HALF-INTEGRAL WEIGHT SIEGEL MODULAR
FORMS, HECKE OPERATORS, AND THETA SERIES

LyNNE H. WALLING

ABSTRACT. We analyse the behavior of Siegel theta series attached to arbitrary rank
lattices under the symplectic group, and define half-integral weight Siegel modular
forms. Then we introduce Hecke operators for half-integral weight Siegel forms,
explicitly describing the action on Fourier coefficients (and giving an explicit choice
for the matrices giving the action of each Hecke operator). We introduce generators of
the Hecke algebra whose action on Fourier coefficients is more transparant. Applying
these operators to theta series, we show that the average Siegel theta series of half-
integral weight are eigenforms for the Hecke operators attached to primes not dividing
the level; we explicitly compute the eigenvalues.

§0. Introduction

Quadratic forms abound in mathematics, as they capture the geometric notions
of distance and orthogonality. Siegel asked: Given a lattice L = Zx1 & - -+ & Zxp,
with geometry given by a positive definite quadratic form @, and given another
quadratic form 7', how many sublattices of L have their geometry given by T7 To
study this question, Siegel introduced generalised theta series, which have Fourier
expansions supported on positive semi-definite quadratic forms T'; the T'th Fourier
coefficient carries the answer to Siegel’s question. (Note that every quadratic form
can be naturally associated with a symmetric matrix.) Siegel theta series are the
prototypes for Siegel modular forms and, as in the classical case of elliptic modular
forms, Hecke operators help us study the Fourier coefficients of these modular forms.

In this paper we focus on Siegel modular forms of half-integral weight and the
action of Hecke operators on their Fourier coefficients; for this, we need a good un-
derstanding of Siegel theta series. Thus, after presenting terminology and notation
in §1, in §2 we analyse the behavior of Siegel theta series under the appropriate
subgroup of the symplectic group; alternate proofs can be found, for instance, in
§1.3 and §1.4 of [1]. We also define Siegel modular forms of weight k£ 4+ 1/2 in §2.
In §3 we define Hecke operators on half-integral weight Siegel modular forms, and
we evaluate their action on the Fourier coefficients of the Siegel modular forms (see
Proposition 3.1 and Theorem 3.4). This action involves generalised “twisted” Gauss
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sums, which we evaluate in §4, using the theory of quadratic forms over finite fields
(see Theorem 4.3); more general versions of these are evaluated in Theorem 1.3 of
[9]. In §5, we present a different set of generators for the Hecke algebra so that,
using the results of §3 and §4, the action of the operators on Fourier coefficients
is simpler to describe (see Theorem 5.1). As an application, in §6 we apply these
averaged operators to Siegel theta series (provided the Hecke operators are asso-
ciated to primes not dividing the “level” of the Siegel theta series). We obtain a
generalised Eichler Commutation Relation (Theorem 6.4), and from this we deduce
that the “average” theta series is an eigenform, as we simultaneously compute its
eigenvalues (Corollary 6.5). In particular, when (") (L) is a Siegel theta series of
degree n, weight k£ + 1/2, and level N, the eigenvalue of the average theta series
6™ (genL) under Tj(p?) is

plU=D2HIE=) g0 5) (pF + ¥ (p)) -+ (PF T+ X (p)),

provided p is a prime with p f N, and 1 < j < k; here 3(n,j) is the number of
j-dimensional subspaces of an n-dimensional space over Z/pZ, and

V() = ((—1)’f+;2 detQ) '

In Theorem 6.6, we show that T7(p*) annihilates 0" (L) when p{ N and j > k.

In §7 we recount some theory of quadratic forms over the p-adics Z,; in §8
we recount some results on representation numbers of quadratic forms over Z/pZ,
p # 2; in §9 we recount some technical lemmas on symmetric matrices and coprime
symmetric pairs.

To a large extent this paper is self-contained. For a broader discussion of Siegel
modular forms, the reader is referred, for instance, to [1], [2], [4], [7]; for a broader
discussion of quadratic forms, the reader is referred, for instance, to [3], [5], [8].

§1. Terminology and notation

Throughout, we let ) be a positive definite quadratic form on a lattice L =
Lxg -+ ® Lxy; for convenience, we assume () is scaled so that Q(L) C 27Z. Asso-
ciated to @ is the symmetric bilinear form Bg given by Q(z +vy) = Q(z) + Q(y) +
2Bg(z,y). Relative to the basis (z1,... ,Z,), we can identify L with Z™! and Q
can be represented by the matrix (BQ (x4, :zzj)) (which we sometimes refer to as Q);
with € Z™! representing a vector in L, the action of Q is given by the matrix
multiplication ‘zQwx.

For n € Z,, we attach to L a generalised theta series

0™ (Lir)= ) e{Q[C]r}
cezmm

where e{x} = exp(miTr(x)) and Q[C] = ‘CQC. As Siegel proved (cf. §1.1.1 and
§1.3.3 of [1]), 0" (L;7) is an analytic function in all the variables of 7 where 7 lies
in Siegel’s upper half-space

Hiy = {X +iV : X, Y €RY%, Y >0 )

sym>
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Y > 0 means that as a quadratic form, Y is positive definite. Note that

0 (L;7) =) r(Q,T)e{Tr}

T

where T varies over all n X n symmetric matrices and
r(Q,T)=#{C €Z™": 'CQC =T }.

Since Q(L) C 27Z, the matrix for @) is even integral, meaning it is integral with
even diagonal entries; thus with C € Z™", *CQC is also even integral. This
representation number r(Q, T') gives us information about the number of sublattices
of L on which the quadratic form @ restricts to T'; the sublattice associated to ‘{CQC
is Zy1 + - -+ + Zy,, where

Also, when n > m (m the rank of L), then Zy; + --- + Zy,, necessarily has rank
less than n; for this reason, we only consider n < m.
The symplectic group is defined by

Spn(Z) = {(é g) . A'B, C''D are symmetric, A'D — B'C =1 }

where B denotes the transpose of B; we set

rgm(N):{(g g): N\C}.

As discussed, for example in Proposition 1.2.1 of [1], Sp,(Z) acts on H,) by

(é g) r— (Ar+ B)(C7 + D).

Using the Inversion Formula, one derives Siegel’s Transformation Formula (see The-
orem 2.2) which relates () (L; 1) to ") (L; 1) where v € I‘(()n)(N).

The quadratic form @ on L can be naturally extended to a quadratic form
on the vector space V. = QL = Qz; & --- ® Qx,,. Identifying ) with an even
integral matrix (as discussed above), ) has an invariant called the level, which is
the smallest positive integer N so that NQ~! is also even integral. Siegel’s Inversion
Formula (Lemma 1.3.15 of [1], and stated here as Theorem 2.1) relates () (L; 1)
to 0 (L#; —1~1) where L# is the dual of L, defined by

L#¥ ={weV: Bg(w,L) CZ}.

(Note that when we have identified L with Z™! and Q with a matrix relative to
some Z-basis for L, L# is naturally identified with Q~'Z™.)
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We rely heavily on the arithmetic theory of quadratic forms over Z and over the
p-adics Z,, as well as the arithmetic theory of quadratic forms over finite fields.
When L is a free lattice over a Dedekind domain D with quadratic form @) and A
is a matrix representing () relative to some D-basis for L, we write L ~ A, and
we set discL = det A. (Thus discL is well-defined up to squares of units of D.
Also note that since Z, is a principle ideal domain, any Z,-lattice is free.) The
lattice L is said to be regular if 0 is the only vector € L so that Bg(z,L) = 0.

When A is a matrix with L ~ A relative to some D-basis (x1,... ,Z,), L is regular
exactly when det A # 0; in the case det A # 0, (y1,... ,¥m) = (T1,... ,Tm)A™!
is a dual basis for (z1,...,2,,) (where A~! has entries in the quotient field of D),

and (y1,...,Ym) is a D-basis for L#. (So L# ~ A~'.) We say L is unimodular if
L = L#; a regular lattice L is unimodular exactly when A is invertible over . We
say two lattices L, K are isometric if L ~ A and K ~ A, A a symmetric matrix;
the notation L ~ K means L and K are isometruc. An automorphism o of L is
an isometry of L when Bg(ox,0y) = Bg(x,y) for all z,y € L. We use O(L) to
denote the orthogonal group of L, meaning the group of isometries mapping L to
itself; we use o(L) to denote the order of this group. (Note that when @ is positive
definite, o(L) is known to be finite.)

A nonzero vector z is called isotropic if Q(z) = 0; a lattice (or vector space) is
called isotropic if it contains a (nonzero) isotropic vector, and it is called anisotropic
otherwise; it is called totally isotropic if all its vectors are isotropic.

For p; € D, we use <,u1, e ,um> to denote the diagonal matrix diag{p1, ... , m},
and for square matrices A, As we use A; L As to denote the block diagonal matrix
diag{ Ay, As}. For sublattices Ly, Ly of L with L1 N Ly = {0}, we write Ly L Ly to
denote the direct sum of L; and Ly in the case that Bg(Li, Le) = 0.

Suppose p is an odd prime and V is a vector space over Z/pZ with quadratic
form ). The radical of V is

radV ={w eV : Bg(w,V)=0 }.

When radV = {0}, we say V is regular. Note that we always have V =radV L V'
where V' is regular; while V"’ is not uniquely determined, its isometry class is. We

1 (1) (relative to some
basis). We use A to denote an anisotropic plane, meaning dim A = 2 and A contains
no isotropic vectors. When V' is regular and U is a totally isotropic subspace of V',
there exists another subspace U’ of V so that U@ U’ ~ HY™ VU Also, whenever V is
a regular space with dim V' > 3, V' is isotropic. A regular subspace U of V splits V,
meaning V = U L U’ for some U’; consequently, when V is regular, V ~ H? 1 W
where W is regular with dimension 0, 1, or 2. Thus when dimV = 2d, either
V~Hor V~H"" LA WhendimV =2d+1 then V ~ H? L (v) for some
v # 0; the square class of v determines the isometry class of V.

For F a finite field and Q € FJi, T € F4f,,, we use (Q, T) to denote the number

of representations of 7" by @, and r*(Q,T) to denote the number of primitive

use H to denote a hyperbolic plane in V', meaning H ~ (0
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representations of 7" by (). Thus

r(Q,T) = #{C e F™* . t{CQC =T},
™ (Q,T) = #{C e F™* . 'CQC =T, rankC =/ }.

We often write 7*(Q, @) for r*(Q, («)). Note also that when o # 0, we necessarily
have 7(Q, ) = r*(Q, ). With o(T) = r*(T,T), the order of the orthogonal group
of T', we set

" r(Q.T) .
R (Q7 T) - W;
so with V' a dimension m vector space over F with quadratic form @, R*(Q,T) is
the number of dimension ¢ subspaces of V' on which @ restricts to give T' (relative
to some basis for the subspace).
There are also several elementary functions we frequently encounter, and thus it
is useful to give them names. For a fixed prime p and m,r € Z we set

r—1 r—1
s(m,r) =@ +1),  wum,r)=][e"" -1,

i=0 i=0

_ p(m,7) _ pd(m,r)

ﬁ(m7r)_m7 (m,r)— ué(r,r) )

m—r—1
nim,r)= ] @™ —p ) =pmtm D20 m —rm ).

i=0

(Here we have written pd(m,r) for the product u(m,r)d(m,r); also note that when
m,r > 0, B(m,r) is the number of r-dimensional subspaces of an m-dimensional
space over Z/pZ.) These functions satisfy some easily verified relations, which we
will exploit frequently:

d(m,r)o(m —r,q) = d(m,r +q), p(m,r)p(m —r,q) = p(m,r + q),
and when m > 1,

6(m77ﬂ) :ﬁ(m,m—T), W(m,r) :'y(m,m—r),
Bm,r)=p"B(m—1,r)+B(m—-1,r—1)=FB(m—1,r)+p" "B(m—1,r — 1),
’Y(W,T) = p2r,7(m - 17T) + 7(m - 17T - 1)

§2. Siegel theta series and half-integral weight Siegel modular forms

Throughout this section, L is a rank m Z-lattice equipped with the positive
definite, even integral quadratic form @) of level V.
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Here we use an “inversion formula” from [1] to give an alternate proof of the
transformation formula of a Siegel theta series. To do this we generalise an argument
of Eichler, where he first relies on the identity

aT+b_b T

cr+d d+d(c7'+d)

b
d
and lemmas based on the Elementary Divisor Theorem, to generalise Eichler’s
method to evaluate the character that arises in this transformation formula.

The following theorem is Lemma 1.3.15 of [1].

for 7 € H() and (CCL € SLy(Z). Then we use the theory of quadratic forms,

Theorem 2.1 (Inversion Formula). With L# the dual of L,
0 (L; 7) = (det Q)~"/2(det(—iT))~™/20™) (L#; —771).
More generally, take Go € Q™" and set

0 (L, Go;7) = Z e QG + G}

Gezmm
where Q[G'] = 'G'QG’. Then

o) (L,Go; )
= (det Q)~"2(det(—iT)) ™2 Y f—Q'G]r ! — 2'GGy}.

Gezmn

(Here (det(—iT))'/? is taken to be positive when T = 1Y, Y > 0; in general, the
sign is found by analytic continuation in H(y).)

Theorem 2.2 (Transformation Formula). With L as above and <é IB;) €

I‘(()n)(N), we have
0(L; (AT + B)(CT + D))

= (det(—i7(CT + D)~ 'D)"™/*(det(—ir))™/?

> e{Q[GIBD '} | 6(L;7).

