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Abstract. The theory of newforms for Hilbert modular forms is summarized in-

cluding a statement of a strong multiplicity-one theorem and a characterization of

newforms as eigenfunctions for a certain involution whose Dirichlet series has a pre-
scribed Euler product. The general question of twisting Hilbert modular newforms

by arbitrary Hecke characters is considered and the exact level of a character twist
of a Hilbert modular form is determined. Conditions under which the twist of a

newform is a newform are given. Applications include a strengthening in the elliptic

modular case of a theorem of Atkin and Li’s regarding the characterization of im-
primitive newforms as well as its generalization to the Hilbert modular case, and a

decomposition theorem for certain spaces of newforms as the direct sum of twists of
spaces of newforms of lower level.

Introduction

For the case of elliptic modular forms, Hijikata, Pizer and Shemanske [3] show
how to decompose a space of newforms as a direct sum of character twists of other
spaces of newforms. In particular, these decomposition theorems yield information
about how a given newform behaves under character twists: what the exact level
of a character twist is, and under what circumstances the twist of a newform is
a newform. Atkin and Li [1] consider these specific questions for elliptic modular
forms by different methods and with a different perspective. In this paper, we
adapt the methods of [1] [5] to investigate similar questions in the case of Hilbert
modular forms but with an eye towards the decomposition theorems of [3].

We begin with a summary of the newform theory for Hilbert Modular Forms; in
particular, we present both a regular and strong multiplicity-one theorem (Theo-
rems 3.5 and 3.6). While a multiplicity-one theorem follows (at least in principle)
from the work of Miyake [7], we give a characterization of newforms as cusp forms
which are eigenfunctions for a certain involution and whose associated Dirichlet
series has a prescribed Euler product (Theorem 3.7). We then use this characteri-
zation to prove that the twist of a Hilbert modular newform by a Hecke character
whose conductor is prime to the level is a newform (Theorem 5.5).

To examine twists of newforms by arbitrary Hecke characters, we begin by gener-
alizing Atkin and Li’s operator WQ. The definition and properties of this generalized
operator are rather delicate, reflecting differences among the various Hecke charac-
ters which “extend” the numerical character of the space of cusp forms on which
WQ acts. Using a result of Shimura regarding the special values of Dirichlet series
attached to Hilbert modular forms [11] [12], we characterize certain properties of
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the pseudo-eigenvalues of WQ (Theorem 4.2). This eventually allows us to deter-
mine conditions under which twisting a newform by a character whose conductor
divides the level of the form yields a newform (Theorem 7.1). This theorem extends
Theorem 3.1 of [1] which only gives the exact level of a twist, and applies both to
Hilbert modular as well as elliptic modular forms. In turn, this theorem allows us
to decompose a certain type of space of Hilbert modular newforms as the direct sum
of twists of spaces of newforms of lower level (Theorem 7.2), analogous to Theorem
3.14 of [3].

Most of the results of [5] and [1] generalize to the Hilbert modular case. There
is an important result concerning the non-vanishing of Hecke eigenvalues (Theorem
3.3 (2)) which we were able to generalize in a significant number of, but not all,
cases however, we have been informed that it follows from the representation theory
that the result holds in all cases. This result is critical to the determination of when
the twist of a newform is again a newform (Theorem 5.8), and is consequently of
concern to us here.

1. Notation

For the most part we follow the notation of [11] and [12]. However, to make this
paper somewhat self-contained, we shall briefly review the basic definitions of the
types of functions and operators to be studied here; more details can be found in
Shimura’s two papers referenced above.

Let K be a totally real number field of degree n over Q, O its ring of integers,
and O× and O×+ the groups of units and of totally positive units respectively. Let
d be the different of K. Let GL+

2 (K) denote the group of invertible matrices with
totally positive determinant and H the complex upper half-plane. Then GL+

2 (K)
acts by fractional linear transformation on Hn via

(A, τ) 7→ Aτ =
(
. . . ,

a(ν)τν + b(ν)

c(ν)τν + d(ν)
, . . .

)
where a(ν) denotes the νth conjugate of a over Q. For N ∈ Z+, let

ΓN = {A ∈ SL2(O) |A− 12 ∈ N Mat2(O)}.

For k = (k1, . . . , kn) ∈ (Z+)n and c, d ∈ K, let (cτ + d)k =
∏n
ν=1(c(ν)τν + d(ν))kν .

Define Mk(ΓN ) to be the complex vector space of functions f holomorphic on Hn
and at the cusps of ΓN such that f(Aτ) = (detA)k/2(cτ + d)kf(τ) for all A ∈ ΓN .
Let Mk = ∪∞N=1Mk(ΓN ).

For I a fractional ideal and N an integral ideal, put

Γ0(N , I) =
{
A ∈

(
O
NId

I−1d−1

O

) ∣∣∣∣ detA ∈ O×+
}
.

By a numerical character ψ modulo N we mean a character ψ : (O/N )× → C
×,

and by a Hecke character we mean a character Ψ : K×A → C
× which is trivial on

K×. (In general, we use lower case Greek letters to denote numerical characters
and upper case Greek letters to denote Hecke characters.) As in Shimura [11] [12],
for ψ a numerical character mod N and θ a character of O×+ of finite order, define
Mk(Γ0(N , I), ψ, θ) to be the set of all f ∈Mk such that

f(Aτ) = (detA)−k/2 ψ(a) θ(detA) (cτ + d)kf(τ).
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We always assume that ψ(ε)θ(ε2) = sgn(ε)k for all ε ∈ O× sinceMk(Γ0(N , I), ψ, θ) =
{0} otherwise. Now, there exists an m ∈ Rn such that θ(ε) = εim for all ε ∈ O×;
while m is not uniquely determined, it will be fixed throughout this paper.

Let I1, I2, . . . Ih be a set of representatives of the strict ideal classes of K,
Γλ = Γλ(N ) = Γ0(N , Iλ), and put

Mk(N , ψ, θ) =
h∏
λ=1

Mk(Γλ, ψ, θ).

We shall study the forms identified with h-tuples (f1, f2, . . . , fh) ∈Mk(N , ψ, θ).
For notational convenience in handling the problems introduced by class number

h > 1, we follow Shimura and describe Hilbert modular forms as functions on an
idele group as follows. Let K×A be the idele group of K and GA the adelization
of GL2(K). With the usual identifications, we may view GA = GL2(KA); GK =
GL2(K) embedded as the diagonal in GA; G∞ = GL2(R)n the archimedean part
of GA; and G∞+ = GL+

2 (R)n. For an integral ideal N of O, let

Yp(N ) =
{
A =

(
a

c

b

d

)
∈
(
Op

NdOp

d−1Op

Op

) ∣∣∣∣ detA ∈ K×p
(aOp,NOp) = 1

}
,

Wp(N ) = {x ∈ Yp(N ) | det(x) ∈ O×p },

and put

Y = Y (N ) = GA∩
(
G∞+ ×

∏
p

Yp(N )
)
, W = W (N ) = G∞+ ×

∏
p

Wp(N ).

For ã ∈ K×A and N an integral ideal, let ã∞ denote the archimedean part of ã,
ã

0
the finite part of ã, and ãN the N -part of ã. The numerical character ψ :

(O/N )× → C
× induces a character ψ

Y
: Y → C

× by ψ
Y

((
ã
∗
∗
∗

))
= ψ(ãN mod N ).

Now, fix a set of ideles t̃λ ∈ K×A , (t̃λ)∞ = 1 with Iλ = t̃λO, and let xλ =(
1
0

0
t̃λ

)
∈ GA; also fix an idele t̃d with (t̃d)∞ = 1 and t̃dO = d. Then by strong

approximation, we have

(1.1) GA =
h
∪
λ=1

GKxλW =
h
∪
λ=1

GKx
−ι
λ W

where ι denotes the canonical involution on 2×2 matrices. Finally, given an h-tuple
of functions (f1, . . . , fh) ∈Mk(N , ψ, θ), define a function f : GA → C by
(1.2)

f(αx−ιλ w) = ψ
Y

(wι) det(w∞)im(f
λ
| w∞)(i) for α ∈ GK , and w ∈W (N )

where i = (i, . . . , i) (with i =
√
−1) and where

(1.3) f
λ

∣∣∣∣ (ac bd
)

(τ) = (ad− bc)k/2(cτ + d)−kf
λ

(
aτ + b

cτ + d

)
.

As in [11] [12], one can identify Mk(N , ψ, θ) =
∏h
λ=1Mk(Γλ, ψ, θ) with the set

of functions f : GA → C which satisfy:
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(1) f(αxw) = ψ
Y

(wι)f(x) for all α ∈ GK , x ∈ GA, w ∈W (N ), w∞ = 1, and
(2) For each λ there exists an element f

λ
∈Mk such that f(x−ιλ y) = det(y)im(f

λ
| y)(i)

for all y ∈ G∞+.
Henceforth, the space of such functions will be denoted Mk(N , ψ,m), wherem ∈ Rn
is fixed and satisfies θ(ε) = εim for all ε ∈ O×. We use Sk(N , ψ,m) to denote the
subspace of cusp forms.

With m as above, define ψ∞ : K×A → C
× by setting ψ∞(ã) = sgn(ã∞)k|ã∞|2im.

If for s̃ ∈ K×A we define f s̃(x) = f(s̃x), then f → f s̃ induces a unitary represen-
tation of K×A in Mk(N , ψ,m) which decomposes into a direct sum of irreducible
subrepresentations. By Schur’s lemma (since K×A is abelian) the irreducible subrep-
resentations are all 1-dimensional. For a character Ψ of K×A , let Mk(N ,Ψ) denote
the subspace of Mk(N , ψ,m) consisting of all functions f for which f s̃ = Ψ(s̃)f ,
and let Sk(N ,Ψ) ⊂Mk(N ,Ψ) denote the subspace of cusp forms. Since fs = f for
s ∈ K×,Mk(N ,Ψ) is nontrivial only when Ψ is a Hecke character. Note that from
equation (9.22) of [12], we have that Ψ(ã) = ψ(ãN )ψ∞(ã) for all ã ∈ K×∞

∏
pO
×
p .

Thus, by a Hecke character extending ψψ∞ we shall mean a Hecke character Ψ such
that Ψ(ã) = ψ(ãN )ψ∞(ã) for all ã ∈ K×∞

∏
pO
×
p . There are only a finite number of

such characters; in particular, if Ψ and Φ are two such Hecke characters, then ΨΦ
is a character on the N -ideal class group (see [14]). By a Hecke character extending
ψ we shall mean a Hecke character extending ψ sgn(∗)k (i.e. ψψ∞ with m = 0) in
the above sense. If P∞ denotes the K-modulus consisting of the product of all the
infinite primes of K, then it is clear that any Hecke character extending ψψ∞ has
conductor dividing NP∞. Consequently, given Ψ, we may define an ideal character
Ψ∗ modulo NP∞ by:

(1.4)
{

Ψ∗(p) = Ψ(π̃p) for p - N and π̃O = p

Ψ∗(a) = 0 if (a,N ) 6= 1

Observe that if ã ∈ K×A with (ãO,N ) = 1, then Ψ(ã) = Ψ∗(ãO)ψ(ãN )ψ∞(ã), so
that in particular, Ψ∗(ξO)ψ(ξ) sgn(ξ)k|ξ|2im = 1 for all ξ ∈ O with (ξ,N ) = 1 (cf.
[11, p. 650]). Also, Ψ and Ψ∗ both have modulus 1, and they have finite order iff
ψ∞ has finite order.

If f = (f1, . . . , fh) ∈Mk(N , ψ,m), then f
λ

has a Fourier expansion of the form

f
λ
(τ) = aλ(0) +

∑
0�ξ∈Iλ

aλ(ξ) exp(2πi tr(ξτ)).

