

∑
clsL′

1
o(L′)

θ(L′)

where clsL′ varies over genL, o(L′) is the order of the isometry group of L′, and

massL =
∑
clsL′

1
o(L′)

.

Also, averaging across the equation in the above theorem, we get:
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Corollary 2.2. Let p be a prime such that χ(p) = 1. Then

θ(genL; τ)|T (p) = ε(k − n, n)θ(genL; τ).

Also,
θ(genL)|T ′j−i(p2) = λj(p2) θ(genL)

where
λj(p2) = pj(k−n)+j(j−1)/2β(n, j)ε(k − j, j).

To prove the theorem, we apply to θ(L) the coset representatives giving the
action of T (p) and of T̃j(p2). Initially, we have

θ(L; τ)|T (p) =
∑
Λ⊆L

 ∑
pΛ⊆Ω⊆Λ

pE(Ω,Λ)

 e(Ωτ/p)

=
∑
Ω⊆L

Ω1/p integral

 ∑
pΩ⊆pΛ⊆Ω

pE(Ω,Λ)

 e{Ωτ/p},

and

θ(L; τ)|T̃j(p2) =
∑
Λ⊆L

 ∑
pΛ⊆Ω⊆ 1

p
Λ

Ω integral

pEj(Ω,Λ)αj(Λ,Ω)

 e{Ωτ}

=
∑

Ω⊆ 1
p
L

Ω integral

 ∑
pΩ⊆Λ⊆( 1

pΩ∩L)

pEj(Ω,Λ)αj(Λ,Ω)

 e{Ωτ}.

Fixing some integral Ω ⊆ L or Ω ⊆ 1
pL, we will prove this by using elementary

lattice techniques to construct all the Λ in the inner sums, as we simultaneously
compute αj(Λ,Ω). First, we decompose Ω as 1

pΩ0⊕Ω1⊕ pΩ2, Ωi ⊆ L, with Ω0,Ω1

primitive in L mod p, meaning (Ω0 ⊕ Ω1) ∩ pL = p(Ω0 ⊕ Ω1). Set ϕ`(V ) = the
number of `-dimensional totally isotropic subspaces of V , where V is a quadratic
space over Z/pZ. (We agree that ε(m, 0) = 1.) Also set

Aj(`, t,Ω) = pEϕ`(Ω1)ε(k − j + t, j − r0 − `− t)β(r2, j − r0 − `− t)

where Ω1 = Ω1/pΩ1 and

E = Ej(`, t,Ω) = (k − n)(j − r0 − t) + (j − r0 − t)(j − r0 − t− 1)/2

+ `(`+ n− j − r1 + t).

Then, as we prove in §3, we get:



6 LYNNE H. WALLING

Proposition 3.1. (1) Write

θ(L; τ)|T (p) =
∑
Ω

c∗(Ω)e{Ωτ/p}

where Ω ⊆ L varies over all lattices with (formal) rank n and Q(Ω) ≡ 0 (mod p);
write Ω = Ω1⊕ pΩ2, Ωi ⊆ L, Ω1 primitive in L modulo p, meaning Ω1 ∩ pL = pΩ1.
Then

c∗(Ω) = ε(k − n, r2)

where r2 = rankΩ2.
(2) Write

θ(L)|T̃j(p2) =
∑
Ω

c∗j (Ω)e{Ωτ}

where Ω varies over all integral lattices Ω ⊆ 1
pL with (formal) rank n. Decompose

Ω as 1
pΩ0 ⊕ Ω1 ⊕ pΩ1 where Ωi ⊆ L, Ω0,Ω1 primitive in L modulo p, meaning

(Ω0 ⊕ Ω1) ∩ pL = p(Ω0 ⊕ Ω1). Then

c∗j (Ω) =
∑
`,t

Aj(`, t,Ω)β(n− j + t, t)

where 0 ≤ ` ≤ j − r0 and 0 ≤ t ≤ j − r0 − `, r0 = rankΩ0.

Proposition 3.2. Suppose 1 ≤ j ≤ n ≤ k and χ(p) = 1 (so L/pL is hyperbolic).
(1) Let K vary over the preimages in L of all maximal, totally isotropic subspaces

of L/pL. Then ∑
K

θ(K; τ/p) = ε(0, k − n)
∑
Ω

ε(k − n, r2)e{Ωτ/p}

where Ω vary as in Proposition 3.1 (1), r2 = rankΩ2.
(2) Let Kj vary over all lattices such that pL ⊆ Kj ⊆ 1

pL, mult{L:Kj}(
1
p ) =

mult{L:Kj}(p) = j, and Kj ∈ genL. Write∑
Kj

θ(Kj) =
∑
Ω

bj(Ω)e{Ωτ}

where Ω varies as in Proposition 3.1 (2). Then

bj(Ω) =
∑
`,t

Aj(`, t,Ω)pt(t−1)/2β(k − n, t)ε(k − j, t)

where 0 ≤ ` ≤ j − r0 and 0 ≤ t ≤ j − r0 − `. The number of Kj in this sum is
pj(j−1)/2β(k, j)ε(k − j, j).

Critical to proving Proposition 3.2 will be the following:
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Lemma 4.1 (Reduction Lemma). Let U be a dimension d space over Z/pZ, H

a hyperbolic plane (so H '
(

0 1
1 0

)
). Then:

ϕ`(U ⊥ Ht) =
∑

0≤r≤t

p(t−r)(`−r)ε(d+ t− `, r)β(t, r)ϕ`−r(U).