Gezmm [ZmntD

Proof. Note that ‘DA — ‘BC = I, and so (A7 + B)(Ct + D)™! = tD71t'B +
tD717(Cr + D)~! with *D~'*B symmetric. Using these observations, the fact
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that e{ MM’} = e{M’'M?}, and the Inversion Formula (Theorem 2.1), we get
0(L; (AT + B)(CT+ D)™")
= > e{QlG)'pT B}

G()EZ”L”L/Z”L’” tD

> e{Q[Go+G'DI'D 'r(CT+ D)}

GeZm,n

=3 e{QIGo]BD}0(L,Go ' DY 7(C7 + D) ' D}
Go

= (det Q)~"/?(det(—iT(CT + D)"'D))"™/*) "e{Q[Go|BD "'}
Go

> e{-Q7'GIDN(Cr+D)r ' —2'GGy'D7'}.

Gezm:n
Since e{MM'} = e{M'M}, e{M} =e{*M}, and D'A— C'B = I, we have
e{-Q[GoB — Q'G]ID~*C}
= e{-Q[Go]|BD'C'B +2'GoGD™'C'B - Q'[G]D~'C}
=e{Q[Go]|BD™ ! - 2'GGy'D™' — Q' [G]D~'C}.
By Lemma 9.2, with G any element of Z™", GoB — Q~'G varies over the quotient
Q1zZ™n /Q71Z™" D as Gy varies over Z™™ /7™ "t D; in particular (taking G = 0),

G B varies over Q1Z™" /Q71Z™"D as G varies over Z™"/Z™"tD. Also note
that since N|C and NQ™! is even integral,

{QIQ'G+Q'G'DIDICY = e{QIQ'GIDC)
for any G, G’ € Z™"™, and hence
Y. eQeGpT'o)
Gezmn [z D

is well-defined. Thus
> e{Q[Go]BD™ —2'GG,'D™' — Q7 GID~CY

GOGZm,n/Zm,n tD

= Y. e{Q[Go)BD™'}.

Goezm ™ [Zmm tD
So
O(L; (At + B)(Ct + D)%) = (det Q)~"/2(det(—ir(C'r + D)~ D)~™/2
2 e{Q[Go|BD™} O(L#; —771);

G06an,n/Zm,n tD
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applying the Inversion Formula again yields the theorem. []

Definition. For b,d € Z with (b,d) = 1 and d # 0, we let G,(d) denote the usual
Gauss sum, meaning

Gy(d) = Z e{2a*b/d}.

a€Z/dZ

For (!B, 'D) a coprime symmetric pair of n x n integral matrices with det D # 0,
and for Q an m x m, symmetric, even integral matrix with det @) # 0, we define a
generalised Gauss sum

G(D;Q)= Y e{QGIBD'}.

GeZm,n/Zm,n tD

When m =1 and Q = (2), we let Gg(D) = Gp(D; (2)).

In the following theorem we analyze Ggp(D; Q) in terms of the classical Gauss
sum and the Kronecker symbol; recall that the Kronecker symbol generalises the
Legendre symbol using the rule

0 if 2|a,
(9> — {1  ifa==+1(mod 8),

—1 if a = +3 (mod 8).
The proof below relies on some elementary, technical lemmas about symmetric
matrices, which are stated and proved in §9.

Note also that by Proposition 7.4, if Q) is an m X m even integral matrix with
2 t det @), then m is necessarily even.

Lemma 2.3. Say Q € Z™™, U’ € Z"" so that Q,U’ are symmetric with Q even,
and p is a fived prime such that ptdet@, ptdetU’. Then

(2de@)™ ()™ Gy eymr ifp 2,

ar
<(71)k2detQ) 2a7”k zfp = 2, m = 2k.

gU’(paIr§ Q) =

Also, for p # 2 and a > 1, G1(p*) = pG1(p®~2).
Proof. Note that since Q,U’ are symmetric, for G, G’ € Z™" we have

e{'GQG'U'/p} = {U''G'QG /p} = e{'G'QGU’ /p}.

So for a > 1,

> QG Y= D> {QIGIU/p*} - D> e{2'GQG'T /p}.

Gez'ln,T' Gez”rn,”f' G/Ezm,T‘
G(p9) G(pa—1) G'(p)
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For fixed G, the map G’ — e{2'GQG'U’/p} is a character on Z™" /pZ™", and
since p 1 det U’, p 1 det @, this is the trivial character only when G € pZ™"; thus

Gu(p*1; Q) = p™ G (p* 21, Q);

this proves the theorem when 2|a.

Next, suppose a = 1; first consider p # 2. Then by §92 [8] (see also Proposition
7.1), we know Q,U’ can be diagonalized over Z,, so we can find E, € SL,,(Z,),
E, € SL.(Zy) so that 'E,QE, and E,U''E) are diagonal. Since SL¢(Z) maps
onto SLy(Z/M7Z) for any ¢, M € 7Z (see, for instance, p. 21 of [10]), we can find
E € SLy,(Z) and E' € SL,(Z) so that E = E, (mod pZ,) and E' = E}, (mod pZ,),
and thus

'EQF = diag{2ay,... ,2a,,} (mod p),
E'U''E’ = diag{yu1, ...,y (mod p).

Since EZ™"E' = 7™,

2mdet Q\" [det U\
gU’ pIraQ HHQMJ p; 20&2 = <—eQ) ( ° > gl(p)m'r“

1=1j5=1 p p

Now say p = 2. Then by Proposition 7.4, m must be even, and we can find
E, € SL,(Z,) so that 'E,QFE, is an orthogonal sum of matrices of the form

(2104 215> where o, 3 € Z,, and we can find E; € SL,(Z,) so that E,U"'E]

is an orthogonal sum of a diagonal matrix and matrices of the form <21V 2177>

Thus again using that SL,(Z) maps onto SL¢(Z/MZ), we can find E € SL,,(Z),
E' € SL.(Z) so that

'EQE = <2(ié1 2;1) 1.1 (2?‘: 2;k) (mod 4),

/ !t / — . 21/1 ]_ 2”8 ]_
E'U"'E" = diag{p1,... ,pue} L ( 1o, L1 1o, (mod 4).

(Note that since 2 1 det U’, we have 2 { u;.) Thus with Q; = (2041- L ) and

125
. 21/h 1
Un = ( 1 th)’

k t s
Gur(21:;Q) = [T T] G (2: Q1) <H Gu,, (213; Qi)) :
i—1 \j=1 h=1
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Now, for 2 1 p,

Gu(2; Q) = {0} + e{ai} +e{Bi} +e{as + Bi +1} = (ﬁ) >

Somewhat similarly,

Gu, (212;Q;) = Z e{ad + bc} = 4.

a,b,c,d€Z/27

Thus ”
(—1)* det Q) ok

gU’(pIr;Q) = ( 9

The lemma now follows. I

Theorem 2.4. Suppose (*B,'D) is a coprime symmetric pair of n X n integral
matrices with det D # 0. Take Q € Z™™ symmetric and even with det Q) # 0 and
(det @Q,det D) = 1. Then

(%) | det D|* if m = 2k,

Ge(D;Q) =

k
(S324009) et DIF G(D) if m =2k +1.

Also, for q € Z with (¢,det D) = 1, we have G,p(D) = (me;zl)o Gp(D) and
(G5(D))* = (7457 ) | det DI.

Proof. By the Elementary Divisor Theorem, we can find Ey, Fs € SL,,(Z) so that
V = 'E;'DE, = diag{d, ... ,d,}
with d;|d;;1. Notice that as G runs over Z™"/Z™" D, GE; " runs over
ZmmEyt )zt DES Y = 2t ) BN = 2 7Y,
so with U = F; BE; we have

Gr(D;Q) = Z e{Q[GIBELV M E; Y = Gu(V;Q).

GeZm,n/Zm,n tD

For each prime p|det D, set V,, = diag{p“',... ,p°*} where e; = ord,(d;), and
set W, = VVp_l. Then by Lemma 9.3,

Gs(D;Q) = ] > {QGIUVTY] = [ Gw,u(Vn: Q).

pl|det D \GeZ™nW,/Z™"V p|det D
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Notice that this means Gp(D) = [],| 4ot p Gw,u (Vp)-

Fix a prime p|det D; choose a1 < ay < -+ < ay and 71,...,7¢ € Z so that
V, = diag{p**I,,,... ,p*I,,}. Then by Lemma 9.1 (where we use W,U in place of
U and V), in place of V'), there is some Y € SL, (Z) so that

YW,UV, MY = diag{p~Uj,... ,p~*U;} (mod Z)

where U/ is r; x r; and symmetric with p { det U/ unless i = 1 and a; = 0. Also,
VY =Y'V, where Y’ € SL,,(Z). Hence

Zm,ny/zm,n‘/py — Zm,n/zm,nvp;
so replacing G by GY we have

Gw,u(Vp Q) = HQU' P* L5 Q).

=1

Fix ¢ and let » = r;, a = a;, U’ = U]. Note that if a; = 0 then the sum on G is
1, so assume ¢ > 1 if a; = 0.

Note that for p # 2, standard techniques show Gi(p)? = p( ) So when

m = 2k, Lemma 2.3 gives us

‘ 1)* det
gWU ‘/p;Q H< € Q) ,pai'l"-;k

1kdetQ
= | det V,|".
( [det V| ) | det V3l

Now suppose m = 2k + 1. Then

Gp(D)

!
—
Q
=

S
=

and by Lemma 2.3,

Thus

£ 1)k2det Q"
Gw,u(Vp; Q) = H (TGQ> a’”kgw v(Vp)
B ( 1)*2det Q

e L)1t G (V)
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Since Gp(D;Q) = Il qet p 9w, u(Vp; @), the first claim of the theorem now
follows.
The product decomposition of Gg(D) above makes it clear that G,p(D) =

<|de;ZD|) Gp(D) for (q,det D) = 1; also,

| det D|

(Gr(D))? = Gg(D;2I,) = ( ) | det D]. O

With 00V(7) = Sz e{28CCT}, we have (00 ()™ = 6™ (L';7) where
L' ~ 21I,,; the level of the quadratic form 21, is 4. Also, as discussed in §1, an even
quadratic form on an odd rank lattice necessarily divisible by 4. Thus Theorems
2.2 and 2.4 give us the following.

Corollary 2.5. Let L be a lattice equipped with a positive definite quadratic form

Q with level N take v = 4 B\ e 1(N). If rankL = 2k, then
C D 0

—1)*
0 (L; y7) = det(CT + D)* (sgn det D)* (ZDdet QN 0" (L; 7).
| det D|
If rankL = 2k + 1, then 4|N and
2k+1

2det Q ) (QW (y7)

(n)(r, — (n)(r.
0 (Lm)—(|detD| 9<n>(7)) 0" (L; 7).

Note that in the course of proving Theorem 2.4, we have also evaluated Gg(D).
In particular, we have the following corollary, which we will use in the following
section.

Corollary 2.6. Let D = diag{I.,,pl,,p*Iyy, In—;} where ro +r1 + 12 = j, and
take B € Z™"™ so that (!B, D) is a coprime symmetric pair. Then

Gp(D) =p” (degyl) Gi(p)"

YO * *
where B=| x Y7 x| withYyrg xrg and Yy r1 X ry.
* k k

Siegel’s generalised theta series are the prototypes for Siegel modular forms.
Here we are concerned with half-integral weight, so from now on we restrict our
attention to this case.
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Definition. With n,k, N € Z,, n > 1, 4|N, and x a character modulo N, we say
a function F': H(,) — C is a degree n, weight k + 1/2 Siegel modular form of level
N and character x if F'(7) is analytic (in each variable of 7), and

(1) () \ 2 H1
F(v71) = x(det D) (OQ(T(ZT))) F(T)

for all v = A B e T (N); note that by Theorems 2.2 and 2.4,
C D 0

2

(n)
‘9 (Orm) = |det(CT + D)|.

6 (1)

We let M4 /Q(Fén)(N ), x) denote the complex vector space of all such functions.
Take (é g) € Spt(Q) and ¢, : H(,y) — C so that

|6 (7)|* = |(det 7)Y/ det(CT + D)|;
with 4|N and F € ./\/lk+1/2(an)(N), X), we define
(Fll 8:1) (1) = ¢y (1)~ FFD F(y).

For v € F(()n)(ll), we set 7 = [v,0 o~/0™)]; then F|§ = x(v) F for v € F(()")(N).
Also, for v,~" € Sp;}(Q),

Flly, oIl é4] = Fl[yy's (64 07) - dy]

(where (¢ 079') - 65/)(7) = &y(¥'7) - ¢y (7).) Thus for v,9' € T§"(4), FFR =
Flyy'.

Remark. As discussed on pp. 44-46 of [7], when F' : H(,) — C is analytic with
F(r+ B) = F(r) for all B € Z", we have

sym>

F(r) =) c(T)e{TT}

T

where T varies over even integral n x n matrices. Then, by work of Koecher
(Theorem 1, p. 45 [7]), those T in the support of F' must be positive semi-definite,
and in addition, for any € > 0, F" is bounded on the subset {7 € H,): Y —el >0 }.

Notice that for G € GL,(Z) and F € Mk+1/2(F(()n)(N), X), we have

~1
v = (G tG’) EF(()H)(N), and so x(det G) F = (F[7);



14 LYNNE H. WALLING

since 0 (G~17rtG™1) = 0 (1), we get ¢(T) = x(det G) ¢(*GTG). We interpret T
as the matrix for a quadratic form on a rank n lattice A (oriented if x(—1) = —1).
Then we set ¢(A) = ¢(T) and

e {AT} =) e{'GTGr}
G
where G varies over O(T)\GL,(Z) (or over OT(T)\SL,(Z) if x(—1) = —1), and so
F(r) =) c(A)e*{Ar}

clsA

where clsA varies over all isometry classes of even integral, positive semi-definite
lattices of rank n (oriented if x(—1) = —1).