Following Shimura we define

C(m, f) =
{
N(m)k0/2aλ(ξ)ξ−k/2 if m = ξI−1

λ ⊂ O
0 otherwise

where k0 = max{k1, . . . , kn}; we refer to the C(m, f) as the Fourier coefficients of
f . We use these Fourier coefficients to associate a Dirichlet series to f :

D(s, f) =
∑
m⊂O

C(m, f)N(m)−s.
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Furthermore, it is easy to describe the action of two important operators onMk(N ,Ψ)
— the Hecke operators and the shift operators — in terms of their action on Fourier
coefficients (for complete definitions see [11]).

For functions on GA, we first define an analog of the classical slash operator: if
f ∈ Mk(N , ψ,m) and y ∈ GA, we define f | y(x) = f(xyι). Then for an integral
ideal q, the shift operator Bq is characterized as follows: Let q̃ ∈ K×A with q̃∞ = 1

and q̃O = q. Define f | Bq = N(q)−k0/2 f |
(

1
0

0
q̃−1

)
. Then Bq maps Mk(N ,Ψ) to

Mk(N q,Ψ), and if f ∈Mk(N ,Ψ) then C(m, f | Bq) = C(mq−1, f) where as always
we understand that C(n, f) = 0 if n is not integral. Clearly, we have f | Bq1 | Bq2 =
f | Bq1q2 .

For an integral ideal n, the Hecke operator Tn = TNn maps Mk(N ,Ψ) to
Mk(N ,Ψ), independent of whether (n,N ) = 1. On Fourier coefficients, the ac-
tion is

(1.5) C(m, f | TN (n)) =
∑

m+n⊂a

Ψ∗(a)N(a)k0−1C(a−2mn, f)

where Ψ∗ is the ideal character defined on ideals prime to N induced from the Hecke
character Ψ and extended to all ideals as described earlier. In particular, even if Ψ
is the trivial character, Ψ∗ has the property that Ψ∗(a) = 0 for (a,N ) 6= 1. Both
Bq and Tn take cusp forms to cusp forms.

2. The WQ operator: definition and basic properties.

In this section we define and give the basic properties of the WQ operator which
is critical to our development of the theory of newforms and to our investigation of
character twists of newforms.
Fix a space Mk(N ,Ψ) ⊂ Mk(N , ψ,m), where Ψ is a Hecke character extending
ψψ∞. In the absense of comments to the contrary, we take Q and M to denote
relatively prime integral ideals with N = QM, and we write ψ = ψQψM where
ψQ and ψM denote numerical chararacters modulo Q and M respectively. Then
somewhat tedious but routine computations give us Propositions 2.1 – 2.7; these
are essentially straightforward generalizations of Propositions 1.1 – 1.5 of [1] and
Lemmas 1 – 4 of [5]. The first of these is

Proposition 2.1. Let q be a prime and suppose that q2 | N and ψ is a charac-
ter modulo N q−1. Then Tq maps Mk(N ,Ψ) to Mk(N q−1,Ψ), and hence maps
Mk(N , ψ,m) to Mk(N q−1, ψ,m)

Our WQ operator is a generalization of Li’s operator VQ and Atkin and Li’s
operator WQ, however in the Hilbert modular case, it depends not only upon the
numerical character of the space but also upon the choice of Hecke character ex-
tending the numerical character. We define it as follows.

Definition. Let ΨQ be a Hecke character extending ψQ (i.e. ψQ sgn(∗)k). Choose

y ∈ GA so that y∞ = 1, (det y)O = Q, and y0 =
(
ã
c̃
b̃
d̃

)
0

with ãO, d̃O ⊆ Q; so

b̃O ⊆ d−1 and c̃O ⊆ Nd (recall that y0 is the finite part of y). For x ∈ GA, define
WQ(ΨQ) by:

(2.1) f | WQ(ΨQ)(x) = ΨQ(det x)ψQ(̃bt̃d mod Q)ψM(ã modM) (f | y)(x).
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To specify the level, WQ is sometimes denoted WNQ .

Remark. In [2], Flath has given a definition of aWQ-operator defined on theQ-ideles
which is essentially the same as our WQ-operator when K = Q.
We can now state Propositions 2.2 – 2.7.

Proposition 2.2. Let the notation be as above with N = QM where Q andM are
relatively prime integral ideals and ψ = ψQψM. Let Ψ be a Hecke character extend-
ing ψψ∞ and ΨQ a Hecke character extending ψQ. Then WQ(ΨQ) takesMk(N ,Ψ) to

Mk(N ,ΨΨQ
2
), and hence takes Mk(N , ψ,m) to Mk(N , ψψ 2

Q ,m). Moreover, if f ∈
Mk(N ,Ψ), then
f | WQ(ΨQ) | WQ(ΨQ) = ψQ(−1)f .

Proposition 2.3. If L is an integral ideal, and Q|NL with (Q,NLQ−1) = 1, and
ΨQ is a Hecke character extending ψQ, then for f ∈Mk(N ,Ψ) ⊂Mk(N , ψ,m), we
have

f | BL | WNLQ (ΨQ) =

{
Ψ∗Q(L) f | WNQ (ΨQ) | BL if (Q,L) = 1

N(L)−k0/2 f | WNQL−1(ΨQ) if L|Q.

Proposition 2.4. Let p be a prime with p - Q, and let ΨQ be a Hecke character
extending ψQ. For f ∈Mk(N ,Ψ) we have

f | WQ(ΨQ) | Tp = Ψ
∗
Q(p) f | Tp | WQ(ΨQ).

Proposition 2.5. Suppose that q is a prime such that q |N , but q2
- N , and that

ψ is a character modulo N q−1. Let Ψ be a Hecke character extending ψψ∞. Then
Tq +N(q)k0/2−1Wq maps Mk(N ,Ψ) to Mk(N q−1,Ψ).

Remark. Here Wq = WQ(1) since ψ
q

= 1.

Proposition 2.6. Suppose f = g | Bq ∈ Sk(N ,Ψ) for some prime q. If q |N and
ψ is a character modulo N q−1, then g ∈ Sk(N q−1,Ψ). If q - N then f = 0.

Proposition 2.7. Let Q, Q′ be divisors of N such that (Q,NQ−1) = 1 and
(Q′,QNQ′−1) = 1, and let f ∈ Mk(N ,Ψ) ⊂ Mk(N , ψ,m). Let ψQ (resp. ψQ′)
denote the Q- (resp. Q′-) part of ψ and let ΨQ (resp. ΨQ′) be Hecke characters
which extend the corresponding numerical characters. Then

f | WQ(ΨQ) | WQ′(ΨQ′) = Ψ
∗
Q(Q′) f | WQQ′(ΨQΨQ′).

3. Newforms in Sk(N ,Ψ)

Now that we have developed analogs of the operators defined in [5] and [1]]
and we have established some preliminary propositions describing their interactions
(Propositions 2.1 – 2.7), many of the theorems in [5] have natural generalizations
to the Hilbert modular case. In this section, we give a summary of the theory of
Hilbert modular newforms which culminates in a theorem characterizing newforms
as cusp forms whose associated Dirichlet series has a prescribed Euler product and
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which are eigenfunctions for a certain involution (Theorem 3.7). In Theorem 3.3
we characterize the Hecke eigenvalues for primes dividing the level.

Given Sk(N ,Ψ) ⊂ Sk(N , ψ,m), let S−k (N ,Ψ) be the subspace of Sk(N ,Ψ)
generated by all g | BQ where g ∈ Sk(N ′,Ψ) ⊂ Sk(N ′, ψ,m) with N ′|N , N ′ 6= N ,
and QN ′ | N . As in the elliptic modular case, it is easy to see that S−k (N ,Ψ) is
invariant under the action of the Hecke operators Tn with (n,N ) = 1. With this
notation, the proof of Theorem 3.1 below follows in analogy to the proof in [5]
for the case of K = Q; since no significantly new ideas are required to prove this
generalization, we state it without proof.

Theorem 3.1. If f ∈ Sk(N ,Ψ) has the property that C(m, f) = 0 if (m, a) = 1
where a is a fixed integral ideal, then f ∈ S−k (N ,Ψ).

Shimura defines ((2.28) of [11]) a Petersson inner product 〈f ,g〉 for f ,g ∈
Sk(N ,Ψ). If f = (f1, . . . , fh) and g = (g1, . . . , gh), then 〈f ,g〉 =

∑h
λ=1〈fλ, gλ〉

where 〈f
λ
, g
λ
〉 is given by (2.27) of [11]. A standard argument shows that for a matrix

A ∈ GL+
2 (K), 〈f

λ
| A, g

λ
| A〉 = 〈f

λ
, g
λ
〉 (see e.g. (3.4) of [13]). This invariance ex-

tends in an obvious way to 〈f ,g〉: Let f = (f1, . . . , fh),g = (g1, . . . , gh) ∈ Sk(N ,Ψ),
T be an operator which maps Sk(N ,Ψ) to Sk(M,Φ), and put f ′ = (f ′1, . . . , fh),g′ =
(g′1, . . . , g

′
h) ∈ Sk(M,Φ), where f | T = f ′ and g | T = g′. If for each index µ there

exists an index λ and a Aλ ∈ GL+
2 (K) such that f ′

µ
= f

λ
| Aλ and g′

µ
= g

λ
| Aλ,

then 〈f | T,g | T 〉 = 〈f ,g〉. This will be the case with most of the operators we
define.

With respect to this inner product defined above, the Hecke operators are essen-
tially hermitian (Proposition 2.4 of [11]):

Ψ∗(m)〈f | Tm,g〉 = 〈f ,g | Tm〉
for all integral ideals (m,N ) = 1. Let S+

k (N ,Ψ) denote the orthogonal complement
of S−k (N ,Ψ) in Sk(N ,Ψ). It follows from the invariance of S−k (N ,Ψ) under the
Hecke operators and the hermitian property of the Hecke operators that S+

k (N ,Ψ)
is also invariant under all Hecke operators Tn where (n,N ) = 1.

Definition. A newform f ∈ Sk(N ,Ψ) is a form in S+
k (N ,Ψ) which is a simulta-

neous eigenform for all Hecke operators Tp with p a prime, p - N . The form is
normalized if C(O, f) = 1.

As in the classical case, if f is a newform in Sk(N ,Ψ) and f | Tp = λpf then
C(p, f) = λpC(O, f) for all p - N . It follows from Theorem 1 that C(O, f) 6= 0, and
hence f can be normalized. Moreover, if f ,g ∈ S+

k (N ,Ψ) are both newforms with
the same eignevalues for all Tp for p - N then by Theorem 3.1, we have f − g ∈
S−k (N ,Ψ), hence f is uniquely determined up to a scalar multiple by its eigenvalues.
(From a representation-theoretic point of view, this result is due to Miyake [7]
although the results there are in a different context which is difficult to compare
to our own.) Since {Tp | p - N } is a commuting family of hermitian operators,
S+
k (N ,Ψ) has an orthogonal basis consisting of newforms. A form g ∈ S−k (N ,Ψ)

is an oldform if g = h | BQ for some newform h ∈ Sk(N ′,Ψ) ⊂ Sk(N ′, ψ,m) with
QN ′ |N . It is easy to see that S−k (N ,Ψ) is generated by the oldforms in S−k (N ,Ψ),
and if g ∈ S−k (N ,Ψ) is a simultaneous eigenform for all Tp, p - N , then there exists
a newform h ∈ S+

k (N ′,Ψ) ⊂ Sk(N ′, ψ,m) with N ′ |N having the same eigenvalues
as g for all such Tp. In fact, we have the following result which is crucial to a
number of arguments in this paper (e.g. Theorem 3.6).
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Proposition 3.2. Let g ∈ Sk(M,Ψ) be a newform, and suppose thatM|N . Then
{g | Ba : a |NM−1 } is linearly independent.

