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Abstract. We analyse the behavior of Siegel theta series attached to arbitrary rank
lattices under the symplectic group, and define half-integral weight Siegel modular

forms. Then we introduce Hecke operators for half-integral weight Siegel forms,

explicitly describing the action on Fourier coefficients (and giving an explicit choice
for the matrices giving the action of each Hecke operator). We introduce generators of

the Hecke algebra whose action on Fourier coefficients is more transparant. Applying

these operators to theta series, we show that the average Siegel theta series of half-
integral weight are eigenforms for the Hecke operators attached to primes not dividing

the level; we explicitly compute the eigenvalues.

§0. Introduction

Quadratic forms abound in mathematics, as they capture the geometric notions
of distance and orthogonality. Siegel asked: Given a lattice L = Zx1 ⊕ · · · ⊕ Zxm
with geometry given by a positive definite quadratic form Q, and given another
quadratic form T , how many sublattices of L have their geometry given by T? To
study this question, Siegel introduced generalised theta series, which have Fourier
expansions supported on positive semi-definite quadratic forms T ; the T th Fourier
coefficient carries the answer to Siegel’s question. (Note that every quadratic form
can be naturally associated with a symmetric matrix.) Siegel theta series are the
prototypes for Siegel modular forms and, as in the classical case of elliptic modular
forms, Hecke operators help us study the Fourier coefficients of these modular forms.

In this paper we focus on Siegel modular forms of half-integral weight and the
action of Hecke operators on their Fourier coefficients; for this, we need a good un-
derstanding of Siegel theta series. Thus, after presenting terminology and notation
in §1, in §2 we analyse the behavior of Siegel theta series under the appropriate
subgroup of the symplectic group; alternate proofs can be found, for instance, in
§1.3 and §1.4 of [1]. We also define Siegel modular forms of weight k + 1/2 in §2.
In §3 we define Hecke operators on half-integral weight Siegel modular forms, and
we evaluate their action on the Fourier coefficients of the Siegel modular forms (see
Proposition 3.1 and Theorem 3.4). This action involves generalised “twisted” Gauss
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sums, which we evaluate in §4, using the theory of quadratic forms over finite fields
(see Theorem 4.3); more general versions of these are evaluated in Theorem 1.3 of
[9]. In §5, we present a different set of generators for the Hecke algebra so that,
using the results of §3 and §4, the action of the operators on Fourier coefficients
is simpler to describe (see Theorem 5.1). As an application, in §6 we apply these
averaged operators to Siegel theta series (provided the Hecke operators are asso-
ciated to primes not dividing the “level” of the Siegel theta series). We obtain a
generalised Eichler Commutation Relation (Theorem 6.4), and from this we deduce
that the “average” theta series is an eigenform, as we simultaneously compute its
eigenvalues (Corollary 6.5). In particular, when θ(n)(L) is a Siegel theta series of
degree n, weight k + 1/2, and level N , the eigenvalue of the average theta series
θ(n)(genL) under T ′j(p

2) is

pj(j−1)/2+j(k−n)β(n, j)(pk + χ′(p)) · · · (pk−j+1 + χ′(p)),

provided p is a prime with p - N , and 1 ≤ j ≤ k; here β(n, j) is the number of
j-dimensional subspaces of an n-dimensional space over Z/pZ, and

χ′(p) =
(

(−1)k+12 detQ
p

)
.

In Theorem 6.6, we show that T ′j(p
2) annihilates θ(n)(L) when p - N and j > k.

In §7 we recount some theory of quadratic forms over the p-adics Zp; in §8
we recount some results on representation numbers of quadratic forms over Z/pZ,
p 6= 2; in §9 we recount some technical lemmas on symmetric matrices and coprime
symmetric pairs.

To a large extent this paper is self-contained. For a broader discussion of Siegel
modular forms, the reader is referred, for instance, to [1], [2], [4], [7]; for a broader
discussion of quadratic forms, the reader is referred, for instance, to [3], [5], [8].

§1. Terminology and notation

Throughout, we let Q be a positive definite quadratic form on a lattice L =
Zx⊕ · · · ⊕ Zxm; for convenience, we assume Q is scaled so that Q(L) ⊆ 2Z. Asso-
ciated to Q is the symmetric bilinear form BQ given by Q(x+ y) = Q(x) +Q(y) +
2BQ(x, y). Relative to the basis (x1, . . . , xm), we can identify L with Zm,1, and Q
can be represented by the matrix

(
BQ(xi, xj)

)
(which we sometimes refer to as Q);

with x ∈ Zm,1 representing a vector in L, the action of Q is given by the matrix
multiplication txQx.

For n ∈ Z+, we attach to L a generalised theta series

θ(n)(L; τ) =
∑

C∈Zm,n

e{Q[C]τ}

where e{∗} = exp(πiTr(∗)) and Q[C] = tCQC. As Siegel proved (cf. §1.1.1 and
§1.3.3 of [1]), θ(n)(L; τ) is an analytic function in all the variables of τ where τ lies
in Siegel’s upper half-space

H(n) = {X + iY : X,Y ∈ Rn,nsym, Y > 0 };
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Y > 0 means that as a quadratic form, Y is positive definite. Note that

θ(n)(L; τ) =
∑
T

r(Q,T )e{Tτ}

where T varies over all n× n symmetric matrices and

r(Q,T ) = #{C ∈ Zm,n : tCQC = T }.

Since Q(L) ⊆ 2Z, the matrix for Q is even integral, meaning it is integral with
even diagonal entries; thus with C ∈ Zm,n, tCQC is also even integral. This
representation number r(Q,T ) gives us information about the number of sublattices
of L on which the quadratic form Q restricts to T ; the sublattice associated to tCQC
is Zy1 + · · ·+ Zyn where

(y1 . . . yn) = (x1 . . . xm)C.

Also, when n > m (m the rank of L), then Zy1 + · · · + Zyn necessarily has rank
less than n; for this reason, we only consider n ≤ m.

The symplectic group is defined by

Spn(Z) =
{(

A B
C D

)
: A tB, C tD are symmetric, A tD −B tC = I

}
where tB denotes the transpose of B; we set

Γ(n)
0 (N) =

{(
A B
C D

)
: N |C

}
.

As discussed, for example in Proposition 1.2.1 of [1], Spn(Z) acts on H(n) by(
A B
C D

)
τ = (Aτ +B)(Cτ +D)−1.

Using the Inversion Formula, one derives Siegel’s Transformation Formula (see The-
orem 2.2) which relates θ(n)(L; τ) to θ(n)(L; γτ) where γ ∈ Γ(n)

0 (N).
The quadratic form Q on L can be naturally extended to a quadratic form

on the vector space V = QL = Qx1 ⊕ · · · ⊕ Qxm. Identifying Q with an even
integral matrix (as discussed above), Q has an invariant called the level, which is
the smallest positive integer N so that NQ−1 is also even integral. Siegel’s Inversion
Formula (Lemma 1.3.15 of [1], and stated here as Theorem 2.1) relates θ(n)(L; τ)
to θ(n)(L#;−τ−1) where L# is the dual of L, defined by

L# = {w ∈ V : BQ(w,L) ⊆ Z }.

(Note that when we have identified L with Zm,1 and Q with a matrix relative to
some Z-basis for L, L# is naturally identified with Q−1Zm,1.)
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We rely heavily on the arithmetic theory of quadratic forms over Z and over the
p-adics Zp, as well as the arithmetic theory of quadratic forms over finite fields.
When L is a free lattice over a Dedekind domain D with quadratic form Q and A
is a matrix representing Q relative to some D-basis for L, we write L ' A, and
we set discL = detA. (Thus discL is well-defined up to squares of units of D.
Also note that since Zp is a principle ideal domain, any Zp-lattice is free.) The
lattice L is said to be regular if 0 is the only vector x ∈ L so that BQ(x, L) = 0.
When A is a matrix with L ' A relative to some D-basis (x1, . . . , xm), L is regular
exactly when detA 6= 0; in the case detA 6= 0, (y1, . . . , ym) = (x1, . . . , xm)A−1

is a dual basis for (x1, . . . , xm) (where A−1 has entries in the quotient field of D),
and (y1, . . . , ym) is a D-basis for L#. (So L# ' A−1.) We say L is unimodular if
L = L#; a regular lattice L is unimodular exactly when A is invertible over D. We
say two lattices L,K are isometric if L ' A and K ' A, A a symmetric matrix;
the notation L ' K means L and K are isometruc. An automorphism σ of L is
an isometry of L when BQ(σx, σy) = BQ(x, y) for all x, y ∈ L. We use O(L) to
denote the orthogonal group of L, meaning the group of isometries mapping L to
itself; we use o(L) to denote the order of this group. (Note that when Q is positive
definite, o(L) is known to be finite.)

A nonzero vector x is called isotropic if Q(x) = 0; a lattice (or vector space) is
called isotropic if it contains a (nonzero) isotropic vector, and it is called anisotropic
otherwise; it is called totally isotropic if all its vectors are isotropic.

For µi ∈ D, we use
〈
µ1, . . . , µm

〉
to denote the diagonal matrix diag{µ1, . . . , µm},

and for square matrices A1, A2 we use A1 ⊥ A2 to denote the block diagonal matrix
diag{A1, A2}. For sublattices L1, L2 of L with L1 ∩L2 = {0}, we write L1 ⊥ L2 to
denote the direct sum of L1 and L2 in the case that BQ(L1, L2) = 0.

Suppose p is an odd prime and V is a vector space over Z/pZ with quadratic
form Q. The radical of V is

radV = {w ∈ V : BQ(w, V ) = 0 }.

When radV = {0}, we say V is regular. Note that we always have V = radV ⊥ V ′
where V ′ is regular; while V ′ is not uniquely determined, its isometry class is. We

use H to denote a hyperbolic plane in V , meaning H '
(

0 1
1 0

)
(relative to some

basis). We use A to denote an anisotropic plane, meaning dim A = 2 and A contains
no isotropic vectors. When V is regular and U is a totally isotropic subspace of V ,
there exists another subspace U ′ of V so that U⊕U ′ ' HdimU . Also, whenever V is
a regular space with dimV ≥ 3, V is isotropic. A regular subspace U of V splits V ,
meaning V = U ⊥ U ′ for some U ′; consequently, when V is regular, V ' Hd ⊥ W
where W is regular with dimension 0, 1, or 2. Thus when dimV = 2d, either
V ' Hd or V ' Hd−1 ⊥ A. When dimV = 2d + 1 then V ' Hd ⊥

〈
ν
〉

for some
ν 6= 0; the square class of ν determines the isometry class of V .

For F a finite field and Q ∈ Fm,msym , T ∈ F`,`sym, we use r(Q,T ) to denote the number
of representations of T by Q, and r∗(Q,T ) to denote the number of primitive
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representations of T by Q. Thus

r(Q,T ) = #{C ∈ Fm,` : tCQC = T },
r∗(Q,T ) = #{C ∈ Fm,` : tCQC = T, rankC = ` }.

We often write r∗(Q,α) for r∗(Q,
〈
α
〉
). Note also that when α 6= 0, we necessarily

have r(Q,α) = r∗(Q,α). With o(T ) = r∗(T, T ), the order of the orthogonal group
of T , we set

R∗(Q,T ) =
r∗(Q,T )
o(T )

;

so with V a dimension m vector space over F with quadratic form Q, R∗(Q,T ) is
the number of dimension ` subspaces of V on which Q restricts to give T (relative
to some basis for the subspace).

There are also several elementary functions we frequently encounter, and thus it
is useful to give them names. For a fixed prime p and m, r ∈ Z we set

δ(m, r) =
r−1∏
i=0

(pm−i + 1), µ(m, r) =
r−1∏
i=0

(pm−i − 1),

β(m, r) =
µ(m, r)
µ(r, r)

, γ(m, r) =
µδ(m, r)
µδ(r, r)

,

η(m, r) =
m−r−1∏
i=0

(pm − pr+i) = pm(m−1)/2−r(r−1)/2µ(m− r,m− r).

(Here we have written µδ(m, r) for the product µ(m, r)δ(m, r); also note that when
m, r ≥ 0, β(m, r) is the number of r-dimensional subspaces of an m-dimensional
space over Z/pZ.) These functions satisfy some easily verified relations, which we
will exploit frequently:

δ(m, r)δ(m− r, q) = δ(m, r + q), µ(m, r)µ(m− r, q) = µ(m, r + q),

and when m ≥ 1,

β(m, r) = β(m,m− r), γ(m, r) = γ(m,m− r),
β(m, r) = prβ(m− 1, r) + β(m− 1, r − 1) = β(m− 1, r) + pm−rβ(m− 1, r − 1),

γ(m, r) = p2rγ(m− 1, r) + γ(m− 1, r − 1).

§2. Siegel theta series and half-integral weight Siegel modular forms

Throughout this section, L is a rank m Z-lattice equipped with the positive
definite, even integral quadratic form Q of level N .
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Here we use an “inversion formula” from [1] to give an alternate proof of the
transformation formula of a Siegel theta series. To do this we generalise an argument
of Eichler, where he first relies on the identity

aτ + b

cτ + d
=
b

d
+

τ

d(cτ + d)

for τ ∈ H(1) and
(
a b
c d

)
∈ SL2(Z). Then we use the theory of quadratic forms,

and lemmas based on the Elementary Divisor Theorem, to generalise Eichler’s
method to evaluate the character that arises in this transformation formula.

The following theorem is Lemma 1.3.15 of [1].

Theorem 2.1 (Inversion Formula). With L# the dual of L,

θ(n)(L; τ) = (detQ)−n/2(det(−iτ))−m/2θ(n)(L#;−τ−1).

More generally, take G0 ∈ Qm,n and set

θ(n)(L,G0; τ) =
∑

G∈Zm,n

e{Q[G+G0]τ}

where Q[G′] = tG′QG′. Then

θ(n)(L,G0; τ)

= (detQ)−n/2(det(−iτ))−m/2
∑

G∈Zm,n

e{−Q−1[G]τ−1 − 2 tGG0}.

(Here (det(−iτ))1/2 is taken to be positive when τ = iY , Y > 0; in general, the
sign is found by analytic continuation in H(n).)

Theorem 2.2 (Transformation Formula). With L as above and
(
A B
C D

)
∈

Γ(n)
0 (N), we have

θ(L; (Aτ +B)(Cτ +D)−1)

= (det(−iτ(Cτ +D)−1D)−m/2(det(−iτ))m/2

·

 ∑
G∈Zm,n/Zm,n tD

e{Q[G]BD−1}

 θ(L; τ).

Proof. Note that tDA − tBC = I, and so (Aτ + B)(Cτ + D)−1 = tD−1 tB +
tD−1τ(Cτ + D)−1 with tD−1 tB symmetric. Using these observations, the fact
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that e{MM ′} = e{M ′M}, and the Inversion Formula (Theorem 2.1), we get

θ(L; (Aτ +B)(Cτ +D)−1)

=
∑

G0∈Zm,n/Zm,n tD

e{Q[G0] tD−1 tB}

·
∑

G∈Zm,n

e{Q[G0 +G tD] tD−1τ(Cτ +D)−1}

=
∑
G0

e{Q[G0]BD−1}θ(L,G0
tD−1; τ(Cτ +D)−1D}

= (detQ)−n/2(det(−iτ(Cτ +D)−1D))−m/2
∑
G0

e{Q[G0]BD−1}

·
∑

G∈Zm,n

e{−Q−1[G]D−1(Cτ +D)τ−1 − 2 tGG0
tD−1}.

Since e{MM ′} = e{M ′M}, e{M} = e{tM}, and D tA− C tB = I, we have

e{−Q[G0B −Q−1G]D−1C}
= e{−Q[G0]BD−1C tB + 2 tG0GD

−1C tB −Q−1[G]D−1C}
= e{Q[G0]BD−1 − 2 tGG0

tD−1 −Q−1[G]D−1C}.

By Lemma 9.2, with G any element of Zm,n, G0B−Q−1G varies over the quotient
Q−1Zm,n/Q−1Zm,nD as G0 varies over Zm,n/Zm,n tD; in particular (taking G = 0),
G0B varies over Q−1Zm,n/Q−1Zm,nD as G0 varies over Zm,n/Zm,n tD. Also note
that since N |C and NQ−1 is even integral,

e{Q[Q−1G+Q−1G′D]D−1C} = e{Q[Q−1G]D−1C}

for any G,G′ ∈ Zm,n, and hence∑
G∈Zm,n/Zm,nD

e{Q[Q−1G]D−1C}

is well-defined. Thus∑
G0∈Zm,n/Zm,n tD

e{Q[G0]BD−1 − 2 tGG0
tD−1 −Q−1[G]D−1C}

=
∑

G0∈Zm,n/Zm,n tD

e{Q[G0]BD−1}.

