TWISTS OF HILBERT MODULAR FORMS

THOMAS R. SHEMANSKE AND LYNNE H. WALLING

ABSTRACT. The theory of newforms for Hilbert modular forms is summarized in-
cluding a statement of a strong multiplicity-one theorem and a characterization of
newforms as eigenfunctions for a certain involution whose Dirichlet series has a pre-
scribed Euler product. The general question of twisting Hilbert modular newforms
by arbitrary Hecke characters is considered and the exact level of a character twist
of a Hilbert modular form is determined. Conditions under which the twist of a
newform is a newform are given. Applications include a strengthening in the elliptic
modular case of a theorem of Atkin and Li’s regarding the characterization of im-
primitive newforms as well as its generalization to the Hilbert modular case, and a
decomposition theorem for certain spaces of newforms as the direct sum of twists of
spaces of newforms of lower level.

INTRODUCTION

For the case of elliptic modular forms, Hijikata, Pizer and Shemanske [3] show
how to decompose a space of newforms as a direct sum of character twists of other
spaces of newforms. In particular, these decomposition theorems yield information
about how a given newform behaves under character twists: what the exact level
of a character twist is, and under what circumstances the twist of a newform is
a newform. Atkin and Li [1] consider these specific questions for elliptic modular
forms by different methods and with a different perspective. In this paper, we
adapt the methods of [1] [5] to investigate similar questions in the case of Hilbert
modular forms but with an eye towards the decomposition theorems of [3].

We begin with a summary of the newform theory for Hilbert Modular Forms; in
particular, we present both a regular and strong multiplicity-one theorem (Theo-
rems 3.5 and 3.6). While a multiplicity-one theorem follows (at least in principle)
from the work of Miyake [7], we give a characterization of newforms as cusp forms
which are eigenfunctions for a certain involution and whose associated Dirichlet
series has a prescribed Euler product (Theorem 3.7). We then use this characteri-
zation to prove that the twist of a Hilbert modular newform by a Hecke character
whose conductor is prime to the level is a newform (Theorem 5.5).

To examine twists of newforms by arbitrary Hecke characters, we begin by gener-
alizing Atkin and Li’s operator Wy. The definition and properties of this generalized
operator are rather delicate, reflecting differences among the various Hecke charac-
ters which “extend” the numerical character of the space of cusp forms on which
Wy acts. Using a result of Shimura regarding the special values of Dirichlet series
attached to Hilbert modular forms [11] [12], we characterize certain properties of
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the pseudo-eigenvalues of Wy (Theorem 4.2). This eventually allows us to deter-
mine conditions under which twisting a newform by a character whose conductor
divides the level of the form yields a newform (Theorem 7.1). This theorem extends
Theorem 3.1 of [1] which only gives the exact level of a twist, and applies both to
Hilbert modular as well as elliptic modular forms. In turn, this theorem allows us
to decompose a certain type of space of Hilbert modular newforms as the direct sum
of twists of spaces of newforms of lower level (Theorem 7.2), analogous to Theorem
3.14 of [3].

Most of the results of [5] and [1] generalize to the Hilbert modular case. There
is an important result concerning the non-vanishing of Hecke eigenvalues (Theorem
3.3 (2)) which we were able to generalize in a significant number of, but not all,
cases however, we have been informed that it follows from the representation theory
that the result holds in all cases. This result is critical to the determination of when
the twist of a newform is again a newform (Theorem 5.8), and is consequently of
concern to us here.

1. NOTATION

For the most part we follow the notation of [11] and [12]. However, to make this
paper somewhat self-contained, we shall briefly review the basic definitions of the
types of functions and operators to be studied here; more details can be found in
Shimura’s two papers referenced above.