Proof. Clearly,
∑

a|NM−1

ca g | Ba = 0 if and only if
∑

a|NM−1

ca C(ma−1,g) = 0 for all

integral ideals m. The idea then is to choose an ideal m for which C(ma−1,g) 6= 0
for some a occuring in the sum, but for which mb−1 is not integral (and hence
C(mb−1,g) = 0) for any other ideal b occuring in the sum. This forces ca = 0,
and the result follows by induction. Since the only coefficient of g that we know is
nonzero is C(O,g), the choice of m is clear.

Suppose
∑

a|NM−1

ca g | Ba = 0; fix an ideal a of minimal (absolute) norm, and

put m = a. Then∑
a|NM−1

ca C(ma−1,g) =
∑

b|NM−1

N(b)=N(a)

cb C(ab−1,g) +
∑

b|NM−1

N(b)>N(a)

cb C(ab−1,g).

If N(b) > N(a) then clearly ab−1 is not integral, so the second sum vanishes.
So suppose N(a) = N(b); then a and b lie above the same primes of Q. Write
a = pr11 · · · prss and b = p

r′1
1 · · · p

r′s
s where the pj are primes of K. With m = a fixed

we see that mb−1 = ab−1 ⊂ O if and only if b |a and hence if and only if r′j ≤ rj
for 1 ≤ j ≤ s. If b 6= a then r′k < rk for some k, hence N(b) < N(a), contrary to
assumption. Thus only one term survives in the first summand as desired. �

Now we come to an important theorem about newforms which generalizes The-
orem 3 of [5].

Theorem 3.3. Let f be a normalized newform in Sk(N ,Ψ), and p, q primes with
p - N and q |N .

(1) The Dirichlet series attached to f , D(s, f) =
∑
m⊂O

C(m, f)N(m)−s has the

Euler product

D(s, f) =
∏
q|N

(1− C(q, f)N(q)−s)−1·

∏
p-N

(1− C(p, f)N(p)−s + Ψ∗(p)N(p)k0−1−2s)−1

(2) If ψ is not defined modulo N q−1, then either C(q, f) = 0 or |C(q, f)| =
N(q)(k0−1)/2. Moreover, C(q, f) 6= 0 whenever the inertial degree of q (over
Q) is 1, or when q ‖ N .

(3) If ψ is a character modulo N q−1, then C(q, f) = 0 if q2 |N and C(q, f)2 =
N(q)k0−2 if q2

- N .

Remark. The referee informs us that it follows from the representation theory that
in part (2) of Theorem 3.3 the coefficient C(q, f) is never zero. We are not able
to verify this from our classical point of view however, the stated condition is not
overly restrictive since the set of primes having inertial degree one over Q has
density one (see [4, p. 131]). Moreover, if K/Q is an abelian extension, then class
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field theory tells us that the rational primes which split completely are described by
congruence conditions inQ, so we can explicitly compute levels at which C(q, f) 6= 0.
Nonetheless, it would be interesting to have a classical proof that C(q, f) 6= 0
without restrictions on the prime q when ψ is not defined modulo N q−1. The
issue of nonvanishing of this coefficient represents far more than idle curiosity for
as Theorem 5.8 suggests, whether C(q, f) vanishes is at the heart of the question
of whether the twist of a newform f is again a newform.

Proof. The proofs of parts (1) and (3) are analogous to the proofs in [5]. For part
(2), one must generalize Theorems 3 and 4 of [8]; here we find that Ogg’s proof of
Theorem 3 is valid only for primes of degree one. In this context, the generalizations
are straightforward. �

To proceed, we need several operators: Let f ∈ Mk(N ,Ψ) ⊂Mk(N , ψ,m) and
suppose that ψ is a character modulo M where M|N . Choose wj ∈ W (M) such
that (wj)∞ = 1 and

W (M) =
⋃
j

W (N )wj (disjoint);

define the trace operator TrNM by

f | TrNM =
∑
j

ψ
Y

(wj) f | wj .

Notice that this expression is clearly well-defined, and if {Aj} is a complete set
of coset representatives for Γλ(M)\Γλ(N ), then we may take (wj)0

= xιλAjx
−ι
λ =

x−1
λ Ajxλ. It is straightforward to check that f | TrNM ∈Mk(M,Ψ).

The conjugation operator, K, can be defined by its action on Fourier coefficients:
C(m, f | K) = C(m, f) (where the bar denotes complex conjugation), or by its
action on the components of f : if f = (f1, . . . , fh), then f | K = (g1, . . . , gh) where
gj(z) = fj(−z) (this operator is defined in [11] and denoted there as fρ).

Now we define the operator HN (the “canonical involution”); this is essentially
Shimura’s operator JN , although we rescale it here for consistency with the operator

WQ when Q = N . Let ñ ∈ K×A with ñO = N , and put y0 =

(
0
ñt̃d

t̃−1
d

0

)
0

with

y∞ = 1; define (f | HN )(x) = (f | y)(x−ι). For f ∈ Mk(N ,Ψ), we have f | HN =
(−1)kΨ(t̃d)f | JN .

From [11] (pp 653 – 655), we see that both K and HN map Mk(N ,Ψ) ⊂
Mk(N , ψ,m) toMk(N ,Ψ) ⊂Mk(N , ψ,−m), that K maps S−k (N ,Ψ) to S−k (N ,Ψ)
and S+

k (N ,Ψ) to S+
k (N ,Ψ), that f | Tp | K = f | K | Tp, and that f | HN | Tm =

Ψ
∗
(m)f | Tm | HN for all (m,N ) = 1. It is trivial to check that for f ∈Mk(N ,Ψ),

f | HN | HN = (−1)kf , f | K | K = f , f | Ba | K = f | K | Ba, and that f | HN | K =
(−1)k f | K | HN . Also, one can easily show that if g ∈ Sk(M,Ψ) withM|N and a

an integral ideal such that aM|N , then g | Ba | HN = N(a)−k0N(NM−1)k0/2 g | HM | BNM−1a−1 ,
so HN maps S−k (N ,Ψ) to S−k (N ,Ψ). Moreover, since 〈f ,g〉 = 〈f | HN ,g | HN 〉 =∑h
λ=1〈fλ | β

−1
λ , g

λ
| β−1

λ 〉 with βλ ∈ GL+
2 (K) (see (2.47) of [11]), it follows that

HN maps S+
k (N ,Ψ) to S+

k (N ,Ψ). Finally, from Proposition 2.10 of [11], we have
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that if f ∈ S+
k (N ,Ψ) is a newform then f | HN = γf | K for some constant γ with

|γ| = 1.
As before, given these newly defined operators, it is now straightforward to

obtain the following two generalizations of theorems in [5].

Theorem 3.4. Let f ∈ Sk(N ,Ψ) ⊂ Sk(N , ψ,m). Then f ∈ S+
k (N ,Ψ) if and only

if for all primes q |N for which ψ is defined modulo N q−1, we have

f | TrNNq−1 = 0 = f | HN | TrNNq−1 .

Theorem 3.5. Let f , g be normalized newforms in Sk(N ,Ψ), Sk(M,Ψ) respec-
tively such that C(p, f) = C(p,g) for almost all primes p. Then f = g andM = N .

We note here that while a knowledge of the eigenvalues C(p, f) for almost all
primes p is sufficient to determine the level of a newform, it is not sufficient to
determine the character. However, we can make the following statement.

Theorem 3.6. Let f ∈ Sk(N ,Ψ) ⊂ Sk(N , ψ,m), and g ∈ Sk(M,Φ) ⊂ Sk(M, φ,m′)
be normalized newforms, and assume that they have the same eigenvalues for all
the Hecke operators Tm for (m,MN ) = 1. Then Ψ = Φ, M = N , and f = g.

Proof. We need only show that m = m′ and Ψ = Φ; the result will then follow
from the previous theorem.

Let p -MN be a prime. Then

f | Tp2 = f | (Tp)2 −N(p)k0−1 f | S(p) = [C(p, f)2 −N(p)k0−1Ψ∗(p)] f

(see [11] for the definition of S(p)). Similarly, g | Tp2 = [C(p,g)2−N(p)k0−1Φ∗(p)] g.
Since C(p, f) = C(p,g), and C(p, f)2−N(p)k0−1Ψ∗(p) = C(p,g)2−N(p)k0−1Φ∗(p),
we have Ψ∗(p) = Φ∗(p) for all p -MN . Thus (ΨΦ)∗ = 1

Let S be the set of primes dividing NM together with the infinite primes of K,
and let K×A,S be the set of ideles which are 1 at all places in S. From above, we
know that ΨΦ(ã) = (ΨΦ)∗(ãO) = 1 for all ideles ã ∈ K×A,S . Moreover, since ΨΦ
is a Hecke character, it is trivial on K×. By Proposition VII.15 of [15], K×K×A,S
is dense in K×A , so by continuity of ΨΦ, the Hecke character ΨΦ is trivial on all of
K×A ; hence Φ = Ψ.

Since ψ∞(ã) = sgn(ã∞)k|ã∞|2im and φ∞(ã) = sgn(ã∞)k|ã∞|2im
′
, we have (ψφ)∞(ã) =

|ã∞|2ir where r = m −m′ ∈ Rn; we claim that r = 0. To see this, consider a se-
quence of ideles ã` with all components of ã` = 1 except for the jth infinite place.
In that place of ã`, let the value be e` (e the base for the natural logarithm). Then
1 = ΨΦ(ã`) = (ψφ)∞(ã`) = |e`|2irj = e2i`rj . This implies that rj ∈ (π/`)Z for all
` ≥ 1, hence rj = 0, which implies m = m′ and so completes the proof. �

The final result from [5] which we need to generalize is

Theorem 3.7. Suppose f ∈ Sk(N ,Ψ) ⊂ Sk(N , ψ,m), and D(s, f) =
∑
M⊂O

C(m, f)N(m)−s

is the Dirichlet series attached to f . If f | K | HN = γf for some γ ∈ C× and

D(s, f) =
∏
q|N

(1− C(q, f)N(q)−s)−1·

∏
p-N

(1− C(p, f)N(p)−s + Ψ∗(p)N(p)k0−1−2s)−1
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then f is a normalized newform in Sk(N ,Ψ).

Proof. The proof of Theorem 3.7 is somewhat tedious, but follows exactly the line
of argument in [5]. On the other hand, a few comments are in order. The proof
relies in two places on Proposition 3.2, and requires a nontrivial estimate of the size
of Fourier coefficients of cusp forms. The most general result to date is provided
by [9]. Throughout the proof in the Hilbert modular case, the operator WQ is used
in place of Li’s VQ which results in minor but inconsequential variations. �

4. More on WQ

In this section we extend the definition of the operator WQ(Φ) somewhat by
allowing Φ to be a Hecke character extending ψQ or ψQψ∞, and we develop some
properties of WQ which are crucial to analyzing twists of newforms by characters
whose conductors are not prime to the level of the newform.

With the notation as in (2.1) we have:

f | WQ(Φ)(x) = Φ(det x)ψQ(̃bt̃d mod Q)ψM(ã modM) (f | y)(x).

In the case that Φ extends ψQψ∞, WQ(Φ) maps Mk(N ,Ψ) to Mk(N ,ΨΦ
2
) and

thus Mk(N , ψ,m) to Mk(N , ψψQ
2
,−m). Except for the difference in the range

of WQ(Φ), it is easy to see that the rest of Proposition 2.2 as well as Propostions
2.3 and 2.4 remain valid with this extended definition. Moreover, Proposition 2.7
remains valid in the case that the infinite part of at most one of the two Hecke
characters ΨQ or ΨQ′ extends ψ∞.