So

θ(L; (Aτ +B)(Cτ +D)−1) = (detQ)−n/2(det(−iτ(Cτ +D)−1D)−m/2

·
∑

G0∈Zm,n/Zm,n tD

e{Q[G0]BD−1} θ(L#;−τ−1);
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applying the Inversion Formula again yields the theorem. �

Definition. For b, d ∈ Z with (b, d) = 1 and d 6= 0, we let Gb(d) denote the usual
Gauss sum, meaning

Gb(d) =
∑

a∈Z/dZ

e{2a2b/d}.

For (tB, tD) a coprime symmetric pair of n× n integral matrices with detD 6= 0,
and for Q an m×m, symmetric, even integral matrix with detQ 6= 0, we define a
generalised Gauss sum

GB(D;Q) =
∑

G∈Zm,n/Zm,n tD

e{Q[G]BD−1}.

When m = 1 and Q = (2), we let GB(D) = GB(D; (2)).
In the following theorem we analyze GB(D;Q) in terms of the classical Gauss

sum and the Kronecker symbol; recall that the Kronecker symbol generalises the
Legendre symbol using the rule

(a
2

)
=


0 if 2|a,
1 if a ≡ ±1 (mod 8),
−1 if a ≡ ±3 (mod 8).

The proof below relies on some elementary, technical lemmas about symmetric
matrices, which are stated and proved in §9.

Note also that by Proposition 7.4, if Q is an m ×m even integral matrix with
2 - detQ, then m is necessarily even.

Lemma 2.3. Say Q ∈ Zm,m, U ′ ∈ Zr,r so that Q,U ′ are symmetric with Q even,
and p is a fixed prime such that p - detQ, p - detU ′. Then

GU ′(paIr;Q) =


(

2m detQ
p

)ar (
detU ′

p

)am
G1(pa)mr if p 6= 2,(

(−1)k detQ
2

)ar
2ark if p = 2, m = 2k.

Also, for p 6= 2 and a > 1, G1(pa) = pG1(pa−2).

Proof. Note that since Q,U ′ are symmetric, for G,G′ ∈ Zm,r we have

e{tGQG′U ′/p} = e{U ′ tG′QG/p} = e{tG′QGU ′/p}.

So for a > 1,∑
G∈Zm,r

G(pa)

e{Q[G]U ′/pa} =
∑

G∈Zm,r

G(pa−1)

e{Q[G]U ′/pa} ·
∑

G′∈Zm,r

G′(p)

e{2 tGQG′U ′/p}.
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For fixed G, the map G′ 7→ e{2 tGQG′U ′/p} is a character on Zm,r/pZm,r, and
since p - detU ′, p - detQ, this is the trivial character only when G ∈ pZm,r; thus

GU ′(paIr;Q) = pmrGU ′(pa−2Ir;Q);

this proves the theorem when 2|a.
Next, suppose a = 1; first consider p 6= 2. Then by §92 [8] (see also Proposition

7.1), we know Q,U ′ can be diagonalized over Zp, so we can find Ep ∈ SLm(Zp),
E′p ∈ SLr(Zp) so that tEpQEp and E′pU

′ tE′p are diagonal. Since SL`(Z) maps
onto SL`(Z/MZ) for any `,M ∈ Z (see, for instance, p. 21 of [10]), we can find
E ∈ SLm(Z) and E′ ∈ SLr(Z) so that E ≡ Ep (mod pZp) and E′ ≡ E′p (mod pZp),
and thus

tEQE ≡ diag{2α1, . . . , 2αm} (mod p),

E′U ′ tE′ ≡ diag{µ1, . . . , µr} (mod p).

Since EZm,rE′ = Zm,r,

GU ′(pIr;Q) =
m∏
i=1

r∏
j=1

Gµj
(p; 2αi) =

(
2m detQ

p

)r (detU ′

p

)m
G1(p)mr.

Now say p = 2. Then by Proposition 7.4, m must be even, and we can find
Ep ∈ SLm(Zp) so that tEpQEp is an orthogonal sum of matrices of the form(

2α 1
1 2β

)
where α, β ∈ Zp, and we can find E′p ∈ SLr(Zp) so that E′pU

′ tE′p

is an orthogonal sum of a diagonal matrix and matrices of the form
(

2ν 1
1 2η

)
.

Thus again using that SL`(Z) maps onto SL`(Z/MZ), we can find E ∈ SLm(Z),
E′ ∈ SLr(Z) so that

tEQE ≡
(

2α1 1
1 2β1

)
⊥ · · · ⊥

(
2αk 1

1 2βk

)
(mod 4),

E′U ′ tE′ ≡ diag{µ1, . . . , µt} ⊥
(

2ν1 1
1 2η1

)
⊥ · · · ⊥

(
2νs 1
1 2ηs

)
(mod 4).

(Note that since 2 - detU ′, we have 2 - µi.) Thus with Qi =
(

2αi 1
1 2βi

)
and

Uh =
(

2νh 1
1 2ηh

)
,

GU ′(2Ir;Q) =
k∏
i=1

 t∏
j=1

Gµj (2;Qi)

( s∏
h=1

GUh
(2I2;Qi)

)
.
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Now, for 2 - µ,

Gµ(2;Qi) = e{0}+ e{αi}+ e{βi}+ e{αi + βi + 1} =
(
− detQi

2

)
· 2.

Somewhat similarly,

GUh
(2I2;Qi) =

∑
a,b,c,d∈Z/2Z

e{ad+ bc} = 4.

Thus

GU ′(pIr;Q) =
(

(−1)k detQ
2

)r
· 2kr.

The lemma now follows. �

Theorem 2.4. Suppose (tB, tD) is a coprime symmetric pair of n × n integral
matrices with detD 6= 0. Take Q ∈ Zm,m symmetric and even with detQ 6= 0 and
(detQ,detD) = 1. Then

GB(D;Q) =


(

(−1)k detQ
| detD|

)
|detD|k if m = 2k,(

(−1)k2·detQ
| detD|

)
|detD|k GB(D) if m = 2k + 1.

Also, for q ∈ Z with (q,detD) = 1, we have GqB(D) =
(

q
| detD|

)
GB(D) and

(GB(D))2 =
(
−1
| detD|

)
|detD|.

Proof. By the Elementary Divisor Theorem, we can find E1, E2 ∈ SLn(Z) so that

V = tE−1
2 DE1 = diag{d1, . . . , dn}

with di|di+1. Notice that as G runs over Zm,n/Zm,n tD, GE−1
2 runs over

Zm,nE−1
2 /Zm,n tDE−1

2 = Zm,n/Zm,n tE−1
1 V = Zm,n/Zm,nV,

so with U = E2BE1 we have

GB(D;Q) =
∑

G∈Zm,n/Zm,n tD

e{Q[G]BE1V
−1 tE−1

2 } = GU (V ;Q).

For each prime p|detD, set Vp = diag{pe1 , . . . , pen} where ei = ordp(di), and
set Wp = V V −1

p . Then by Lemma 9.3,

GB(D;Q) =
∏

p| detD

 ∑
G∈Zm,nWp/Zm,nV

e{Q[G]UV −1}

 =
∏

p| detD

GWpU (Vp;Q).
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Notice that this means GB(D) =
∏
p| detD GWpU (Vp).

Fix a prime p|detD; choose a1 < a2 < · · · < a` and r1, . . . , r` ∈ Z so that
Vp = diag{pa1Ir1 , . . . , p

a`Ir`
}. Then by Lemma 9.1 (where we use WpU in place of

U and Vp in place of V ), there is some Y ∈ SLn(Z) so that

YWpUV
−1
p

tY ≡ diag{p−a1U ′1, . . . , p
−a`U ′`} (mod Z)

where U ′i is ri × ri and symmetric with p - detU ′i unless i = 1 and a1 = 0. Also,
VpY = Y ′Vp where Y ′ ∈ SLn(Z). Hence

Zm,nY/Zm,nVpY = Zm,n/Zm,nVp;

so replacing G by GY we have

GWpU (Vp;Q) =
∏̀
i=1

GU ′i (paiIri ;Q).

Fix i and let r = ri, a = ai, U ′ = U ′i . Note that if a1 = 0 then the sum on G1 is
1, so assume i > 1 if a1 = 0.

Note that for p 6= 2, standard techniques show G1(p)2 = p
(
−1
p

)
. So when

m = 2k, Lemma 2.3 gives us

GWpU (Vp;Q) =
∏̀
i=1

(
(−1)k detQ

p

)airi

· pairik

=
(

(−1)k detQ
|detVp|

)
· | detVp|k.

Now suppose m = 2k + 1. Then

GB(D) =
∏

p| detD

GWpU (Vp),

and by Lemma 2.3,

GWpU (Vp) =
∏̀
i=1

(
detU ′i
p

)ai

G1(pai)ri .

Thus

GWpU (Vp;Q) =
∏̀
i=1

(
(−1)k2 detQ

p

)airi

pairikGWpU (Vp)

=
(

(−1)k2 detQ
|detVp|

)
|detVp|kGWpU (Vp).
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Since GB(D;Q) =
∏
p| detD GWpU (Vp;Q), the first claim of the theorem now

follows.
The product decomposition of GB(D) above makes it clear that GqB(D) =(
q

| detD|

)
GB(D) for (q,detD) = 1; also,

(GB(D))2 = GB(D; 2I2) =
(
−1
|detD|

)
|detD|. �

With θ(n)(τ) =
∑
C∈Z1,n e{2 tCCτ}, we have (θ(n)(τ))m = θ(n)(L′; τ) where

L′ ' 2Im; the level of the quadratic form 2Im is 4. Also, as discussed in §1, an even
quadratic form on an odd rank lattice necessarily divisible by 4. Thus Theorems
2.2 and 2.4 give us the following.

Corollary 2.5. Let L be a lattice equipped with a positive definite quadratic form

Q with level N ; take γ =
(
A B
C D

)
∈ Γ(n)

0 (N). If rankL = 2k, then

θ(n)(L; γτ) = det(Cτ +D)k (sgn detD)k
(

(−1)k detQ
|detD|

)
· θ(n)(L; τ).

If rankL = 2k + 1, then 4|N and

θ(n)(L; γτ) =
(

2 detQ
|detD|

)(
θ(n)(γτ)
θ(n)(τ)

)2k+1

θ(n)(L; τ).

Note that in the course of proving Theorem 2.4, we have also evaluated GB(D).
In particular, we have the following corollary, which we will use in the following
section.

Corollary 2.6. Let D = diag{Ir0 , pIr1 , p2Ir2 , In−j} where r0 + r1 + r2 = j, and
take B ∈ Zn,n so that ( tB, tD) is a coprime symmetric pair. Then

GB(D) = pr2
(

detY1

p

)
G1(p)r1

where B =

Y0 ∗ ∗
∗ Y1 ∗
∗ ∗ ∗

 with Y0 r0 × r0 and Y1 r1 × r1.

Siegel’s generalised theta series are the prototypes for Siegel modular forms.
Here we are concerned with half-integral weight, so from now on we restrict our
attention to this case.
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Definition. With n, k,N ∈ Z+, n > 1, 4|N , and χ a character modulo N , we say
a function F : H(n) → C is a degree n, weight k+ 1/2 Siegel modular form of level
N and character χ if F (τ) is analytic (in each variable of τ), and

F (γτ) = χ(detD)
(
θ(n)(γτ)
θ(n)(τ)

)2k+1

F (τ)

for all γ =
(
A B
C D

)
∈ Γ(n)

0 (N); note that by Theorems 2.2 and 2.4,

∣∣∣∣θ(n)(γτ)
θ(n)(τ)

∣∣∣∣2 = |det(Cτ +D)|.

We let Mk+1/2(Γ(n)
0 (N), χ) denote the complex vector space of all such functions.

Take
(
A B
C D

)
∈ Sp+

n (Q) and φγ : H(n) → C so that

|φγ(τ)|2 = |(det γ)−1/2 det(Cτ +D)|;

with 4|N and F ∈Mk+1/2(Γ(n)
0 (N), χ), we define(

F |[γ, φγ ]
)
(τ) = φγ(τ)−(2k+1) F (γτ).

For γ ∈ Γ(n)
0 (4), we set γ̃ = [γ, θ(n) ◦ γ/θ(n)]; then F |γ̃ = χ(γ)F for γ ∈ Γ(n)

0 (N).
Also, for γ, γ′ ∈ Sp+

n (Q),

F |[γ, φγ ]|[γ′, φγ′ ] = F|[γγ′, (φγ ◦ γ′) · φγ′ ]

(where
(
(φγ ◦ γ′) · φγ′

)
(τ) = φγ(γ′τ) · φγ′(τ).) Thus for γ, γ′ ∈ Γ(n)

0 (4), F |γ̃|γ̃′ =
F |γ̃γ′.
Remark. As discussed on pp. 44-46 of [7], when F : H(n) → C is analytic with
F (τ +B) = F (τ) for all B ∈ Zn,nsym, we have

F (τ) =
∑
T

c(T )e{Tτ}

where T varies over even integral n × n matrices. Then, by work of Koecher
(Theorem 1, p. 45 [7]), those T in the support of F must be positive semi-definite,
and in addition, for any ε > 0, F is bounded on the subset {τ ∈ H(n) : Y −εI ≥ 0 }.

Notice that for G ∈ GLn(Z) and F ∈Mk+1/2(Γ(n)
0 (N), χ), we have

γ =
(
G−1

tG

)
∈ Γ(n)

0 (N), and so χ(detG)F =
(
F |γ̃

)
;
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since θ(n)(G−1τ tG−1) = θ(n)(τ), we get c(T ) = χ(detG) c( tGTG). We interpret T
as the matrix for a quadratic form on a rank n lattice Λ (oriented if χ(−1) = −1).
Then we set c(Λ) = c(T ) and

e∗{Λτ} =
∑
G

e{ tGTGτ}

where G varies over O(T )\GLn(Z) (or over O+(T )\SLn(Z) if χ(−1) = −1), and so

F (τ) =
∑
clsΛ

c(Λ) e∗{Λτ}

where clsΛ varies over all isometry classes of even integral, positive semi-definite
lattices of rank n (oriented if χ(−1) = −1).

§3. Hecke operators on half-integral weight Siegel modular forms

We begin by defining Hecke operators acting on half-integral weight Siegel mod-
ular forms; then we analyse their action on Fourier coefficients.

Fix N so that 4|N , and set Γ̃ = {γ̃ : γ ∈ Γ(n)
0 (N) }; let δ̃ =

[(
pI

I

)
, p−n/2

]
.

Similar to the case of integral weight, we define

F |T (p) =
∑
γ̃

χ(γ) F |δ̃−1γ̃

where γ̃ runs over a complete set of representatives for Γ̃ ∩ δ̃Γ̃δ̃−1\Γ̃.

Proposition 3.1. For F ∈Mm/2(N,χ) and p prime, F |T (p) = 0.

Proof. We will show that with Γ′ = δΓδ−1,[
Γ̃ ∩ Γ̃′ : Γ̃ ∩ δ̃Γ̃δ̃−1

]
= 2,

and that for γ̃0 ∈ Γ̃ ∩ Γ̃′, γ̃0 6∈ δ̃Γ̃δ̃−1, we have

χ(γ0) F |δ̃−1γ̃0 = −F |δ̃−1.

Consequently, for γ̃ a set of coset representatives for Γ̃ ∩ Γ̃′\Γ̃,

F |T (p) =

(∑
γ

χ(γ) F |δ̃−1γ̃

)
+

(∑
γ

χ(γ0γ) F |δ̃−1γ̃0γ̃

)
= 0.

To show
[
Γ̃ ∩ Γ̃′ : Γ̃ ∩ δ̃Γ̃δ̃−1

]
= 2, suppose γ =

(
A B
C D

)
∈ Γ so that γ′ =

δγδ−1 ∈ Γ. (Notice this means p|C and hence (p,detD) = 1.) We have

δ̃γ̃δ̃−1 =
[
γ′,

θ(n) ◦ γ ◦ δ−1

θ(n) ◦ δ−1

]
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and from the Transformation Formula (Theorem 2.1) and Theorems 2.2 and 2.4,

θ(n) ◦ γ ◦ δ−1(τ)
θ(n) ◦ δ−1(τ)

=
θ(n)(γτ/p)
θ(n)(τ/p)

=
(

p

|detD|

)
θ(n)(γ′τ)
θ(n)(τ)

.