63. Hecke operators on half-integral weight Siegel modular forms

We begin by defining Hecke operators acting on half-integral weight Siegel mod-
ular forms; then we analyse their action on Fourier coefficients.

Fix N so that 4|N, and set T = {J: v € TY"”(N) }; let § = Kpf I) 7p—n/2}_

Similar to the case of integral weight, we define

FIT() = Y () FI5*5

where 4 runs over a complete set of representatives for rn gfg_l\f
Proposition 3.1. For F € M,,,5(N,x) and p prime, F|T(p) = 0.
Proof. We will show that with IV = 66!,

NI TN | =2,
and that for 7o € T NI, 35 & 6I'0 !, we have
X(0) FI6Fo = —F[o~ 1.
Consequently, for 7 a set of coset representatives for rnr’ \f,

FIT(p) = (Zw F!S—lﬁ - <ZY(%7) F!S—%) = 0.

Y

A B ,
C D)EFsothat'y =

dv6~1 € T'. (Notice this means p|C and hence (p,det D) = 1.) We have

To show [fﬂf' : fﬂgfg_l} = 2, suppose vy = (

~ o~ 0(”) o) ry o) 5_1
~¢—1 __ /
5/75 - |:’7 ) e(n) N 571 :|
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and from the Transformation Formula (Theorem 2.1) and Theorems 2.2 and 2.4,

0 oyod t(r) 0™ (vr/p) ([ p ) 0™('7)
6 05-1(r) _ 80(r/p)  \JdetD]) g0(7)

If we have 9,71 € I such that v, = §v;6~! € I' and

0" (yir/p) _ 0" (yi7)
Iy ()

then

0 (voyy 't/p) 0 (vory T /p) 0 (v /p) 0 (g (vh) )

and hence 5%;5/_1 and g% 51 lie in the same coset. Thus [f NI :I'N ng—l] < 2.

To show this index is 2, we show some 7y as above exists. To see this, choose a

prime ¢ 1 N so that (%) = —1. Then with D = (q I ), (pN1, D) is a coprime
n—1

symmetric pair, so there are matrices A, B so that

A B _ p
= L, v, = LeTnT’, and =-1
o (pNI D) €L %0 =070 € > an (|detD|>

Furthermore, x(v0) = x(det D) = x(7), but
1~ _ (D ~1T—-1 _ S-1
Fl16™ 70 = <a) Flygo™" = —F[6~".

Hence F|T(p) = 0, as claimed. [J

We now define the Hecke operators T} (p?). For 1 < j < n, set

X = (plj I ) s 5] = (X X—l) ) and g] - [5]1177]/2]
n—j

For I € ./\/lk+1/2(F(()n)(N), X), define

F|T;(p?) = ZY(V)F@*W

0l

where 4 runs over a complete set of representatives for rn gj fgj_l\f



16 LYNNE H. WALLING

Lemma 3.2. Let ' =T((N) and let 6j,gj be as above. Set I, = (5]-1“5;1; then for

PIN, S
/ _ —1
NI =6;I6;"NT.

A B
C D
(X'BX,X'DX™1) is a coprime symmetric pair, so p{det D.) So by Theorem 2.2,

Proof. Say v = > € T so that v/ = @75{1 € I'. (Note that this means

/
OO') _ (det(—im)) 2 (det(—ir(X~LCX 17 + XL DX)"1 X~ DX))~1/?

-Gxpx (X 'DX)
= (det(—i7))?(det(—iT(CX 17X + D)"'D))"2Gxpx (X' DX),

and

n) (m5—1
6! )('yéj T)

== et(—i7r / et(—i7 —17_ — _ ~1/ ‘
(5T = (et A (det(ir(CX I X! 4 D)D) Gn(D)

Also,
Gxpx(X'DX) =) e{2(X'GGX)BD'}
G

where G varies over Z"/ZV" X tDX ™1 and so GX varies over Z!'" X /71" X tD.
We argue that when G varies over ZY"/Z1 "D  pG varies over Z'"/ZY™ D and
over ZM" X /7YX tD, and hence Gxpx (X 'DX) = Gp(D). Take Gg, G} € Z'™.
Clearly, if Go — Gy € Z"tD then p(Gy — G}y) € ZV"X D C Z'"D. So suppose
p(Go — Gy) € ZV X 'D. Then

1
(Go—Gy)!D ezt =X nzt"tD™t,
p
Locally at each prime ¢, either %X or D=1 lies in Zé’”, so (Go—Gp)tD™1 e Zé’”
for all primes gq. Therefore Gy — G}y € ZY'"™'D whenever p(Gy — Gf,) € Z*"X 'D.
Similarly, Go — Gf, € ZY'"™ D whenever p(Gy — G}) € Z"tD. [
Theorem 3.3. Take p a prime and F € Mj1/2 (F(()n)(N),X) .
(a) If pt N, then

Pt = 3 weeirls (PN ) (7 )

QALY

where Q, A} vary subject to pA C Q C %A, Kll is a codimension n— j subspace

of ANQ/p(A+Q), and G = G(Q, A1) € SL,(Z),

D = D(Q) = diag{IrovaﬁapQIrgaIn—j}
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so that
O, .
Q=AGD'X, N, = AG I, where X = (p J ) .
0 In-i
Also,
Yo Yo 0 Y3
t
tv_ [ pY2 Y10
Y= 0 0 I
tYS

with Yy symmetric, ro X ro, varying modulo p?, Y1 symmetric, r1 X r1 varying
modulo p with the restriction that p t det Y1, Ys ro X r1, varying modulo p, Y3
ro X (n — j), varying modulo p.

(b) If p|N, then

P e N

F|Tj<p2>=§F|5;1(I ()

where  varies subject topA CQ C A, [A: Q] =p’, G=G(Q, A1) € GL,(Z)

so that Q = AGX and
(Yo Y3
Y‘(% 0)

with Yo symmetric, j x j, varying modulo p*, Y3 j x (n — j), varying modulo

p.
Proof. First suppose p f N. By Lemma 5.2, a set of coset representatives for
the action of the half-integral weight Hecke operator T}(p?) is {7} where {7} is
a set of coset representatives for the integral weight Hecke operator Tj(p?), and
a set of representatives for this was given in Proposition 2.1 of [6] in the case
N = 1; note that the matrices G presented there can be chosen from SL,,(Z). The
representatives presented there are

e w) ()

where D, G,Y vary as in the statement of the theorem, and U, W are any n x n

) D 'y
matrices so that (U W

ty
u w
diag{l,,, pI,, p?I.,} and

) € Spn(Z). The only modification we need to make

here is to ensure ( ) € I‘é")(N). To do this, we note that with D’ =

Yo Yo O
Y=|p'Ya Vi 0 |,
0o 0 I,
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(D', NY") is a coprime symmetric pair, and so we can find U’, W’ so that N|U’
d (D/ Y’) Spy(2). Setting U = (U )w= (" h
an € Sp;(Z). Setting U = ( >, = ( ), we have

uow j 0 In_;

t
(5 1}[//) € Fén)(N). Then by the construction in the proof of Proposition 2.1 of

[6] and Lemma 7.1, we have

G D ty\™ P P —
M( tG—1)<U W) e 0,08 (1)0 NI (N) = 8,05 (N)s7 ' nr§ (V).

Thus a set of coset representatives corresponding to T} (p?) on My, 4, /2(F(()n)(N )y X)

IS (0 0)

where G = G(2, A1), D = D(R), Y vary as claimed.

Set
(D ty I el aels I
5 - ( Dl) y V= 5]‘ ’YB 5j - XUDle 7/

_ (U’
XU—( On_j),

and hence XUD !X is integral and divisible by N. Thus 7' € Fén) (N). We will
show that

We have

¥ =06;'3[67", (det D)(Gy (D)) 116,

and hence
F|6;'5 = FI7'6; '3, (det D) ™' Gy (D)] = F|6; '3, (det D) ™' Gy (D)].

Note that by Corollary 2.3 and Lemma 7.4 (a), Gy (D) = Gy, (pL,)p".
We have

071387, (det D)(Gy (D)) ™14,

_ [7', (det D)(Gy (D))" - 09((7;——15(%)} '

Also,

_ D-'X —yx! _ X



HALF-INTEGRAL WEIGHT SIEGEL FORMS 19

Therefore, using the Inversion Formula,

0 (57"5;7)
= > e{2lggX7(UD'XT+X )"}
geZL:™
1 -1 ; -1 1\ —1/2
:W(detX) (det(—ir(XUD™ X7 +1)1))
1
-2 e{—§tgg(UD‘erJrX—l)T—lx—l}
geZL™
1

= —(det X)~! (det(—i7(XUD ' X7+ 1)1
7 ( )~ (det(—i( )™)
1 1
3 e{—gtgogoUD_l}e(") (521’”,9019_1;—DX‘lf‘lX‘lD)
go (D)
= (det X) "' (det(—iD' XX D)2 (det(—ir(XUD ' X7 + 1)71))

1
D e{_itgogoUD_l} > e{2'ggD'X7XD 2D gog}.
go (D) gezt:m

~1/2

—1/2

(By go (D) we really mean g € Z'"/ZY™ D.) Since UYY = WD —1I and e{MM'} =
e{M'M},

e{2'(90U/2 4 9)(90U/2+ g)Y D™}

1 . _ —
—¢ {—5 '9090UD™" — 2Dt gog} e{2 'Y D 1}

(recall that N|U and 4|N). Thus

0(v816;7) = (det D)~ (det(—ir))"/? (det(—ir(XUD ' X7+ 1)~1)) "/

> ef2(9U/2+ 9)(90U/2+ 9)Y D™}

g,90€21™
g0 (D)

ce{2'gg(D"'X7XD™!' —YD™)}.

For fixed g € Z'™, goU/2+ g varies over ZY" /ZY" D as gy does (recall that (D, tU)
are coprime and 4|U). Thus the sum on gg is independent of the choice of g, and
SO

0(y8~6;7) = (det D) "Gy (D)(det(—ir))"/? (det(—ir(XUD X7 + 1)~1)) "/

-0(B710;7)

= (det D)~ 'Gy (D) SO(B1,T).
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This completes the proof in the case that p{ N.

In the case p|N, the coset representatives for (I'; N TN are those repre-
sentatives as above where D = I. Since 2 = AGX, we have pA C Q C A with
A:Q]=p'. O

When p t N, the generalised Gauss sums Gy (D) in the automorphy factors in
Theorem 3.3 contribute to the Fourier coefficients of F|Tj(p?) a term that we call
a generalised twisted Gauss sum, defined as follows.

Definition. Let p be an odd prime, and 27" a symmetric, even integral ¢ X ¢ matrix.
Define the twisted Gauss sum by

Giot) = Y (S5 ) et2v )

Y (p)

where Y varies over all symmetric, integral, ¢ X ¢ matrices modulo p. Also, define
the normalised twisted Gauss sum by

Gr(pl) = p~" Gi(p)' G (pLy).

For U a dimension ¢ quadratic space over Z/pZ with U ~ 2T modulo p, we set
G*(U) = G3(pI,), and G(U) = Gr(pI,).

In [9] a more general version of such sums are evaluated: There the quadratic

character (;’;) is replaced by an arbitrary character. However, it is (unsurprisingly)

simpler — and somewhat amusing — to evaluate these with quadratic characters; we
do this in the next section, using the theory of quadratic forms over finite fields.

We complete this section by evaluating the action of T} (p?) on the Fourier coef-
ficients of a modular form.

Theorem 3.4. Take F € ./\/lk+1/2(an)(N),X) where 4|N, and let p be a prime.
Let x' be the character modulo N defined by

(~1)H+

@ =x(@ (S )
(a) Suppose pt N. Given
1
A=Ay @A DAy, QZPAO@A1@Z—9A2

with n; = rankA;, r = ng + na, set

AG(A, Q) =y (pFr)pd/FHra o Emelnmna) ST Re(A fpA L T)G(U)

clsU
dimU=j—r
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if A,Q are even integral, and set A;(A,Q) = 0 otherwise. Then the Ath
coefficient of F|T;(p?) is

> A (A Q)e(Q).

pACQCIA
(b) Suppose p|N. The Ath coefficient of F|T;(p?) is

pj(n—k+l/2) Z C(Q)

pACQCA
[A:Q]=pJ

Proof. Let X = (ij 7 ) Suppose first that p { N; then
n—j

F(r)|Ty(p*) = p~ /2 Y x(det D)(det D)***'Gy (D)~
D,Y,G
D e(Me{TX'DG'7'G ' DX e{TX 'Y DX}
T

where D,Y, G vary as in Theorem 3.3, and T varies over all n x n even integral,
positive semi-definite matrices.

Fix T,G and D = diag{I,,,pl,,p*Ir,, In—;}, and let Y vary. As described in
Theorem 3.3, we have

Y1 Y5, 0 Y3
t
tv_ | pY2 Y10 .
Y= 0 0 I ’
tYS
correspondingly, we write
TO T2 * T3
tTQ T1 *x *
= * * %
tT3 k *

By Corollary 3.4, Gy (D) = p'? <%) G1(p)"™; s0

Z Gy (D)~ 2k~ le{fTX 1ty DX}
Y

=p G (p) T D S e{ToYo/p?} - Y e{2TaYa/p)

Yo (p?) Y2 (p)

. Z e{2T5Y3/p} - Z (de;Yl) e{T1Y1/p}.