(Note that the summand on r is 0 unless r ≤ t, `, and thus we can let r vary subject
to r ≥ 0.)

Remark. In [4], Freitag used the theory of singular forms to give a simple
description of the action of T (p) on theta series of level 1. Then in [11] and [12]
(cf. [9]), Yoshida used representation theory to generalize and extend Freitag’s
result (omitting the spherical harmonics Freitag allowed) to describe the action of
T (p) and of Tj(p2) on theta series of arbitrary level (p 6 |N). Yoshida’s formula is
presented in a simple form when k = n. While our formulas are presented more
simply when k 6= n and our methods are more elementary than those of Yoshida,
our methods only allow us to treat n ≤ k whereas Yoshida apparently can treat
n ≤ 2k. Also, in this paper we treat only the case χ(p) = 1; in current work we
are using the methods of this paper to treat the case χ(p) = −1. We are also
investigating the case k < n ≤ 2k, seeking elementary arguments that yield explicit
eigenvalues.

The reader is referred to [1] and [3] for facts about Siegel modular forms, and to
[2] and [7] for facts about quadratic forms.

2. Proofs of Theorem 2.1 and Corollary 2.2

Proof of Theorem 2.1. (1) This is easily seen from Propositions 3.1 and 3.2.
(2) The theorem states that for all Ω,

j∑
i=0

(−1)ipi(i+1)/2β(n− j + i, i)c∗j−i(Ω)

=
j∑
i=0

(−1)iβ(k − n+ i− 1, i)ε(k − j, i)bj−i(Ω).

To establish this, we set S0(Ω) = c∗j (Ω)− bj(Ω), and for q ≥ 1,

Sq(Ω) = Sq−1(Ω) + (−1)qpq(q+1)/2β(n− j + q, q)c∗j−q(Ω)

+ β(k − n+ q − 1, q)ε(k − j, q)bj−q(Ω).

We want to show Sj = 0. We use induction on q to show that for q < j,

Sq(Ω) =
∑
`,t

Aj−(q+1)(`, t,Ω)β(t+ q, q)

·
[
(−1)qpq(q+1)/2β(n− j + t+ q + 1, t+ q + 1)

− (−1)qpt(t+1)/2β(k − n+ q, t+ q + 1)ε(k − j, t+ q + 1)
]
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where 0 ≤ ` ≤ j − (q+ 1)− r0 and 0 ≤ t ≤ j − (q+ 1)− r0 − `. Using the formulas
for c∗j (Ω) and bj(Ω), we get

S0(Ω) =
∑
`,t

Aj(`, t,Ω)
[
β(n− j + t, t)− pt(t−1)/2β(k − n, t)ε(k − j, t)

]
.

When t = 0, the summand is 0, and necessarily t=0 when ` = j − r0. Replacing
t by t + 1 and using that Aj(`, t + 1,Ω) = Aj−1(`, t,Ω) we establish the claim for
q = 0.

Now assume the formula holds for Sq(Ω); we evaluate Sq+1(Ω) using the above
assumption and our formulas for c∗m(Ω), bm(Ω). We can write Sq+1(Ω) as a sum
on ` and t; the summand is 0 when t = 0, and we necessarily have t = 0 when
` = j − r0. Thus we can write Sq+1(Ω) as a sum on ` < j − r0, t > 0. By Lemma
5.1(b),

β(n− j + q + 1, q + 1)β(n− j + t+ q + 1, t)

= β(n− j + t+ q + 1, t+ q + 1)β(t+ q + 1, t).

Also, one can easily verify that

β(t+ q + 1, t)− β(t+ q, q) = pq+1β(t+ q, q + 1).

We have ε(j− j, q+ 1)ε(k− j+ q+ 1, t) = ε(k− j, t+ q+ 1), and by Lemma 5.1(d),

ptβ(k − n+ q, t+ q + 1, t+ q + 1)β(t+ q, q)− β(k − n+ q, q + 1)β(k − n, t)
= −β(k − n+ q + 1, t+ q + 1)β(t+ q, q + 1).

Using these identities, replacing t by t + 1, and using that Aj−(q+1)(`, t + 1,Ω) =
Aj−(q+2)(`, t,Ω) yields the claim for q < j. In particular,

Sj−1(Ω) = (−1)j−1pj(j−1)/2β(n, j)− (−1)j−1β(k − n+ j − 1, j)ε(k − j, j).

We have θ(L)|T̃0(p2) = θ(L) and K0 = L, so c∗0(Ω) = b0(Ω) = 1, and thus the
inductive definition shows Sj(Ω) = 0. This proves the theorem. �

Proof of Corollary 2.2. (1) This is virtually identical, although a little simpler, than
the proof of (2), and so we omit this proof.

(2) With o(L′) the order of the orthogonal group for L′, we set

θ(genL) =
1

massL

∑
L′

1
o(L′)

θ(L′)

where clsL′ varies over the isometry classes in genL, and massL =
∑
L′

1
o(L′) .