Proposition 4.1. Let f ,g ∈ Sk(N ,Ψ) ⊂ Sk(N , ψ,m) and let Φ be a Hecke char-
acter extending ψQ or ψQψ∞. Then 〈f | WQ(Φ),g | WQ(Φ)〉 = 〈f ,g〉.

Proof. Given f = (f1, . . . , fh),g = (g1, . . . , gh) ∈ Sk(N ,Ψ), put f ′ = (f ′1, . . . , f
′
h) =

f | WQ(Φ) and g′ = (g′1, . . . , g
′
h) = g | WQ(Φ) where y ∈ GA, y∞ = 1 and

det(y0)O = Q as described in §2. We shall show that 〈f | WQ(Φ),g | WQ(Φ)〉 =∑h
λ=1〈f ′λ , g

′
λ
〉 =

∑h
λ=1〈fλ, gλ〉 = 〈f ,g〉 by showing that 〈f ′

λ
, g′
λ
〉 = 〈fµ(λ), gµ(λ)〉 for

each λ.
Let z ∈ Hn and let w∞ ∈ GL2(R)n such that w∞(i) = z. Let w0 = 1 and

w = w0w∞. From (2.1) we have that

f ′
λ
| w∞(i) = det(w∞)−im f | WQ(Φ)(x−ιλ w∞)

= det(w∞)−im Φ(detx−ιλ w∞)ψQ(̃bt̃d mod Q)ψM(ã modM) f(x−ιλ yιw∞).

For each index λ there is a uniquely determined index µ = µ(λ) and a totally
positive element aµ ∈ K such that t̃−1

λ det(y) = aµt̃
−1
µ . By (1.1) we have that

x−ιλ yι = βx−ιµ v with β ∈ GK and v ∈W (N ). Comparing infinite parts, we see that
v∞ = β−1 hence β ∈ GL+

2 (K). Thus

f ′
λ
| w∞(i) = det(w∞)−im Φ(detx−ιλ )ψQ(̃bt̃d mod Q)ψM(ã modM) f(βx−ιµ vw∞)

= Φ(detx−ιλ )ψQ(̃bt̃d mod Q)ψM(ã modM)ψ
Y

(vι) det(v∞)im fµ | v∞w∞(i)

from which it follows that

f ′
λ

(z) = Φ(detx−ιλ )ψQ(̃bt̃d mod Q)ψM(ã modM)ψ
Y

(vι) det(v∞)im fµ | β−1(z),



12 THOMAS R. SHEMANSKE AND LYNNE H. WALLING

β ∈ GL+
2 (K). The expression for g′

λ
is identical, so it is trivial to see that

f ′
λ

(z) g′
λ
(z) = f

µ
| β−1(z) g

µ
| β−1(z), hence 〈f ′

λ
, g′
λ
〉 = 〈fµ | β−1, gµ | β−1〉 = 〈fµ, gµ〉

which completes the proof. �

Proposition 2.3 implies that WQ(Φ) maps S−k (N ,Ψ) to S−k (N ,ΨΦ
2
), and Lemma

4.1 implies that it maps S+
k (N ,Ψ) to S+

k (N ,ΨΦ
2
). By Propostion 2.4, WQ(Φ) takes

Hecke eigenforms to Hecke eigenforms, hence WQ(Φ) takes newforms to newforms.
Thus if f ∈ Sk(N ,Ψ) is a normalized newform, we have

f | WQ(Φ) = λQ,Φ(f)g = λQ(f)g

where g is a normalized newform in Sk(N ,ΨΦ
2
). Following [1], we call λQ,Φ(f)

the pseudo-eigenvalue of WQ(Φ) at f . It follows from Proposition 2.4 that f = g if
ψQ = 1, and from Proposition 2.2 it follows that λQ,Φ(f) λQ,Φ(g) = ψQ(−1), so that
in particular, λQ,Φ(f) 6= 0 . Finally we have defined WQ so that when f ∈ Sk(N ,Ψ)
and Q = N , f | WQ(Ψ) = f | HN ; consequently, if f is a normalized newform in
Sk(N ,Ψ), then by Proposition 2.10 of [11] we have f | HN = γf | K (with |γ| = 1)
hence f | WN (Ψ) = λN ,Ψ(f)f | K with |λN ,Ψ| = 1. That the pseudo-eigenvalue of
WQ has modulus 1 is true in general:

Theorem 4.2. Let Q | N with (Q,NQ−1) = 1, and let ΨQ be a Hecke char-
acter extending ψQ or ψQψ∞. Let f ∈ Sk(N ,Ψ) be a normalized newform with

f | WQ(ΨQ) = λQ,ΨQ(f) g where g is a normalized newform in Sk(N ,ΨΨQ
2
). Then

|λQ,ΨQ(f)| = 1.

To prove this we first require a lemma.

Lemma 4.3. With the notation as above and p a prime ideal, the pth Fourier
coefficients of f and g are related as follows:

C(p,g) =

{
ΨQ
∗
(p)C(p, f) if p - Q

(ΨΨ−1
Q )∗(p)C(p, f) if p |Q.

Proof. If p - Q then Proposition 2.4 yields

f | Tp | WQ(ΨQ) = Ψ∗Q(p) f | WQ(ΨQ) | Tp

from which we obtain

C(p, f)λQ,ΨQ(f) g = Ψ∗Q(p)λQ,ΨQ(f)g | Tp.

It follows that
C(p, f)D(s,g) = Ψ∗Q(p)D(s,g | Tp),

where D(s,h) is the Dirichlet series attached to h. For a fixed integral ideal m,
the coefficients of N(m)−s in the above Dirichlet series are C(p, f)C(m,g) and
Ψ∗Q(p)[C(mp,g) + (ΨΨQ

2
)∗(p)N(p)k0−1C(mp−1,g)] respectively. When m = O, the

coefficients must be equal which yields the result in the first case.
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Next assume that p |Q. By Proposition 2.7 with Q′ = NQ−1, we have

f | WN (Ψ) = Ψ∗Q(NQ−1) f | WQ(ΨQ) | WNQ−1(ΨΨ−1
Q )

which implies

λN ,Ψ(f)f | K | Tp = Ψ∗Q(NQ−1) f | WQ(ΨQ) | WNQ−1(ΨΨ−1
Q ) | Tp

= Ψ∗Q(NQ−1) (ΨΨ−1
Q )∗(p) f | WQ(ΨQ) | Tp | WNQ−1(ΨΨ−1

Q )

and hence

λN ,Ψ(f)C(p, f) f | K = Ψ∗Q(NQ−1) (ΨΨ−1
Q )∗(p) f | WQ(ΨQ) | Tp | WNQ−1(ΨΨ−1

Q ).

On the other hand,

λN ,Ψ(f)C(p, f) f | K = C(p, f) f | WN (Ψ)

= C(p, f)Ψ∗Q(NQ−1) f | WQ(ΨQ) | WNQ−1(ΨΨ−1
Q )

which implies

C(p, f)f | WQ(ΨQ) = (ΨΨ−1
Q )∗(p) f | WQ(ΨQ) | Tp

or equivalently,
C(p, f) g = (ΨΨ−1

Q )∗(p) g | Tp.

For a fixed integral ideal m, the coefficients of N(m)−s in the associated Dirichlet
series are C(p, f)C(m,g) and (ΨΨ−1

Q )∗(p) C(mp,g) respectively. When m = O, they

must be equal, hence C(p, f) = (ΨΨ−1
Q )∗(p) C(p,g) which completes the proof. �

Proof (of Theorem 4.2). We first claim that the mth Fourier coefficients of f and g
have the same modulus. Since f and g are both newforms, it suffices to show this
(see Theorem 3.3) when m = pr, p a prime. The case of r = 1 is Lemma 4.3, and
the general result follows from equation (1.5) by an easy induction on r.

For f ∈ Sk(N , ψ,m) and g ∈ Sk(N , φ,−m) Shimura defines (p 355 of [12])

L(s; f ,g) =
∑
m⊂O

C(m, f)C(m,g)N(m)−s

and he discusses its analytic continuation. From the proof of Theorem 9.8 of [12]
(see also Proposition 4.9 and 4.13 of [11]) we have that the residue of L(s; f | K, f)
at s = 0 is equal to κ〈f , f〉 where κ is a nonzero constant, and L(s,g | K,g) =
κ〈g,g〉 for the same constant κ. However from above we have that L(s; f | K, f) =
L(s,g | K,g) hence 〈f , f〉 = 〈g,g〉. On the other hand, by Proposition 4.1 we have

〈f , f〉 = 〈f | WQ(ΨQ), f | WQ(ΨQ)〉 = |λQ,ΨQ(f)|2〈g,g〉 = 〈g,g〉

from which the theorem follows. �
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5. Twists of Newforms

In this section we characterize the exact level of twists of newforms and give
the strong relationship between nonvanishing of eigenvalues of Hecke operators and
whether the twist of a newform is again a newform.

Let Φ be a Hecke character with conductor dividing M. Here and henceforth,
the word conductor will mean only the finite part of the conductor. The infinite
part of Φ has the form Φ∞(a) = sgn(a)`|a|ir for ` ∈ Zn, r ∈ Rn and a ∈ K×∞;
typically in the applications below, we shall choose r = 0. Let τ(Φ) be the Gauss
sum defined in (9.31) of [12].

Definition. Let f ∈ Sk(N ,Ψ) ⊂ Sk(N , ψ,m). Let

f | R
Φ

(M) = Φ(detx)
∑

ν∈M−1d−1/d−1

Φ∞(ν) Φ
∗
(νMd) f |

(
1
0
ν
1

)
0
(x).

The twist of f by Φ, f
Φ

, is defined by

f
Φ

(x) = τ(Φ)−1f | R
Φ

(cond(Φ))

Proposition 5.1. Let the notation be as above. If N0 is the conductor of Ψ, M0

is the conductor of Φ, and L = lcm(N ,M0N0,M2
0), then f

Φ
∈ Sk(L,ΨΦ2) and

C(m, f
Φ

) = Φ∗(m)C(m, f) for all integral ideals m.

Proof. This is Proposition 9.7 of [12] (cf. Propositions 4.4 and 4.5 of [11]). �

Similarly it is easy to see that f | R
Φ

(M) ∈ Sk(L,ΨΦ2) where L = lcm(N ,MN0,M2)
The following two Propositions are trivial to verify using the action of the various

operators on Fourier coefficients. Note that the Fourier coefficients C(m, f) capture
the modular form f , although the Dirichlet series D(s, f) need not.

Proposition 5.2. Let Φ be a Hecke character with conductor M, and let p be a
prime with p -M. Then for f ∈ Sk(N ,Ψ) we have f

Φ
| Tp = Φ∗(p) (f | Tp)

Φ
.

Proposition 5.3. Let Φ be a Hecke character with conductorM and f ∈ Sk(N ,Ψ).
Then f

Φ
| K = (f | K)

Φ
.

A simple and straightforward computation gives us

Proposition 5.4. Let f ∈ Sk(N ,Ψ), Q|N with (Q,NQ−1) = 1. Let Φ be a Hecke
character with conductor M and suppose that (Q,M) = 1. Finally, let ΨQ be a
Hecke character extending ψQ. Then f

Φ
| WQ(ΨQ) = Φ∗(Q)(f | WQ(ΨQ))

Φ
.

Now we wish to explore the actions of newforms under character twists. When
the conductor of the character by which we twist is prime to the level of the modular
form, the situation is completely straightforwward. We have (cf. comments on p228
of [1])

Theorem 5.5. Let f ∈ Sk(N ,Ψ) be a normalized newform and let Φ be a Hecke
character with conductor M. If (M,N ) = 1 then f

Φ
is a normalized newform in

Sk(NM2,ΨΦ2).