Y3 (p) Y1 (p)




22 LYNNE H. WALLING
If Ty = 0 (mod p?), To = 0 (mod p), T3 = 0 (mod p) then the sum on Y is

pro(n—l—l—?‘z)g;Tl (anl ),

and otherwise the sum on Y is 0. Therefore, using the fact that G;(p)? = (%) D,

we have

F(T>|Tj (p2) _ Z X/(deJE D)p(2k+1)(r2—j/2)—|—(k—|—1)1"1—|—7“0(n—|—1—7‘2)
D,G
Yo Gin (pl)e(T)A{TIX T DG 7).
T[Xle’li‘ integral
Let A = Zx1®- - -®Zx,, be equipped with the quadratic form T[X ~1 DG™!] (relative
to the given basis); then Q = AGD~'X ~ T relative to (z1 ... 7,)GD 1 X. Also,
relative to these bases we have splittings

1
A=Ag®A] ® Ay, A, Q:pAo@Ag@];AQ@A;’

where rg = rankAg, 1 = rankA), ro = rankA,, and A} ~ T;. Also, with A; =

A @AY and Q fixed, G = G(£2, A}) varies to vary Kll over all dimension r; subspaces
of A1/pA1 = AN Q/p(A+ ). Thus

S Gin L) = Y. R (A/pAy, U)GD).
Aj

clsU
dim U=7ry
This proves the theorem in the case pt N.
In the case p|N, the analysis is simpler, as D is always I (and hence ro = 7,
r1 = ro = 0); following the above reasoning yields the theorem in this case. [J

64. Evaluating twisted Gauss sums

Here we use the theory of quadratic spaces over finite fields to evaluate the
twisted Gauss sums defined in the previous section (cf. [9]). We begin with some
elementary lemmas.

Fix an odd prime p. Set F = Z/pZ; we will often write GL; for GL(F), and G,
for G7.(pI;) where 27 is a t X t symmetric, even integral matrix. Note that G}. = G},

if T =T’ (mod p), so we can think of T as lying in F! . Write <a>d to denote the

sym-*

d x d matrix diag{a,...,a}, and A L B to denote diag{A4, B}. We fix w so that
<£) =—1,and set J; = I;_1 L <w> = diag{[;_1,w}.

P
Note that GL; acts by conjugation on F%! : we write T ~ U when T, U lie in

sym?

the same G L;-orbit. The distinct G L;-orbits are represented by

0, I, LY gL (0 (a<d<y).
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Lemma 4.1. Fiz integers d,¢ with 0 < £ < d, and set Uy = I, L <O>d_e, U, =
Jo L (0)"™". Then

> e2v/py - Y e{2Y/pt = YRI5, W)Giy.

Y ~U, Y~U, clsW eF5h,

Proof. Note that with W € F&¢ and W’ = (Vf :) € F44  we have

e{2U,W'/p} = e{2W/p} and e{2U0,W' /p} = e{2J,W/p};

also, since the number of ways to extend a rank ¢ matrix from F%* to a matrix
in GL4(F) is n(d, ), the number of G € GL4 so that the upper left £ x ¢ block of
GG is W is n(d, £)r* (I3, W). Also, Lemma 8.1 gives the values of o(Uy) and o(Uy).
Thus we have

> ef2y/pt = D ef2v/p}

Y~U, Y~U,
1 + 1 t ~TT
= O(Ug) Ge;Ld 6{2 GU@G/}?} - @ Ge;Ld 6{2 GUZG/p}
1 ¢ 1 77 ot
= 0 G;(;Ld e{2U,G "G /p} — o) G;G:Ld e{2U,G"G/p}
— (d,0) We%;n 1) (e} - @e{wwm})
— Z R*(I3, W)
clsWG]FﬁB’,Zm
1 ¢ 1 o t
: (O(Ie) GGXG:LZQ{Q GWG/p} — o) GGZG:Lg {2, GWG/p}>
= Y R'(I,W) (Z {2YW/pt = > e{QYW/p}>
clsWGng,[m Y~Io Y~

= Y RIsW)Gyw. O
clsWEIE‘ﬁg,Zm

Lemma 4.2.
(a) We have A(c,s) = (—1)¢ where

c

Ale,q) =D (1) p* 72 H0u5(q — e,c — 0)(c, 0).
£=0
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(b) We have B(s,q) =1 where

S

B(s,q) = > (~1)*p"“TB(s,a)(s + q,5 — a).

a=0
(¢) We have C(s) =1 where
s s—4¢ )
C(s) = Z Z(—l)““pa(a_%wawe _286_%(5(& 0)v(s,0)B36(s — 4, s — L — a).
£=0 a=0

Proof. (a) Using the identity

v(e,0) = p*y(c = 1,0) +y(c— 1,4 — 1),

we get
c—1
Ae,q) =) (1) p* 2 D s (q — ¢,c — O)y(c — 1,0)
£=0
+ 3 (1) P s (g — e, e — O)y(e— 1,0 - 1)
/=1

Replacing a by a 4+ 1 in the latter sum, and then simplifying, we get A(c,q) =
—A(c—1,q—1). Consequently, A(c,q) = (—1)°A(0,q — ¢) = (—1)°.
(b) Using that
ﬁ(S,CE) :paﬁ(s - 1,(1) +ﬁ(8 - 1,& - 1)
we get B(s,q) = B(s—1,q+1) = B(0,q+s) = 1.

(c) To evaluate C(s), we first replace a by s — ¢ — a. Then we use that

uo(s, 0+ a)
po (4, £)u(a, a)

v(s,0)B0(s — £, a) = = [o(s,a)y(s — a, )

to get

S

C(s) = Z(—l)“+spa2_s255(s, a)D(s — a,s)

a=0

where

q
D(q,s)=>_p"“"Vud(s, 0)y(q, ).
£=0

As when evaluating A(c,q) above, we use our basic identity on v(g,¥¢) to get
D(q,s) = p**D(q — 1,s). Thus D(q,s) = p??*, and C(s) = B(s,0) where B(s,q)
was evaluated above in (b). Thus C(s) = 1. O
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Theorem 4.3. Let T € Fbt - set ¢ = <_—1>

sym’ P
(a) Suppose t = 2s, and T ~ Iy L <O>t7d or Jg L <O>t7d. Then with d = 2¢ or
d=2c+1,
Gr = (-1 p* - [[@* ' - 1.
i=1

(b) Supposet =2s+1, T ~ 15 L <0>t_d, and T ~ Jg L <0>t_d. If d = 2c then
Gr =65=0. Ifd=2c+1 then

S—cC

g;: — _g% — (_1)c€s+cp32+2s—cg1(p) . H(p2z'—1 i 1).

=1

Proof. First note that, by the definition, G} only depends on the G L;-orbit con-

taining T'; as noted earlier, the orbits are represented by Iy L <O>t_d, Jg L <O>t_d.
Also, in this proof we will use the fact that

T2 _q) - M20:20)
E(p V=)

(a) Set t = 2s; we argue by induction on s. When s = 0, we agree that G = 1.

Now suppose that 0 < s, and that the value of Gjj, is as claimed for all W € Fgﬁ;ﬁg,
¢ < s. Suppose first that 0 < d <tand T ~ I L <0>t_d. Then

Gr =Y e{2YT/p} = ) e{2YT/p}

YN[t YNJt
S (1S + es S(p% — &%
7 (pI ) S e(21GGT/p) - % S e{2'GLGT/p}.
olle1)  E&, olht1) &30,

Note that e{2YT/p} = e{2Y"/p} where Y is the upper left d x d block of Y, and
/
that the number of G € GL, so that '{GXG = <Z :) is n(t, d)r*(X,Y").

Set Uy =1, L <0>d_£, and Up=J, L <0>d_€. Then when ¢ is odd,

r*(Ig1, (1) LUp) = 7 (Jeg1, (1) L Uy)
and when / is even,

r*(Ips1, (1) L Up) — r* (Jeg1, (1) L Up) = r*(Jeg1, (1) LUg) — 7" (Leg1, (1) L Uy).
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Thus, writing d as 2c or 2¢ + 1 and using Lemma 4.1,

G = I (1" e, (1) L U) = (e, (1) L )
£=0

D e{2v/pt = > ef2v/p}

Y ~Usy Y ~Usp

_ (:7(%+d1)) Z (r*(Te41, (1) L Uze) = 7 (Jog1, (1) L Uzyp))

£=0
Y R(I,W)Giy.

clsW eF25;2¢

Then again using our formulas for representation numbers, as well as our induction
hypothesis,

£

. o S(c, )ud(d —c— 0,0 — a)
] 5 gl _1)ap2a(d—c—2¢+a) KIS : :
S R UaW)Gy =Y (-1)%p 6 (a, a)pd(C—a,{ — a)

CISWEFS?;;}IZ,E a=0

Multiply by ud(¢,a)/ud(¢,a) and use that po(4,a)ud(f — a,l —a) = pd(¢,¢); then
with A(x,x) defined as in Lemma 4.2 and recalling that v(c,£) = ud(c,£)/ué(¢,0),
we get

ST R Ua, WGy =D (e, AL d — ¢) = (—1) e (e, 0).

clsWeF f}{’rﬁe
Now using our formulas for representation numbers, we get

2
g;: _ 77(15, d) 6sps+c(2df2c71)'u(sv d— C)A(C, s—d+ 20)7

— o(Ii41)

where again A(x, ) is defined and evaluated in Lemma 4.2. Simplifying yields the
result in this case.

The argument to evaluate G7 where T' = Jg L <O>t7d with d < t is virtually
identical, and thus is left to the reader.

Now take d =t = 2s, T'= I;. By Theorem 2.4 we know

2
p*(p® +¢°) Gr, (pIy; 21;) — p° (p® — %) Gy, (ply; 21;) = 2e°p* 5.

Then, using the definitions of the Gauss sums, we get

2e5p* = N (PP ) r(1,Y) — p(p° — £°) r(Ji.Y)) e{2Y/p}.
Y eFLit
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Thus arguing as before to evaluate the right-hand side of the equation, we have

S

2e5p2 s = Z (r(Leg1, (1) L Usg) — r(Jpgr, (1) L Uzp))
£=0
> RU(LW)Gw
WeF242¢
Note that a representation of Iy by I;4; is necessarily a primitive representation;
thus o
r(liy1, <1> L Usg) = r*(Ley1, Loog1)r (L2, <0> )-
Then using Lemmas 8.1 and 8.2 we find
r(Iy41, (1) L Usg) — r(Jeg1, (1) L Usp)
s—4
— 2€s—£ps(2s—2ﬁ+1)+f(€—1)ué(s’6) Z(_l)dpd(d—2s+25)66(8 —ls— 10— d)
d=0
Therefore, using Lemma 4.2 (c),

2e°p "+ = 2% 18 (s, 5) G, + 26°p> T (Cs) — (—1)°p > b (s, 5))

and, since C'(s) = 1, this gives us G = (—1)355p52.
To evaluate G , we begin with the equality

2e°p” + = p*(p° + £°)G1, (pLi; 2J1) — p°(p° — €°)G, (L1 2J1)
- 2(s—¢ 2(s—¢
= Z <T(Izs+1,f2£+1 1 (0) ( )) —7(Jes1, oer1 L (0) ( ))>
¢=0
> RS2, W)Giy
clsWE]Fgﬁ,’,Q,Z
The evaluation now proceeds as for Q}‘t.
(b) Now set t = 2s + 1. When s = 0, G; = Gy(p), whose value is well-known,
and as claimed in the theorem.
So suppose s > 0, and that and that the value of Gjj, is as claimed for all

W e F§§§1172£+1, ¢ < s. Suppose first that 0 < d <tand T ~ I L <0>t_d. Then,
much as in the previous case,
1

G — S (e{'GGT/p} — e{'GJ,GT/p})
O(It) GeGL,
= MDY — (0, Y)) ef2Y /)
ollt) Y eFd
770(;[3) i (" (1, Ue) = 7" (J1, Uo))

Y. R, W)Giy

clsW E]Ffﬁn
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where Up = I, L <O>d_é, Uy=J; L <O>d_£. As we saw before,

2s—20+1 2s—20+1
) ) )

7*(Izs41, I2e L (0) = 1r*(Jas41, 120 L (0

Y

so we only need to consider odd /.
Fix ¢ and let W, = I, 1 (0> W, = J, L (0) . By our induction
hypothesis, Gy, = —Q’*W , and Gy, = 0. Also, with d even and a odd,

20+1—a

R*(I4,W,) = R*(14,W,).