If we have γ0, γ1 ∈ Γ such that γ′i = δγiδ
−1 ∈ Γ and

θ(n)(γiτ/p)
θ(n)(τ/p)

= −θ
(n)(γ′iτ)
θ(n)(τ)

,

then

θ(n)(γ0γ
−1
1 τ/p)

θ(n)(τ/p)
=
θ(n)(γ0γ

−1
1 τ/p)

θ(n)(γ−1
1 τ/p)

θ(n)(γ−1
1 τ/p)

θ(n)(τ/p)
=
θ(n)(γ′0(γ′1)−1τ)

θ(n)(τ)
,

and hence δ̃γ̃0δ̃
−1 and δ̃γ̃1δ̃

−1 lie in the same coset. Thus
[
Γ̃ ∩ Γ̃′ : Γ̃ ∩ δ̃Γ̃δ̃−1

]
≤ 2.

To show this index is 2, we show some γ0 as above exists. To see this, choose a

prime q - N so that
(
p
q

)
= −1. Then with D =

(
q

In−1

)
, (pNI,D) is a coprime

symmetric pair, so there are matrices A,B so that

γ0 =
(

A B
pNI D

)
∈ Γ, γ′0 = δγ0δ

−1 ∈ Γ ∩ Γ′, and
(

p

|detD|

)
= −1.

Furthermore, χ(γ0) = χ(detD) = χ(γ′0), but

F |δ̃−1γ̃0 =
(
p

q

)
F |γ̃′0δ̃−1 = −F |δ̃−1.

Hence F |T (p) = 0, as claimed. �

We now define the Hecke operators Tj(p2). For 1 ≤ j ≤ n, set

X =
(
pIj

In−j

)
, δj =

(
X

X−1

)
, and δ̃j = [δj , p−j/2].

For F ∈Mk+1/2(Γ(n)
0 (N), χ), define

F |Tj(p2) =
∑
γ̃

χ(γ)F |δ̃−1
j γ̃

where γ̃ runs over a complete set of representatives for Γ̃ ∩ δ̃jΓ̃δ̃−1
j \Γ̃.
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Lemma 3.2. Let Γ = Γ0(N) and let δj , δ̃j be as above. Set Γ′j = δjΓδ−1
j ; then for

p - N ,
Γ̃′j ∩ Γ̃ = δ̃jΓ̃δ̃−1

j ∩ Γ̃.

Proof. Say γ =
(
A B
C D

)
∈ Γ so that γ′ = δjγδ

−1
j ∈ Γ. (Note that this means

(X tBX,X tDX−1) is a coprime symmetric pair, so p - detD.) So by Theorem 2.2,

θ(γ′τ)
θ(τ)

= (det(−iτ))1/2(det(−iτ(X−1CX−1τ +X−1DX)−1X−1DX))−1/2

· GXBX(X−1DX)

= (det(−iτ))1/2(det(−iτ(CX−1τX−1 +D)−1D))−1/2GXBX(X−1DX),

and

θ(n)(γδ−1
j τ)

θ(n)(δ−1
j τ)

= (det(−iτ))1/2(det(−iτ(CX−1τX−1 +D)−1D))−1/2GB(D).

Also,
GXBX(X−1DX) =

∑
G

e{2(X tGGX)BD−1}

where G varies over Z1,n/Z1,nX tDX−1, and so GX varies over Z1,nX/Z1,nX tD.
We argue that when G varies over Z1,n/Z1,n tD, pG varies over Z1,n/Z1,n tD and
over Z1,nX/Z1,nX tD, and hence GXBX(X−1DX) = GB(D). Take G0, G

′
0 ∈ Z1,n.

Clearly, if G0 −G′0 ∈ Z1,n tD then p(G0 −G′0) ∈ Z1,nX tD ⊆ Z1,n tD. So suppose
p(G0 −G′0) ∈ Z1,nX tD. Then

(G0 −G′0) tD−1 ∈ Z1,n 1
p
X ∩ Z1,n tD−1.

Locally at each prime q, either 1
pX or tD−1 lies in Z1,n

q , so (G0 −G′0) tD−1 ∈ Z1,n
q

for all primes q. Therefore G0 − G′0 ∈ Z1,n tD whenever p(G0 − G′0) ∈ Z1,nX tD.
Similarly, G0 −G′0 ∈ Z1,n tD whenever p(G0 −G′0) ∈ Z1,n tD. �

Theorem 3.3. Take p a prime and F ∈Mk+1/2

(
Γ(n)

0 (N), χ
)
.

(a) If p - N , then

F |Tj(p2) =
∑

Ω,Λ′1,Y

χ(detD)F |δ̃−1
j

[(
D tY

D−1

)
,
GY (D)
(detD)

] ˜(
G−1

tG

)

where Ω,Λ′1 vary subject to pΛ ⊆ Ω ⊆ 1
pΛ, Λ

′
1 is a codimension n− j subspace

of Λ ∩ Ω/p(Λ + Ω), and G = G(Ω,∆1) ∈ SLn(Z),

D = D(Ω) = diag{Ir0 , pIr1 , p2Ir2 , In−j}
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so that

Ω = ΛGD−1X, Λ′1 = ΛG

 0r0
Ir1

0

 where X =
(
pIj

In−j

)
.

Also,

tY =


Y0 Y2 0 Y3

p tY2 Y1 0
0 0 I
tY3


with Y0 symmetric, r0× r0, varying modulo p2, Y1 symmetric, r1× r1 varying
modulo p with the restriction that p - detY1, Y2 r0× r1, varying modulo p, Y3

r0 × (n− j), varying modulo p.
(b) If p|N , then

F |Tj(p2) =
∑
Ω,Y

F |δ̃−1
j

˜( I Y
I

) ˜(
G−1

tG

)

where Ω varies subject to pΛ ⊆ Ω ⊆ Λ, [Λ : Ω] = pj, G = G(Ω,Λ1) ∈ GLn(Z)
so that Ω = ΛGX and

Y =
(
Y0 Y3
tY3 0

)
with Y0 symmetric, j × j, varying modulo p2, Y3 j × (n− j), varying modulo
p.

Proof. First suppose p - N . By Lemma 5.2, a set of coset representatives for
the action of the half-integral weight Hecke operator Tj(p2) is {γ̃} where {γ} is
a set of coset representatives for the integral weight Hecke operator Tj(p2), and
a set of representatives for this was given in Proposition 2.1 of [6] in the case
N = 1; note that the matrices G presented there can be chosen from SLn(Z). The
representatives presented there are{(

D tY
U W

)(
G−1

tG

)}
where D,G, Y vary as in the statement of the theorem, and U,W are any n × n

matrices so that
(
D tY
U W

)
∈ Spn(Z). The only modification we need to make

here is to ensure
(
D tY
U W

)
∈ Γ(n)

0 (N). To do this, we note that with D′ =

diag{Ir0 , pIr1 , p2Ir2} and

Y ′ =

 Y0 Y2 0
p tY2 Y1 0

0 0 Ir2

 ,
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(D′, NY ′) is a coprime symmetric pair, and so we can find U ′,W ′ so that N |U ′

and
(
D′ Y ′

U ′ W ′

)
∈ Spj(Z). Setting U =

(
U ′

0

)
, W =

(
W ′

In−j

)
, we have(

D tY
U W

)
∈ Γ(n)

0 (N). Then by the construction in the proof of Proposition 2.1 of

[6] and Lemma 7.1, we have

M

(
G

tG−1

)(
D tY
U W

)−1

∈ δjΓ(n)
0 (1)δ−1

j ∩Γ(n)
0 (N) = δjΓ

(n)
0 (N)δ−1

j ∩Γ(n)
0 (N).

Thus a set of coset representatives corresponding to Tj(p2) onMk+1/2(Γ(n)
0 (N), χ)

is {
˜(
D tY
U W

) ˜(
G−1

tG

)}

where G = G(Ω,Λ1), D = D(Ω), Y vary as claimed.
Set

β =
(
D tY

D−1

)
, γ′ = δ−1

j γβ−1δj =
(

I
XUD−1X I

)
.

We have

XU =
(
pU ′

0n−j

)
,

and hence XUD−1X is integral and divisible by N . Thus γ′ ∈ Γ(n)
0 (N). We will

show that
γ̃′ = δ̃−1

j γ̃[β−1, (detD)(GY (D))−1]δ̃j ,

and hence

F |δ̃−1
j γ̃ = F |γ̃′δ̃−1

j [β, (detD)−1GY (D)] = F |δ̃−1
j [β, (detD)−1GY (D)].

Note that by Corollary 2.3 and Lemma 7.4 (a), GY (D) = GY1(pIr1)pr2 .
We have

δ̃−1
j γ̃[β−1, (detD)(GY (D))−1]δ̃j

=
[
γ′, (detD)(GY (D))−1 · θ(γβ

−1δjτ)
θ(β−1δjτ)

]
.

Also,

β−1δj =
(
D−1X − Y X−1

DX−1

)
, γβ−1δj =

(
X

UD−1X X−1

)
.
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Therefore, using the Inversion Formula,

θ(n)(γβ−1δjτ)

=
∑
g∈Z1,n

e{2 tggXτ(UD−1Xτ +X−1)−1}

=
1
√

2
n (detX)−1

(
det(−iτ(XUD−1Xτ + I)−1)

)−1/2

·
∑
g∈Z1,n

e{−1
2
tgg(UD−1Xτ +X−1)τ−1X−1}

=
1
√

2
n (detX)−1

(
det(−iτ(XUD−1Xτ + I)−1)

)−1/2

·
∑
g0 (D)

e
{
−1

2
tg0g0UD

−1

}
θ(n)

(
1
2

Z1,n, g0D
−1;−DX−1τ−1X−1D

)
= (detX)−1(det(−iD−1XτXD−1))1/2

(
det(−iτ(XUD−1Xτ + I)−1)

)−1/2

·
∑
g0 (D)

e
{
−1

2
tg0g0UD

−1

} ∑
g∈Z1,n

e{2 tggD−1XτXD−1 − 2D−1 tg0g}.

(By g0 (D) we really mean g ∈ Z1,n/Z1,n D.) Since UY = WD− I and e{MM ′} =
e{M ′M},

e{2 t(g0U/2 + g)(g0U/2 + g)Y D−1}

= e
{
−1

2
tg0g0UD

−1 − 2D−1 tg0g} e{2 tggY D−1

}
(recall that N |U and 4|N). Thus

θ(γβ−1δjτ) = (detD)−1(det(−iτ))1/2
(
det(−iτ(XUD−1Xτ + I)−1)

)−1/2

·
∑

g,g0∈Z1,n

g0 (D)

e{2 t(g0U/2 + g)(g0U/2 + g)Y D−1}

· e{2 tgg(D−1XτXD−1 − Y D−1)}.

For fixed g ∈ Z1,n, g0U/2+g varies over Z1,n/Z1,nD as g0 does (recall that (D, tU)
are coprime and 4|U). Thus the sum on g0 is independent of the choice of g, and
so

θ(γβ−1δjτ) = (detD)−1GY (D)(det(−iτ))1/2
(
det(−iτ(XUD−1Xτ + I)−1)

)−1/2

· θ(β−1δjτ)

= (detD)−1GY (D)
θ(γ′τ)
θ(τ)

· θ(β−1δjτ).
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This completes the proof in the case that p - N .
In the case p|N , the coset representatives for (Γ′j ∩ Γ(n))\Γ(n) are those repre-

sentatives as above where D = I. Since Ω = ΛGX, we have pΛ ⊆ Ω ⊆ Λ with
[Λ : Ω] = pj . �

When p - N , the generalised Gauss sums GY (D) in the automorphy factors in
Theorem 3.3 contribute to the Fourier coefficients of F |Tj(p2) a term that we call
a generalised twisted Gauss sum, defined as follows.
Definition. Let p be an odd prime, and 2T a symmetric, even integral t×t matrix.
Define the twisted Gauss sum by

G∗T (pIt) =
∑
Y (p)

(
detY
p

)
e{2Y T/p}

where Y varies over all symmetric, integral, t × t matrices modulo p. Also, define
the normalised twisted Gauss sum by

G̃T (pIt) = p−t G1(p)t G∗T (pIt).

For U a dimension t quadratic space over Z/pZ with U ' 2T modulo p, we set

G∗(U) = G∗T (pIn), and G̃(U) = G̃T (pIn).

In [9] a more general version of such sums are evaluated: There the quadratic
character

(
∗
p

)
is replaced by an arbitrary character. However, it is (unsurprisingly)

simpler – and somewhat amusing – to evaluate these with quadratic characters; we
do this in the next section, using the theory of quadratic forms over finite fields.

We complete this section by evaluating the action of Tj(p2) on the Fourier coef-
ficients of a modular form.

Theorem 3.4. Take F ∈ Mk+1/2(Γ(n)
0 (N), χ) where 4|N , and let p be a prime.

Let χ′ be the character modulo N defined by

χ′(d) = χ(d)
(

(−1)k+1

|d|

)
(sgn d)k+1.

(a) Suppose p - N . Given

Λ = Λ0 ⊕ Λ1 ⊕ Λ2, Ω = pΛ0 ⊕ Λ1 ⊕
1
p

Λ2

with ni = rankΛi, r = n0 + n2, set

Aj(Λ,Ω) = χ′(pj−r)pj/2+k(n2−n0)+n0(n−n2)
∑
clsU

dim U=j−r

R∗(Λ1/pΛ1, U)G̃(U)
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if Λ,Ω are even integral, and set Aj(Λ,Ω) = 0 otherwise. Then the Λth
coefficient of F |Tj(p2) is ∑

pΛ⊆Ω⊆ 1
p Λ

Aj(Λ,Ω)c(Ω).

(b) Suppose p|N . The Λth coefficient of F |Tj(p2) is

pj(n−k+1/2)
∑

pΛ⊆Ω⊆Λ
[Λ:Ω]=pj

c(Ω).

Proof. Let X =
(
pIj

In−j

)
. Suppose first that p - N ; then

F (τ)|Tj(p2) = p−j(k+1/2)
∑
D,Y,G

χ(detD)(detD)2k+1GY (D)−2k−1

·
∑
T

c(T )e{TX−1DG−1τ tG−1DX−1} e{TX−1 tY DX−1}

where D,Y,G vary as in Theorem 3.3, and T varies over all n × n even integral,
positive semi-definite matrices.

Fix T,G and D = diag{Ir0 , pIr1 , p2Ir2 , In−j}, and let Y vary. As described in
Theorem 3.3, we have

tY =


Y1 Y2 0 Y3

p tY2 Y1 0
0 0 I
tY3

 ;

correspondingly, we write

T =


T0 T2 ∗ T3
tT2 T1 ∗ ∗
∗ ∗ ∗ ∗
tT3 ∗ ∗ ∗

 .

By Corollary 3.4, GY (D) = pr2
(

detY1
p

)
G1(p)r1 ; so

∑
Y

GY (D)−2k−1e{TX−1 tY DX−1}

= p−r2(2k+1)G1(p)−r1(2k+1)
∑
Y0 (p2)

e{T0Y0/p
2} ·

∑
Y2 (p)

e{2T2Y2/p}

·
∑
Y3 (p)

e{2T3Y3/p} ·
∑
Y1 (p)

(
detY1

p

)
e{T1Y1/p}.
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If T0 ≡ 0 (mod p2), T2 ≡ 0 (mod p), T3 ≡ 0 (mod p) then the sum on Y is

pr0(n+1−r2)G∗1
2T1

(pIr1),

and otherwise the sum on Y is 0. Therefore, using the fact that G1(p)2 =
(
−1
p

)
p,

we have

F (τ)|Tj(p2) =
∑
D,G

χ′(detD)p(2k+1)(r2−j/2)+(k+1)r1+r0(n+1−r2)

·
∑

T
T [X−1D] integral

G̃ 1
2T1

(pIr1)c(T )e{T [X−1DG−1]τ}.

Let Λ = Zx1⊕· · ·⊕Zxn be equipped with the quadratic form T [X−1DG−1] (relative
to the given basis); then Ω = ΛGD−1X ' T relative to (x1 . . . xn)GD−1X. Also,
relative to these bases we have splittings

Λ = Λ0 ⊕ Λ′1 ⊕ Λ2,Λ′′1 , Ω = pΛ0 ⊕ Λ′1 ⊕
1
p

Λ2 ⊕ Λ′′1

where r0 = rankΛ0, r1 = rankΛ′1, r2 = rankΛ2, and Λ′1 ' T1. Also, with Λ1 =
Λ′1⊕Λ′′1 and Ω fixed, G = G(Ω,Λ′1) varies to vary Λ

′
1 over all dimension r1 subspaces

of Λ1/pΛ1 ≈ Λ ∩ Ω/p(Λ + Ω). Thus∑
Λ′1

G̃ 1
2T1

(pIr1) =
∑
clsU

dim U=r1

R∗(Λ1/pΛ1, U)G̃(U).