Proof. Since f is a normalized newform, Theorem 3.3 tells us that D(s, f) has an
Euler product representation; consequently, we immediately see that D(s, f

Φ
) =
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m⊂O

C(m, f
Φ

)N(m)−s has the Euler product

D(s, f
Φ

) =
∏
q|N

(1− Φ∗(q)C(q, f)N(q)−s)−1·

∏
p-N

(1− Φ∗(p)C(p, f)N(p)−s + Ψ∗(p)Φ∗(p)2N(p)k0−1−2s)−1.

Moreover, a computation analogous to Proposition 3.65 of [10] (see also equation
9.32 of [12] and Proposition 4.5 of [11] – beware of the two typographical errors)
yields that f

Φ
| HNM2 = γ′(f | HN )

Φ
for γ′ ∈ C× with |γ′| = 1. Also recall that

since f is a newform, f | K | HN = γf for some γ ∈ C× with |γ| = 1. Thus

f
Φ
| K | HNM2 = (−1)kf

Φ
| HNM2 | K = (−1)k(γ′(f | HN )

Φ
) | K

= (−1)kγ′(f | HN | K)
Φ

= γ′(f | K | HN )
Φ

= γ′γf
Φ
.

The result now follows from Theorem 3.7. �

Next we turn to the more complicated case in which we consider a Hecke char-
acter whose conductor is not relatively prime to the level. Clearly it suffices to
consider characters whose conductor is a prime power which divides the level. We
first need a lemma (cf. Lemma 7 of [5]).

Lemma 5.6. Suppose that f ∈ Sk(M,Ψ) ∩ Sk(N ,Ψ). Then f ∈ Sk(D,Ψ) where
D is the greatest common divisor of M and N .

Proof. It is clear that Ψ is defined modulo DP∞. Write N = pαN ′ andM = pβM′
where p is a prime dividing MN and with p - M′N ′. Wlog assume α > β.
Then f ∈ Sk(N ,Ψ) ∩ Sk(pα−1M′,Ψ). By induction, it suffices to show that f ∈
Sk(pα−1N ′,Ψ).

Since p - N ′M′ we may decompose W (pα−1N ′) as W (pα−1N ′) = ∪jW (N )wj
where wj ∈ W (pα−1N ′M′). Thus for any w ∈ W (pα−1N ′) with w∞ = 1 we have
w = w1w2 where w1 ∈ W (N ), w2 ∈ W (pα−1M′) and (w1)∞ = (w2)∞ = 1. Then
f | w = f | w1w2 = ψ

Y
(w2)f | w1 = ψ

Y
(w2)ψ

Y
(w1)f = ψ

Y
(w)f , so by equation(1)

following (1.3), f ∈ Sk(pα−1N ′) as desired. �

Now we determine the exact level of a twist by a character whose conductor is
not prime to the level (cf. Theorem 3.1 of [1]). For an integral ideal N and a prime
q dividing N , let Q = qγ where γ = ordq(N ). Then N = QM with (Q,M) = 1;
we call Q the q-primary part of N .

Theorem 5.7. Let N be an integral ideal and let q be a prime, q | N . Write
N = QM where Q is the q-primary part of N . Take f to be a normalized newform
in Sk(N ,Ψ) with ordq(cond(Ψ)) = α, α ≥ 0. Let Φ be a character of conductor qβ,
β ≥ 1, and put Q′ = lcm(Q, qα+β , q2β). Then:

(1) For each prime p |M, f
Φ

is not of level Q′Mp−1.
(2) The exact level of f

Φ
is Q′M provided that

(a) max(α+ β, 2β) < ordq(Q) if Q′ = Q, or
(b) ordq(cond(ΨΦ)) = max(α, β) if ordq(Q′) > ordq(Q).
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Remarks. (1) Theorem 7.1 gives a refinement of this theorem in which essentially,
the phrase “the exact level of f

Φ
isQ′M” can be replaced by the phrase “f

Φ
is a new-

form of level Q′M”.
(2) There are cases in which the level of f

Φ
is a proper divisor of Q′M (see Theorem

7.2).

Proof. By Proposition 5.1, f
Φ
∈ Sk(Q′M,ΨΦ2). If f

Φ
∈ Sk(Q′Mp−1,ΨΦ2), then

(f
Φ

)
Φ
∈ Sk(Ñ ,Ψ) where Ñ = qγMp−1, where γ = max(ordq(Q′), ordq(cond(ΨΦ2))+

β, 2β). Now (f
Φ

)
Φ

is equivalent to a newform h, written (f
Φ

)
Φ
∼ h (i.e. has the

same eigenvalues for almost all Hecke operators Tl, l a prime) where the level of
h divides Ñ . By Proposition 5.2, f ∼ (f

Φ
)
Φ

, so f ∼ h, and so by Theorem 3.5,
f ∈ Sk(Ñ ,Ψ) ∩ Sk(QM,Ψ). By Lemma 5.6, f ∈ Sk(QMp−1,Ψ), a contradiction.

Now suppose that f
Φ

has level Q′Mq−1. First note that f
Φ
6= 0 otherwise

f ∼ (f
Φ

)
Φ

= 0, contradicting that f is a newform (see Theorem 3.1). Let wj ∈
W (Q′Mq−1) (with (wj)∞ = 1) be a set of representatives forW (Q′M)\W (Q′Mq−1).
Then

(5.1) f
Φ
| TrQ

′M
Q′Mq−1 =

∑
j

ψ
Y

(wj)fΦ | wj =
∑
j

ψ
Y

(wj)ψY (wj)fΦ = N(q)f
Φ
.

On the other hand, since we may take {wj} = {
(

1
c

0
1

)
0
|c ∈ Q′Mq−1d/Q′Md},

(5.2)
f
Φ
|TrQ

′M
Q′Mq−1(x) =

∑
j

ψ
Y

(wj)fΦ(xwιj)

= τ(Φ)−1Φ(det(x))
∑

c∈Q′Mq−1d/Q′Md
ν∈q−βd−1/d−1

Φ∞(ν)Φ
∗
(νqβd)f

(
x
(

1
−c

0
1

)
0

(
1
0
−ν
1

)
0

)
.

Case I: qβ+2 |Q′
The proof is very similar to the proof in [1], but for completeness, we sketch

it. Since qβ+2 |Q′, for each ν ∈ q−βd−1 there is a unique ν′ ∈ q−βd−1 such that
ν − ν′(1 + νc) ∈ d−1. It follows that

f
(
x
(

1
−c

0
1

)
0

(
1
0
−ν
1

)
0

)
= f

(
x
(

1
0
−ν′

1

)
0

(
1
−c

0
1

)
0
wι
)

where
w0 =

(
1+cν′(cν+1)

∗
∗

1−cν′

)
0
∈W (Q′M), w∞ = 1.

Equation (5.2) now yields
(5.3)

f
Φ
| TrQ

′M
Q′Mq−1(x) = τ(Φ)−1Φ(det(x)) ×∑

c∈Q′Mq−1d/Q′Md
ν∈q−βd−1/d−1

Φ∞(ν)Φ
∗
(νqβd)f

(
x
(

1
0
−ν′

1

)
0

(
1
−c

0
1

)
0
wι
)

Since W (QM) ⊂W (Q′M) we have

f
(
x
(

1
0
−ν′

1

)
0

(
1
−c

0
1

)
0
wι
)

= ψ(1 + cν′)f
(
x
(

1
0
−ν′

1

)
0

(
1
−c

0
1

)
0

)
.
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It is easy to see that Φ∞(ν)Φ
∗
(νqβd) depends only on the value of ν mod d−1 so

Φ∞(ν)Φ
∗
(νqβd)

= Φ∞(ν′(1 + νc))Φ
∗
(ν′(1 + νc)qβd)

= Φ∞(ν′(1 + νc)(1− ν′c))Φ∗(ν′(1 + νc)(1− ν′c)qβd)Φ∞((1− ν′c))Φ∗((1− ν′c))

= Φ∞(ν′)Φ
∗
(ν′qβd)Φq(1− ν′c)

= Φ∞(ν′)Φ
∗
(ν′qβd)Φq(1 + ν′c),

where Φq is the q-part of the Hecke character Φ, which may be viewed as a numerical
character modulo qβ . Thus (5.3) becomes

(5.4)

f
Φ
| TrQ

′M
Q′Mq−1(x) = τ(Φ)−1Φ(det(x)) ×∑

c∈Q′Mq−1d/Q′Md
ν′∈q−βd−1/d−1

Φ∞(ν′)Φ
∗
(ν′qβd)ψΦq(1 + ν′c)f

(
x
(

1
0
−ν′

1

)
0

(
1
−c

0
1

)
0

)
.

Subcase A. α > β, or α = β > (1/2) ordqQ and ordq(cond(ψΦq)) = α.
If ordqQ′ > ordqQ, then cond(ψ

q
Φq) = qα, c ∈ Nd, and cν′ ∈ qα−1M. If

Q′ = Q, then max(α + β, 2β) < ordqQ, cond(ψ
q
Φq) = qα, c ∈ Q′Mq−1d, and

cν′ ∈ qαM.
Thus equation (5.4) yields

τ(Φ)Φ(det(x)) f
Φ
| TrQ

′M
Q′Mq−1(x)

=


∑
c

∑
ν′ Φ∞(ν′)Φ

∗
(ν′qβd)ψ

q
Φq(1 + ν′c)f

(
x
(

1
0
−ν′

1

)
0

)
if ordqQ′ > ordqQ∑

c

∑
ν′ Φ∞(ν′)Φ

∗
(ν′qβd)f

(
x
(

1
0
−ν′

1

)
0

(
1
−c

0
1

)
0

)
if Q′ = Q

=


∑
ν′ Φ∞(ν′)Φ

∗
(ν′qβd)f

(
x
(

1
0
−ν′

1

)
0

)∑
c ψqΦq(1 + ν′c) if ordqQ′ > ordqQ(

f | TrQ
′M
Q′Mq−1

)
Φ

(x) if Q′ = Q

= 0

in the first case since either Φ
∗
(ν′qβd) = 0 or

∑
c ψqΦq(1+ν′c) = 0 (for 1−ν′c runs

over a group on which ψ
q
Φq is nontrivial), and in the second case by Theorem 3.4.

This contradicts equation (5.1).

Subcase B. α < β or α = β < (1/2) ordqQ.
If ordqQ′ > ordqQ, then cond(ψ

q
Φq) = qβ , c ∈ Nd, and cν′ ∈ qβ−1M. If

Q′ = Q, then max(α + β, 2β) < ordqQ, cond(ψ
q
Φq) | qα, c ∈ Q′Mq−1d, and

cν′ ∈ qβM. The argument proceeds in analogy to the one above.

Case II: qβ+2
- Q′.