Hence when d is even,

R* (I3, Wa)Giy, + R* (1, Wa)Giz =0

for all a. Hence G} = 0 when d is even.
So suppose d = 2c¢ + 1. Then, using our induction hypothesis,

S R W)Gy = et Gy (e DAL o)

ClsW 21 20+
where A(/, ¢) is defined and shown to be (—1)’ in Lemma 4.2 (a). Also, as we saw
in (a),

23—2£+1) 25s—20+1

7 (Izs41, I2e L (0) — 1 (Jas41, T2¢ L (0)
. 25— 2041 .
— 1 (Jast1, Joe L ()Y = 1 (g g1, Jae L (0
— 283—1—Zps—|—c—l—2c2—|—£(2s—4c—i—£)lLbé(S7 %2 — g)

)

>28—2£+1)

Thus on(t. d)
t’ cT+S8,.8 C C
Gy = "L G (p)e o T2 b (s, ) A, 8).
o(It)
We know A(c,s) = (—1)¢; substituting for n(t,d) and o(l;) now yields the result
(recall that o(1l;) is computed in Lemma 8.1).
To evaluate G7,, we begin with the expression

Gr,(p1y; 21;) — Gy, (ply; 214),
which by Theorem 2.3 is 2G; (p)p?**+1). To evaluate G7,, we begin with
Gr,(pIs;2J) — Gy, (plt; 2J%),

which by Theorem 2.3 is —2G; (p)p>(s+1).
Then we proceed exactly as before, and thus the details are left to the reader. [J
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§5. Averaging Hecke operators for weight k + 1/2

When evaluating the action on Fourier coefficients of the integral weight Hecke
operators with p f N (see [6]), we encountered incomplete character sums; we
completed these by replacing 7} (p?) with fj(pQ), a weighted average of the op-
erators 1,T1(p?),...,T;(p?). In the half-integral weight case, we have the gener-
alised twisted Gauss sums instead of the incomplete character sums, and as dis-
cussed in the preceding section, we know the values of these twisted Gauss sums.
However, the action on Fourier coefficients of the half-integral weight Hecke op-
erators is much nicer when we replace T} (p?) with f’j(pz), a weighted average of
1, Ti(p?),...,Tj(p?), as we now define.

Definition. For 1 < j <n and p a prime, N € Z with p{ N, define fj (p?) acting
on Mk+1/2(F(()n)(N)a X) by

~ . j .
T;(p*) =p "> p P W) B — £ — OTu(p?)
£=0

k1
where x'(d) = x(d) (( T()ﬂ ) (sgnd)*+1.

Theorem 5.1. Take F € /\/lkH/Q(Fé”)(N),X) where 4N, and let p be a prime
such that pt N; let X' be defined as in the above definition. Given

1
A=Ay DA @ Ao, Q:pAO@Al@];AQ

with n; = rankA;, r = ng + ns, set
Eij(A, Q) = j(k—n) + k(nz —no) + no(n —n2) + (J —7r)(J — 7 —1)/2;

set )
A;(A, Q) = X' (7" )pPT AV R (A /pAy L (2),(0) )

if A, Q) are even integral, and set /L(A, Q) = 0 otherwise. Then the Ath coefficient
of F|T;(p) is
> AN Q)c(Q).

PACQCIA

Proving this theorem comes down to proving the next proposition, as we now
discuss.

Fix A and Q, with A;, n;, r defined as above; let V= A1 /pA; (so V is a quadratic
space over Z/pZ). From the definition of Tj(p2) and Theorem 5.4,

Aj(A, Q) = x/(pP )p k) k(2= no) 4o (n=na)

NS Bt - HR(V,UG(U).
£=0

clsU
dim U=~£—7r
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Notice that the number of ways to extend an ¢ — r dimensional subspace U of V to
a j — r dimensional subspace W of V is

Blln—r)=(=r),(j—7)=(=1)) =pn—1tj—1);

thus
Bn—Lj—OR(V,U)= Y  R(V,W)RWU).
dimc‘i‘s}vzvj—r
Hence

Y Bn—tj-0 > R(V,U)G(U)

=0 clsU

dimU=~0—1
= Y rww) Y RWU)GU).
dimc‘;‘gj—r dirnclllsgj—r

Set m = j —r; let W’ be a dimension m totally isotropic subspace of V' L Fv where
Fo ~ <2>, and let W be the projection of W’ onto V. Then either

W=W'r~ <O>m or W ~ <0>m_1 J-<—2>§

also, there are exactly 2 subspaces of V' 1 Fv that project onto a given subspace
W~ (0)""" L (—2)in V. Thus

R*(V LFo,(0)™) = R*(V,(0)™) + 2R*(V, (0)" " L { —2)).

Hence proving Theorem 5.1 reduces to proving the following.

Proposition 5.2. With W of dimension m > 1 over ¥ =7Z/pZ (p # 2), we have

” prm=DZ W~ (0)™,
YooY RWU)GU) = gpmm=1/2 ipw o~ (0" L (= 2),

=0 clsU .
T=Y fim U=q 0 otherwise.

Proof. Notice that the proposition is proved once we prove that

ST OR(W,U)G(U) = pmm IR (W L (2), (0)™).
din?[s]lém
To do this, we argue by induction on m = dim W.
For m = 1, the proposition is easily verified. (Recall that when dimU = 0,

G(U) =1)
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So now suppose m = dim W > 1. One easily verifies that for 0 < g < m,

m—1

> (—pymratiplmma)m=e=D2g(m — g0 — q) = 1.

a=q

Thus with U a quadratic space over I with dimension ¢, we have

B(m —gq,a—qR*(W,U)= > R (W,Y)R*(Y,U)

clsY
dim Y =a

and hence

m—1

a=q clsY
dim Y =a

So

S R(W,U)GW)

clsU
dim U<m

m—1

==Y (~ymreptmmatmme=D/2 N prwY) Y RU(Y,U)G(U).

a=0 clsY clsU
dim Y =a dim U<a

The implicit induction hypothesis tells us that for a < m and dimY = a,
pHa=D/2 Y ~ <0>a,
Y. RVUGU) = 2pela-/2 ey ~ (0)H L (- 2),

clsU .
dim U<a 0 otherwise.

Thus for a < m,

Yo Y EWY)R(Y.U)G(U)

clsY clsU
dimY=a dimU<a

— p@=2 (R (W, (0)") + 2R* (W, (0)* " L { —2)))
= p* @ D2RY (W L (2),(0)).

So to prove the proposition, we need to show
G(W) = (_1)mpm(m—1)/2 Z(_l)apa(a—m)R*(W L <2>, <O>a).
a=0

Standard theory tells us that W splits as W, L R where Wy is regular and
R ~ <0>S for some s. While R, the radical of W, is uniquely determined by W,



32 LYNNE H. WALLING

Wy is not; however, the isometry class of Wy is uniquely determined by W. So
either Wy ~ 21,,_5 or Wy ~ 2J,,_s. Also, with Fw ~ <2>, any totally isotropic
subspace U of W L Fw splits as Uy L U; where U; C R and UyN R = {0}. Given a
dimension t subspace of Uy of R, the number of distinct totally isotropic, dimension
a subspaces U of W | Fw with U N R = U; is

p(sft)(aft)R*(WO L <2>, <0>a_t).

Since there are ((s,t) subspaces Uy of R with dimU; = ¢,

m

> (=1t RH W L (2),(0)")

a=0

_ Z (_l)é—i—tp(é—l—t)(E—i—t—m)—l—(s—t)éﬁ(s,t)R*(WOJ_<2>’<O>£).
£4+t<m

First suppose Wy L (2) ~ He. (Som = 2c+s—1and W ~ H™ L (-2) 1 (0)".)
Then
R*(Wo L (2),(0)") = B(c, £)8(c — 1,0)

and hence

DD TR L (2),(0)") = (1) PO Xo(e, -1

a

where for s,t > 0, we define

S

Xs(e,q) =Y (=170 5(s,1)S:(c, 0),

t=0

Si(e,q) = (—1)pele™HD N " (—1)fp 2D 3 (e 0)5(c + ¢, ).
(=0

Clearly S;(0,q) = 1; using the definitions of § and §, when ¢ > 0 we have
Se(e.q) + (p° = (P +1)Se(c — 1,q)

— (=1)epcle—t+a) i(_l)fpe(é—Qc—i—t—q) p(e, €)d(c+q,0)
=0

(2, 0)

Ctta)—2e— - _ et 0)d(c+q,¢)
—1)¢ c(c—t+q)—2c—q+t+1 -1 £, (L—1)(£4+1—2c+t—q) :UJ(C’ )
0 REICE R

(=1
_ (_1)cpc(cft+q) [1 + Z:(_1)€p£(€72c+t+17q)B(C7 E)(;(C +q, f)}
/=1

= pcSt+1(C7 Q)~
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Taking Si(c,q) = 0 when ¢ < 0, we have

Se(e,q) + (° = 1)+ 1)Si(c — 1,9) = p°Se+1(c, q)

for all c. Also, replacing ¢ by ¢ — ¢ and remembering that §(s,a) = ((s,s — a),
Lemma 4.2 (b) tells us that Sy(c,q) = B(e,q) = 1.

Using and the identity 3(s+ 1,t) = p'(3(s,t) + 3(s,t — 1), the recursion relation
for S¢(c, q), we have

Xs+1(c,q)

= (=1)ip!tmem D 5(s, 1) S, (e, q)
t=0

s+1

+ ) (=)t D85t — 1), (e, )
t=1

= X(c,q) —p 2" IX (e, q) —p 2 (p" — D(p°T 4+ 1) Xs(c— 1,q)

where
S

X(e,q) =Y _(—1)fp!t=em==1t D35 1)S,(c, q).

t=0
Similarly, using the identity 8(s + 1,t) = B(s,t) + p*T173(s,t — 1),

X.1(c,q) = Xs(e,q) = p 2 T9X (e, q) = p 2T p° = 1)(p°T9 + 1) X(c — 1, q).
We claim that

X (c _1) _ p2$*20$7x2 H’L.m:l(in*l _ 1) lf s = 23}7
s\G _p_c—2c:c_gc2 Hzi—ll (in—l _ 1) if s=2x+1,

and
1 if s =0,
Xl(e,~1) =14 Xs1(c, =)+ (p P +1)Xs(c—1,-1) if s =2x >0,
(pt +1)Xs(c—1,-1) its=2zx+1

where we agree [[_, (p*~'—1) = 1if # = 0. These identities are easily proved using
induction on x, the recursion relations for X and X', and the fact that Sy(c, q) = 1;
thus the details are left to the reader. Consequently, noting that

Hcfl L < . 2> ~ 2[5 ifef = L,
2J26_1 if e¢=-1

Y

we find that

GW) = (—=1)mpmtm=12Y "(—1)ep e R (W L (2),(0))
a=0
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in the case that W ~ H°~1 L < — 2> L <O>S.
Next suppose Wy L <2> ~Ht LA e>1 (Som=2c+s—1and W =~
He=! L { —2w) 1 (0)".) Then
R*(Wo L (2),(0)") = B(c — 1,0)5(c, 0)

and hence

DD BTIRIW L (2),(0)") = (1)K (e 1,1).

a

By induction on x, one finds

20—2cx—x? af_ 2i—1 1 if s = 21,,
Xs(c - 17 1) == p ZH'L—::l(p . )
pem2er =2 [T (p%-1 — 1) if s = 22 + 1,
and
1 if s =0,
Xl(c—1,1)={ (Xs_1(c—1,1) = (p ' =1 X,(c—2,1) if s =22 >0,
—(p ! = 1)Xs(c—2,1) if s =22+ 1.

Consequently, noting that

Hc_l 1 < B 2w> ~ { 2[20_1 if e¢ = —1,
2Joc-1 ¢ = -1,
we find that
Q(W) _ (_1)mpm(m—1)/2 Z(_l)apa(a—m)R*(W L <2>, <0>a)
a=0

when W ~ He ! | < — 2w> 1 <0>S.
Finally suppose Wy L <2> has dimension 2c¢+1. (Som = 2c+sand W ~ 2[5, |
(0)" or 2Jo. L (0)".) Then

R*(Wy L (2),(0)") = B5(c, £)

and hence

SR L (2),(0)") = (~1) X (e,0)

a
By induction on z, we get

}9_2“6_372 Hle(p%_l —1) if s =2z,

XS(C,O):{
0 if s=2r+1,
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and
' Xs(c—1,0) if s =2z >0,
Xs (C’ 0) - —2cx—x? 77T +1/,,2i—1 .
-p [L=: (p —1) ifs=2z+1.

Consequently, noting that

(2[20, 2JQC) if ¢ = 1,

(He,H ! L A) ~ { .
(QJQC, 2[20) if e¢ = —1,

we find that

GW) = (=1)mpmtm=12Y "(—1)ep e R (W L (2),(0))
a=0

when W ~ W, L <0>S with dim Wy = 2e¢.
This proves the proposition. [l

§6. Hecke operators on Siegel theta series of weight & + 1/2

Throughout this section, we assume L is a rank 2k + 1 lattice with an even
integral, positive definite quadratic form @; we fix n < 2k+1. We use Bg to denote
the symmetric bilinear form associated to ), N the level of L, x the character of

6™ (L), and x’ the character defined by x’(d) = x(d) <(_1)k+1> (sgnd)*+1.

£l
At the end of §2 we defined the exponential e*{A7}. When working with theta
series, it is convenient to have the exponential e{A7}, which we define below.
As we have seen,

0 (L) = Z e {(Bo(zn,z:))7}.

L1yee- 7£En€L

Thus (Bg(xs, ;) is the matrix for the quadratic form @ restricted to the (external)
direct sum
AN=7Zx1® - D Zx,y.

However, as a sublattice of L, we may have d = rank(Zzy + ... + Zzx,) < n. In
such a case there exists some G € GL,(Z) so that

(x1 ... 2,)G = (z] ... 2,0 ...0).

Still, we can consider A as a sublattice of L with “formal rank” n.
Given a sublattice A" = Za| + --- + Zz!, of L with rankA’ = d and T =
(Bg(z},, ) (a d x d matrix),

Y. e{(Bolen,z)r} = zG:e { G (T/ On—d) GT}

T1,...,xn €L
Zzl-&-»u-&-an:A/
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where (G varies over

{(I*d 2) e GLn(Z)}\GLn(Z).