Consider the effect averaging over genL has on
∑
Km

θ(Km) where Km varies over
all lattices in genL with pL ⊆ Km ⊆ 1

pL and mult{L:Km}(1/p) = mult{L:Km}(p) =
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m. First, note that the condition mult{L:Km}(1/p) = m is automatically met when
the other conditions are met. Then, note that we can classify the Km into isometry
classes; so with Km ∈ clsK, we have an isometry σ so that σ(K) = Km, meaning
mult{L:σK}(1/p) = mult{L:σK}(p) = m. Given isometries σ, σ′, σK = σ′K if and
only if σ−1σ′ ∈ O(K), the orthogonal group of K. Thus the number of σ that map
K to the same lattice is o(K), and so with L fixed,

∑
Km

θ(Km) =
∑
clsK

#{σ : pL ⊆ Km ⊆ 1
pL, mult{L:σK}(p) = m }
o(K)

θ(K).

Now take the identity of the preceeding theorem and average both sides over
clsL′ ∈ genL. So with K ′m varying over all lattices in genL′ = genL with

mult{L′:K′m}(1/p) = mult{L′:K′m}(p) = m,

we have∑
clsL′

1
o(L′)

∑
K′m

θ(K ′m)

=
∑

clsL′,clsK′

#{σ : pL′ ⊆ σK ′ ⊆ 1
pL
′, mult{L′:σK′}(p) = m }

o(L′)o(K ′)
θ(K ′)

=
∑
clsK′

(∑
clsL′

#{σ : pK ′ ⊆ σL′ ⊆ 1
pK
′, mult{K′:σL′}(p) = m }

o(L′)

) 1
o(K ′)

θ(K ′)

(the last equality follows from replacing σ by σ−1). The inner sum on L′ is the
number of lattices Km ∈ genL so that pK ′ ⊆ Km ⊆ 1

pK
′ and mult{K′:Km}(p) = m,

and by Proposition 3.2, this is pm(m−1)/2ϕm(L/pL), and since L/pL ' Hk, this is

pm(m−1)/2β(k,m)ε(k −m,m).

Thus

λj = ε(k − j, j)
j∑
i=0

(−1)ip(j−i)(j−i−1)/2β(k, j − i)β(k − n+ i− 1, i).

We claim that the sum on i is equal to

pj(k−n)+j(j−1)/2β(n, j);

we argue by induction on k (k ≥ n ≥ j ≥ 0). For k = 0, this is trivial. So assume
k > 0 and the formula holds for k − 1 whenever k − 1 ≥ n ≥ j ≥ 0. When j = k
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or j = 0 the claim is trivially verified. Thus we now consider k > j > 0. We make
use of the easily verified identity

β(m, r) = β(m− 1, r) + pm−rβ(m− 1, r − 1)

(where m ≥ r ≥ 1). This allows us to rewrite:

j∑
i=0

(−1)ip(j−i)(j−i−1)/2β(k, j − i)β(k − n+ i− 1, i)

=
j∑
i=0

(−1)ip(j−i)(j−i−1)/2β(k − 1, j − i)β(k − n+ i− 1, i)

+ pk−1

j−1∑
i=0

(−1)ip(j−i−1)(j−i−2)/2β(k − 1, j − i− 1)β(k − n+ i− 1, i)

and then, by the induction hypothesis

= pj(k−n)+j(j−1)/2β(n− 1, j) + pk−1+(j−1)(k−n)+(j−1)(j−2)/2β(n− 1, j − 1)

= pj(k−n)+j(j−1)/2
[
β(n− 1, j) + pn−jβ(n− 1, j − 1)

]
and again using our identity (with n replaced by n− 1)

= pj(k−n)+j(j−1)/2β(n, j). �

3. Proofs of Propositions 3.1 and 3.2

Proof of Proposition 3.1. (1) From [5] we know

θ(L; τ)|T (p)

= pn(k−n−1)/2
∑
B,C

θ(L; τ)
(

1
pIn

In

)
Id B

pIn−d 0
Id

In−d

(C−1

tC

)

= p−n(n+1)/2
∑
Λ,G

pk(n−d)e

{
T

[
G

(
Id

pIn−d

)
C−1

]
τ/p

}
.

Here C = C(∆′) varies over all ∆′, p∆ ⊆ ∆′ ⊆ ∆, ∆ a fixed reference lattice of rank

n, ∆′ = ∆C
(
pId

In−d

)
; for each such C, B varies over all integral, symmetric,

d × d matrices modulo p; Λ varies over all sublattices of L with (formal) rank n,
Λ ' T ; and G varies over GLn(Z) (or, if k is odd, Λ is equipped with an orientation
and G varies over SLn(Z)). The sum on B is either 0 or pd(d+1)/2, depending on
whether the upper left d× d block of T [G] is 0 modulo p.
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Fix d and let G be the subgroup of GLn(Z) (or, if k is odd, of SLn(Z)) of all

matrices of the form
(
E1 E2

pE3 E4

)
with E3 ∈ Zn−d,d. Then the cosets of GLn(Z)/G

(or of SLn(Z)/G) correspond to the lattices Ω where pΛ ⊆ Ω ⊆ Λ, [Λ : Ω] = pn−d,
as the matrices G so that

Ω = ΛG
(
Id

pIn−d

)
comprise one coset. Similarly, the matrices C = C(∆′) give us a complete list of
coset representatives for GLn(Z)/tG (or for SLn(Z)/tG), as ∆′ varies subject to

p∆ ⊆ ∆′ ⊆ ∆, [∆ : ∆′] = pd (so ∆′ = ∆C
(
pId

In−d

)
for some C). Conse-

quently as C varies and as G′ varies over G, C tG′ varies over GLn(Z) (or SLn(Z)),
and thus so does tG′C−1. Hence as G varies over GLn(Z) (or SLn(Z)),∑