Here we must have Q = q, Q′ = q2, and cond(ψ
q
Φq) = q = cond(Φq). The

argument here is in analogy to that in [6].
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Starting from equation (5.2), it is sufficient to show that

(5.5)
∑

ν∈q−1d−1/d−1

c∈qMd/q2Md

Φ∞(ν)Φ
∗
(νqd) f |

(
1
0
ν
1

)
0
|
(

1
c

0
1

)
0
(x) = 0

Note that we may assume that (νqd, q) = 1 otherwise Φ
∗
(νqd) = 0. We first

show that
∑
ν,c

1+cν∈q

Φ∞(ν)Φ
∗
(νqd) f |

(
1
0
ν
1

)
0
|
(

1
c

0
1

)
0

= 0, so given c, ν assume that

1 + cν ∈ q. Let q̃ ∈ K×A with q̃O = q and q̃∞ = 1, and let y ∈ GA, with

y0 =
(

1
0
ν
1

)
0

(
1
c

0
1

)
0

(
1
0

0
q̃−1

)
0

=
(

1+cν
c

νq̃
q̃

)
0
, y∞ = 1. Finally, let ΨQ be a Hecke

character extending ψ
q
. Then we can use y to define the action of WQ(ΨQ). It

follows that∑
ν∈q−1d−1/d−1

∑
c∈qMd/q2Md

1+cν∈q

Φ∞(ν)Φ
∗
(νqd) f |

(
1
0
ν
1

)
0
|
(

1
c

0
1

)
0
(x)

= ΨQ(q̃ detx)
∑

ν∈q−1d−1/d−1

∑
c∈qMd/q2Md

1+cν∈q

Φ∞(ν)Φ
∗
(νqd)ψ

q
(νq̃t̃d) f | WQ(ΨQ) |

(
1
0

0
q̃−1

)
0
(x)

= ΨQ(q̃ detx)Φ(q̃t̃dν)
∑

ν∈q−1d−1/d−1

Φqψq(νq̃t̃d)
∑

c∈qMd/q2Md
1+cν∈q

f | WQ(ΨQ) |
(

1
0

0
q̃−1

)
0
(x).

As ν runs over q−1d−1/d−1, νq̃t̃d runs over O/q, and since Φqψq 6= 1,∑
ν∈q−1d−1/d−1

Φqψq(νq̃t̃d) = 0

which proves the first claim.
Thus, we are reduced to showing that

(5.6)
∑

ν∈q−1d−1/d−1

∑
c∈qMd/q2Md

1+cν 6∈q

Φ∞(ν)Φ
∗
(νqd) f |

(
1
0
ν
1

)
0
|
(

1
c

0
1

)
0
(x) = 0

For each c, ν with 1 + cν 6∈ q there is a unique ν′ ∈ q−1d−1/d−1 such that ν′(1 +
cν) ≡ ν mod d−1. Then

(
1
0
ν
1

)
0

(
1
c

0
1

)
0

(
1
0
−ν′

1

)
0

=
(

1+cν
c

ν−ν′(1+cν)
1−cν′

)
0
∈ W (qM) =

W (N ). Hence

(5.7)

∑
ν∈q−1d−1/d−1

∑
c∈qMd/q2Md

1+cν 6∈q

Φ∞(ν)Φ
∗
(νqd) f |

(
1
0
ν
1

)
0
|
(

1
c

0
1

)
0
(x)

=
∑
ν,c

1+cν 6∈q

Φ∞(ν′(1 + cν))Φ
∗
(ν′(1 + cν)qd)ψ(1 + cν) f |

(
1
0
ν′

1

)
0
(x)

=
∑
ν,c

1+cν 6∈q

Φ∞(ν′)Φ
∗
(ν′qd)Φqψq(1 + cν) f |

(
1
0
ν′

1

)
0
(x).
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Observe that ν′(1 + cν) ≡ ν mod d−1 iff ν′ ≡ (1− cν′)ν mod d−1, so we can change
the variables c, ν to c, ν′ where ν′ runs over q−1d−1/d−1 with (ν′qd, q) = 1 and c
runs over qMd/q2Md with 1−cν′ 6∈ q. Also note that Φqψq(1+cν) = Φqψq(1−cν′)
so equation (5.7) becomes∑

ν′∈q−1d−1/d−1

Φ∞(ν′)Φ
∗
(ν′qd) f |

(
1
0
ν′

1

)
0
(x)

∑
c∈qMd/q2Md

1−cν′ 6∈q

Φqψq(1− cν′) = 0

since for fixed ν′, 1 − cν′ runs over (O/q)×, and Φqψq is a nontrivial character on
(O/q)×. This provides the desired contradiction and completes the proof of the
theorem. �

Now we have

Theorem 5.8. Let q |N and let Q be the q-primary part of N . Write N = QM
and let Φ be a Hecke character of conductor qβ, β ≥ 1. Let f be a normalized
newform in Sk(N ,Ψ). Then there exists a normalized newform g ∈ Sk(Q̃M,ΨΦ2)
with Q̃ = qγ for some γ ≥ 0 such that f

Φ
= g − g | Tq | Bq.

Remark. In the case K = Q, more precise information can be obtained about Q̃
(see Theorem 3.16 of [3]).

Proof. By Theorem 5.7, f
Φ
∈ Sk(Q′M,ΨΦ2) where Q′ = lcm(Q, qα+β , q2β) where

α = ordq(cond(Ψ)). Since f
Φ

is a simultaneous eigenform for all Tp with p - N ,
there exists a newform g ∈ Sk(Q̃M′,ΨΦ2) with f

Φ
∼ g. Here Q̃ | Q′ and M′ |

M. Then g
Φ
∼ (f

Φ
)
Φ
∼ f and g

Φ
has level Q̃′M′ where Q̃′ = qγ , where γ =

max(ordq(Q̃), 2β, ordq(cond(ΨΦ2) cond(Φ))). Since f is a newform of level QM we
have QM|Q̃′M′. Thus M =M′ and g

Φ
=

∑
a|Q̃′Q−1

caf | Ba. Finally,

g − g | Tq | Bq = (g
Φ

)
Φ

=
∑

a|Q̃′Q−1

(caf | Ba)
Φ

= cOf
Φ
.

Comparing first (i.e., O-th) Fourier coefficients yields cO = 1. �

Corollary 5.9. If ordq(cond(ΨΦ2)) < ordq Q̃, then f
Φ

is a newform if and only if
q2 | Q̃.

Proof. By Theorem 5.8, f
Φ

is a newform if and only if g | Tq = 0. Since g is a
newform, g | Tq = 0 if and only if C(q,g) = 0. The result now follows by Theorem
3.3(3). �

6. q-primitive newforms

In this section we obtain most of our results concerning when twists of newforms
are newforms, and we consider the question of when a newform can be expressed
as the twist of a newform of “lower” level (i.e., the question of primitivity).

Throughout this section fix a normalized newform f ∈ Sk(N ,Ψ) and a prime
q |N . Let Q be the q-primary part of N and write N = QM as before. We shall
consider only Hecke characters Φ whose conductor is a power of q. The character



20 THOMAS R. SHEMANSKE AND LYNNE H. WALLING

Φq is the restriction of the Hecke character Φ to the q-part of the ideles, but may
be viewed as a numerical character on (O/ cond(Φ))×. Put

Q′
Φ

= lcm(Q, cond(ψ
q
) cond(Φ), cond(Φ)2).

Theorem 6.1. Let Φ be a Hecke character with q-primary conductor. If Q|cond(Φ)
and cond(ψQΦ) = cond(Φ), then f

Φ
is a newform in Sk(Q′

Φ
M,ΨΦ2). Moreover,

if Ψ1 is a Hecke character extending ψQΦ2
q (viewing Φq as a numerical character),

then λQ,Ψ1(f
Φ

) = Φq(−1)Ψ1(t̃d)τ(Ψ1Φ)τ(Φ)−1.

Proof. Put Q′ = Q′
Φ

and Q′′ = cond(Φ). By Theorem 5.7 (2b), the exact level

of f
Φ

is Q′M, and Q′ = (Q′′)2. Let y ∈ GA, y0 =
(
ã
c̃
b̃
d̃

)
0

represent WQ′(Ψ1) =

WQ
′M

Q′ (Ψ1). Then

f
Φ
| WQ′(Ψ1)(x) = Ψ1(detx)ψ

q
Φ2

q(̃bt̃d)ψM(ã)τ(Φ)−1Φ(det(xy)) ×∑
ν∈(Q′′d)−1/d−1

Φ∞(ν)Φ
∗
(νQ′′d) f |

(
1
0
ν
1

)
0
| y(x)

We may assume that (νQ′′d, q) = 1, so for each such ν there exists a unique
ν′ ∈ (Q′′d)−1/d−1 such that (νν′c̃− b̃)O ∈ Q′′d−1. Then(

1
0
ν
1

)
0

(
ã
c̃
b̃
d̃

)
0

(
1
0
−ν′

1

)
0

= q̃w

where q̃ ∈ K×A with q̃O = Q′′ and q̃∞ = 1, and where w ∈ W (Q′′M) ⊂ W (N ).
Thus

f |
(

1
0
ν
1

)
0
| y(x) = f | q̃w

(
1
0
ν′

1

)
0
(x).

A straightforward but tedious computation permits us to rewrite the sum over ν
as a sum over ν′. The end result is

f
Φ
| WQ′(Ψ1) = Φq(−1)Ψ1(td)τ(Ψ1Φ)τ(Φ)−1f

Ψ1Φ
,

which confirms the claim about the pseudo-eigenvalue.
By Theorem 5.8, there is a normalized newform g ∈ Sk(Q̃M,ΨΦ2) such that Q̃

is q-primary and f
Φ

= g − g | Tq | Bq. The exact level of g − g | Tq | Bq is qQ̃M
or Q̃M (the later case if C(q,g) = 0). Thus (Q′′)2 = Q̃ or qQ̃. By Corollary 5.9,
f
Φ

must be a newform unless Q′′ = Q = Q̃ = q, so we assume this later condition
and derive a contradiction.

From the first part of the proof we have that

Φq(−1)Ψ1(td)τ(Ψ1Φ)f
Ψ1Φ

= τ(Φ)f
Φ
| WQ′(Ψ1) = τ(Φ)(g − g | Tq | Bq) | Wq2(Ψ1)

Also,

g | Wq2(Ψ1) = g | Wq(Ψ1)
(
q̃
0

0
1

)
= N(q)k0/2(ΨΨ

2

1Φ2)(q̃) g | Wq(Ψ1) | Bq

and
g | Tq | Bq | Wq2(Ψ1) = C(q,g)N(q)−k0/2g | Wq(Ψ1).
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Note that by Theorem 3.3, C(q,g) 6= 0. Taking g̃ to be the normalized newform
such that g | Wq(Ψ1) = λq(g)g̃, we have

Φq(−1)Ψ1(td)τ(Ψ1Φ)f
Ψ1Φ

= τ(Φ)C(q,g)N(q)−k0/2λq(g) (g̃−C(q,g)−1N(q)k0 g̃ | Bq).

Comparing the absolute values of the O-th Fourier coefficients of both sides yields

N(q)1/2 = N(q)1/2|C(q,g)|N(q)−k0/2|λq(g)|.

From Theorem 4.2, |λq(g)| = 1, which shows that |C(q,g)| = N(q)k0/2, contrary
to Theorem 3.3. Therefore, f

Φ
is a newform. �

The following corollary is an immediate consequence of the theorem above.

Corollary 6.2. If Q = q and ordq(cond(Ψ)) = 0 then the twist of f by any non-
trivial q-primary Hecke character Φ is a normalized newform of level Q′

Φ
M.

Theorem 6.3. Suppose that cond(ψQ) = Q and ordq(cond(Φ)) < ordq(Q). If
C(q, f) 6= 0 then f

Φ
is a normalized newform in Sk(N cond(Φ),ΨΦ2).

Remark. The condition C(q, f) 6= 0 is discussed more fully in the remark following
Theorem 3.3.

Proof. Put Q′′ = cond(Φ) and write N = QM as usual. By Proposition 5.2, f
Φ

is
an eigenform for all Hecke operators Tp with p 6= q. We observe that C(m, f

Φ
| Tq) =

Φ∗(mq)C(mq, f) = 0, so f
Φ

is an eigenform for Hecke operators Tp for all primes p.
By Theorem 5.7 (2b), f

Φ
has exact level NQ′′, so by Theorem 3.7, we need only

show that f
Φ

is an eigenform for the operator HNQ′′K.
Consider (f | TQ′′ | HN )

Φ
| H−1
NQ′′ . A straightforward but tedious calculation

completely analogous to Theorem 4.2 of [1] yields that

(f | TQ′′ | HN )
Φ
| K = (f | TQ′′ | HN )

Φ
| H−1
NQ′′ | HNQ′′ | K = C(Q′′, f) (f | HN )

Φ
| K

By Proposition 5.3, f
Φ
| K = (f | K)

Φ
and since f | HN | K = γf for |γ| = 1, we

have
(f | TQ′′ | HN )

Φ
| K = C(Q′′, f)γ f

Φ
.