This proves the theorem in the case p - N .
In the case p|N , the analysis is simpler, as D is always I (and hence r0 = j,

r1 = r2 = 0); following the above reasoning yields the theorem in this case. �

§4. Evaluating twisted Gauss sums

Here we use the theory of quadratic spaces over finite fields to evaluate the
twisted Gauss sums defined in the previous section (cf. [9]). We begin with some
elementary lemmas.

Fix an odd prime p. Set F = Z/pZ; we will often write GLt for GLt(F), and G∗T
for G∗T (pIt) where 2T is a t×t symmetric, even integral matrix. Note that G∗T = G∗T ′
if T ≡ T ′ (mod p), so we can think of T as lying in Ft,tsym. Write

〈
α
〉d to denote the

d × d matrix diag{α, . . . , α}, and A ⊥ B to denote diag{A,B}. We fix ω so that(
ω
p

)
= −1, and set Jt = It−1 ⊥

〈
ω
〉

= diag{It−1, ω}.
Note that GLt acts by conjugation on Ft,tsym; we write T ∼ U when T,U lie in

the same GLt-orbit. The distinct GLt-orbits are represented by〈
0
〉t
, Id ⊥

〈
0
〉t−d

, Jd ⊥
〈
0
〉t−d (1 ≤ d ≤ t).
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Lemma 4.1. Fix integers d, ` with 0 < ` ≤ d, and set U` = I` ⊥
〈
0
〉d−`, U ` =

J` ⊥
〈
0
〉d−`

. Then∑
Y∼U`

e{2Y/p} −
∑
Y∼U`

e{2Y/p} =
∑

clsW∈F`,`
sym

R∗(Id,W )G∗W .

Proof. Note that with W ∈ F`,` and W ′ =
(
W ∗
∗ ∗

)
∈ Fd,d, we have

e{2U`W ′/p} = e{2W/p} and e{2U `W ′/p} = e{2J`W/p};

also, since the number of ways to extend a rank ` matrix from F d,` to a matrix
in GLd(F) is η(d, `), the number of G ∈ GLd so that the upper left ` × ` block of
G tG is W is η(d, `)r∗(Id,W ). Also, Lemma 8.1 gives the values of o(U`) and o(U `).
Thus we have∑

Y∼U`

e{2Y/p} −
∑
Y∼U`

e{2Y/p}

=
1

o(U`)

∑
G∈GLd

e{2 tGU`G/p} −
1

o(U `)

∑
G∈GLd

e{2 tGU `G/p}

=
1

o(U`)

∑
G∈GLd

e{2U`G tG/p} − 1
o(U `)

∑
G∈GLd

e{2U `G tG/p}

= η(d, `)
∑

W∈F`,`
sym

r∗(Id,W )
(

1
o(U`)

e{2W/p} − 1
o(U `)

e{2J`W/p}
)

=
∑

clsW∈F`,`
sym

R∗(Id,W )

·

(
1

o(I`)

∑
G∈GL`

e{2 tGWG/p} − 1
o(J`)

∑
G∈GL`

e{2J` tGWG/p}

)

=
∑

clsW∈F`,`
sym

R∗(Id,W )

(∑
Y∼I`

e{2YW/p} −
∑
Y∼J`

e{2YW/p}

)

=
∑

clsW∈F`,`
sym

R∗(Id,W )G∗2W . �

Lemma 4.2.
(a) We have A(c, s) = (−1)c where

A(c, q) =
c∑
`=0

(−1)`p2`(q−2c+`)µδ(q − c, c− `)γ(c, `).
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(b) We have B(s, q) = 1 where

B(s, q) =
s∑

a=0

(−1)apa(a+q)β(s, a)δ(s+ q, s− a).

(c) We have C(s) = 1 where

C(s) =
s∑
`=0

s−∑̀
a=0

(−1)a+`pa(a−2s+2`)+2`2−2s`−`µδ(s, `)γ(s, `)βδ(s− `, s− `− a).

Proof. (a) Using the identity

γ(c, `) = p2`γ(c− 1, `) + γ(c− 1, `− 1),

we get

A(c, q) =
c−1∑
`=0

(−1)`p2`(q−2c+`+1)µδ(q − c, c− `)γ(c− 1, `)

+
c∑
`=1

(−1)`p2`(q−2c+`)µδ(q − c, c− `)γ(c− 1, `− 1)

Replacing a by a + 1 in the latter sum, and then simplifying, we get A(c, q) =
−A(c− 1, q − 1). Consequently, A(c, q) = (−1)cA(0, q − c) = (−1)c.

(b) Using that

β(s, a) = paβ(s− 1, a) + β(s− 1, a− 1)

we get B(s, q) = B(s− 1, q + 1) = B(0, q + s) = 1.
(c) To evaluate C(s), we first replace a by s− `− a. Then we use that

γ(s, `)βδ(s− `, a) =
µδ(s, `+ a)
µδ(`, `)µ(a, a)

= βδ(s, a)γ(s− a, `)

to get

C(s) =
s∑

a=0

(−1)a+spa
2−s2βδ(s, a)D(s− a, s)

where

D(q, s) =
q∑
`=0

p`(`−1)µδ(s, `)γ(q, `).

As when evaluating A(c, q) above, we use our basic identity on γ(q, `) to get
D(q, s) = p2sD(q − 1, s). Thus D(q, s) = p2qs, and C(s) = B(s, 0) where B(s, q)
was evaluated above in (b). Thus C(s) = 1. �
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Theorem 4.3. Let T ∈ Ft,tsym; set ε =
(
−1
p

)
.

(a) Suppose t = 2s, and T ∼ Id ⊥
〈
0
〉t−d or Jd ⊥

〈
0
〉t−d. Then with d = 2c or

d = 2c+ 1,

G∗T = (−1)cεsps
2
·
s−c∏
i=1

(p2i−1 − 1).

(b) Suppose t = 2s + 1, T ∼ Id ⊥
〈
0
〉t−d

, and T ∼ Jd ⊥
〈
0
〉t−d. If d = 2c then

G∗T = G∗
T

= 0. If d = 2c+ 1 then

G∗T = −G∗
T

= (−1)cεs+cps
2+2s−cG1(p) ·

s−c∏
i=1

(p2i−1 − 1).

Proof. First note that, by the definition, G∗T only depends on the GLt-orbit con-
taining T ; as noted earlier, the orbits are represented by Id ⊥

〈
0
〉t−d

, Jd ⊥
〈
0
〉t−d

.
Also, in this proof we will use the fact that

q∏
i=1

(p2i−1 − 1) =
µ(2q, 2q)
µδ(q, q)

.

(a) Set t = 2s; we argue by induction on s. When s = 0, we agree that G∗T = 1.
Now suppose that 0 < s, and that the value of G∗W is as claimed for all W ∈ F2`,2`

sym ,

` < s. Suppose first that 0 ≤ d < t and T ∼ Id ⊥
〈
0
〉t−d. Then

G∗T =
∑
Y∼It

e{2Y T/p} −
∑
Y∼Jt

e{2Y T/p}

=
ps(ps + εs)
o(It+1)

∑
G∈GLt

e{2 tGGT/p} − ps(ps − εs)
o(It+1)

∑
G∈GLt

e{2 tGJtGT/p}.

Note that e{2Y T/p} = e{2Y ′/p} where Y ′ is the upper left d× d block of Y , and

that the number of G ∈ GLt so that tGXG =
(
Y ′ ∗
∗ ∗

)
is η(t, d) r∗(X,Y ′).

Set U` = I` ⊥
〈
0
〉d−`, and U ` = J` ⊥

〈
0
〉d−`

. Then when ` is odd,

r∗(It+1,
〈
1
〉
⊥ U`) = r∗(Jt+1,

〈
1
〉
⊥ U `)

and when ` is even,

r∗(It+1,
〈
1
〉
⊥ U`)− r∗(Jt+1,

〈
1
〉
⊥ U`) = r∗(Jt+1,

〈
1
〉
⊥ U `)− r∗(It+1,

〈
1
〉
⊥ U `).
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Thus, writing d as 2c or 2c+ 1 and using Lemma 4.1,

G∗T =
η(t, d)
o(It+1)

c∑
`=0

(
r∗(It+1,

〈
1
〉
⊥ U2`)− r∗(Jt+1,

〈
1
〉
⊥ U2`)

)
·

 ∑
Y∼U2`

e{2Y/p} −
∑

Y∼U2`

e{2Y/p}


=

η(t, d)
o(It+1)

c∑
`=0

(
r∗(It+1,

〈
1
〉
⊥ U2`)− r∗(Jt+1,

〈
1
〉
⊥ U2`)

)
·

∑
clsW∈F2`,2`

sym

R∗(Id,W )G∗W .

Then again using our formulas for representation numbers, as well as our induction
hypothesis,

∑
clsW∈F2`,2`

sym

R∗(Id,W )G∗W = ε`p`
2 ∑̀
a=0

(−1)ap2a(d−c−2`+a)µδ(c, `)µδ(d− c− `, `− a)
µδ(a, a)µδ(`− a, `− a)

.

Multiply by µδ(`, a)/µδ(`, a) and use that µδ(`, a)µδ(` − a, ` − a) = µδ(`, `); then
with A(∗, ∗) defined as in Lemma 4.2 and recalling that γ(c, `) = µδ(c, `)/µδ(`, `),
we get ∑

clsW∈F2`,2`
sym

R∗(Id,W )G∗W = ε`p`
2
γ(c, `)A(`, d− c) = (−1)`ε`p`

2
γ(c, `).

Now using our formulas for representation numbers, we get

G∗T =
2η(t, d)
o(It+1)

εsps+c(2d−2c−1)µ(s, d− c)A(c, s− d+ 2c),

where again A(∗, ∗) is defined and evaluated in Lemma 4.2. Simplifying yields the
result in this case.

The argument to evaluate G∗T where T = Jd ⊥
〈
0
〉t−d with d < t is virtually

identical, and thus is left to the reader.
Now take d = t = 2s, T = It. By Theorem 2.4 we know

ps(ps + εs)GIt
(pIt; 2It)− ps(ps − εs)GJt

(pIt; 2It) = 2εsp2s2+s.

Then, using the definitions of the Gauss sums, we get

2εsp2s2+s =
∑

Y ∈Ft,t
sym

(ps(ps + εs) r(It, Y )− ps(ps − εs) r(Jt, Y )) e{2Y/p}.
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Thus arguing as before to evaluate the right-hand side of the equation, we have

2εsp2s2+s =
s∑
`=0

(
r(It+1,

〈
1
〉
⊥ U2`)− r(Jt+1,

〈
1
〉
⊥ U2`)

)
·
∑

W∈F2`,2`
sym

R∗(It,W )G∗2W .

Note that a representation of I` by It+1 is necessarily a primitive representation;
thus

r(It+1,
〈
1
〉
⊥ U2`) = r∗(It+1, I2`+1)r(It−2`,

〈
0
〉t−2`).

Then using Lemmas 8.1 and 8.2 we find

r(It+1,
〈
1
〉
⊥ U2`)− r(Jt+1,

〈
1
〉
⊥ U2`)

== 2εs−`ps(2s−2`+1)+`(`−1)µδ(s, `)
s−∑̀
d=0

(−1)dpd(d−2s+2`)βδ(s− `, s− `− d).

Therefore, using Lemma 4.2 (c),

2εsp2s2+s = 2ps
2
µδ(s, s)G∗It

+ 2εsp2s2+s
(
C(s)− (−1)sp−sµδ(s, s)

)
and, since C(s) = 1, this gives us G∗It

= (−1)sεsps
2
.

To evaluate G∗Jt
, we begin with the equality

2εsp2s2+s = ps(ps + εs)GIt(pIt; 2Jt)− ps(ps − εs)GJt(pIt; 2Jt)

=
s∑
`=0

(
r(I2s+1, I2`+1 ⊥

〈
0
〉2(s−`))− r(Jt+1, I2`+1 ⊥

〈
0
〉2(s−`))

)
·

∑
clsW∈F2`,2`

sym

R∗(J2s,W )G∗2W .

The evaluation now proceeds as for G∗It
.

(b) Now set t = 2s + 1. When s = 0, G∗b = Gb(p), whose value is well-known,
and as claimed in the theorem.

So suppose s > 0, and that and that the value of G∗W is as claimed for all
W ∈ F2`+1,2`+1

sym , ` < s. Suppose first that 0 ≤ d < t and T ∼ Id ⊥
〈
0
〉t−d. Then,

much as in the previous case,

G∗T =
1

o(It)

∑
G∈GLt

(
e{ tGGT/p} − e{ tGJtGT/p}

)
=
η(t, d)
o(It)

∑
Y ∈Fd,d

sym

(r∗(It, Y )− r∗(Jt, Y )) e{2Y/p}

=
η(t, d)
o(It)

s∑
`=0

(
r∗(It, U`)− r∗(Jt, U `)

)
·

∑
clsW∈F`,`

sym

R∗(Id,W )G∗W
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where U` = I` ⊥
〈
0
〉d−`, U ` = J` ⊥

〈
0
〉d−`

. As we saw before,

r∗(I2s+1, I2` ⊥
〈
0
〉2s−2`+1) = r∗(J2s+1, I2` ⊥

〈
0
〉2s−2`+1),

so we only need to consider odd `.
Fix ` and let Wa = Ia ⊥

〈
0
〉2`+1−a, W a = Ja ⊥

〈
0
〉2`+1−a. By our induction

hypothesis, G∗Wa
= −G∗

Wa
, and G∗W2a

= 0. Also, with d even and a odd,

R∗(Id,Wa) = R∗(Id,W a).

Hence when d is even,

R∗(Id,Wa)G∗Wa
+R∗(Id,W a)G∗

Wa
= 0

for all a. Hence G∗T = 0 when d is even.
So suppose d = 2c+ 1. Then, using our induction hypothesis,∑

clsW∈F2`+1,2`+1
sym

R∗(Id,W )G∗W = εc+`pc+`
2
G1(p)γ(c, `)A(`, c)

where A(`, c) is defined and shown to be (−1)` in Lemma 4.2 (a). Also, as we saw
in (a),

r∗(I2s+1, I2` ⊥
〈
0
〉2s−2`+1)− r∗(J2s+1, I2` ⊥

〈
0
〉2s−2`+1)

= r∗(J2s+1, J2` ⊥
〈
0
〉2s−2`+1)− r∗(I2s+1, J2` ⊥

〈
0
〉2s−2`+1)

= 2εs+`ps+c+2c2+`(2s−4c+`)µδ(s, 2c− `).

Thus

G∗T =
2η(t, d)
o(It)

G1(p)εc+sps+2c+2c2µδ(s, c)A(c, s).

We know A(c, s) = (−1)c; substituting for η(t, d) and o(It) now yields the result
(recall that o(It) is computed in Lemma 8.1).

To evaluate G∗It
, we begin with the expression

GIt(pIt; 2It)− GJt(pIt; 2It),

which by Theorem 2.3 is 2G1(p)p2s(s+1). To evaluate G∗Jt
, we begin with

GIt
(pIt; 2Jt)− GJt

(pIt; 2Jt),

which by Theorem 2.3 is −2G1(p)p2s(s+1).
Then we proceed exactly as before, and thus the details are left to the reader. �
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§5. Averaging Hecke operators for weight k + 1/2

When evaluating the action on Fourier coefficients of the integral weight Hecke
operators with p - N (see [6]), we encountered incomplete character sums; we
completed these by replacing Tj(p2) with T̃j(p2), a weighted average of the op-
erators 1, T1(p2), . . . , Tj(p2). In the half-integral weight case, we have the gener-
alised twisted Gauss sums instead of the incomplete character sums, and as dis-
cussed in the preceding section, we know the values of these twisted Gauss sums.
However, the action on Fourier coefficients of the half-integral weight Hecke op-
erators is much nicer when we replace Tj(p2) with T̃j(p2), a weighted average of
1, T1(p2), . . . , Tj(p2), as we now define.

Definition. For 1 ≤ j ≤ n and p a prime, N ∈ Z+ with p - N , define T̃j(p2) acting
on Mk+1/2(Γ(n)

0 (N), χ) by

T̃j(p2) = pj(k−n)

j∑
`=0

p−`/2χ′(pj−`)β(n− `, j − `)T`(p2)

where χ′(d) = χ(d)
(

(−1)k+1

|d|

)
(sgn d)k+1.