Thus with ), | = --- =2}, =0, A = Z2} © - - - © Zx;, (the external direct sum), we
define
te (17
G{AT}:;G{ G( On—d>GT}

where GG varies as above. Then

0 (L;m) = > e{Ar}

ACL

where A varies over all distinct sublattices of L with formal rank n. (When z;,y; €
L, we say Zx1 @ -+ ® Zx,, and Zy, ® --- D Ly, are distinct sublattices of L with
formal rank n when Zxy + - -+ + Zx,, # Zy1 + - - - + Zyy,.)

Remark. For z; € L, A = Zx1 ® --- ® Zxy,, and A = Zxy + -+ - + Zx,,, we have
e{A7} = o(A)e*{AT1} since, with d = rankA’ (as a sublattice of L),

*

/ ’I’L*d E/ O / /
O L{0)" )= . €GL,(Z): E'eO(N) }.
Proposition 6.1. For p a prime not dividing N and 1 < 7 < n, we have

6" (Ls7)| T3 (0%) = Y &(Q)efQr)
Q

where  varies over all even integral sublattices of %L that have (formal) rank n.
For given Q, decompose 2 as %Qo@ﬁl G pls where ; C L and Qo @By is primitive
in L modulo p, meaning that the formal rank of Qo @ is the rank of its image in

L, which is also the dimension of Qg @ Qq in L/pL. Let r; be the (formal) rank of
Q;; set

B, t,Q) = t(k —n) +t(t —1)/2 + Lk — 1o — 1) + £(¢ — 1) /2.

Then, if X'(p) = 1,

&) =3 pPEEO R (Q /py L (2),(0)")

.t
Ok —rg — £, t)B(ra,t)B(n —rg — €L —t,n — j);
&) = S (-1 pPEED R (Qy /pQ L (2),(0))
0

k= ro = £,8)B(ra, t)B(n —ro — € —t,n — j).
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Proof. By the definitions of T}(p?) and Tj(pQ), we have

0N (L) DY) = Y Aj(Q,A)e{Qr}

ACL
pAQQQ%A

where gj (©,A) is defined in Theorem 3.4. (Note that at the end of the proof of
Theorem 3.4 we made a change of variables that we do not make here.) Since p # 2

and Q C z_le’ () is even integral exactly when it is integral, so A;(©2,A) = 0 when
(2 is not integral. Interchanging the order of summation, we have

0L T;(07) = Y Yo 4@ A)e{0r),
acyL pQCAC(392NL)
Q integral

Fix integral Q C %L so that 2 has formal rank n; decompose 2 as in the
statement of the Proposition. (Note that € is only well-determined up to p(2; &
05), and Qo®; is only well-determined up to p€2s.) Set A = %QDL = QoD DNs.
Note that QN A = Q() D Ql @pQQ, and p(Q + A) = Q() @pﬂl @pQQ.

Fix d;, d}, dy so that di+d} = r1, da+d5+dy = ra. Asin the proof of Proposition
1.4 of [11] and Proposition 2.1 [12], we construct all

A=Q& (A1 & pA}) ® (A2 @ pAh @ p*AY)

where A} @ A} = Qy, Ay @ AL, @AY = Qo, d; is the (formal) rank of A;, d, is the
(formal) rank of A}, d is the formal rank of AY, although here we need to weight
each A by

* d1 d/ —n j
R*((A1/pAr @ pAy/p*A5) L (2), (0)""=7"),
(So then varying d;, d;, d5, these A vary over all lattices subject to p2 C A C A.)

In A/pA, extend QNA = Qy @ 2y to Qo &y & Ay with dim Ay = dy + dfy; we
have B(ry,dy + db) = B3(ra,dy) choices. Let

A" = preimage in A of Qy ® Q; © Ay
= Qo ® N B (Ag B pAY).

In A/ /pA’, extend pQ = Qp to Qo@Uﬂthat QU COQNA=Qyd 0 & pAl,
dimU = ¢, U is independent of pA = pAJ, and either

U~ (0) or T~ {(0)"" 1L(=2)

When U ~ <O>£, we weight U by 1; when U ~ <0>£_1 1L (= 2), we weight U by
2. So we have pz R*(Q /pQ; L (2), <0>e) (weighted) choices for U. Next, extend
Qo & U to Qy & Ay so that Qo & Ay C Qy & Qy & pAY with Ay independent of pT’Q’;
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we have p(dl_e)dgﬁ(rl —¢,dy —{) choices. Now extend ¢ @ A; to Qo & A1 & As so
that dim Ay = ds and A is independent of Qo & Q1 @ pAJ; we have p?2(@1742) 3(d,+
db,dz) choices. So A’ = Qo @ (A1 © A}) @ (Ay & A, @ pAY); let

A = preimage in A’ of Qg © Ay © As.

Note that with d = dy + dj — n + j, there are p*(% d; 2=d+0 3(dly, d — £) dimension
d subspaces of QN A/p(2+ A) ~ A1/pA1 @ pAL/p*Aly that project onto a given
choice of U. Thus with z = d + dy — ¢,

> A4
PQCACA
_ Z X/(pd)pj(k—n)+k(d2—To—d’1—d’2’)+(r0+d'1+d’2’)(n—d2)—|—d(d—1)/2
d;,d},dy L

d”(dl O)+do (dy4+dY ) +£(£—d+ro— dz)R* Ql/pQI <2> <O>
B(ra2,d3)B(r1 = £,dy = £)B(da + dy, d2) 3(d5, d — 0).

Thus withx =d+do —0=j5—1r9—t— ¥,

:u(:U7 d2) _ :u(r27 :U),LL(TQ ) dé’)u(m, d2)
n(z, dz) p(dy, dy) p(da, do)p(z, )
= B(r2,z)B(r2 — z,d5)B(z, da).

B(re,d3)B(ds + dy, d2)B(dy, d — £)

Also, recall that r; = dy 4+ d). For fixed ¢,

Z pdg(”*dllfe)ﬁ(rz —x,dy)B(ry — £,d}) = B(r1 +ro —x — £,t)
di+df=t

since, with V' and V' Z/pZ-vector spaces of dimensions 1o — x and r; — £, we can
construct all dimension ¢ subspaces of V & V' by first constructing a dimension d}
subspace U’ of V', and then extending this to a dimension ¢ subspace U & U’ of
V @ V', where U is independent of V’. Therefore

— ZX’(pj*TD*t)pER*(ﬁl il <2>, <0>£)ﬁ(n—j+t7t)ﬂ(rg,x)S(x, k+1—j+t)

where
E=(k-n)j-ro—t)+(G—ro—t)(—ro—t=1)/2+Lll+n—j—r+1),

and

S(x,y) = Y X (p®)pBv =022, dy).
d2=0
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Using that S(m,q) = piB8(m—1,q9)+pB(m—1,¢—1) and x = j —ro —t — ¢, we find
that
S(z,y) = (X' (p)p? +1)S(z — Ly +1);

consequently

o(x+y—1,z) if x'(p) =1,

Sz,y) = { (—1)*u(z+y—1,z) if x'(p) = —1.

Finally, we replace t by j —ro —t — ¢, and use that 3(m,q) = f(m,m —q). O

For Proposition 6.3, we will need to use Lemma 4.1 from [12], which is the
following.

Lemma 6.2 (Reduction Lemma). Let U be a dimension d space over Z/pZ,
(>0 andt €Z sothat U L H' (resp. U L H' 1 A) is defined.

(a) oo(U LHY) =0 prE06(d — 14+t — 7,0 — ) B(t, £ — ), (V).

(b) oo(U LH! L A) = Zizo(—l)’"p’"(tﬂ_“’")ﬁ(d +t—rl—7)5(t+1,£—71)p.(U).
Proposition 6.3. Let L be as above, and fix a prime p { N; choose j so that
1<j<nandj<k. Wesay a lattice K is a p’-neighbor of L if K € genL and

1
L=1Lo® L1 ® Lo, K:];Lo@Ll@pLz

with rankLy = rankLo = j.
(a) The number of p’-neighbors of L is p?U=1/285(k, 7).

(b) We have
DO =) bi(Q)e{Q)
Q

K;

where K; varies over all p’ -neighbors of L, and Q varies over all even integral
sublattices of %L with (formal) rank n. For such Q, decompose Q as %QO @
Q1 @ pQls where Q; C L and Qo @ Qq is primitive in L modulo p; let r; denote
the (formal) rank of Q;. Then, if X' (p) =1,

J=To
b;(Q) = pU—rU=ro=D/2 N7 plh=i=rtO Re(qy, /pOy L (2), (0)")

=0
0(k—rog—4,j—r0 = 0)B(k—10 —71,5 — 10 — {);

if X'(p) = —1,

Jj—ro

b;(Q) = p(j*To)(j*TO*l)/Q Z (—1)£p€(k7j7”+@R*(Ql/pﬂl N <2>’ <0>€)
=0

Bk —rg—4L,j—rg—L)6(k—19 =71, —10 — ).
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Proof. For this proof we use the arithmetic theory of quadratic forms over Z/pZ and
over Zjy. (a) To construct all K, choose a dimension j totally isotropic subspace C
of L/pL; let K’ be the preimage in L of C. (Note that there are R*(L/pL, <O>j) =
B6(k,j) choices for C.) Since L/pL is regular, there is some D C L/pL so that
CoD ~ (IOJ Id) (over Z/pZ). So C @ D is regular and hence splits L/pL as
(C@® D) L J; we know L/pL ~ H* L (2v) for some v € (Z/pZ)*, and hence
J~HF 1 (2v). Thus K' = (C®pD)®pJ, and in K'/pK’ (scaled by 1/p), pJ =
radK’/pK’, and C @ pD ~ W’ with pD totally isotropic. So C' @ pD = C’ @ pD
for some totally isotropic C’. The number of such C’ is the number of dimension
j totally isotropic subspaces of C' @ pD that are independent of pD. To construct
these C’, choose an isotropic vector Z; € C' @ pD so that 7 & pD; by the formula
on p. 146 of [3], we have (p? — 1)(p?~ + 1) — (p/ — 1) choices. Since C @ pD ~ H’
with pD totally isotropic of dimension j, Z1 cannot be orthogonal to pD; so we can
choose py1 € pD so that pyy is not orthogonal to Z1. Thus Z7, pyr span a hyperbolic
plane, which splits C' @ pD. So with F = Z/pZ, we have C & pD = (Fz; @ Fpyy) L
(C1 @ pD;) where Fpyy @ pD1 = pD and C, @ pD; ~ H/~!. One then finds there
are p[(p? ' = 1)(p? "2+ 1) — (p? ! — 1)] choices for isotropic T3 € C' @ pD so that
T3 is orthogonal to Z7 and independent of FZ7 @ pD,. Continuing, we find there
are p/(G—1) 1(7,7) choices for a basis of a dimension j totally isotropic subspace of
C @ pD that is independent of pD; since a space of dimension j over Z/pZ has
p?U=D/21(4, 7) bases, we find there are p/U=1)/2 choices for C”.

Let pK; be the preimage in K’ of 7", Thus K; = %C' ®J @ pD, and K is
integral with Z,K; = Z,L for all primes g # p; also, Z,K; is unimodular with
discK; = discLj, and hence by Proposition 7.1 (c), Zp,K; ~ Z,L. Therefore
Kj € genl.

Note that, given a p/-neighbor K of L, we can construct K; through this process
by choosing C = Lo = p(K; + L) and O7 = Lo = pK; where L = Lo & Ly & Lo,
K; = %LO ® L, ® pLy. Hence there are p?U—1/235(k, j) p?-neighbors of L.

(b) Now choose integral {2 = %Qo @ Q4 B pQy where € has formal rank n, Q; C L,
and Qg @ €27 is primitive in L modulo p. Note that since € is integral, 2 is totally
isotropic modulo p?, and orthogonal to ; modulo p.

Take some K', K; constructed as above; so K/ = C+pL = C®pD @pJ for some
C, D, J with Q(C) = 0(mod p) and Bo(C @ D, J) =0 (mod p). To get Q@ C K, we
must have pQ) C K’, or in other words, in L/pL we must have Qq(= pf2) contained
in C. So suppose this is the case. Then to get Q C Kj, in K'/pK’ (scaled by 1/p),
we must have Qg @ pQ; (= pQ) contained in €’ L radK’/pK’, which requires we
have pQ (= pQ N pL) contained in radK’/pK'(C pL). To have pQ; C radK'/pK’,
we need

BQ(Ql,K/) = BQ(Ql,O+pL) = O(mod p),

which is equivalent to C' C Q_lL (= Q—ﬂLL) in L/pL. Thus to have Q C K, we
need to have Qg C C C Q_lL in L/pL, and Qy € C" L radK'/pK’ in K'/pK’.
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So to construct K; so that Q C K, we begin by decomposing L/pL as
L/pL = (Qo®Qp) LV

where Qg © Q) ~ H™; since L/pL ~ H* L <2u>, we have V ~ HF~70 | <21/>.
Also, we can (and do) choose V so that ;3 C V. Then in L/pL we extend ()
to C C Q_lL; thus we have R* (Q_1L NnJ, <O>]_TO) choices for C. Then in K'/pK’
(scaled by 1/p), we extend Qo @radK’ /pK'(= pQ+radK’ /pK') to C' ©radK' /pK’;
thus we have pld—m0)G=m0=1)/2 choices for C’" @ radK’ /pK’.