Since f | HNQ′′ | K = (−1)k f | K | HNQ′′ , f | HNQ′′ | HNQ′′ = (−1)kf , and
f | K | K = f we have

(f | TQ′′ | HN )
Φ
| K = (f | TQ′′ | HN )

Φ
| H−1
NQ′′ | HNQ′′ | K = C(Q′′, f)γ f

Φ
,

from which it follows that f
Φ

is an eigenform for HNQ′′K and hence is a newform
of level NQ′′ provided C(Q′′, f) = C(q, f)ordq(Q′′) 6= 0, which has been assumed. �

From this we get

Corollary 6.4. Suppose that cond(ψQ) = Q, Φ is nontrivial, and C(q, f) 6= 0. Put

Q̃ =
{

cond(Φ) if ordq(cond(ΨΦ)) ≥ ordq(Q)
cond(ψQΦq) if ψQΦq 6= 1 and ordq(cond(ΨΦ)) < ordq(Q).
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Then f
Φ

is a normalized newform in Sk(Q̃N ,ΨΦ2) if Φ does not extend ψQ. If Φ
does extend ψQ then f

Φ
is not a newform of any level.

Remark. The condition C(q, f) 6= 0 is not required for the case where Φ does not
extend ψQ and ordq(cond(ΨΦ)) ≥ ordq(Q). See also the remark following Thoerem
3.3.

Proof. Let ΨQ be a Hecke character extending ψQ, and consider f
ΨQ

. Let g ∈

Sk(N ,ΨΨ
2

Q) be the normalized newform such that f | WQ(ΨQ) = λQ,ΨQ(f)g. From
Lemma 4.3, we know that for any prime p - Q we have C(p,g) = Ψ

∗
Q(p)C(p, f), and

C(q,g) = (ΨΨ−1
Q )∗(q)C(q, f). Moreover, for p - Q, C(p, f

ΨQ
) = Ψ

∗
Q(p)C(p, f), thus

g ∼ f
ΨQ

. By Theorem 5.8, f
ΨQ

= h−h | Tq | Bq where h is a normalized newform

in Sk(Q′M,ΨΨ
2

Q) for Q′ a power of q, so f
ΨQ
∼ h, and hence g ∼ h. By Theorem

3.5, g = h, so f
ΨQ

= g − g | Tq | Bq 6= g since C(q,g) = (ΨΨ−1
Q )∗(q)C(q, f) 6= 0,

hence f
ΨQ

is not a newform.

Now suppose that Φ 6= ΨQ. Consider first the case where ordq(cond(ΨΦ)) ≥
ordq(Q). If ordq(cond(Φ)) < ordq(Q) = ordq(cond(Ψ)) then Theorem 6.3 yields
the result. If ordq(cond(Φ)) = ordq(cond(Ψ)), then cond(ψQΨq)|Q, which combined
with the hypothesis of the theorem gives cond(ψQΨq) = Q = cond(ψQ) = cond(Φ).
If ordq(cond(Φ)) > ordq(cond(Ψ)), then cond(ψQΨq) = cond(Φ) of which Q is a
proper divisor. In either of the later two cases, the result follows from Theorem
6.1. Next, suppose that ordq(cond(ΨΦ)) < ordq(Q). Then Φ = ΨQΦ′ with Φ′ 6= 1
and ordq(Φ′) < ord(Q). Let g ∈ Sk(N ,ΨΨ

2

Q) be the normalized newform with
f | WQ(ΨQ) = λQ,ΨQ(f)g. Then f

ΨQ
= g−g | Tq | Bq (as above), so f

Φ
= (f

ΨQ
)
Φ′

=

g
Φ′

is a normalized newform of level Q̃N by Theorem 6.3. �

In strict analogy with [1], we introduce the notion of a primitive newform.

Definition. Suppose that the prime q divides N . A newform g ∈ Sk(N ,Ψ) is said
to be q-primitive if g is not the twist of any newform of level N ′ where N ′ is a
proper divisor of N by a Hecke character whose conductor is a power of q. Clearly
g is q-primitive if C(q,g) 6= 0.

Proposition 6.5. If f is a q-primitive newform and C(q, f) = 0, then all twists of
f by q-primary Hecke characters Φ are normalized newforms with level divisible by
N .

Proof. Let Φ be such a character. By Theorem 5.8, there exists a normalized
newform g ∈ Sk(Q′M,ΨΦ2) such that f

Φ
= g − g | Tq | Bq. Since C(q, f) = 0, we

have f = g
Φ

= f
ΦΦ

. If f
Φ

is not a newform then C(q,g) 6= 0, for if C(q,g) = 0
then f

Φ
= g − g | Tq | Bq = g − C(q,g)g | Bq = g which would imply that f

Φ
is a newform, a contradicition. By Theorem 3.3, C(q,g) 6= 0 implies either that
cond(ψQΦ2) = Q′, or q ‖ Q′ and ordq(cond(ψQΦ2)) < ordq(Q′). In the first case,
Coroallary 6.4 implies that g

Φ
= f has level N = Q̃Q′M; in particular, ordq(Q′) <

ordq(Q′Q̃) = ordq(Q). In the second case, Q′ = q and ordq(cond(ψQΦ2)) = 0, so
Corollary 6.2 implies that g

Φ
= f has level N = lcm(Q′, cond(Φ), cond(Φ)2)M. In

either case, it is clear that Q′M is a proper divisor of N and f = g
Φ

implies that
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f is not q-primitive, contrary to assumption. Therefore f
Φ

is a newform. The level
of f

Φ
is divisible by N otherwise f = (f

Φ
)
Φ

would not be q-primitive. �

Conversely, we have

Proposition 6.6. If all twists of f by Hecke characters Φ with q-primary conduc-
tors are newforms, then f is the twist of some q-primitive normalized newform.

Proof. Let Φ be a Hecke character with q-primary conductor such that the level
of f

Φ
is minimal. That is f

Φ
∈ Sk(Q′M,ΨΦ2) with Q′ dividing the level of every

twist of f by a Hecke character with q-primary conductor. By Theorem 5.8 there
exists a normalized newform g ∈ Sk(Q̃M,ΨΦ2) such that f

Φ
= g − g | Tq | Bq. If

C(q, f) 6= 0, then f is q-primitive and hence is the twist by the trivial character of
a q-primitive newform. Otherwise C(q, f) = 0 and as in the previous proposition
we have f = g

Φ
= f

ΦΦ
. Clearly g is q-primitive by minimality of Q′. �

The proof of the following technical lemma is analogous to Lemma 4.11 of [1].

Lemma 6.7. Let Φ be a Hecke character with conductor dividing qβ, β < ordq(Q).
Let α = ordq(Ψ) and put

Q′ = lcm(Q, qα+β , q2β) Q′′ = lcm(q, qα−βQ, q−2βQ2).

Finally, let ΨQ be a Hecke character extending ψQ. Then

f | R
Φ

(qβ) | WQ′(ΨQΦ2) = κ f | WQ(ΨQ) |
∑
Φ1

R
Φ1

(Qq−β) | WQ′′(ΨQΦ2
1) | R

ΦΨQΦ
1
(Q′q−β),

where κ is a nonzero constant and where the sum is over Hecke characters Φ1,
one for each numerical character defined on (Q/qβ)×. The particular choice of the
Hecke character extending the numerical characters is irrelevant but fixed.

Now we have

Theorem 6.8. Let α = ordq(ψQ). If (1/2) ordq(Q) < α < ordq(Q) and C(q, f) =
0, then f is not q-primitive. Moreover, there exists a Hecke character Φ of conductor
Qq−α and a normalized newform g ∈ Sk(qαM,ΨΦ

2
) such that f = g

Φ
.

Proof. The proof that f is not q-primitive is completely analogous to the first part
of the proof of Theorem 4.3 of [1]. The proof of the second statement has minor
variations which we indicate below. Since f is not q-primitive, there exists a Hecke
character Φ of conductor qβ , a proper divisor Q̃ of Q, and a q-primitive newform
g ∈ Sk(Q̃M,ΨΦ

2
) such that f = g

Φ
. We claim that ordq(cond(ΨΦ

2
)) = α.

Since f = g
Φ

, we have f
Φ

= g
ΦΦ

= g − g | Tq | Bq. Put Q′ = lcm(Q, qα+β , q2β)

and γ = ordq(cond(ΨΦ
2
)). If γ > α, then β > α and ordq(Q′) = 2β > ordq(Q). By

Theorem 5.7, f
Φ

has exact level Q′M which implies Q|Q̃, contrary to assumption.
If γ < α then cond(Φ2) = qα, so either β = α if q is nondyadic or q is dyadic of
degree greater than 1, or β = α + 1 if q is a dyadic prime of degree 1. In either
case, ordq(Q) < ordq(Q′) and ordq(cond(ΨΦ)) = max(α, β). Using Theorem 5.7
as above leads to a contradiction, so we conclude that ordq(cond(ΨΦ

2
)) = α as

claimed.
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Using arguments similar to those above, we see that ordq(cond(ΨΦ
2
)) = α forces

cond(Φ) = qβ |qα. Moreover, we claim that Q̃ = qα. Now α > 1 by hypothesis, so
if ordq(Q̃) > α, then C(q,g) = 0 by Theorem 3.3. Moreover, since ordq(Q̃) > α >

(1/2) ordq(Q) > (1/2) ordq(Q̃), the first part of this theorem implies that g is not
q-primitive, contrary to asumption, hence Q̃ = qα as desired.

To complete the proof, we need only verify that qβ = Qq−α. We know that
β ≤ α. If β < α, then qβ = Qq−α by Theorem 5.7 applied to g

Φ
. Now assume

that β = α. If ordq(cond(ΨΦ)) = α, then by Theorem 5.7 again, we have Q = q2α,
contrary to assumption, so ordq(cond(ΨΦ)) < α. This implies that Φ = ΨQΦ′

where ΨQ is a Hecke character extending ψQ and where Φ′ is a q-primary Hecke
character with ordq(cond(Φ′)) < α. Note that Φ′ is nontrivial, otherwise since
g − g | Tq | Bq = f

ΨQ
, and f | WQ(ΨQ) ∼ f

ΨQ
∼ g, we would have that g is a

newform of level N , contrary to assumption. Now let g′ ∈ Sk(qαM,ΨΨ
2

Q) be the

normalized newform such that g | Wqα(ΨQΦ
2
) = λ

qα,ΨQΦ
2(g) g′. Then as above,

g
ΨQΦ2 = g′ − g′ | T − q | Bq and f = g

Φ
= g′

ΨQΦ
= g′

Φ
′ . By the same argument as

above, we have cond(Φ′) = Qq−α. �

As an immediate consequence of Theorems 6.8 and 3.3 we have

Corollary 6.9. If f is q-primitive and C(q, f) = 0 then either ordq(cond(ψQ)) <
(1/2) ordq(Q) or ordq(cond(ψQ)) = ordq(Q), q2 |Q and the inertial degree of q is
greater than one.

Finally we have

Theorem 6.10.
(1) If Q = q2ρ+1 and cond(ψQ) |qρ, then f is q-primitive.
(2) If Q = q2ρ where q is a dyadic prime of degree one, and cond(ψQ) = qρ,

then f is q-primitive.
(3) If q is a dyadic prime of degree one, Q = q2ρ with ρ ≥ 2 and cond(ψQ) |

qρ−1, then the exact level of f
Φ

divides N q−1 for any Hecke character Φ of
conductor qρ. In particular, f is not q-primitive.