Theorem 5.1. Take F ∈ Mk+1/2(Γ(n)
0 (N), χ) where 4|N , and let p be a prime

such that p - N ; let χ′ be defined as in the above definition. Given

Λ = Λ0 ⊕ Λ1 ⊕ Λ2, Ω = pΛ0 ⊕ Λ1 ⊕
1
p

Λ2

with ni = rankΛi, r = n0 + n2, set

Ej(Λ,Ω) = j(k − n) + k(n2 − n0) + n0(n− n2) + (j − r)(j − r − 1)/2;

set
Ãj(Λ,Ω) = χ′(pj−r)pEj(Λ,Ω)R∗(Λ1/pΛ1 ⊥

〈
2
〉
,
〈
0
〉j−r)

if Λ,Ω are even integral, and set Ãj(Λ,Ω) = 0 otherwise. Then the Λth coefficient
of F |T̃j(p2) is ∑

pΛ⊆Ω⊆ 1
p Λ

Ãj(Λ,Ω)c(Ω).

Proving this theorem comes down to proving the next proposition, as we now
discuss.

Fix Λ and Ω, with Λi, ni, r defined as above; let V = Λ1/pΛ1 (so V is a quadratic
space over Z/pZ). From the definition of T̃j(p2) and Theorem 5.4,

Ãj(Λ,Ω) = χ′(pj−r)pj(k−n)+k(n2−n0)+n0(n−n2)

·
j∑
`=0

∑
clsU

dim U=`−r

β(n− `, j − `)R∗(V,U)G̃(U).



30 LYNNE H. WALLING

Notice that the number of ways to extend an `− r dimensional subspace U of V to
a j − r dimensional subspace W of V is

β
(
(n− r)− (`− r), (j − r)− (`− r)

)
= β(n− `, j − `);

thus
β(n− `, j − `)R∗(V,U) =

∑
clsW

dim W=j−r

R∗(V,W )R∗(W,U).

Hence

j∑
`=0

β(n− `, j − `)
∑
clsU

dim U=`−r

R∗(V,U) G̃(U)

=
∑
clsW

dim W=j−r

R∗(V,W )
∑
clsU

dim U≤j−r

R∗(W,U) G̃(U).

Set m = j−r; let W ′ be a dimension m totally isotropic subspace of V ⊥ Fv where
Fv '

〈
2
〉
, and let W be the projection of W ′ onto V . Then either

W = W ′ '
〈
0
〉m or W '

〈
0
〉m−1 ⊥

〈
− 2
〉
;

also, there are exactly 2 subspaces of V ⊥ Fv that project onto a given subspace
W '

〈
0
〉m−1 ⊥

〈
− 2
〉

in V . Thus

R∗(V ⊥ Fv,
〈
0
〉m) = R∗(V,

〈
0
〉m) + 2R∗(V,

〈
0
〉m−1 ⊥

〈
− 2
〉
).

Hence proving Theorem 5.1 reduces to proving the following.

Proposition 5.2. With W of dimension m ≥ 1 over F = Z/pZ (p 6= 2), we have

m∑
q=0

∑
clsU

dim U=q

R∗(W,U) G̃(U) =


pm(m−1)/2 if W '

〈
0
〉m,

2pm(m−1)/2 if W '
〈
0
〉m−1 ⊥

〈
− 2
〉
,

0 otherwise.

Proof. Notice that the proposition is proved once we prove that∑
clsU

dim U≤m

R∗(W,U)G̃(U) = pm(m−1)/2R∗(W ⊥
〈
2
〉
,
〈
0
〉m).

To do this, we argue by induction on m = dimW .
For m = 1, the proposition is easily verified. (Recall that when dimU = 0,

G̃(U) = 1.)
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So now suppose m = dimW ≥ 1. One easily verifies that for 0 ≤ q < m,

m−1∑
a=q

(−1)m+a+1p(m−a)(m−a−1)/2β(m− q, a− q) = 1.

Thus with U a quadratic space over F with dimension q, we have

β(m− q, a− q)R∗(W,U) =
∑
clsY

dim Y =a

R∗(W,Y )R∗(Y,U)

and hence

R∗(W,U) =
m−1∑
a=q

(−1)m+a+1p(m−a)(m−a−1)/2
∑
clsY

dim Y =a

R∗(W,Y )R∗(Y,U).

So ∑
clsU

dim U<m

R∗(W,U)G̃(U)

= −
m−1∑
a=0

(−1)m−ap(m−a)(m−a−1)/2
∑
clsY

dim Y =a

R∗(W,Y )
∑
clsU

dim U≤a

R∗(Y,U)G̃(U).

The implicit induction hypothesis tells us that for a < m and dimY = a,

∑
clsU

dim U≤a

R∗(Y,U)G̃(U) =


pa(a−1)/2 if Y '

〈
0
〉a,

2pa(a−1)/2 if Y '
〈
0
〉a−1 ⊥

〈
− 2
〉
,

0 otherwise.

Thus for a < m,∑
clsY

dim Y =a

∑
clsU

dim U≤a

R∗(W,Y )R∗(Y,U)G̃(U)

= pa(a−1)/2
(
R∗(W,

〈
0
〉a) + 2R∗(W,

〈
0
〉a−1 ⊥

〈
− 2
〉
)
)

= pa(a−1)/2R∗(W ⊥
〈
2
〉
,
〈
0
〉a).

So to prove the proposition, we need to show

G̃(W ) = (−1)mpm(m−1)/2
m∑
a=0

(−1)apa(a−m)R∗(W ⊥
〈
2
〉
,
〈
0
〉a).

Standard theory tells us that W splits as W0 ⊥ R where W0 is regular and
R '

〈
0
〉s for some s. While R, the radical of W , is uniquely determined by W ,
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W0 is not; however, the isometry class of W0 is uniquely determined by W . So
either W0 ' 2Im−s or W0 ' 2Jm−s. Also, with Fw '

〈
2
〉
, any totally isotropic

subspace U of W ⊥ Fw splits as U0 ⊥ U1 where U1 ⊆ R and U0∩R = {0}. Given a
dimension t subspace of U1 of R, the number of distinct totally isotropic, dimension
a subspaces U of W ⊥ Fw with U ∩R = U1 is

p(s−t)(a−t)R∗(W0 ⊥
〈
2
〉
,
〈
0
〉a−t).

Since there are β(s, t) subspaces U1 of R with dimU1 = t,

m∑
a=0

(−1)apa(a−m)R∗(W ⊥
〈
2
〉
,
〈
0
〉a)

=
∑

`+t≤m

(−1)`+tp(`+t)(`+t−m)+(s−t)`β(s, t)R∗(W0 ⊥
〈
2
〉
,
〈
0
〉`).

First supposeW0 ⊥
〈
2
〉
' Hc. (Som = 2c+s−1 andW ' Hc−1 ⊥

〈
−2
〉
⊥
〈
0
〉s
.)

Then
R∗(W0 ⊥

〈
2
〉
,
〈
0
〉`) = β(c, `)δ(c− 1, `)

and hence ∑
a

(−1)apa(a−m)R∗(W ⊥
〈
2
〉
,
〈
0
〉a) = (−1)cpc(1−c)Xs(c,−1)

where for s, t ≥ 0, we define

Xs(c, q) =
s∑
t=0

(−1)tpt(t−c−s−q)β(s, t)St(c, q),

St(c, q) = (−1)cpc(c−t+q)
c∑
`=0

(−1)`p`(`−2c+t−q)β(c, `)δ(c+ q, `).

Clearly St(0, q) = 1; using the definitions of β and δ, when c > 0 we have

St(c, q) + (pc − 1)(pc+q + 1)St(c− 1, q)

= (−1)cpc(c−t+q)
c∑
`=0

(−1)`p`(`−2c+t−q)µ(c, `)δ(c+ q, `)
µ(`, `)

+ (−1)cpc(c−t+q)−2c−q+t+1
c∑
`=1

(−1)`p(`−1)(`+1−2c+t−q)µ(c, `)δ(c+ q, `)
µ(`− 1, `− 1)

= (−1)cpc(c−t+q)
[
1 +

c∑
`=1

(−1)`p`(`−2c+t+1−q)β(c, `)δ(c+ q, `)
]

= pcSt+1(c, q).
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Taking St(c, q) = 0 when c < 0, we have

St(c, q) + (pc − 1)(pc+q + 1)St(c− 1, q) = pcSt+1(c, q)

for all c. Also, replacing ` by c − ` and remembering that β(s, a) = β(s, s − a),
Lemma 4.2 (b) tells us that S0(c, q) = B(c, q) = 1.

Using and the identity β(s+ 1, t) = pt(β(s, t) +β(s, t− 1), the recursion relation
for St(c, q), we have

Xs+1(c, q)

=
s∑
t=0

(−1)tpt(t−c−s−q)β(s, t)St(c, q)

+
s+1∑
t=1

(−1)tpt(t−c−s−1−q)β(s, t− 1)St(c, q)

= Xs(c, q)− p−2c−s−qX ′s(c, q)− p−2c−s−q(pc − 1)(pc+q + 1)Xs(c− 1, q)

where

X ′s(c, q) =
s∑
t=0

(−1)tpt(t−c−s−q+1)β(s, t)St(c, q).

Similarly, using the identity β(s+ 1, t) = β(s, t) + ps+1−tβ(s, t− 1),

X ′s+1(c, q) = Xs(c, q)− p−2c+1−qX ′s(c, q)− p−2c+1−q(pc − 1)(pc+q + 1)Xs(c− 1, q).

We claim that

Xs(c,−1) =

{
p2x−2cx−x2 ∏x

i=1(p2i−1 − 1) if s = 2x,

−p−c−2cx−x2 ∏x+1
i=1 (p2i−1 − 1) if s = 2x+ 1,

and

X ′s(c,−1) =


1 if s = 0,
Xs−1(c,−1) + (pc−1 + 1)Xs(c− 1,−1) if s = 2x > 0,
(pc−1 + 1)Xs(c− 1,−1) if s = 2x+ 1

where we agree
∏x
i=1(p2i−1−1) = 1 if x = 0. These identities are easily proved using

induction on x, the recursion relations for X and X ′, and the fact that S0(c, q) = 1;
thus the details are left to the reader. Consequently, noting that

Hc−1 ⊥
〈
− 2
〉
'
{

2I2c−1 if εc = 1,
2J2c−1 if εc = −1,

we find that

G̃(W ) = (−1)mpm(m−1)/2
m∑
a=0

(−1)apa(a−m)R∗(W ⊥
〈
2
〉
,
〈
0
〉a)
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in the case that W ' Hc−1 ⊥
〈
− 2
〉
⊥
〈
0
〉s
.

Next suppose W0 ⊥
〈
2
〉
' Hc−1 ⊥ A, c ≥ 1. (So m = 2c + s − 1 and W '

Hc−1 ⊥
〈
− 2ω

〉
⊥
〈
0
〉s
.) Then

R∗(W0 ⊥
〈
2
〉
,
〈
0
〉`) = β(c− 1, `)δ(c, `)

and hence∑
a

(−1)apa(a−m)R∗(W ⊥
〈
2
〉
,
〈
0
〉a) = (−1)cpc(1−c)Xs(c− 1, 1).

By induction on x, one finds

Xs(c− 1, 1) =

{
p2x−2cx−x2 ∏x

i=1(p2i−1 − 1) if s = 2x,

p−c−2cx−x2 ∏x+1
i=1 (p2i−1 − 1) if s = 2x+ 1,

and

X ′s(c− 1, 1) =


1 if s = 0,
(Xs−1(c− 1, 1)− (pc−1 − 1)Xs(c− 2, 1) if s = 2x > 0,
−(pc−1 − 1)Xs(c− 2, 1) if s = 2x+ 1.

Consequently, noting that

Hc−1 ⊥
〈
− 2ω

〉
'
{

2I2c−1 if εc = −1,
2J2c−1 εc = −1,

we find that

G̃(W ) = (−1)mpm(m−1)/2
m∑
a=0

(−1)apa(a−m)R∗(W ⊥
〈
2
〉
,
〈
0
〉a)

when W ' Hc−1 ⊥
〈
− 2ω

〉
⊥
〈
0
〉s
.

Finally suppose W0 ⊥
〈
2
〉

has dimension 2c+1. (So m = 2c+s and W ' 2I2c ⊥〈
0
〉s or 2J2c ⊥

〈
0
〉s.) Then

R∗(W0 ⊥
〈
2
〉
,
〈
0
〉`) = βδ(c, `)

and hence ∑
a

(−1)apa(a−m)R∗(W ⊥
〈
2
〉
,
〈
0
〉a) = (−1)cp−c

2
Xs(c, 0).

By induction on x, we get

Xs(c, 0) =
{
p−2cx−x2 ∏x

i=1(p2i−1 − 1) if s = 2x,
0 if s = 2x+ 1,
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and

X ′s(c, 0) =
{
Xs(c− 1, 0) if s = 2x > 0,

−p−2cx−x2 ∏x+1
i=1 (p2i−1 − 1) if s = 2x+ 1.

Consequently, noting that

(Hc,Hc−1 ⊥ A) '
{

(2I2c, 2J2c) if εc = 1,
(2J2c, 2I2c) if εc = −1,

we find that

G̃(W ) = (−1)mpm(m−1)/2
m∑
a=0

(−1)apa(a−m)R∗(W ⊥
〈
2
〉
,
〈
0
〉a)

when W 'W0 ⊥
〈
0
〉s with dimW0 = 2c.

This proves the proposition. �

§6. Hecke operators on Siegel theta series of weight k + 1/2

Throughout this section, we assume L is a rank 2k + 1 lattice with an even
integral, positive definite quadratic form Q; we fix n ≤ 2k+1. We use BQ to denote
the symmetric bilinear form associated to Q, N the level of L, χ the character of
θ(n)(L), and χ′ the character defined by χ′(d) = χ(d)

(
(−1)k+1

|d|

)
(sgn d)k+1.

At the end of §2 we defined the exponential e∗{Λτ}. When working with theta
series, it is convenient to have the exponential e{Λτ}, which we define below.

As we have seen,

θ(n)(L; τ) =
∑

x1,... ,xn∈L
e
{(
BQ(xh, xi)

)
τ
}
.

Thus
(
BQ(xh, xi)

)
is the matrix for the quadratic formQ restricted to the (external)

direct sum
Λ = Zx1 ⊕ · · · ⊕ Zxn.

However, as a sublattice of L, we may have d = rank(Zx1 + . . . + Zxn) < n. In
such a case there exists some G ∈ GLn(Z) so that

(x1 . . . xn)G = (x′1 . . . x
′
d 0 . . . 0).

Still, we can consider Λ as a sublattice of L with “formal rank” n.
Given a sublattice Λ′ = Zx′1 + · · · + Zx′d of L with rankΛ′ = d and T ′ =(

BQ(x′h, x
′
i)
)

(a d× d matrix),

∑
x1,... ,xn∈L

Zx1+···+Zxn=Λ′

e
{(
BQ(xh, xi)

)
τ
}

=
∑
G

e
{
tG

(
T ′

0n−d

)
Gτ

}
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where G varies over {(
Id 0
∗ ∗

)
∈ GLn(Z)

}∖
GLn(Z).

Thus with x′d+1 = · · · = x′n = 0, Λ = Zx′1⊕ · · ·⊕Zx′n (the external direct sum), we
define

e{Λτ} =
∑
G

e
{
tG

(
T ′

0n−d

)
Gτ

}
where G varies as above. Then

θ(n)(L; τ) =
∑
Λ⊆L

e{Λτ}

where Λ varies over all distinct sublattices of L with formal rank n. (When xi, yi ∈
L, we say Zx1 ⊕ · · · ⊕ Zxn and Zy1 ⊕ · · · ⊕ Zyn are distinct sublattices of L with
formal rank n when Zx1 + · · ·+ Zxn 6= Zy1 + · · ·+ Zyn.)
Remark. For xi ∈ L, Λ = Zx1 ⊕ · · · ⊕ Zxn, and Λ′ = Zx1 + · · · + Zxn, we have
e{Λτ} = o(Λ′)e∗{Λτ} since, with d = rankΛ′ (as a sublattice of L),

O(Λ′ ⊥
〈
0
〉n−d) =

{(
E′ 0
∗ ∗

)
∈ GLn(Z) : E′ ∈ O(Λ′)

}
.

Proposition 6.1. For p a prime not dividing N and 1 ≤ j ≤ n, we have

θ(n)(L; τ)|T̃j(p2) =
∑
Ω

c̃j(Ω)e{Ωτ}

where Ω varies over all even integral sublattices of 1
pL that have (formal) rank n.