Hence b;(Q2) = p(j_”’)(9'_7“0_1)/2}%*(Q_1L nJ, <0>j_TO). We now relate R*(Q_lL N
J, <O>] TO to R*(Q L <2> <O> ) for varying /.

Say V is a vector space over Z/pZ with V ~ HF~ | <21/>, and U is a subspace
of V with dimension r;. In V', we can decompose U as W 1. R where W is regular

of some dimension d < 1, and R ~ <O>T1_d. Thus
V=(RoR)LV

where ROR' ~H"~4 W C V', and V' ~ HF"0~"1+4 | (2v). Since W is regular,
W splits V! as V! = W L W'; note that U- NV =R 1L W".
When W ~ H€¢, we have d = 2c¢;

W'~ HE ot e | (20) W L (= 2v) LHFOT

and
W/ HF ot e LA L Quv) @ WL (= 2wr) LHFTOTTT LA
By Lemma 8.1, we know that for any v/ # 0,
RA(H 1 (20/),(0)) = R*(H* L (2),(0)")

and

RA(H* LA 1 (2/),(0)") = R*(H* L A 1 (2),(0)").
Consequently, with Lemma 6.2,

R (U NV, (0Y ") = R*(U L (2) LHF"0"" (0) ™)
= R*(U L (2) LHF"0"=1 LA (0)77")

= j_zro pﬁ(k—m—j—!—Z)R*(U n <2>7 <0>€)

Zz'oﬂ(k_ro —r1,j—ro—4)6(k —ro — 4,5 — 19 —T)
_ ]f(—l)épe(krlj+£)R*(mL <2>, <O>£)

62'05(]{’ —ro—ri,j—ro—O)f(k—ro—"L,j—ro—r)
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When W ~ H¢! | A, the argument is the same as above.
So suppose W ~ H€¢ L <2y’>. Then
W'~ HFrommte | (=20 20)
~ HF-romritenl | (22 20/ —2v)
~W L (2) 1 (2,2v).

Since x’(p) = <_7”>, (2,2v) ~Hif x'(p) =1, and (2,2v) ~ A otherwise. Applying
Lemma 8.2 now yields the result. [

Theorem 6.4 (Generalised Eichler Commutation Relation). L is a lattice
of rank 2k 4+ 1 equipped with a positive definite quadratic form @ of level N, and
1 <n<2k+1; fir a prime p so that pt N. Take j so that 1 < j <n and j < k;
for 0 <q <7, set

ug(j) = (1)1 V28— i+ q,q),  Tj(p?) =Y ug(i)Tj—q(p?),
q=0
o) = { (=1)B(k —n+q—-1,q9)0(k—j+q,q9) ifx(p)=1,
! (-1D)%(k—n+q—1,9B%k—j+qq) ifxX(p)=-1

Then

0N (p%) =D vg(h) | D 0" (K;j—gi7)
Kﬁ—q

where K;_, runs over all p’~%-neighbors of L (as defined in Proposition 6.3).
Proof. Given the results of Propositions 6.1 and 6.3, we need to show that for any

even integral 2 C %L with formal rank n,

> ug(i)E—g(2) = Y vq(5)bj—q ().

q=0 q=0

So we fix ) = %QO @ Qq d pQy with Q; € L, Qo @ Q1 primitive in L modulo p.
First suppose that x’(p) = 1. Then with Q; = Q; /pQ;,
A~ . ¢
> uq(§)E—q() =Y pPEEIRY(Qy L (2),(0))5(k — ro — £,8)B(r2, )

q=0 £t

J
S uB =10 — £~ tin = +0).
q=0
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Note that

_p(m A r)p(m, g)p(r +4q,9)
Blmtrr+qflr+a.9 = u(r + q,q)p(r,r)u(g, )

= B(m+r,r)B(m, q).

Using that (m,q) = pi6(m — 1,q) + f(m — 1,q — 1), we find that when m > 1,

ZZ;O(—l)qu(q_l)/Qﬁ(m, q) = 0. Therefore, withm =j—rg—¢—tand r =n—j,,

S g (§)E-g(2) = 3 pPEITr bR (@ L (2), (0Y)
q l
6(k—ro—L,j—19—0)B(re,j — 1o — L).

Also, E(¢,j —ro—£,9) = (j —ro)(k—n)+L(n—r1+L—j)+(j—r0)(j —r0o—1)/2.
On the other hand,

Z Uq(j)bj—q(Q) _ p(jfro)(jfrofl)/Q Zpe(kfrlJerj)R* (Q_l n <2>7 <0>€
L

5(k—7’0—€,j—r0—€) .
- — , S(G—ro—4
w(j—ro—4,j—ro—1) G=ro=4

S(m) = (=)t /2=y — g — ry,m — q)u(k — n — 1+ q,q)B(m, q).
q=0

Using that n = rg + r1 + ro and that G(m,q) = B(m —1,q) + p™ 16(m —1,q — 1),
we find that

S(m) = pF T (pr2=m™H —1)S(m — 1) = p™F ) u(ry, m).

Thus
Z Vq(7)bj—q(£2) = Z Uq(J)Cj—q(S2).

The case when y'(p) = —1 is virtually the same, and so the details are left to
the reader. [J

In the next corollary, we average across the generalised Eichler Commutation
Relation to show that 0(™)(genl) is a Hecke eigenform for primes p { N, where

0M(IL)y= ) LKQW(K)

clsKegenL O( )

(here clsK varies over all isometry classes within the genus of L).
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Corollary 6.5. With p a prime, p{ N, and 1 < j <n so that also j < k,
6" (genL)|T;(p*) = X (p*)6™ (genL)

where

M (p?) = { p U= B0, 5)o(k, ) if X' (p) = 1,
ST pu=0/2430-m 30 f)u(k,§) if ' (p) = —1.

Proof. First note that for K € genL, K is a p™-neighbor of L if and only if pL. C
K C %L, and either mult;r.xy(p) = m or multy;.xy(1/p) = m. Classifying the
p"-neighbors into isometry classes, we see that the number of p™-neighbors of L
in clsK € genlL is

#{isometries 0 : pL C oK C %L, multyr., 5} (p) =m }
o(K)

(since 0 K = ¢’ K if and only if 0710’ € O(K)). Also, using Proposition 6.3 (a),

2

#{isometries 0 : pL' C oK C %L’, multyr .ok} (p) =m }

clsL’egenL O(L/)O(K)
1 5 #{isometries 0 : pK C oL’ C LK, multx.o1y(p) =m }
oK) 2 o)
1
= m7é7£{pm-neighbors of K}
1
_ m(m—1)/2 S(k )
Thus
6™ (genL)|T;(p®) = A; (p*)0™ (genL)
where

j .
)‘j(p2) = ZUq(j)p(j_q)(J_q_l)/2ﬂ5(k,j . q)ﬂ(]?q ‘
a=0 1, q)

Our standard technique for evaluating such sums yields the result. [J

Theorem 6.6. When 1 < a <n—k and p a prime not dividing N,

0" (L)| Ty 4o (p%) = 0.

Proof. This is proved just as in the integral weight case (see §3 [12]); for complete-
ness, we give a quick sketch.
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First, we claim ¢x,(Q2) = Zl;:o wq(a)cr—q(£2), and hence

k

p(m) (L) |Tk+a(p2) — g (L)| Z wq(a)fk—q(pz)

where w,(a) = (—1)9p?tY/23(a+q—1,q)B3(n—k+q,a+q). To verify this, notice
that in Proposition 6.1, the only term in our formula for ¢;(£2) that is dependent
onjisf(n—k+z,n—j)=p0n—k+z,x—k+j) where x =k —ry— ¢ —t. Then,
since

Blat+q—1,q)8(n—k+qa+qpn—k+zx—q)

- _5(;2)33 - pla+q—1,qu(x +a,x —q)B(z,q),

we need to verify that S,(x,1) = u(z,x) where

x

Sa(w,y) = > (1?2 (a4 g — 1, q)ulz + a — 1 +y,2 — q)B(x, q).
q=0

Using our standard technique, we see Sq(z,y) = (p¥ — 1)Sa(z — 1,y + 1), and so
Sa(x,1) = p(z,2)8,(0, 2 + 1) = p(z, x).
Next, we claim that

r

Y Bn—q,r—T,(p*) = T,(p%).

q=0

To see this, we begin with the definition of 7, (p?), then we make some changes of
variables:

> Bn—q,r— )T, (%)
q=0

T q

D (—1)tpla @i N2 g0 — i g —i)B(n — g, v — )Ty (p°)
;=0

I
Q
Il
=
-

%

.
[

-

Bln—i,r—i)Ti(p?) > (1)1t D28(r — i, q).

N
I

=
<
Il

=)

When r > i, our standard technique shows this last sum is 0.
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Hence, with a > 1,
k+a

0(L) Y B(n — g,k +a— Q) TL(p?)

q=0
= 00 (L) Th1a(p)
k
= 0CN(L)] > we(a)T—e(p?)
Z:O -
=0"(L)] D wila)Bn — g,k — £ — q)T)(p?).
0 0

q=0 /=

As shown at the beginning of this proof (replacing x by k — ¢q),
k—q
> wi(a)B(n— g,k —q— L) =B(n—q,k+a—q).
(=0

Hence induction on a shows 9(")(L)|T,é+a(p2) =0foralla>1. 0O

§7. Unimodular lattices over Z,

Recall that a regular (or nondegenerate) lattice L over Z,, is unimodular if L# =
L, where L# = {v € Q,L : Bg(v,L) C Z, }, Bg the symmetric bilinear form
associated to the quadratic form () on L. Here we give a brief accounting of the
facts we use about unimodular lattices over Z,,.

Proposition 7.1. Say L is a rank m unimodular lattice over Z,, p # 2.
(a) For any i1, ..., pm € Z) so that discL = iy -~ pim, we have

L~ <:u17"' Jlj“m>
(b) The matrices ((1) é), (1,—1) represent the same (isotropic) lattice. For

w € Z; with (%) = —1, the lattice represented by <1, —w> s anisotropic.

o (0 1 0 1 ke
(¢c) If m =2k + 1, thenL_(l O>J_ J_(l O)J_<5> where (—1)Fe =
discL. If m = 2k then

01 L0 0! if (—1)* = discL
Lo = Lo i )¥ = discL,
0 1 0 1 _

( ) L ( ) il <1,—w> otherwise.

1 0 10
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Proof. (a) As discussed at the beginning of §92 [8], L has an orthogonal base.
Hence for some ¢; € Z), L ~ (€1,... yem). By 92:1 [8], L ~ (1,...,1,¢) where
€ = €1 Em- So ¢ represents discL. If p1,...,pym € Zy so that p = py - pp
represents discL, then L ~ (1,...,1,u) and again by 92:1 [8], (1,...,1,u) ~
<M17 s 7,um>-

. 0
(b) Since (1 0

the same lattice as <1, —1>. On the other hand, since w is not a square in Z,

is unimodular with determinant —1, by (a) it must represent

a? — wB? = 0 is not soluble, <1, —w> is anisotropic.
(¢) This follows from repeated use of the fact that, by (a) and (b), (1,1,e) and

0 1 .
(1 0) 1 < — 5> represent the same lattice. [

Similar to the discussion in §93B [8], we have the following.

Lemma 7.2. Say J = Zox®Zsy is unimodular. Then either J ~ <p1, ,u2> for some
y (01 (21 2 1) . .
pa, p2 € Zs , or J =~ <1 0), or J =~ (1 2).Al80, <1 9 ) 8 anisotropic, and

hence ((1) é) % (? ;) So when J is even (meaning Q(J) C 2Zy), J =~

0o 1Y\ ., .. 2 1\ ., .
(1 0) iof discJ = —1, and J ~ (1 2) iof discJ = 3.

Proof. Relative to the basis z,y, J ~ Z ;) for some v,e,n € Zs. 1f either v or

n is a unit, then J can be diagonalized (by an appropriate change of basis).

2v ¢ . . . . .
: since J is unimodular, 4vn—e? is a unit and hence €

So suppose J =~ ( e

. . . . 2 1
is a unit. Thus by scaling one basis vector by e !, we can assume J ~ ( 1V 277) )

First, when v = 2u for u € Zo, we claim J ~ H. To see this, suppose Zou®Zow =~
(? é) . Since 1 is a solution to X2 — X +2un = 0 (mod 2), Hensel’s lemma allows

us to lift 1 to a solution « € Z5 to the equation X2 — X + 2un = 0. Then with

n =nat,

4 1
Zou @ Ziow = Zo(u + 2pw) @ Zo(n'u + aw) ~ < 1” 277) .

2 1

Next, when v, n & 275, we claim J ~ <1 5

> . To see this, suppose Zou® Zow =~

(? ;) Using Hensel’s lemma, we can find «, 8 € Zy so that

362 —=3a+1=v, (4> —v)F+ (1 —-4v)3+1=n.
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Then with v = (1 — 2a)u + aw, v’ = pu’ + (1 — 20v)w, we have Zou ® Zow =
Zou' @ Zow = Zigt!' & Zow', and

, (2v 1 , ro(2v 1
Zgu @Zgw_ ( 1 2> and Zgu @Zgw ~ ( 1 277)

Finally, we verify that Zou @ Zow ~ (? ;) is anisotropic. Say «a, 3 € Zs,

and without loss of generality, suppose ordsa > ords3. Then Q(au + Bw) = 2a? +
208 + 263 = 0 if and only if 42 + v+ 1 = 0 where v = a/f3 € Zy; however,

X2+ X +1=0(mod 2) has no solution. Thus (? ;) is anisotropic. [J

Recall that for any prime p we use H to denote a binary lattice over Z, with

H ~ (1) (1) , and we call H a hyperbolic plane; we use A to denote an anisotropic

binary lattice over Z,, and we call A an anisotropic plane.
Lemma 7.3. Say L is a Zs-lattice with L ~ A 1 A. Then L ~H 1 H.