(4) If q is a dyadic prime of degree one,Q = q2, and ψQ = 1, then f is q-
primitive.

Proof. The proof has only minor variations to the proof of Theorem 4.4 in [1], but
for completeness we sketch it.

Case 1) By Theorem 5.5, f is q-primitive if Q = q and ψQ = 1, so we may assume
that ρ ≥ 1. Suppose that cond(ψQ) |qρ and f is not q-primitive. Then f = g

Φ
for a

q-primitive normalized newform g ∈ Sk(Q′M,ΨΦ
2
) where Q′ is a proper divisor of

Q and Φ has q-primary conductor. Then f
Φ

= g−g | Tq | Bq. Since Q′ is a proper
divisor of Q, we must have that cond(Φ) |qρ otherwise Theorem 5.7 would give N
to be a proper divisor of the level of f = g

Φ
. On the other hand, if cond(Φ) | qρ

then Proposition 5.1 gives the level of f = g
Φ

as a proper divisor of N , contrary to
assumption. Thus f is q-primitive.

Case 2) We have that Q = q2ρ where q is a dyadic prime of degree one, and
cond(ψQ) = qρ. If f is not q-primitive, then as above, f = g

Φ
and f

Φ
= g −

g | Tq | Bq with cond(Φ) = qρ. Note that since q is a dyadic prime of degree one,
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cond(Φ2) | qρ−1, hence ordq(cond(ΨΦ
2
)) = ρ > ordq(Q′). By Theorems 6.8 and

3.3, we have that Q′ = qρ. Let ΨQ be a Hecke character extending ψQ and let

g′ ∈ Sk(Q′M,ΨΨQ
2
Φ2) be the normalized newform such that g | WQ′(ΨQΦ

2
) =

λQ′,ΨQΦ
2(g)g′. Writing Φ = ΨQΦ2ΨQΦ where ΨQΦ is a character of conductor qβ ,

β < ρ, we have f = g
Φ

= g
ΨQΦ2ΨQΦ

= g′
ΨQΦ

since g′ = g
ΨQΦ2 = g′ − g′ | Tq | Bq.

Here ΨQΦ has nontrivial conductor since f is a newform and g′ and f have different
levels. It follows from Theorem 6.3 — notice that we again use that the degree of
q is one (see Thoerem 3.3 ii) — that g′

ΨQΦ
= f has exact level Q′Mqβ which is a

proper divisor of N = QM, a contradiction. Thus f is q-primitive.
Case 3) Here we assume that q is a dyadic prime of degree one, Q = q2ρ with

ρ ≥ 2 and cond(ψQ) | qρ−1. Let Φ be a Hecke character of conductor qρ. By

Proposition 5.1, the exact level of f
Φ

divides N . Let
(
ã
c̃
b̃
d̃

)
∈ W (N q−1) −W (N ).

In a computation completely analogous to the proof in [1], and using Theorem
3.4, we deduce that f

Φ
|
(
ã
c̃
b̃
d̃

)
= ψΦq(ã)f

Φ
, which implies the result. Note that

once again we have used that the degree of q is one since in this case [W (N q−1) :
W (N )] = N(q) = 2.

Case 4) This follows easily from Theorem 6.1 and from the fact that there are
no numerical characters of conductor q since q is a dyadic prime of degree one. �

7. Some Applications

We now present two applications of the preceding results. The first application
which we give strengthens Theorem 5.7 from a result characterizing the exact level
of a twist to a theorem telling us that the twists described by Theorem 5.7 are
newforms. The authors thank Arnold Pizer for suggesting this result.

Theorem 7.1. Let N be an integral ideal and let q be a prime, q | N . Write
N = QM where Q is the q-primary part of N . Take f to be a normalized newform
in Sk(N ,Ψ) with ordq(cond(Ψ)) = α, α ≥ 0. Let Φ be a character of conductor qβ,
β ≥ 1, and put Q′ = lcm(Q, qα+β , q2β). Then f

Φ
is a newform in Sk(Q′M,ΨΦ2)

provided that
(1) max(α+ β, 2β) < ordq(Q) if Q′ = Q, or
(2) ordq(cond(ΨΦ)) = max(α, β) if ordq(Q′) > ordq(Q) and q is a prime of

degree one.

Proof. By Theorem 5.8, f
Φ

= g−g | Tq | Bq where g ∈ Sk(Q̃M,ΨΦ2) is a newform
and Q̃ is q-primary. Since by Theorem 5.7, f

Φ
has exact level Q′M, it follows from

Proposition 2.1 that Q′ = Q̃ or Q′ = qQ̃.
First suppose that Q′ = Q and max(α+ β, 2β) < ordq(Q). Since β ≥ 1 and

2β < ordq(Q) = ordq(Q′), we have q3 | Q′, hence q2 | Q̃. Moreover, we see that
ordq(cond(ΨΦ2)) < ordq(Q̃) as follows: If α ≤ β, then ordq(cond(ΨΦ2)) ≤ β. By
hypothesis, 2β < ordq(Q′), so β+1 < 2β < ordq(Q′) or β < ordq(Q′)−1 ≤ ordq(Q̃).
If α > β, then ordq(cond(ΨΦ2)) = α. By hypothesis, α + 1 ≤ α + β < ordq(Q) =
ordq(Q′), hence α < ordq(Q′) − 1 ≤ ordq(Q̃) as claimed. By Theorem 3.3iii, we
have g | Tq = 0 hence f

Φ
= g is a newform of level Q̃M. As f

Φ
has exact level

Q′M, we have q′ = Q̃, and the result follows in this case.
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Next suppose that ordq(Q′) > ordq(Q) and ordq(cond(ΨΦ)) = max(α, β). We
consider the cases α > β and α ≤ β separately.
Case A. If α > β, then ordq(cond(ΨΦ2)) = ordq(cond(ΨΦ)) = ordq(Ψ) = α.
Subcase 1. q2 | Q̃.

If Q̃ = Q′ then ordq(cond(ΨΦ2)) < ordq(q̃), so by Corollary 5.9, f
Φ

is a newform
of level Q′M, as desired. Otherwise, Q̃ = Q′q−1; we show that this can’t happen.
If Q̃ = Q′q−1, then ordq(cond(ΨΦ2)) = ordq(Q̃), for if ordq(cond(ΨΦ2)) < ordq(Q̃)
then f

Φ
= g−g | Tq | Bq would have level Q̃ by Proposition 2.1, and since Q′M is

the exact level, Q′ |Q̃ = Q′q−1, a contradiction. Now ordq(cond(ΨΦ2)) = ordq(Q̃),
q a prime of degree one, and Theorem 5.8 imply that f

Φ
is not a newform of any

level. From this we derive a contradicition.
Since ordq(cond(ΨΦ2)) = ordq(Q̃), we have

ordq(Q̃) = ordq(cond(ΨΦ2)) = ordq(cond(ΨΦ)) = ordq(cond(Ψ)) = α ≤ ordq(Q).

If ordq(cond(Ψ)) < ordq(Q) then ordq(Q̃) = ordq(cond(Ψ)) ≤ ordq(Qq−1) <

ordq(Q′q−1) = ordq(Q̃), a contradiction. Otherwise, ordq(cond(Ψ)) = ordq(Q).
Observe that Φ does not extend ψQ since ordq(cond(ΨΦ)) = α > β ≥ 1, so by
Corollary 6.4, f

Φ
is a newform, a contradiction.

Subcase 2. Q̃ = q.
If Q̃ = Q′ then 1 = ordq(Q̃) = ordq(Q′) > ordq(Q) ≥ 1, a contradicition. If

Q̃ = Q′q−1, then ordq(q′) = 2 = max(α+β, 2β), which implies β = 1 and α = 0, 1.
But we are assuming that α > β, a contradiction.
Case B. If α ≤ β, then ordq(cond(ΨΦ) = β and ordq(cond(ΨΦ2)) ≤ β.
Subcase 1. q2 | Q̃.

If Q̃ = Q′(= q2β), then ordq(cond(ΨΦ2)) < ordq(Q̃) and so by Corollary
5.9, f

Φ
is a newform of level Q′M. Otherwise, Q̃ = Q′q−1; we show that this

can’t happen. We must have ordq(cond(ΨΦ2)) = ordq(Q̃) otherwise by The-
orem 3.3iii, f

Φ
is a newform of level Q̃M contradicting that its exact level is

Q′M. By Theorem 5.8 (since the degree of Q is one), f
Φ

is not a newform
of any level. Now, β = ordq(cond(ΨΦ)) ≥ ordq(cond(ΨΦ2) = ordq(Q̃) implies
2β = ordq(Q′) = ordq(qQ̃) ≤ β + 1 which in turn implies that β = 1. Thus
α = 0, 1, Q′ = q2 and Q̃ = q = Q. Since β = ordq(cond(ΨΦ)) = 1, Φ does not
extend ψQ. If α = 1 then Corollary 6.4 implies that f

Φ
is a newform, while if α = 0,

f
Φ

= g − g | Tq | Bq is a newform since g | Tq = 0 by Theorem 3.3iii. In either
case, this provides the desired contradiction.
Subcase 2. Q̃ = q.

If Q̃ = Q′ then q = Q̃ = Q′ = q2β , a contradiction. If Q̃ = Q′q−1 then Q′ = q2

implies β = 1. Then α = 0, 1 give contradictions as above. �

Our second application gives a decomposition of a space of newforms as a direct
sum of twists of other spaces of newforms. (Such decomposition theorems were
studied extensively in [3] where the predominant tool was the Eichler-Selberg trace
formula.) Here we let SΦ denote the space of cusp forms consisting of {f

Φ
| f ∈ S }

where S is a space of cusp forms and Φ is a Hecke character.
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Theorem 7.2. Let q be a dyadic prime of degree one andM an integral ideal prime
to q. Let ν be an even integer, ν = 2ρ ≥ 4, Φ a q-primary Hecke character of con-
ductor qρ, and assume that ordq(cond(Ψ)) < ρ. Finally, let e = ordq(cond(ΨΦ2)).
Then

S+
k (qνM,Ψ) =

ν−1
⊕
i=e
S+
k (qiM,ΨΦ2)Φ.

Proof. Over the rationals, this is Theorem 3.14 of [3]. Let f ∈ S+
k (qνM,Ψ) be a nor-

malized newform. By Theorem 6.10iii, the exact level of f
Φ

divides qν−1M. By The-
orem 5.8, f

Φ
= g−g | Tq | Bq where g is a normalized newform in Sk(qµM,ΨΦ2).

It is easy to se that e ≤ µ ≤ ν − 1 for if µ ≥ ν then by Theorem 3.3iii, g | Tq = 0
which would imply f

Φ
= g and hence µ < ν, a contradiction. Now f

ΦΦ
= g

Φ
∈

Sk(qνM,Ψ) by Theorem 5.1 and so g
Φ
∼ f . Since f is a newform in Sk(qνM,Ψ),

we have f = g
Φ

by Theorem 3.5 (multiplicity one). It follows that

S+
k (qνM,Ψ) ⊂

ν−1∑
i=e

S+
k (qiM,ΨΦ2)Φ.

Conversely, if g ∈ S+
k (qµM,ΨΦ2) is a normalized newform, then Theorem 7.1

implies that g
Φ

is a newform in Sk(qνM,Ψ), thus

S+
k (qνM,Ψ) =

ν−1∑
i=e

S+
k (qiM,ΨΦ2)Φ.

That the sum on the right hand side is direct follows immediately from multiplicity
one theorem (Theorem 3.5). �
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