For given Ω, decompose Ω as 1
pΩ0⊕Ω1⊕pΩ2 where Ωi ⊆ L and Ω0⊕Ω1 is primitive

in L modulo p, meaning that the formal rank of Ω0⊕Ω1 is the rank of its image in
L, which is also the dimension of Ω0 ⊕ Ω1 in L/pL. Let ri be the (formal) rank of
Ωi; set

E(`, t,Ω) = t(k − n) + t(t− 1)/2 + `(k − r0 − r1) + `(`− 1)/2.

Then, if χ′(p) = 1,

c̃j(Ω) =
∑
`,t

pE(`,t,Ω)R∗(Ω1/pΩ1 ⊥
〈
2
〉
,
〈
0
〉`)

· δ(k − r0 − `, t)β(r2, t)β(n− r0 − `− t, n− j);

if χ′(p) = −1,

c̃j(Ω) =
∑
`,t

(−1)`pE(`,t,Ω)R∗(Ω1/pΩ1 ⊥
〈
2
〉
,
〈
0
〉`)

· µ(k − r0 − `, t)β(r2, t)β(n− r0 − `− t, n− j).
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Proof. By the definitions of Tj(p2) and T̃j(p2), we have

θ(n)(L; τ)|T̃j(p2) =
∑
Λ⊆L

pΛ⊆Ω⊆ 1
p

Λ

Ãj(Ω,Λ)e{Ωτ}

where Ãj(Ω,Λ) is defined in Theorem 3.4. (Note that at the end of the proof of
Theorem 3.4 we made a change of variables that we do not make here.) Since p 6= 2
and Ω ⊆ 1

pL, Ω is even integral exactly when it is integral, so Ãj(Ω,Λ) = 0 when
Ω is not integral. Interchanging the order of summation, we have

θ(n)(L; τ)|T̃j(p2) =
∑

Ω⊆ 1
p

L

Ω integral

∑
pΩ⊆Λ⊆( 1

p Ω∩L)

Ãj(Ω,Λ)e{Ωτ}.

Fix integral Ω ⊆ 1
pL so that Ω has formal rank n; decompose Ω as in the

statement of the Proposition. (Note that Ω0 is only well-determined up to p(Ω1 ⊕
Ω2), and Ω0⊕Ω1 is only well-determined up to pΩ2.) Set ∆ = 1

pΩ∩L = Ω0⊕Ω1⊕Ω2.
Note that Ω ∩∆ = Ω0 ⊕ Ω1 ⊕ pΩ2, and p(Ω + ∆) = Ω0 ⊕ pΩ1 ⊕ pΩ2.

Fix di, d′i, d
′′
2 so that d1+d′1 = r1, d2+d′2+d′′2 = r2. As in the proof of Proposition

1.4 of [11] and Proposition 2.1 [12], we construct all

Λ = Ω0 ⊕ (Λ1 ⊕ pΛ′1)⊕ (Λ2 ⊕ pΛ′2 ⊕ p2Λ′′2)

where Λ1 ⊕ Λ′1 = Ω1, Λ2 ⊕ Λ′2 ⊕ Λ′′2 = Ω2, di is the (formal) rank of Λi, d′i is the
(formal) rank of Λ′i, d

′′
2 is the formal rank of Λ′′2 , although here we need to weight

each Λ by
R∗
(
(Λ1/pΛ1 ⊕ pΛ′2/p2Λ′2) ⊥

〈
2
〉
,
〈
0
〉d1+d′2−n+j)

.

(So then varying di, d′i, d
′′
2 , these Λ vary over all lattices subject to pΩ ⊆ Λ ⊆ ∆.)

In ∆/p∆, extend Ω ∩∆ = Ω0 ⊕ Ω1 to Ω0 ⊕ Ω1 ⊕∆2 with dim ∆2 = d2 + d′2; we
have β(r2, d2 + d′2) = β(r2, d

′′
2) choices. Let

∆′ = preimage in ∆ of Ω0 ⊕ Ω1 ⊕∆2

= Ω0 ⊕ Ω1 ⊕ (∆2 ⊕ pΛ′′2).

In ∆′/p∆′, extend pΩ = Ω0 to Ω0 ⊕ U so that Ω0 ⊕ U ⊆ Ω ∩∆ = Ω0 ⊕ Ω1 ⊕ pΛ′′2 ,
dimU = `, U is independent of p∆ = pΛ′′2 , and either

U '
〈
0
〉` or U '

〈
0
〉`−1 ⊥

〈
− 2
〉
.

When U '
〈
0
〉`, we weight U by 1; when U '

〈
0
〉`−1 ⊥

〈
− 2
〉
, we weight U by

2. So we have p`d
′′
2R∗(Ω1/pΩ1 ⊥

〈
2
〉
,
〈
0
〉`) (weighted) choices for U . Next, extend

Ω0 ⊕ U to Ω0 ⊕ Λ1 so that Ω0 ⊕ Λ1 ⊆ Ω0 ⊕ Ω1 ⊕ pΛ′′2 with Λ1 independent of pΛ′′2 ;



38 LYNNE H. WALLING

we have p(d1−`)d′′2 β(r1− `, d1− `) choices. Now extend Ω0 ⊕ Λ1 to Ω0 ⊕ Λ1 ⊕ Λ2 so
that dim Λ2 = d2 and Λ2 is independent of Ω0 ⊕ Ω1 ⊕ pΛ′′2 ; we have pd2(d′1+d′′2 )β(d2+
d′2, d2) choices. So ∆′ = Ω0 ⊕ (Λ1 ⊕ Λ′1)⊕ (Λ2 ⊕ Λ′2 ⊕ pΛ′′2); let

Λ = preimage in ∆′ of Ω0 ⊕ Λ1 ⊕ Λ2.

Note that with d = d1 + d′2 − n + j, there are p`(d
′
2−d+`)β(d′2, d − `) dimension

d subspaces of Ω ∩ Λ/p(Ω + Λ) ≈ Λ1/pΛ1 ⊕ pΛ′2/p2Λ′2 that project onto a given
choice of U . Thus with x = d+ d2 − `,

c̃j(Ω) =
∑

pΩ⊆Λ⊆∆

Ãj(Ω,Λ)

=
∑

di,d′i,d
′′
2 ,`

χ′(pd)pj(k−n)+k(d2−r0−d′1−d
′′
2 )+(r0+d′1+d′′2 )(n−d2)+d(d−1)/2

· pd
′′
2 (d1−`)+d2(d′1+d′′2 )+`(`−d+r2−d2)R∗(Ω1/pΩ1 ⊥

〈
2
〉
,
〈
0
〉`)

· β(r2, d
′′
2)β(r1 − `, d1 − `)β(d2 + d′2, d2)β(d′2, d− `).

Thus with x = d+ d2 − ` = j − r0 − t− `,

β(r2, d
′′
2)β(d2 + d′2, d2)β(d′2, d− `)

µ(x, d2)
µ(x, d2)

=
µ(r2, x)µ(r2 − x, d′′2)µ(x, d2)
µ(d′′2 , d

′′
2)µ(d2, d2)µ(x, x)

= β(r2, x)β(r2 − x, d′′2)β(x, d2).

Also, recall that r1 = d1 + d′1. For fixed t,∑
d′1+d′′2 =t

pd
′′
2 (r1−d′1−`)β(r2 − x, d′′2)β(r1 − `, d′1) = β(r1 + r2 − x− `, t)

since, with V and V ′ Z/pZ-vector spaces of dimensions r2 − x and r1 − `, we can
construct all dimension t subspaces of V ⊕ V ′ by first constructing a dimension d′1
subspace U ′ of V ′, and then extending this to a dimension t subspace U ⊕ U ′ of
V ⊕ V ′, where U is independent of V ′. Therefore

c̃j(Ω) =
∑
`,t

χ′(pj−r0−t)pER∗(Ω1 ⊥
〈
2
〉
,
〈
0
〉`)β(n−j+ t, t)β(r2, x)S(x, k+1−j+ t)

where

E = (k − n)(j − r0 − t) + (j − r0 − t)(j − r0 − t− 1)/2 + `(`+ n− j − r1 + t),

and

S(x, y) =
x∑

d2=0

χ′(pd2)pd2y+d2(d2−1)/2β(x, d2).
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Using that β(m, q) = pqβ(m− 1, q) +β(m− 1, q− 1) and x = j− r0− t− `, we find
that

S(x, y) = (χ′(p)py + 1)S(x− 1, y + 1);

consequently

S(x, y) =
{
δ(x+ y − 1, x) if χ′(p) = 1,
(−1)xµ(x+ y − 1, x) if χ′(p) = −1.

Finally, we replace t by j − r0 − t− `, and use that β(m, q) = β(m,m− q). �

For Proposition 6.3, we will need to use Lemma 4.1 from [12], which is the
following.

Lemma 6.2 (Reduction Lemma). Let U be a dimension d space over Z/pZ,
` ≥ 0 and t ∈ Z so that U ⊥ Ht (resp. U ⊥ Ht ⊥ A) is defined.

(a) ϕ`(U ⊥ Ht) =
∑`
r=0 p

r(t−`+r)δ(d− 1 + t− r, `− r)β(t, `− r)ϕr(U).
(b) ϕ`(U ⊥ Ht ⊥ A) =

∑`
r=0(−1)rpr(t+1−`+r)β(d+ t− r, `− r)δ(t+ 1, `− r)ϕr(U).

Proposition 6.3. Let L be as above, and fix a prime p - N ; choose j so that
1 ≤ j ≤ n and j ≤ k. We say a lattice K is a pj-neighbor of L if K ∈ genL and

L = L0 ⊕ L1 ⊕ L2, K =
1
p
L0 ⊕ L1 ⊕ pL2

with rankL0 = rankL2 = j.
(a) The number of pj-neighbors of L is pj(j−1)/2βδ(k, j).
(b) We have ∑

Kj

θ(n)(Kj ; τ) =
∑
Ω

bj(Ω)e{Ω}

where Kj varies over all pj-neighbors of L, and Ω varies over all even integral
sublattices of 1

pL with (formal) rank n. For such Ω, decompose Ω as 1
pΩ0 ⊕

Ω1⊕ pΩ2 where Ωi ⊆ L and Ω0⊕Ω1 is primitive in L modulo p; let ri denote
the (formal) rank of Ωi. Then, if χ′(p) = 1,

bj(Ω) = p(j−r0)(j−r0−1)/2

j−r0∑
`=0

p`(k−j−r1+`)R∗(Ω1/pΩ1 ⊥
〈
2
〉
,
〈
0
〉`)

· δ(k − r0 − `, j − r0 − `)β(k − r0 − r1, j − r0 − `);

if χ′(p) = −1,

bj(Ω) = p(j−r0)(j−r0−1)/2

j−r0∑
`=0

(−1)`p`(k−j−r1+`)R∗(Ω1/pΩ1 ⊥
〈
2
〉
,
〈
0
〉`)

· β(k − r0 − `, j − r0 − `)δ(k − r0 − r1, j − r0 − `).
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Proof. For this proof we use the arithmetic theory of quadratic forms over Z/pZ and
over Zp. (a) To construct all Kj , choose a dimension j totally isotropic subspace C
of L/pL; let K ′ be the preimage in L of C. (Note that there are R∗(L/pL,

〈
0
〉j) =

βδ(k, j) choices for C.) Since L/pL is regular, there is some D ⊆ L/pL so that

C ⊕ D '
(

0 Ij
Ij 0

)
(over Z/pZ). So C ⊕ D is regular and hence splits L/pL as

(C ⊕ D) ⊥ J ; we know L/pL ' Hk ⊥
〈
2ν
〉

for some ν ∈ (Z/pZ)×, and hence
J ' Hk−j ⊥

〈
2ν
〉
. Thus K ′ = (C⊕pD)⊕pJ , and in K ′/pK ′ (scaled by 1/p), pJ =

radK ′/pK ′, and C ⊕ pD ' Hj with pD totally isotropic. So C ⊕ pD = C ′ ⊕ pD
for some totally isotropic C ′. The number of such C ′ is the number of dimension
j totally isotropic subspaces of C ⊕ pD that are independent of pD. To construct
these C ′, choose an isotropic vector x1 ∈ C ⊕ pD so that x1 6∈ pD; by the formula
on p. 146 of [3], we have (pj − 1)(pj−1 + 1)− (pj − 1) choices. Since C ⊕ pD ' Hj

with pD totally isotropic of dimension j, x1 cannot be orthogonal to pD; so we can
choose py1 ∈ pD so that py1 is not orthogonal to x1. Thus x1, py1 span a hyperbolic
plane, which splits C ⊕ pD. So with F = Z/pZ, we have C ⊕ pD = (Fx1⊕Fpy1) ⊥
(C1 ⊕ pD1) where Fpy1 ⊕ pD1 = pD and C1 ⊕ pD1 ' Hj−1. One then finds there
are p[(pj−1 − 1)(pj−2 + 1) − (pj−1 − 1)] choices for isotropic x2 ∈ C ⊕ pD so that
x2 is orthogonal to x1 and independent of Fx1 ⊕ pD1. Continuing, we find there
are pj(j−1)µ(j, j) choices for a basis of a dimension j totally isotropic subspace of
C ⊕ pD that is independent of pD; since a space of dimension j over Z/pZ has
pj(j−1)/2µ(j, j) bases, we find there are pj(j−1)/2 choices for C ′.

Let pKj be the preimage in K ′ of C ′
⊥

. Thus Kj = 1
pC
′ ⊕ J ⊕ pD, and Kj is

integral with ZqKj = ZqL for all primes q 6= p; also, ZpKj is unimodular with
discKj = discLj , and hence by Proposition 7.1 (c), ZpKj ' ZpL. Therefore
Kj ∈ genL.

Note that, given a pj-neighbor Kj of L, we can construct Kj through this process
by choosing C = L0 = p(Kj + L) and C ′

⊥
= L0 = pKj where L = L0 ⊕ L1 ⊕ L2,

Kj = 1
pL0 ⊕ L1 ⊕ pL2. Hence there are pj(j−1)/2βδ(k, j) pj-neighbors of L.

(b) Now choose integral Ω = 1
pΩ0⊕Ω1⊕pΩ2 where Ω has formal rank n, Ωi ⊆ L,

and Ω0⊕Ω1 is primitive in L modulo p. Note that since Ω is integral, Ω0 is totally
isotropic modulo p2, and orthogonal to Ω1 modulo p.

Take some K ′,Kj constructed as above; so K ′ = C+pL = C⊕pD⊕pJ for some
C,D, J with Q(C) ≡ 0 (mod p) and BQ(C⊕D,J) ≡ 0 (mod p). To get Ω ⊆ Kj , we
must have pΩ ⊆ K ′, or in other words, in L/pL we must have Ω0(= pΩ) contained
in C. So suppose this is the case. Then to get Ω ⊆ Kj , in K ′/pK ′ (scaled by 1/p),
we must have Ω0 ⊕ pΩ1(= pΩ) contained in C ′ ⊥ radK ′/pK ′, which requires we
have pΩ1(= pΩ ∩ pL) contained in radK ′/pK ′(⊆ pL). To have pΩ1 ⊆ radK ′/pK ′,
we need

BQ(Ω1,K
′) = BQ(Ω1, C + pL) ≡ 0 (mod p),

which is equivalent to C ⊆ Ω1
⊥

(= Ω ∩ L⊥) in L/pL. Thus to have Ω ⊆ Kj , we
need to have Ω0 ⊆ C ⊆ Ω1

⊥
in L/pL, and Ω0 ⊆ C ′ ⊥ radK ′/pK ′ in K ′/pK ′.
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So to construct Kj so that Ω ⊆ Kj , we begin by decomposing L/pL as

L/pL = (Ω0 ⊕ Ω′0) ⊥ V

where Ω0 ⊕ Ω′0 ' Hr0 ; since L/pL ' Hk ⊥
〈
2ν
〉
, we have V ' Hk−r0 ⊥

〈
2ν
〉
.

Also, we can (and do) choose V so that Ω1 ⊆ V . Then in L/pL we extend Ω0

to C ⊆ Ω1
⊥

; thus we have R∗(Ω1
⊥ ∩ J,

〈
0
〉j−r0) choices for C. Then in K ′/pK ′

(scaled by 1/p), we extend Ω0⊕radK ′/pK ′(= pΩ+radK ′/pK ′) to C ′⊕radK ′/pK ′;
thus we have p(j−r0)(j−r0−1)/2 choices for C ′ ⊕ radK ′/pK ′.

Hence bj(Ω) = p(j−r0)(j−r0−1)/2R∗(Ω1
⊥ ∩ J,

〈
0
〉j−r0). We now relate R∗(Ω1

⊥ ∩
J,
〈
0
〉j−r0) to R∗(Ω1 ⊥

〈
2
〉
,
〈
0
〉`) for varying `.