G,C

e

{
T

[
G

(
Id

pIn−d

)
C−1

]
τ/p

}
=
∑
Ω

∑
G′,C

e
{
T ′
[
tG′C−1

]
τ/p
}

where G′ varies over G, Ω varies over all lattices subject to pΛ ⊆ ΩΛ, [Λ : Ω] = pn−d,
and Ω ' T ′. Thus

θ(L; τ)|T (p) = p−n(n+1)/2
∑
Λ,Ω

pk(n−d)+d(d+1)/2e{Ωτ/p}

where Λ varies over all sublattices of L with (formal) rank n, Ω is as above with
Q(Ω) ≡ 0 (mod p). So c∗(Ω) = p−n(n+1)/2

∑
Λ p

k(n−d)+d(d+1)/2 where Λ varies over
all lattices with (formal) rank n, Ω ⊆ Λ ⊆ ( 1

pΩ ∩ L). Write Ω = Ω1 ⊕ pΩ2 where
Ω1,Ω2 ⊆ L, Ω1 ∩ pL = pΩ1. Thus 1

pΩ ∩ L = Ω1 ⊕Ω2, so the Λ correspond to rank
n − d subspaces of Ω2/pΩ2 where [Λ : Ω] = pn−d. Thus with r2 = rankΩ2, and
recalling that β(r2, r2 − n+ d) = β(r2, n− d),

c∗(Ω) = p−n(n+1)/2
r2∑
d=0

pk(n−d)+d(d+1)/2β(r2, n− d)

(and replacing n− d by d)

=
r2∑
d=0

p(k−n)d+d(d−1)/2β(r2, d)

(and then by Lemma 5.2)

= ε(k − n, r2).
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(2) We have

θ(L; τ)|T̃j(p2) =
∑

Ω⊆ 1
p
L

Ω integral

 ∑
pΩ⊆Λ⊆( 1

pΩ∩L)

pEj(Ω,Λ)αj(Λ,Ω)

 e{Ωτ}.

Fix some integral Ω ⊆ 1
pL; decompose Ω as 1

pΩ0 ⊕ Ω1 ⊕ pΩ2, Ωi ⊆ L, with Ω0,Ω1

primitive in L mod p, meaning (Ω0 ⊕ Ω1) ∩ pL = p(Ω0 ⊕ Ω1).
We proceed by constructing all Λ in the above sum on Λ, sorted according to

their invariant factors {Ω : Λ} in Ω, simultaneously constructing all the subspaces
of Λ ∩ Ω/p(Λ + Ω) counted by αj(Ω,Λ).

We have Ω ⊆ 1
pL with Ω integral, so we can decompose Ω as Ω = 1

pΩ0⊕Ω1⊕pΩ2

where Ω0,Ω1,Ω2 ⊆ L with Ω0,Ω1 primitive in L modulo p, meaning (Ω0 ⊕ Ω1) ∩
pL = p(Ω0 ⊕ Ω1). Since Ω is integral, we must have Q(Ω0) ' 0 (mod p2) and
B(Ω0,Ω1) ' 0 (mod p). Note that Ω0 is only well-determined up to p(Ω1 ⊕ Ω2)
and Ω0 ⊕ Ω1 is only well-determined up to pΩ2.

Define ∆ = 1
pΩ∩L; so ∆ = Ω0⊕Ω1⊕Ω2. Also, Ω∩L = Ω∩∆ = Ω0⊕Ω1⊕pΩ2,

and p(Ω + ∆) = Ω0 ⊕ pΩ1 ⊕ pΩ2. Given Λ with pΩ ⊆ Λ ⊆ ( 1
pΩ ∩ L), we must have

Λ = Ω0 ⊕ (Λ1 ⊕ pΛ′1)⊕ (Λ2 ⊕ pΛ′2 ⊕ p2Λ′′2)

where Λ1 ⊕ Λ′1 = Ω1, Λ2 ⊕ Λ′2 ⊕ Λ′′2 = Ω2. Notice such Λ is necessarily integral.
We now proceed to construct all such Λ, simultaneously counting the totally

isotropic, co-dimension n− j subspaces of

Λ ∩ Ω/p(Λ + Ω) ' (Λ1 ⊕ pΛ′2)/p(Λ1 ⊕ pΛ′2).

Let ri = rankΩi, d1 + d′1 = r1, d2 + d′2 + d′′2 = r2. We will construct all Λ so that
when decomposed as above, di = rankΛi, d′i = rankΛ′i, and d′′2 = rankΛ′′2 .