Proof. We first show that L is isotropic. Choosing o € ZJ so that ba = —7, we
see that
a = —35=1(mod 8).

Hence by the Local Square Theorem (63:1 [8]), a = &2 for some € € Z;. Then

with x,y, 2’, vy’ a basis for L corresponding to the matrix representation (i ;) il
2
1 2
By 82:16 [8], w lies in a binary sublattice of L that splits L, meaning L = J L J’.

Notice that since L is even, so are J and J’. Then since J is isotropic, J ~ H. Also,
J' ~H or A; since discL = discJ - discJ’, by Lemma 7.2XS we have J ~ H. [

, we see that with w =z + 2y + ez’ — 4ey/, Q(w) = 0.

Proposition 7.4. Say L is a unimodular lattice over Zo. Then
Lo~ (py,...,u) LHL---HLA

where u; € 25 and A =H or A. Hence if L is even unimodular over Zo then rankL
1S even.

Proof. By 93:15 [8] and Lemma 7.2,

21/1 1 2V5 1
L_<u1,...,ut>J_(1 2m>J_...J_<1 2773)

where p; € Z3, v;,1n; € Zs. The proposition now follows from Lemma 7.3. O
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§8. Representation numbers of quadratic forms over Z/pZ, p # 2

Fix a prime p # 2, and set F = Z/pZ. Recall that Js = [, L <w> where
<%> = —1, and r*(Q, T') is the number of times the symmetric matrix () primitively
represents the symmetric matrix 7. Also, o(Q) is the order of the orthogonal group
of Q.

Lemma 8.1. Working over T, here we present formulas for primitive represen-

tation numbers of a reqular quadratic form Q, and for o(Q). Since R*(Q,T) =
r*(Q,T)/o(T), this gives us formulas for R*(Q,T).

(a) We have:

r*(I2s,1) = p* 1 (p* — &%) = r*(Igs, w),
r*(Jas, 1) = p° 1 (p® + &) = r* (Jas,w),

7" (Iz2s41,1) = p°(p° + &%) = 17" (J2s 41, w),
r*(Jos, 1) = p®(p® — &%) = r* (125, w),
r(I25,0) = (p° —*) ("' + 7Y,
7 (Jas,0) = (p° + &%) (p° L — &5~ 1),

7 (I2s41,0) = (p” + %) (p* —€°) = 7" (J2s41,0).

(b) With Q,T symmetric matrices and det Q # 0,
r(Q L{(1),T L (1)) =r"(Q L{(1),1)r"(Q,T),
QL (1, =1),T L(0)) =p™™Tr(Q L (1,-1),0)r"(Q.T).
(c) With ¢ <s,
7 (I2s11, I2c) = " (Lasy1, Joc) = 7" (J2st1, L2c) = 77 (2541, J2¢)
= 7 (s, ),
o(Izs) = 2p°C "V (p® — e*)pb(s — 1,5 = 1),
o(Jas) = 2p° D (p* + e)ud(s — 1,5 — 1),
0(Ipes1) = 2p" (s, 5) = o(Jass1), o(ly L (0)") = p**n(a, a)o(1y).
Proof. (a) These formulas are well-known, and fairly easily derived. For instance,

in Theorems 2.59 and 2.60 of [5], Gerstein derives formulas for all representations
of 1,w, and 0 by a regular quadratic form over F. Note that for () such a regular
quadratic form, we have r(Q,1) = r*(Q,1), r(Q,w) = r*(Q,w), and r(Q,0) =
r*(Q,0) + 1.

(b) Let V' be a vector space over F with quadratic form Q' = @Q L <1> Choose
u € V' so that Q'(u) = 1. Then Fu is a regular subspace of V', and hence splits V'
as V L Fu where V ~ (). Hence

r(Q,T L (1)) =r(Q,1)r*(Q,T).
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Now let V'’ be the vector space with quadratic form Q' = @ L <1, —1>; since
we have assumed det Q # 0, V' is a regular space. Let u € V' so that u # 0 and
Q' (u) = 0. Then, since V' is regular, u lies in a hyperbolic plane Fu & Fv, which
splits V’ as (Fu @ Fv) L V where V ~ Q. Also, for w € V, Q' (w + au) = Q' (w)
for any a € F. Consequently

T*(QI,T 1 <0>) :pdimTT*(Ql,O)T*(Q,T).

(c) All but the final formula follow easily from (a) and (b). For the final formula,
notice that the orthogonal group of Iy L <0>a is

O(L, L (0)") = {(gi 54) . Gy e O(L,), G3 € F™*, Gy € GLo(F) } 0

Recall that r(Q,T) denotes the total number of times @) represents 7', regardless
of whether the representation is primitive.

Lemma 8.2. Fors>1,

’I“(H‘i <0>25) _ Z(_1>dpd(d—1)+23(s—d)6(87 5 — d)5(8 15— d),

d=0
s

r(HSE LA (0)™) = = 37 (—1)dpt@- D26 d g5 — 1 5 — d)d(s, s — d).
d=0

Thus

S

(0" +2")r(Las, (0)™) = * Y (~1) "IN 35 (s, s — d) (p + &%),
d=0

(0° — &) (Tas, (0)°*) = = 32 (— 1)t 2D 35 (5 5 — @) (! — &)
d=0

Proof. Take a vector space V over IF so that V ~ H?* or V ~ H*~! 1 A. Note that
a totally isotropic subspace of V has dimension at most s.
Set

w(v) — Z adp2$(3—d)Fi*(‘/v7 <O>S—d)
d=0

where

{ (—1)dpdld=1) if V~ H?,
Qg =

(—1)dH1pdld=1)§f V' ~ Hs=1 | A,
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Since there are p?**~% ways to choose z1,... ,z; € U where dimU = s — d,
d
P(V) = Z Z ag - #{x1,... 295 €U}
s=0 ucv

U:<0>S_d
= Z Zad.#{UQV: U:<0>3_d, T1,..., 00, €U }.

x1,...,x25 €V d=0(
Bg(wi.2;)=0

Take x1,... ,x2s € V so that Bg(x;,z;) = 0; let W be the subspace generated
by x1,...,x2s, and £ the dimension of W. So there exists a subspace W’ C V so
that W@ W' ~H and V = (W @ W') L V' where

- Hs—¢ if V ~ H*,
Sl HSET LA fVHST LA

Also, with x1,... , 225 as above, and using Lemma 8.1,

HMUCV: U~(0)"" 21, 0. €U }
— R (V,(0)" )
_{ﬂ(s—ﬁ,s—ﬂ—d)é(s—é—l,s—é—d) if V~H",
CBs—t—-1,5—C—d)d(s—L,s—C—d) ifV~HTLA.

Lemma 4.2 (b) tells us that

s s—4¢
S aaR (V0T =Y agR (VL (0)T T = 1
d=0 d=0

Therefore

Y(V)=#{x1,... , 225 € V: Bg(zi,z;) =0} =r(V, <0>t).

The other statements of the lemma follow immediately from the observation that
Iy ~ H® if e* = 1 and I, ~ H*"! L A otherwise, and Jo, ~ H® if ¢ = —1 and
Jos ~ H*~1 1 A otherwise. O

Remark. The technique used to prove Lemma 8.2 can also be used to show that
with v # 0,

S

P(HE L (0, (0)7) = S (—1)dpt + 2t DD g5 s — q).
d=0
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§9. Lemmas on symmetric matrices

Lemma 9.1. Say p is a prime and U,V € Z™", V = diag{p™I,,,... ,p*1,,},
a; < aijy1, and (*U,V) is a coprime symmetric pair. There there is a matriz
Y € SL,(Z) so that VY =Y'V,Y' € SL,(Z), and

YUV Y = diag{p~“U;,... ,p~“U,} (mod 7)

where U] € 7" is symmetric with p { det U] unless i = 1 and a; = 0. Further,
there is a matriz Y, € SLy(Zy) so that VY, =YV, Y € SL,(Z,), and

Y, UV~ Y, = diag{p~ " U{,... ,p~U}'}

where Uj' € Z;" is symmetric and U] = U]’ (mod p*Z,).
Proof. We know UV ~! is symmetric, so writing U = (U;;) where U;; is an r; x 7;

block, we have ‘U;; = p% ~*U;; when i < j. Also, we know that ‘[i has rank n

over Z, hence over Z,, U;; must have rank r; for 1 <4 < ¢, and if a; > 0, Uy has
rank 1. So for i < j, choose integral Y;; so that ‘U;; = —Y;;U,; (mod p® ~%). Let

L, p™ Y - p"T" Yy
I, P 92Yo
Y =
I,
Then we have
p~ Uy,
-1 t p—a2U£2
YWUV— W'Y = ' (mod Z)
p~ Uy

where U}; is symmetric and U/, = U;; (mod p). Also, VY =Y’V where

I., Yis Yie

/ I, - Yy
Y'= . € GL,(Z).

I,

To find Y}, we simply modify the above construction to choose Y;; = —*U;;U j_jl. O
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Lemma 9.2. Suppose (*B, 'D) is a symmetric coprime pair of n X n integral ma-
trices with det D # 0. Suppose also that ) € Z™" 1is symmetric with det Q # 0
and (det Q,det D) = 1.
(a) If G € Z™™ so that GB € Q~'Z™"™D then G € Z™"™'D.
(b) As Goy wvaries over Z™™/7Z™™'D, QGoB wvaries over Z™"/Z™"D; also,
QZ™"B + Z"™"D = 7",

Proof. (a) Say G € Z™" with GB € Q~'Z™"D; we show that G € Z;""'D for
all primes p. If p { det D then this is clear; so say p|det D. Thus p { det @ and so
GB € Zy"D. If p{det B then

m,n -1 _ mmmntp—1t __m7mmnt
GezZr"DB™' =z B~ D = 2™ D.

So suppose p|det B. By the Elementary Divisor Theorem there are Ej, Fy €
GL,(Z,) so that V = *E;'DE, = diag{p™I,,,... ,p*I,,}. Set U = E;BE; .
Then by the proof of Lemma 9.1 we know there is some Y € GL,,(Z,) so that

U; 0 - 0
1y Uy Uxp -+ 0 .
YE>;BD E> = . . . . Vv
Un Upg --- Uy

where U;; € Z,""7 and p { detUy; for i > 1. Write GE2_1 as (Gj;) where G;j is
ri X 155 set

T tU21 tUe1 Gy 0 - 0

0 tUQQ tUgQ G21 o --- 0
X=1. . i . ) G, = . . .

0 0 tUM G 0 -+ 0

and Gy = GE2_1 — (. Thus, recalling that BD~! is symmetric, we get

t
GBD 'tE,'Y =G4 ( Un 0) + G VTIX.

t
We have GBD~1, G, ( Un 0) € Z,"", so GoV~1X € Zy-™. Since we chose X €

GL,(Zy,), we have G,V 1e Zg“". Noting that G1V ! = G, we see GE2_1V_1 =
GiV '+ GVt eZ. So G'D = GEy 'V Ey € Z™.

(b) We show that as Gq varies over Z™"/Z™ ™D, the product QGoB varies
over Z™™/Z™" D, and thus for any G € Z™", there exist Gy, G € Z"™" so that
G =QGyB + G1D.

If Gy € Z™"™'D, then Gy = G+ 0''D and QGoB = QG,'BD € Z™"D. So
suppose Go € Z™" and QGoB € Zy, »,D. Then GoB € Q~'Z™"D and so by (a),
Go € Z™"tD. Thus for Gy € Z™", Gy € Z™" D if and only if QGyB € Z"™"D.
[
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Lemma 9.3. Suppose Q € Z"™™ is symmetric and even, V = diag{dy, ... ,d,}
(d; € Z, d; #0), and suppose U € Z™"™ so that VU is symmetric. For each prime

p dwiding det V', let W,, = diag{dip~°*,... ,d,p~ "} where e; = ordy(d;). Then
with p1,...,ps the primes dividing det V',

LMW, [TV % - X LW, JETY R T [TV

and
S

> deeuvr=1] > e{QIGIUV '}

GEZm,n/Zm,nV =1 GEZm’ani /ZW”V

Proof. Map (GiWp,,... ,GsW,,) to (3>, GiWp,) +Z"™™V. One easily verifies this
is a homomorphism with kernel (Z™"V,... | Z™"™V); a cardinality argument es-
tablishes the map is surjective.

Note that since @ is even, Q[G] € 2Z™™ for any G € Z™™. Then using that
e{'M} =e{M} and e{MM'} = e{M’'M?}, we find that

e{QIG1 Wy, + -+ + G W, UV}

:(He{Q[Gini]UV1}> [[el'GiQGw,,uv="w,} |,
i i#j

and V_1Wpi is integral modulo Z,) for all primes ¢ # p;. But we know U V—1lis
symmetric, so

e{'GiQG;W,,UV'W,, } = e{'G;QG; W,V 'UW,, },
and W, V! is integral modulo Z,,). Thus W, UV ~'W,, is integral. Also,

e{'G:QG;W,,UV W, } = e{'W,,,V ' 'UW,, 'G;QG;}
= e{thQGiniUV_Iij }

Hence

[[el'GiQGw,, v W, } = [ [ {2'GiQG,;W,, UV ', } =1,

i#] 1<

proving the lemma. [J
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