Say V is a vector space over Z/pZ with V ' Hk−r0 ⊥
〈
2ν
〉
, and U is a subspace

of V with dimension r1. In V , we can decompose U as W ⊥ R where W is regular
of some dimension d ≤ r1, and R '

〈
0
〉r1−d. Thus

V = (R⊕R′) ⊥ V ′

where R⊕R′ ' Hr1−d, W ⊆ V ′, and V ′ ' Hk−r0−r1+d ⊥
〈
2ν
〉
. Since W is regular,

W splits V ′ as V ′ = W ⊥W ′; note that U⊥ ∩ V = R ⊥W ′.
When W ' Hc, we have d = 2c;

W ′ ' Hk−r0−r1+c ⊥
〈
2ν
〉
'W ⊥

〈
− 2ν

〉
⊥ Hk−r0−r1 ,

and

W ′ ' Hk−r0−r1−1+c ⊥ A ⊥
〈
2ων

〉
'W ⊥

〈
− 2ων

〉
⊥ Hk−r0−r1−1 ⊥ A.

By Lemma 8.1, we know that for any ν′ 6= 0,

R∗(Ha ⊥
〈
2ν′
〉
,
〈
0
〉`) = R∗(Ha ⊥

〈
2
〉
,
〈
0
〉`)

and
R∗(Ha ⊥ A ⊥

〈
2ν′
〉
,
〈
0
〉`) = R∗(Ha ⊥ A ⊥

〈
2
〉
,
〈
0
〉`).

Consequently, with Lemma 6.2,

R∗(U⊥ ∩ V,
〈
0
〉j−r0) = R∗(U ⊥

〈
2
〉
⊥ Hk−r0−r1 ,

〈
0
〉j−r0)

= R∗(U ⊥
〈
2
〉
⊥ Hk−r0−r1−1 ⊥ A,

〈
0
〉j−r0)

=
j−r0∑
`=0

p`(k−r1−j+`)R∗(U ⊥
〈
2
〉
,
〈
0
〉`)

· β(k − r0 − r1, j − r0 − `)δ(k − r0 − `, j − r0 − r)

=
j−r0∑
`=0

(−1)`p`(k−r1−j+`)R∗(Ω1 ⊥
〈
2
〉
,
〈
0
〉`)

· δ(k − r0 − r1, j − r0 − `)β(k − r0 − `, j − r0 − r).
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When W ' Hc−1 ⊥ A, the argument is the same as above.
So suppose W ' Hc ⊥

〈
2ν′
〉
. Then

W ′ ' Hk−r0−r1+c ⊥
〈
− 2ν′, 2ν

〉
' Hk−r0−r1+c−1 ⊥

〈
2,−2, 2ν′,−2ν

〉
'W ⊥

〈
2
〉
⊥
〈
2, 2ν

〉
.

Since χ′(p) =
(
−ν
p

)
,
〈
2, 2ν

〉
' H if χ′(p) = 1, and

〈
2, 2ν

〉
' A otherwise. Applying

Lemma 8.2 now yields the result. �

Theorem 6.4 (Generalised Eichler Commutation Relation). L is a lattice
of rank 2k + 1 equipped with a positive definite quadratic form Q of level N , and
1 ≤ n ≤ 2k + 1; fix a prime p so that p - N . Take j so that 1 ≤ j ≤ n and j ≤ k;
for 0 ≤ q ≤ j, set

uq(j) = (−1)qpq(q−1)/2β(n− j + q, q), T ′j(p
2) =

j∑
q=0

uq(j)T̃j−q(p2),

vq(j) =
{

(−1)qβ(k − n+ q − 1, q)δ(k − j + q, q) if χ′(p) = 1,
(−1)qδ(k − n+ q − 1, q)β(k − j + q, q) if χ′(p) = −1.

Then

θ(n)|T ′j(p2) =
j∑
q=0

vq(j)

∑
Kj−q

θ(n)(Kj−q; τ)


where Kj−q runs over all pj−q-neighbors of L (as defined in Proposition 6.3).

Proof. Given the results of Propositions 6.1 and 6.3, we need to show that for any
even integral Ω ⊆ 1

pL with formal rank n,

j∑
q=0

uq(j)c̃j−q(Ω) =
j∑
q=0

vq(j)bj−q(Ω).

So we fix Ω = 1
pΩ0 ⊕ Ω1 ⊕ pΩ2 with Ωi ∈ L, Ω0 ⊕ Ω1 primitive in L modulo p.

First suppose that χ′(p) = 1. Then with Ω1 = Ω1/pΩ1,

j∑
q=0

uq(j)c̃j−q(Ω) =
∑
`,t

pE(`,t,Ω)R∗(Ω1 ⊥
〈
2
〉
,
〈
0
〉`)δ(k − r0 − `, t)β(r2, t)

·
j∑
q=0

uq(j)β(n− r0 − `− t, n− j + q).
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Note that

β(m+ r, r + q)β(r + q, q) =
µ(m+ r, r)µ(m, q)µ(r + q, q)
µ(r + q, q)µ(r, r)µ(q, q)

= β(m+ r, r)β(m, q).

Using that β(m, q) = pqβ(m − 1, q) + β(m − 1, q − 1), we find that when m ≥ 1,∑m
q=0(−1)qpq(q−1)/2β(m, q) = 0. Therefore, with m = j− r0− `− t and r = n− j,,∑

q

uq(j)c̃j−q(Ω) =
∑
`

pE(`,j−r0−`,Ω)R∗(Ω1 ⊥
〈
2
〉
,
〈
0
〉`)

· δ(k − r0 − `, j − r0 − `)β(r2, j − r0 − `).

Also, E(`, j− r0− `,Ω) = (j− r0)(k−n) + `(n− r1 + `− j) + (j− r0)(j− r0− 1)/2.
On the other hand,∑

q

vq(j)bj−q(Ω) = p(j−r0)(j−r0−1)/2
∑
`

p`(k−r1+`−j)R∗(Ω1 ⊥
〈
2
〉
,
〈
0
〉`

· δ(k − r0 − `, j − r0 − `)
µ(j − r0 − `, j − r0 − `)

S(j − r0 − `)

where

S(m) =
m∑
q=0

(−1)qpq(q+1)/2−qmµ(k − r0 − r1,m− q)µ(k − n− 1 + q, q)β(m, q).

Using that n = r0 + r1 + r2 and that β(m, q) = β(m− 1, q) + pm−qβ(m− 1, q− 1),
we find that

S(m) = pk−n(pr2−m+1 − 1)S(m− 1) = pm(k−n)µ(r2,m).

Thus ∑
q

vq(j)bj−q(Ω) =
∑
q

uq(j)c̃j−q(Ω).

The case when χ′(p) = −1 is virtually the same, and so the details are left to
the reader. �

In the next corollary, we average across the generalised Eichler Commutation
Relation to show that θ(n)(genL) is a Hecke eigenform for primes p - N , where

θ(n)(L) =
∑

clsK∈genL

1
o(K)

θ(n)(K)

(here clsK varies over all isometry classes within the genus of L).
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Corollary 6.5. With p a prime, p - N , and 1 ≤ j ≤ n so that also j ≤ k,

θ(n)(genL)|T ′j(p2) = λj(p2)θ(n)(genL)

where

λj(p2) =
{
pj(j−1)/2+j(k−n)β(n, j)δ(k, j) if χ′(p) = 1,

pj(j−1)/2+j(k−n)β(n, j)µ(k, j) if χ′(p) = −1.

Proof. First note that for K ∈ genL, K is a pm-neighbor of L if and only if pL ⊆
K ⊆ 1

pL, and either mult{L:K}(p) = m or mult{L:K}(1/p) = m. Classifying the
pm-neighbors into isometry classes, we see that the number of pm-neighbors of L
in clsK ∈ genL is

#{isometries σ : pL ⊆ σK ⊆ 1
pL, mult{L:σK}(p) = m }

o(K)

(since σK = σ′K if and only if σ−1σ′ ∈ O(K)). Also, using Proposition 6.3 (a),

∑
clsL′∈genL

#{isometries σ : pL′ ⊆ σK ⊆ 1
pL
′, mult{L′:σK}(p) = m }

o(L′)o(K)

=
1

o(K)

∑
clsL′

#{isometries σ : pK ⊆ σL′ ⊆ 1
pK, mult{K:σL′}(p) = m }

o(L′)

=
1

o(K)
#{pm-neighbors of K}

=
1

o(K)
pm(m−1)/2βδ(k,m).

Thus
θ(n)(genL)|T ′j(p2) = λj(p2)θ(n)(genL)

where

λj(p2) =
j∑
q=0

vq(j)p(j−q)(j−q−1)/2βδ(k, j − q)µ(j, q)
µ(j, q)

.

Our standard technique for evaluating such sums yields the result. �

Theorem 6.6. When 1 ≤ a ≤ n− k and p a prime not dividing N ,

θ(n)(L)|T ′k+a(p2) = 0.

Proof. This is proved just as in the integral weight case (see §3 [12]); for complete-
ness, we give a quick sketch.
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First, we claim c̃k+a(Ω) =
∑k
q=0 wq(a)c̃k−q(Ω), and hence

θ(n)(L)|T̃k+a(p2) = θ(n)(L)|
k∑
q=0

wq(a)T̃k−q(p2)

where wq(a) = (−1)qpq(q+1)/2β(a+q−1, q)β(n−k+q, a+q). To verify this, notice
that in Proposition 6.1, the only term in our formula for c̃j(Ω) that is dependent
on j is β(n− k+x, n− j) = β(n− k+x, x− k+ j) where x = k− r0− `− t. Then,
since

β(a+ q − 1, q)β(n− k + q, a+ q)β(n− k + x, x− q)

=
β(n− k + x, x+ a)

µ(x, x)
µ(a+ q − 1, q)µ(x+ a, x− q)β(x, q),

we need to verify that Sa(x, 1) = µ(x, x) where

Sa(x, y) =
x∑
q=0

(−1)qpq(q−1)/2+qyµ(a+ q − 1, q)µ(x+ a− 1 + y, x− q)β(x, q).

Using our standard technique, we see Sa(x, y) = (py − 1)Sa(x − 1, y + 1), and so
Sa(x, 1) = µ(x, x)Sa(0, x+ 1) = µ(x, x).

Next, we claim that

r∑
q=0

β(n− q, r − q)T ′q(p2) = T̃r(p2).

To see this, we begin with the definition of T ′q(p
2), then we make some changes of

variables:

r∑
q=0

β(n− q, r − q)T ′q(p2)

=
r∑
q=0

q∑
i=0

(−1)q−ip(q−i)(q−i−1)/2β(n− i, q − i)β(n− q, r − q)T̃i(p2)

=
r∑
i=0

β(n− i, r − i)T̃i(p2)
r−i∑
q=0

(−1)qpq(q−1)/2β(r − i, q).

When r > i, our standard technique shows this last sum is 0.
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Hence, with a ≥ 1,

θ(n)(L)|
k+a∑
q=0

β(n− q, k + a− q)T ′q(p2)

= θ(n)(L)|T̃k+a(p2)

= θ(n)(L)|
k∑
`=0

w`(a)T̃k−`(p2)

= θ(n)(L)|
k∑
q=0

k−q∑
`=0

w`(a)β(n− q, k − `− q)T ′q(p2).

As shown at the beginning of this proof (replacing x by k − q),

k−q∑
`=0

w`(a)β(n− q, k − q − `) = β(n− q, k + a− q).

Hence induction on a shows θ(n)(L)|T ′k+a(p2) = 0 for all a ≥ 1. �

§7. Unimodular lattices over Zp

Recall that a regular (or nondegenerate) lattice L over Zp is unimodular if L# =
L, where L# = {v ∈ QpL : BQ(v, L) ⊆ Zp }, BQ the symmetric bilinear form
associated to the quadratic form Q on L. Here we give a brief accounting of the
facts we use about unimodular lattices over Zp.

Proposition 7.1. Say L is a rank m unimodular lattice over Zp, p 6= 2.
(a) For any µ1, . . . , µm ∈ Z×p so that discL = µ1 · · ·µm, we have

L '
〈
µ1, . . . , µm

〉
.

(b) The matrices
(

0 1
1 0

)
,
〈
1,−1

〉
represent the same (isotropic) lattice. For

ω ∈ Z×p with
(
ω
p

)
= −1, the lattice represented by

〈
1,−ω

〉
is anisotropic.

(c) If m = 2k + 1, then L '
(

0 1
1 0

)
⊥ · · · ⊥

(
0 1
1 0

)
⊥
〈
ε
〉

where (−1)kε =

discL. If m = 2k then

L '


(

0 1
1 0

)
⊥ · · · ⊥

(
0 1
1 0

)
if (−1)k = discL,(

0 1
1 0

)
⊥ · · · ⊥

(
0 1
1 0

)
⊥
〈
1,−ω

〉
otherwise.
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Proof. (a) As discussed at the beginning of §92 [8], L has an orthogonal base.
Hence for some εi ∈ Z×p , L '

〈
ε1, . . . , εm

〉
. By 92:1 [8], L '

〈
1, . . . , 1, ε

〉
where

ε = ε1 · · · εm. So ε represents discL. If µ1, . . . , µm ∈ Z×p so that µ = µ1 · · ·µm
represents discL, then L '

〈
1, . . . , 1, µ

〉
and again by 92:1 [8],

〈
1, . . . , 1, µ

〉
'〈

µ1, . . . , µm
〉
.

(b) Since
(

0 1
1 0

)
is unimodular with determinant −1, by (a) it must represent

the same lattice as
〈
1,−1

〉
. On the other hand, since ω is not a square in Z×p ,

α2 − ωβ2 = 0 is not soluble,
〈
1,−ω

〉
is anisotropic.

(c) This follows from repeated use of the fact that, by (a) and (b),
〈
1, 1, ε

〉
and(

0 1
1 0

)
⊥
〈
− ε
〉

represent the same lattice. �

Similar to the discussion in §93B [8], we have the following.

Lemma 7.2. Say J = Z2x⊕Z2y is unimodular. Then either J '
〈
µ1, µ2

〉
for some

µ1, µ2 ∈ Z×2 , or J '
(

0 1
1 0

)
, or J '

(
2 1
1 2

)
. Also,

(
2 1
1 2

)
is anisotropic, and

hence
(

0 1
1 0

)
6'
(

2 1
1 2

)
. So when J is even (meaning Q(J) ⊆ 2Z2), J '(

0 1
1 0

)
if discJ = −1, and J '

(
2 1
1 2

)
if discJ = 3.

Proof. Relative to the basis x, y, J '
(
ν ε
ε η

)
for some ν, ε, η ∈ Z2. If either ν or

η is a unit, then J can be diagonalized (by an appropriate change of basis).

So suppose J '
(

2ν ε
ε 2η

)
; since J is unimodular, 4νη−ε2 is a unit and hence ε

is a unit. Thus by scaling one basis vector by ε−1, we can assume J '
(

2ν 1
1 2η

)
.

First, when ν = 2µ for µ ∈ Z2, we claim J ' H. To see this, suppose Z2u⊕Z2w '(
0 1
1 0

)
. Since 1 is a solution to X2−X+2µη ≡ 0 (mod 2), Hensel’s lemma allows

us to lift 1 to a solution α ∈ Z×2 to the equation X2 − X + 2µη = 0. Then with
η′ = ηα−1,

Z2u⊕ Z2w = Z2(u+ 2µw)⊕ Z2(η′u+ αw) '
(

4µ 1
1 2η

)
.

Next, when ν, η 6∈ 2Z2, we claim J '
(

2 1
1 2

)
. To see this, suppose Z2u⊕Z2w '(

2 1
1 2

)
. Using Hensel’s lemma, we can find α, β ∈ Z2 so that

3α2 − 3α+ 1 = ν, (4ν2 − ν)β2 + (1− 4ν)β + 1 = η.
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Then with u′ = (1 − 2α)u + αw, w′ = βu′ + (1 − 2βν)w, we have Z2u ⊕ Z2w =
Z2u

′ ⊕ Z2w = Z2u
′ ⊕ Z2w

′, and

Z2u
′ ⊕ Z2w '

(
2ν 1
1 2

)
and Z2u

′ ⊕ Z2w
′ '

(
2ν 1
1 2η

)
.

Finally, we verify that Z2u ⊕ Z2w '
(

2 1
1 2

)
is anisotropic. Say α, β ∈ Z2,

and without loss of generality, suppose ord2α ≥ ord2β. Then Q(αu+ βw) = 2α2 +
2αβ + 2β2 = 0 if and only if γ2 + γ + 1 = 0 where γ = α/β ∈ Z2; however,

X2 +X + 1 ≡ 0 (mod 2) has no solution. Thus
(

2 1
1 2

)
is anisotropic. �

Recall that for any prime p we use H to denote a binary lattice over Zp with

H '
(

0 1
1 0

)
, and we call H a hyperbolic plane; we use A to denote an anisotropic

binary lattice over Zp, and we call A an anisotropic plane.