In ∆/p∆, extend Ω ∩∆ = Ω0 ⊕ Ω1 to Ω0 ⊕ Ω1 ⊕∆2 with dim ∆2 = d2 + d′2.
(We have β(r2, d2 + d′2) = β(r2, d

′′
2) choices.) Let

∆′ = preimage in ∆ of Ω0 ⊕ Ω1 ⊕∆2

= Ω0 ⊕ Ω1 ⊕ (∆2 ⊕ pΛ′′2)

where dim pΛ′′2 = d′′2 . In ∆′/p∆′, extend Ω0 = pΩ to

Ω0 ⊕ U ⊆ Ω ∩∆ = Ω0 ⊕ Ω1 ⊕ pΛ′′2

so that U is totally isotropic of dimension ` and independent of p∆ = pΛ′′2 (later we
let ` vary). (We have ϕ`(Ω1)p`d

′′
2 choices.) Now extend Ω0 ⊕ U to Ω0 ⊕ Λ1 ⊆ Ω ∩∆

so that dim Λ1 = d1 with Λ1 independent of p∆. (We have β(r1−`, d1−`)p(d1−`)d′′2
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choices.) Extend Ω0 ⊕ Λ1 to Ω0 ⊕ Λ1 ⊕ Λ2 with dim Λ2 = d2 and Λ2 independent
of Ω ∩∆ = Ω0 ⊕ Ω1 ⊕ pΛ′′2 . (We have β(d2 + d′2, d2)pd2(d′1+d′′2 ) choices.) So

∆
′

= Ω0 ⊕ (Λ1 ⊕ Λ′1)⊕ (Λ2 ⊕ Λ′2 ⊕ pΛ′′2)

where ∆1 = Λ1 ⊕ Λ
′
1, ∆2 = Λ2 ⊕ Λ′2.

Now let

Λ = preimage in ∆
′

of Ω0 ⊕ Λ1 ⊕ Λ2

= Ω0 ⊕ (Λ1 ⊕ pΛ′1)⊕ (Λ2 ⊕ pΛ′2 ⊕ p2Λ′′2).

As noted above, Ω ∩ Λ/p(Ω + Λ) ' Λ1/pΛ1 ⊕ pΛ′2/p2Λ′2 and pΛ′2/p
2Λ′2 is to-

tally isotropic over Z/pZ. Given a dimension ` subspace U in Λ1/pΛ1 with basis
{x1, . . . , x`}, there are β(d′2, d−`)p`(d

′
2−d+`) dimension d = d1+d′2−n+j subspaces

of Λ1/pΛ1 ⊕ pΛ′2/p2Λ′2 that project onto U in Λ1/pΛ1. So for each Λ, αj(Ω,Λ) is
the number of U constructed above, times β(d′2, d− `)p`(d

′
2−d+`).

We know that Ej(Ω,Λ) = j(k−n−1)+k(d2−r0−t)+(r0+t)(n−d2+1)+d(d+1)/2.
Also, by several applications of Lemma 5.1 (a), we find that

β(r, a)β(r − a, b)β(r − a− b, c) = β(r, b+ c)β(b+ c, b)β(r − b− c, a).

Thus with r = r2, a = d′′2 , b = d2, c = d− `, and x = d2 + d− ` = j − r0 − `− t we
have d = j − r0 − d2 − t so

c∗j (Ω) = pj(k−n−1)
∑
`,d2,t

ϕ`(Ω1)pk(d2−r0−t)+(r0+t)(n−d2+1)+d(d+1)/2+d2t+`(`−d+r2−d2)

· β(r2, x)β(x, d2)
∑

d′1+d′′2 =t

pd
′′
2 (r1−d′1−`)β(r2 − x, d′′2)β(r1 − `, d′1).

By Lemma 5.1 (c), the sum on d′1 + d′′2 = t reduces to β(r1 + r2 − x − `, t) =
β(n− j + t, t). Thus, after substituting for d and simplifying, we have

c∗j (Ω) =
∑
`,t

ϕ`(Ω1)pEβ(r2, x)β(n− j + t, t)

·
∑
d2

pd2(k−j+t)+d2(d2−1)/2β(x, d2)

where

E = (k − n)(j − r0 − t) + (j − r0 − t)(j − r0 − t− 1)/2 + `(`+ n− j − r1 + t).

By Lemma 5.2 the sum on d2 is

x∏
i=1

(pk−r0−`−i + 1) = ε(k − j + t, j − r0 − `− t),
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proving the proposition. �

Proof of Proposition 3.2. (1) Let K vary over the preimages in L of all maximal,
totally isotropic subspaces C of L/pL. We are assuming χ(p) = 1, which means
L/pL ' Hk, and so there are ϕk(Hk) = ε(0, k) such K. Note that when scaled
by 1/p, K/pK ' H

k. Thus ZpK1/p ' ZpL, and for q any prime not equal to
p, ZqK ' ZqL. (So if for all q, either all the modular components of ZqL are of

even rank or
(
p
q

)
= 1, then K1/p ∈ genL. This is necessarily the case if χ = 1.)

Take Ω = Ω1 ⊕ pΩ2, ri = rankΩi, Ω1 primitive in L modulo p, Q(Ω) ≡ 0 (mod p)
(as in Proposition 3.1 (1)). Then Ω ⊆ K if and only if Ω1 ⊆ C in L/pL. The
number of such C is the number of ways to extend Ω1 to a dimension k totally
isotropic subspace of L/pL. We know Ω1 is totally isotropic of dimension r1, so
L/pL = (Ω1 ⊕ ∆1) ⊥ Hk−r1 where Ω1 ⊕ ∆1 ' Hr1 . Thus the number of ways to
extend Ω1 to C is the number of dimension k − r1 totally isotropic subspaces of
H
k−r1 , which is

ε(0, k − r1) = ε(0, k − n+ r2) = ε(0, k − n)ε(k − n, r2).

(2) We now construct all lattices Kj such that pL ⊆ Kj ⊆ 1
pL, mult{L:Kj}(p) =

multL:Kj}(1/p) = j, and Kj ∈ genL. We count how many Kj contain any given
integral Ω ⊆ 1

pL. Then we compare θ(L)|T̃j(p2) to the sum
∑
Kj
θ(Kj).