Lemma 7.3. Say L is a Z2-lattice with L ' A ⊥ A. Then L ' H ⊥ H.

Proof. We first show that L is isotropic. Choosing α ∈ Z×2 so that 5α = −7, we
see that

α ≡ −35 ≡ 1 (mod 8).

Hence by the Local Square Theorem (63:1 [8]), α = ε2 for some ε ∈ Z×2 . Then

with x, y, x′, y′ a basis for L corresponding to the matrix representation
(

2 1
1 2

)
⊥(

2 1
1 2

)
, we see that with w = x+ 2y + εx′ − 4εy′, Q(w) = 0.

By 82:16 [8], w lies in a binary sublattice of L that splits L, meaning L = J ⊥ J ′.
Notice that since L is even, so are J and J ′. Then since J is isotropic, J ' H. Also,
J ′ ' H or A; since discL = discJ · discJ ′, by Lemma 7.2XS we have J ′ ' H. �

Proposition 7.4. Say L is a unimodular lattice over Z2. Then

L '
〈
µ1, . . . , µt

〉
⊥ H ⊥ · · ·H ⊥ A

where µi ∈ Z×2 and A = H or A. Hence if L is even unimodular over Z2 then rankL
is even.

Proof. By 93:15 [8] and Lemma 7.2,

L '
〈
µ1, . . . , µt

〉
⊥
(

2ν1 1
1 2η1

)
⊥ · · · ⊥

(
2νs 1
1 2ηs

)
where µi ∈ Z×2 , νj , ηj ∈ Z2. The proposition now follows from Lemma 7.3. �
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§8. Representation numbers of quadratic forms over Z/pZ, p 6= 2

Fix a prime p 6= 2, and set F = Z/pZ. Recall that Js = Is−1 ⊥
〈
ω
〉

where(
ω
p

)
= −1, and r∗(Q,T ) is the number of times the symmetric matrix Q primitively

represents the symmetric matrix T . Also, o(Q) is the order of the orthogonal group
of Q.

Lemma 8.1. Working over F, here we present formulas for primitive represen-
tation numbers of a regular quadratic form Q, and for o(Q). Since R∗(Q,T ) =
r∗(Q,T )/o(T ), this gives us formulas for R∗(Q,T ).

(a) We have:

r∗(I2s, 1) = ps−1(ps − εs) = r∗(I2s, ω),

r∗(J2s, 1) = ps−1(ps + εs) = r∗(J2s, ω),

r∗(I2s+1, 1) = ps(ps + εs) = r∗(J2s+1, ω),

r∗(J2s, 1) = ps(ps − εs) = r∗(I2s, ω),

r∗(I2s, 0) = (ps − εs)(ps−1 + εs−1),

r∗(J2s, 0) = (ps + εs)(ps−1 − εs−1),

r∗(I2s+1, 0) = (ps + εs)(ps − εs) = r∗(J2s+1, 0).

(b) With Q,T symmetric matrices and detQ 6= 0,

r∗(Q ⊥
〈
1
〉
, T ⊥

〈
1
〉
) = r∗(Q ⊥

〈
1
〉
, 1)r∗(Q,T ),

r∗(Q ⊥
〈
1,−1

〉
, T ⊥

〈
0
〉
) = pdimT r∗(Q ⊥

〈
1,−1

〉
, 0)r∗(Q,T ).

(c) With c ≤ s,

r∗(I2s+1, I2c) = r∗(I2s+1, J2c) = r∗(J2s+1, I2c) = r∗(J2s+1, J2c)

= p2sc−c2µδ(s, c),

o(I2s) = 2ps(s−1)(ps − εs)µδ(s− 1, s− 1),

o(J2s) = 2ps(s−1)(ps + εs)µδ(s− 1, s− 1),

o(I2s+1) = 2ps
2
µδ(s, s) = o(J2s+1), o(Is ⊥

〈
0
〉a) = pasη(a, a)o(Is).

Proof. (a) These formulas are well-known, and fairly easily derived. For instance,
in Theorems 2.59 and 2.60 of [5], Gerstein derives formulas for all representations
of 1, ω, and 0 by a regular quadratic form over F. Note that for Q such a regular
quadratic form, we have r(Q, 1) = r∗(Q, 1), r(Q,ω) = r∗(Q,ω), and r(Q, 0) =
r∗(Q, 0) + 1.

(b) Let V ′ be a vector space over F with quadratic form Q′ = Q ⊥
〈
1
〉
. Choose

u ∈ V ′ so that Q′(u) = 1. Then Fu is a regular subspace of V ′, and hence splits V ′

as V ⊥ Fu where V ' Q. Hence

r∗(Q′, T ⊥
〈
1
〉
) = r∗(Q′, 1)r∗(Q,T ).
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Now let V ′ be the vector space with quadratic form Q′ = Q ⊥
〈
1,−1

〉
; since

we have assumed detQ 6= 0, V ′ is a regular space. Let u ∈ V ′ so that u 6= 0 and
Q′(u) = 0. Then, since V ′ is regular, u lies in a hyperbolic plane Fu ⊕ Fv, which
splits V ′ as (Fu ⊕ Fv) ⊥ V where V ' Q. Also, for w ∈ V , Q′(w + αu) = Q′(w)
for any α ∈ F. Consequently

r∗(Q′, T ⊥
〈
0
〉
) = pdimT r∗(Q′, 0)r∗(Q,T ).

(c) All but the final formula follow easily from (a) and (b). For the final formula,
notice that the orthogonal group of Is ⊥

〈
0
〉a is

O(Is ⊥
〈
0
〉a) =

{(
G1 0
G3 G4

)
: G1 ∈ O(Is), G3 ∈ Fa,s, G4 ∈ GLa(F)

}
. �

Recall that r(Q,T ) denotes the total number of times Q represents T , regardless
of whether the representation is primitive.

Lemma 8.2. For s ≥ 1,

r(Hs,
〈
0
〉2s) =

s∑
d=0

(−1)dpd(d−1)+2s(s−d)β(s, s− d)δ(s− 1, s− d),

r(Hs−1 ⊥ A,
〈
0
〉2s) = −

s∑
d=0

(−1)dpd(d−1)+2s(s−d)β(s− 1, s− d)δ(s, s− d).

Thus

(ps + εs)r(I2s,
〈
0
〉2s) = εs

s∑
d=0

(−1)dpd(d−1)+2s(s−d)βδ(s, s− d)(pd + εd),

(ps − εs)r(J2s,
〈
0
〉2s) = −εs

s∑
d=0

(−1)dpd(d−1)+2s(s−d)βδ(s, s− d)(pd − εd).

Proof. Take a vector space V over F so that V ' Hs or V ' Hs−1 ⊥ A. Note that
a totally isotropic subspace of V has dimension at most s.

Set

ψ(V ) =
s∑
d=0

αdp
2s(s−d)R∗(V,

〈
0
〉s−d)

where

αd =
{

(−1)dpd(d−1) if V ' Hs,

(−1)d+1pd(d−1) if V ' Hs−1 ⊥ A.
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Since there are p2s(s−d) ways to choose x1, . . . , xt ∈ U where dimU = s− d,

ψ(V ) =
d∑
s=0

∑
U⊆V

U'
〈

0

〉s−d

αd ·#{x1, . . . , x2s ∈ U}

=
∑

x1,... ,x2s∈V

BQ(xi,xj)=0

s∑
d=0

αd ·#{U ⊆ V : U '
〈
0
〉s−d

, x1, . . . , x2s ∈ U }.

Take x1, . . . , x2s ∈ V so that BQ(xi, xj) = 0; let W be the subspace generated
by x1, . . . , x2s, and ` the dimension of W . So there exists a subspace W ′ ⊆ V so
that W ⊕W ′ ' H` and V = (W ⊕W ′) ⊥ V ′ where

V ′ '
{ Hs−` if V ' Hs,

Hs−`−1 ⊥ A if V ' Hs−1 ⊥ A.

Also, with x1, . . . , x2s as above, and using Lemma 8.1,

#{U ⊆ V : U '
〈
0
〉s−d

, x1, . . . , x2s ∈ U }

= R∗(V ′,
〈
0
〉s−d−`)

=
{
β(s− `, s− `− d)δ(s− `− 1, s− `− d) if V ' Hs,
β(s− `− 1, s− `− d)δ(s− `, s− `− d) if V ' Hs−1 ⊥ A.

Lemma 4.2 (b) tells us that

s∑
d=0

αdR
∗(V ′,

〈
0
〉s−`−d) =

s−∑̀
d=0

αdR
∗(V ′,

〈
0
〉s−`−d) = 1.

Therefore

ψ(V ) = #{x1, . . . , x2s ∈ V : BQ(xi, xj) = 0 } = r(V,
〈
0
〉t).

The other statements of the lemma follow immediately from the observation that
I2s ' Hs if εs = 1 and I2s ' Hs−1 ⊥ A otherwise, and J2s ' Hs if εs = −1 and
J2s ' Hs−1 ⊥ A otherwise. �

Remark. The technique used to prove Lemma 8.2 can also be used to show that
with ν 6= 0,

r(Hs ⊥
〈
ν
〉
,
〈
0
〉2s+1) =

s∑
d=0

(−1)dpd
2+(2s+1)(s−d)βδ(s, s− d).
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§9. Lemmas on symmetric matrices

Lemma 9.1. Say p is a prime and U, V ∈ Zn,n, V = diag{pa1Ir1 , . . . , p
a`Ir`

},
ai < ai+1, and (tU, V ) is a coprime symmetric pair. There there is a matrix
Y ∈ SLn(Z) so that V Y = Y ′V , Y ′ ∈ SLn(Z), and

Y UV −1 tY ≡ diag{p−a1U ′1, . . . , p
−a`U ′`} (mod Z)

where U ′i ∈ Zri,ri is symmetric with p - detU ′i unless i = 1 and ai = 0. Further,
there is a matrix Yp ∈ SLn(Zp) so that V Yp = Y ′pV , Y ′p ∈ SLn(Zp), and

YpUV
−1 tYp = diag{p−a1U ′′1 , . . . , p

−a`U ′′` }

where U ′′i ∈ Zri,ri
p is symmetric and U ′i ≡ U ′′i (mod paiZp).

Proof. We know UV −1 is symmetric, so writing U = (Uij) where Uij is an ri × rj
block, we have tUij = paj−aiUji when i < j. Also, we know that

(
U
V

)
has rank n

over Z, hence over Zp, Uii must have rank ri for 1 < i ≤ `, and if a1 > 0, U11 has
rank r1. So for i < j, choose integral Yij so that tUji ≡ −YijUjj (mod paj−ai). Let

Y =


Ir1 pa2−a1Y12 · · · pa`−a1Y1`

Ir2 · · · pa`−a2Y2`

. . . · · ·
Ir`

 .

Then we have

YWUV −1W tY ≡


p−a1U ′11

p−a2U ′22

. . .
p−a`U ′``

 (mod Z)

where U ′ii is symmetric and U ′ii ≡ Uii (mod p). Also, V Y = Y ′V where

Y ′ =


Ir1 Y12 · · · Y1`

Ir2 · · · Y2`

. . . · · ·
Ir`

 ∈ GLn(Z).

To find Yp, we simply modify the above construction to choose Yij = −tUijU−1
jj . �
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Lemma 9.2. Suppose (tB, tD) is a symmetric coprime pair of n× n integral ma-
trices with detD 6= 0. Suppose also that Q ∈ Zm,n is symmetric with detQ 6= 0
and (detQ,detD) = 1.

(a) If G ∈ Zm,n so that GB ∈ Q−1Zm,nD then G ∈ Zm,n tD.
(b) As G0 varies over Zm,n/Zm,n tD, QG0B varies over Zm,n/Zm,nD; also,

QZm,nB + Zm,nD = Zm,n.

Proof. (a) Say G ∈ Zm,n with GB ∈ Q−1Zm,nD; we show that G ∈ Zm,np
tD for

all primes p. If p - detD then this is clear; so say p|detD. Thus p - detQ and so
GB ∈ Zm,np D. If p - detB then

G ∈ Zm,np DB−1 = Zm,np
tB−1 tD = Zm,np

tD.

So suppose p|detB. By the Elementary Divisor Theorem there are E1, E2 ∈
GLn(Zp) so that V = tE−1

2 DE1 = diag{pa1Ir1 , . . . , p
a`Ir`

}. Set U = E2BE
−1
1 .

Then by the proof of Lemma 9.1 we know there is some Y ∈ GLn(Zp) so that

Y E2BD
−1 tE2 =


U11 0 · · · 0
U21 U22 · · · 0

...
...

. . .
...

U`1 U`2 · · · U``

V −1

where Uij ∈ Zri,rj
p and p - detUii for i > 1. Write GE−1

2 as (Gij) where Gij is
ri × rj ; set

X =


I tU21 · · · tU`1
0 tU22 · · · tU`2
...

...
. . .

...
0 0 · · · tU``

 , G1 =


G11 0 · · · 0
G21 0 · · · 0

...
...

. . .
...

G`1 0 · · · 0

 ,

and G2 = GE−1
2 −G1. Thus, recalling that BD−1 is symmetric, we get

GBD−1 tE2
tY = G1

(
tU11

0

)
+G2V

−1X.

We have GBD−1, G1

(
tU11

0

)
∈ Zm,np , so G2V

−1X ∈ Zm,np . Since we chose X ∈

GLn(Zp), we have G2V
−1 ∈ Zm,np . Noting that G1V

−1 = G1, we see GE−1
2 V −1 =

G1V
−1 +G2V

−1 ∈ Zm,np . So G tD = GE−1
2 V −1 tE1 ∈ Zm,np .

(b) We show that as G0 varies over Zm,n/Zm,n tD, the product QG0B varies
over Zm,n/Zm,nD, and thus for any G ∈ Zm,n, there exist G0, G1 ∈ Zm,n so that
G = QG0B +G1D.

If G0 ∈ Zm,n tD, then G0 = G + 0′ tD and QG0B = QG′0
tBD ∈ Zm,nD. So

suppose G0 ∈ Zm,n and QG0B ∈ Zm,nD. Then G0B ∈ Q−1Zm,nD and so by (a),
G0 ∈ Zm,n tD. Thus for G0 ∈ Zm,n, G0 ∈ Zm,n tD if and only if QG0B ∈ Zm,nD.
�
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Lemma 9.3. Suppose Q ∈ Zm,m is symmetric and even, V = diag{d1, . . . , dn}
(di ∈ Z, di 6= 0), and suppose U ∈ Zn,n so that V U is symmetric. For each prime
p dividing detV , let Wp = diag{d1p

−e1 , . . . , dnp
−en} where ei = ordp(di). Then

with p1, . . . , ps the primes dividing detV ,

Zm,nWp1/Zm,nV × · · · × Zm,nWps
/Zm,nV ≈ Zm,n/Zm,nV

and

∑
G∈Zm,n/Zm,nV

e{Q[G]UV −1} =
s∏
i=1

 ∑
G∈Zm,nWpi

/Zm,nV

e{Q[G]UV −1}

 .

Proof. Map (G1Wp1 , . . . , GsWps) to (
∑
iGiWpi) + Zm,nV . One easily verifies this

is a homomorphism with kernel (Zm,nV, . . . ,Zm,nV ); a cardinality argument es-
tablishes the map is surjective.

Note that since Q is even, Q[G] ∈ 2Zn,n for any G ∈ Zm,n. Then using that
e{tM} = e{M} and e{MM ′} = e{M ′M}, we find that

e{Q[G1Wp1 + · · ·+GsWps ]UV −1}

=

(∏
i

e{Q[GiWpi
]UV −1}

)∏
i 6=j

e{tGiQGjWpj
UV −1Wpi

}

 ,

and V −1Wpi
is integral modulo Z(q) for all primes q 6= pi. But we know UV −1 is

symmetric, so

e{tGiQGjWpj
UV −1Wpi

} = e{tGiQGjWpj
V −1 tUWpi

},

and Wpj
V −1 is integral modulo Z(pi). Thus Wpj

UV −1Wpi
is integral. Also,

e{tGiQGjWpj
UV −1Wpi

} = e{tWpi
V −1 tUWpj

tGjQGi}
= e{tGjQGiWpi

UV −1Wpj
}.

Hence ∏
i6=j

e{tGiQGjWpj
UV −1Wpi

} =
∏
i<j

e{2 tGiQGjWpj
UV −1Wpi

} = 1,

proving the lemma. �
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