To construct all Kj , we take a dimension j totally isotropic subspace C of L/pL,
and let K ′ be the preimage in L of C. The number of choices for C is ϕj(L/pL).

Since L/pL is regular, there is some D so that C ⊕D '
(

0 I
I 0

)
(over Z/pZ). So

C⊕D is regular and thus splits L/pL: L/pL = (C⊕D) ⊥ J . So K ′ = (C⊕pD)⊕pJ ,
and in K ′/pK ′ (scaled by 1/p), pJ = radK ′/pK ′. Also, C ⊕ pD ' H

j (H '(
0 1
1 0

)
a hyperbolic plane) and pD is totally isotropic. Thus there is a totally

isotropic C ′ so that C ′ ⊕ pD = C ⊕ pD.
In fact, the number of such C ′ is the number of dimension j totally isotropic sub

spaces of C ⊕ pD (scaled by 1/p) that are independent of pD. To count, choose
isotropic x1 ∈ C ⊕ pD, x1 6∈ pD (we have (pj − 1)(pj−1 + 1) choices); then choose
any y1 ∈ pD so that

〈
x1, y1

〉
' H. (So C ⊕ pD =

〈
x1, y1

〉
⊥ W , W ' Hj−1.)

Then for 1 < i ≤ j, we have C ⊕ pD =< x1, y1, . . . , xi−1, yi−1 >⊥ (Ci ⊕Di),
< x1, y1, . . . , xi−1, yi−1 >' Hi−1, Ci ⊆ D, and pDi ⊆ pD. Choose isotropic xi ∈〈
x1, . . . , xi−1

〉⊥ = xi ∈
〈
x1, . . . , xi−1

〉
⊥ (Ci ⊕ pDi), xi 6∈

〈
x1, . . . , xi−1

〉
⊕ pDi,

and choose yi ∈ pD, yi 6∈
〈
y1, . . . , yi−1

〉
, so that

〈
xi, yi

〉
' H. When counting

the number of C ′ =
〈
x1, . . . , xj

〉
, the choices of yi are inconsequential, and we find

that the number of (ordered) bases x1, . . . , xj we construct is

j−1∏
i=0

pi(pj−i − 1)(pj−i−1 + 1)− pi(pj−i − 1).
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The number of C ′ is this divided by
∏j−1
i=0 p

i(pj−i−1), the number of bases for any
given C ′. Thus the number of C ′ is pj(j−1)/2.

Let pKj be the preimage in K ′ of C ′
⊥

= C ′ ⊕ pJ . Thus L = C ′ ⊕ D ⊕ J

and Kj = 1
pC
′ ⊕ pD ⊕ J ; since C ′ is totally isotropic in K ′/pK ′ (which is scaled

by 1/p), we have Q(C ′) ≡ 0 (mod p2). Also, in L/pL we have B(C, J) = 0, so
B(C, J) ≡ 0 (mod p). Hence Kj is integral.

Now fix Kj and, as in the preceeding section, fix integral Ω ⊂ 1
pL, and decompose

Ω as 1
pΩ0 ⊕ Ω1 ⊕ pΩ2, Ω0,Ω1,Ω2 ⊆ L, with Ω0,Ω1 primitive in L modulo p. We

want to determine when Ω ⊆ Kj . First note that to have Ω ⊆ Kj , we need Ω0 ⊆ C
in L/pL; when this holds, Ω0 must extend to C ′ since Ω0 is totally isotropic in
K ′/pK ′. Also, for x ∈ L, we have x ∈ Kj if and only if x 6∈ D + pL; so x ∈ Kj

if and only if in L/pL, x ∈ C ⊕ J = C
⊥

. Consequently Ω ⊆ Kj if and only if in
L/pL, Ω0 ⊆ C ⊆ Ω

⊥
1 and in K ′/pK ′, Ω0 ⊆ C

′
.

Now we count the number of Kj containing a given Ω. Counting the number
of ways to extend Ω0 to C ′ in K ′/pK ′ is essentially identical to counting the C ′,
giving us p(j−r0)(j−r0−1)/2 choices. Thus we are left with counting the number of
ways to extend Ω0 to a dimension j totally isotropic subspace C ⊆ Ω

⊥
1 in L/pL.

First observe that L/pL = (Ω0 ⊕∆0) ⊥ J for some totally isotropic subspace ∆0

with Ω0 ⊕∆0 ' H
r0 (r0 = dim Ω0). Since L/pL is regular, so is J , and since

Ω1 ⊆ Ω
⊥
0 = C ⊕ J with Ω1 independent of Ω0, we can choose ∆0 and J so that

Ω1 ⊆ J . So extending Ω0 to C ⊆ Ω
⊥
1 is equivalent to choosing a dimension j − r0

totally isotropic subspace of Ω
⊥
1 ∩ J . Let R = rad(Ω

⊥
1 ∩ J ; thus Ω

⊥
1 ∩ J = R ⊥ U

where U is regular. Since J is regular, we have J = (R ⊕ R′) ⊥ U ⊥ U
′

where
R ⊕ R′ ' Hs where s = dimR, and U

′
is regular. Also, Ω

⊥
1 ∩ J = R ⊥ U

′
, and

this has dimension 2(k− r0)− r1. We know U ⊥ U ′ is regular, and it is hyperbolic
exactly when L/pL is. Thus if U is hyperbolic, U

′
is hyperbolic exactly when L/pL

is. Recalling that the number of dimension ` totally isotropic subspaces of an odd
dimensional, regular space depends only on its dimension, we find

ϕj−r0(Ω
⊥
1 ∩ J) =

{
ϕj−r0(Ω1 ⊥ Hk−r0−r1) if L/pL ' Hk,
ϕj−r0(Ω1 ⊥ Hk−r0−r1−1 ⊥ A if Λ/pL ' Hk−1 ⊥ A.

(Recall that we have assumed n ≤ k, thus dimU
′ ≥ dimU . Also, here A denotes

an anisotropic plane, i.e. A '
〈
1,−δ

〉
where

(
δ
p

)
= −1.) So when L/pL ' Hk, the

number of Kj containing Ω is

bj(Ω) = p(j−r0(j−r0−1)/2ϕj−r0(Ω1 ⊥ Hk−r0−r1)

and by the Reduction Lemma (Lemma 4.1),
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= p(j−r0(j−r0−1)/2
∑
`

ϕ`(Ω1)p`(k−j−r1+`)

· ε(k − j, j − r0 − `)β(k − r0 − r1, j − r0 − `).

On the other hand,∑
`,t

Aj(`, t,Ω)pt(t−1)/2β(k − n, t)ε(k − j, t)

=
∑
`

p(j−r0(j−r0−1)/2+`(k−j−r1+`)ϕ`(Ω1)ε(k − j, j − r0 − `)

·
∑
t

p(k−n−t)(j−r0−`−t)β(k − n, t)β(r2, j − r0 − `− t)

and by Lemma 5.1(c)

= p(j−r0(j−r0−1)/2
∑
`

ϕ`(Ω1)p`(k−j−r1+`)

· ε(k − j, j − r0 − `)β(k − r0 − r1, j − r0 − `)
= bj(Ω). �

4. Proof of Lemma 4.1 (The Reduction Lemma)

Say V is isometric to a hyperbolic plane orthogonal to U . Take W to be a totally
isotropic, dimenstion ` subspace of U ⊥ V . Then W =< u1 + v + 1, . . . , u` + v` >
where ui ∈ U, vi ∈ V . Consider W ′ =< u1, . . . , u` > (so W ′ is the projection of W
onto U). We cannot have u1 and u2 equal to 0, for this would require < v1, v2 >
to be totally isotropic of degree 2. So assume u2 6= 0.

We want to examine how many W project to the same W ′. Suppose first that
W ′ =< u2, . . . , u` > has dimension `−1. Then v1 must be (nonzero and) isotropic
in V with B(v1, vi) = B(v1, ui + vi) = 0 for all i ≥ 2. Since < v1 >

⊥=< v1 > when
v1 is isotropic (recall that V is a hyperbolic plane), we must have vi ∈< v1 > for
all i ≥ 2 and hence

W ′ =< v1, u2, . . . , u` > .

Since there are 2 isotropic lines < v1 > in V , there are 2 subspaces W that project
onto this W ′. Notice that < u2, . . . , u` > must be totally isotropic.

Now say W ′ =< u1, u2, . . . , u` > is totally isotropic of dimension `. Then
Q(vi) = Q(ui + vi) = 0 for all i and B(vi, vj) = B(ui + vi, uj + vj) = 0. Hence
the vi all lie on the same isotropic line. Thus there are p` spaces W that project
onto this W ′ with vi on a given line; one of these W is W ′. Hence there are 2p`− 1
distinct W that project onto W ′.

Say W ′ has dimension `, W ′ '< ε >⊥< 0, . . . , 0 > with ε 6= 0. Then Q(v1) =
−Q(u1) = −ε, Q(vi) = 0 for all i ≥ 2, and B(v1, vi) = 0 for all i ≥ 2. There are
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(p−1)/2 anisotropic lines in V that represent squares, and (p−1)/2 that represent
non-squares. Each anisotropic line represents a nonzero value either twice or not
at all. So there are p− 1 vectors v1 ∈ V with Q(v1) = −ε. For such v1, < v1 >

⊥ is
anisotropic, so v2, . . . , v` = 0. Thus there are p − 1 dimension `, totally isotropic
spaces W that project onto W ′.

Finally, say W ′ has dimension ` with W ′ '
(

0 1
1 0

)
⊥< 0, . . . , 0 >. Then

Q(v1) = Q(u1 + v1) = 0 = Q(u2 + v2) = Q(v2) = 0, B(v1, v2) = −B(u1, u2) = −1,
B(v1, vi) = B(v2, vi) = 0 for all i ≥ 3. So v1, v2 span V , and v3, . . . , v` ∈<
v1, v2 >

⊥= {0}. Given u1, u2, there are 2(p − 1) isotropic v1 in V ; having chosen
v1, there is exactly one isotropic v2 ∈ V so that B(v1, v2) = −1. Thus ther are
2(p− 1) spaces W that project onto W ′.

We can classify all dimension `, totally isotropic W in U ⊥ V by their projections
onto U . We have:

ϕ`(U ⊥ H) = 2 ·#{dim `− 1, totally isotropic W ′ ⊆ U}
+ (2p` − 1) ·#{dim `, totally isotropic W ′ ⊆ U}
+ (p− 1) ·#{dim ` W ′ ⊆ U,W ′ '< ε >⊥< 0, . . . , 0 >}
+ 2(p− 1) · {dim ` W ′ ⊆ U,W ′ ' H ⊥< 0, . . . , 0 >}.

On the other hand, we can take each dimension ` − 1 totally isotropic U ′ ⊆ U
and extend to a dimension ` subspace W ′ ⊆ U . We get:

ϕ`−1(U)β(dimU + 1− `, 1)

= #{(U ′,W ′) : U ′,W ′ ⊆ U,dimU ′ = `− 1,dimW ′ = `, U ′ totally isotropic}
= #{dim `, totally isotropic W ′ ⊆ U}β(`, `− 1)

+ #{dim ` W ′ ⊆ U,W ′ '< ε >⊥< 0, . . . , 0 >}
+ #{dim ` W ′ ⊆ U,W ′ ' H ⊥< 0, . . . , 0 >} · 2.

Therefore

ϕ`(U ⊥ H)− (p− 1)ϕ`−1(U)β(dimU + 1− `, 1)

= 2ϕ`−1(U) + p`ϕ`(U),

that is, ϕ`(U ⊥ H) = (pdimU+1−` + 1)ϕ`−1(U) + p`ϕ`(U).
This shows that the proposition holds for t = 1. Now we argue by induction on

t. We know the identity holds for all ` when t = 1. Take t > 1. Using the induction
hypothesis and our formula for ϕ∗(U ⊥ H), we get

ϕ`(U ⊥ Ht) = ϕ`((U ⊥ H) ⊥ Ht−1)

=
∑

0≤r≤t−1

p(t−1−r)(`−r)ε(d+ 1 + t− `, r)β(t− 1, r)

· (ε(d+ 1 + r − `, 1)ϕ`−r−1(U) + p`−rϕ`−r(U)).
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Split this into two sums on r, and in the first replace r by r − 1. Then we have
a linear combination of the ϕ`−r(U); the coefficient on ϕ`(U) is pt`, the coefficient
on ϕ`−t(U) is ε(d+ t− `, t), and for 0 < r < t, the coefficient on ϕ`−r(U) is

p(t−r)(`−r) β(t− 1, r − 1)
(pr − 1)

ε(d+ t+ 1− `, r − 1)

·
[
pt−r(pr − 1)(pd+r−` + 1) + (pt−r − 1)(pd+t+r−` + 1)

]
= p(t−r)(`−r)β(t, r)ε(d+ t− `, r).

The lemma now follows.

5. Supplementary Lemmas

Lemma 5.1.
(a) β(r,m)β(r −m,m′) = β(r,m′)β(r −m′,m).
(b) β(r,m)β(r −m,m′) = β(r,m+m′)β(m+m′,m).
(c)

∑
0≤d≤r

pd(r−t+d)β(r, t− d)β(r′, d) = β(r + r′, t).

(d) β(r − m + 1,m′ + 1)β(r + 1,m) − β(m + m′,m′)β(r + 1,m + m′ + 1) =
pm
′+1β(m+m′,m′ + 1)β(r + 1,m+m′ + 1).

Proof. (a) Use that

β(r,m) =
m−1∏
i=0

pr−i − 1
pm−i − 1

.

(b) Choose an m + m′-dimensional subspace of an r-dimensional space by first
choosing an m-dimensional subspace, then extending that to a m+m′-dimensional
space. Thus each m + m′-dimensional subspace is constructed β(m + m′,m) =
β(m+m′,m′) times, proving identity (b).

(c) Let r = dimV , r′ = dimV ′. We construct all dimension t subspaces of V ⊕V ′
by first choosing a dimension t − d subspace J of V (we have β(r, t − d) choices
for each d, 0 ≤ d ≤ t), then we extend J to J ⊕ J ′ where dimJ ′ = d and J ′ is
independent of V (we have pd(r−t+d)β(r′, d) choices.

(d) Begin with the identity from (b). Thus

β(r −m+ 1,m′ + 1)β(r + 1,m)− β(m+m′,m′)β(r + 1,m+m′ + 1)

= β(r + 1,m+m′ + 1)
[
β(m+m′ + 1,m′ + 1)− β(m+m′,m′)

]
.

Using the formula for β(∗, ∗) (or arguing combinatorially), one easily verifies that
β(m + m′ + 1,m′ + 1) − β(m + m′,m′) = pm

′+1β(m + m′,m′ + 1). Substituting
this value in the previous equation yields the result. �
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Lemma 5.2.

∑
0≤d≤m

pd(y−m)+d(d−1)/2β(m, d) =
m∏
i=1

(py−i + 1) = ε(y −m,m).

Proof. We argue by induction on m, first noting that the identity trivially holds
for m = 0, 1. Take m ≥ 1. Then∑

0≤d≤m+1

pd(d−m−1)+d(d−1)/2β(m+ 1, d)

= 1 + p(m+1)(y−m−1)+m(m+1)/2

+
∑

1≤d≤m

pd(y−m−1)+d(d−1)/2
(
β(m, d) + pm−dβ(m, d− 1)

)
by (c) of Lemma 5.1 and with y′ = y − 1,

= (py
′
+ 1)

∑
0≤d≤m

pd(y′−m)+d(d−1)/2β(m, d)

and by the induction hypothesis

= (py
′
+ 1)

m∏
i=1

(py
′−i + 1)

=
m+1∏
i=1

(py−i + 1).�
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