Let K be a totally real number field of degree n over Q, O its ring of integers,
and O* and OF the groups of units and of totally positive units respectively. Let
0 be the different of K. Let GLJ (K) denote the group of invertible matrices with
totally positive determinant and H the complex upper half-plane. Then GLJ (K)
acts by fractional linear transformation on ‘H" via

a1, + b

(A,T)P—)AT:(...,W,...)

where a(*) denotes the v** conjugate of a over Q. For N € Z, let
I'y = {A € SL2(O> ‘ A—-15 € NMatg(O)}
For k = (k1,... ,kn) € (Z,)" and ¢,d € K, let (et + d)* =[], ()1, + d®))kv,

v=1
Define My, (I'y) to be the complex vector space of functions f holomorphic on H"
and at the cusps of I'y such that f(Ar) = (det A)*/2(cr 4 d)* f(7) for all A € T'y.
Let M, = U?Volek(PN).
For 7 a fractional ideal and A an integral ideal, put

O 7! "
FO(N’I):{AE(NIO o )‘detAe(’)Jr}.

By a numerical character ¢ modulo N' we mean a character ¢ : (O/N)* — C*,
and by a Hecke character we mean a character ¥ : K — C* which is trivial on
K*. (In general, we use lower case Greek letters to denote numerical characters
and upper case Greek letters to denote Hecke characters.) As in Shimura [11] [12],
for ¢ a numerical character mod N and 6 a character of OF of finite order, define
My (To(N,Z),1,0) to be the set of all f € My, such that

f(AT) = (det A)~%/24p(a) O(det A) (eT + d)* f (7).
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We always assume that 1()6(e?) = sgn(e)¥ for all e € O* since My,(To(N,Z),,0) =
{0} otherwise. Now, there exists an m € R™ such that §(g) = ™ for all ¢ € O%;
while m is not uniquely determined, it will be fixed throughout this paper.

Let 71, 75, ...7; be a set of representatives of the strict ideal classes of K,

'y =T\(WV) =To(N, 7)), and put

h
mk(./\/’,@b,g) = H Mk(F)\,@b,Q)
A=1

We shall study the forms identified with h-tuples (f1, f2, ..., frn) € Mp(N, 1, 0).

For notational convenience in handling the problems introduced by class number
h > 1, we follow Shimura and describe Hilbert modular forms as functions on an
idele group as follows. Let K} be the idele group of K and G4 the adelization
of GLy(K). With the usual identifications, we may view G4 = GLy(K4); Gx =
GL2(K) embedded as the diagonal in G4; Goo = GL2(R)™ the archimedean part
of G4; and Gy = GLF (R)™. For an integral ideal N of O, let

B _(abd O, 2710,
500 =142 (1) < (w0, o)

Wo(N) = {x € Yp(W) | det(a) € OF }.

det A € K
(CLOP,NOP):l ’

and put

Y =Y(N) = Gan(Goor x [[¥r(N)), W =WN) =Goop x [[Wa (V).
p

p

For a € K} and N an integral ideal, let a__ denote the archimedean part of a,
a,, the finite part of a, and a,, the N-part of @. The numerical character v :
(O/N)* — C* induces a character ¥, : Y — C* by wy((i :)) = ¢ (a,, mod N).

Now, fix a set of ideles £y € K%, (f\)oo = 1 with Ty = £,0, and let x) =
<(1)£) € G4; also fix an idele t with (?D)OO =1 and t,O = 0. Then by strong
approximation, we have

h h
(1.1) Ga :AL—J1GKx/\W:>\L—J1GK$;LW

where ¢ denotes the canonical involution on 2 x 2 matrices. Finally, given an h-tuple
of functions (f1,..., fn) € Mr(N, 1, 0), define a function f : G4 — C by
(1.2) ‘

flaxy w) = 1y, (w') det(wse )™ (f | Woo)(i) for « € G, and w € W(N)

where i = (4,... ,i) (with i = v/—1) and where

(i Z) (7) = (ad — be)*/2(er + d)~* f, (‘” i b) .

(1.3) A ct+d

As in [11] [12], one can identify 9, (N, v, 0) = H};:l M (T, 1, 0) with the set
of functions f : G4 — C which satisfy:
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(1) flazw) =1y (w")f(z) for all o € Gi, v € Ga, w € W(N),wee = 1, and
(2) For each A there exists an element f, € M}, such that f(z*y) = det(y)"™(f, | v)(i)
for all y € Gooy-
Henceforth, the space of such functions will be denoted M (N, 1), m), where m € R"
is fixed and satisfies 6(g) = '™ for all e € O*. We use &, (N, 1, m) to denote the
subspace of cusp forms.
With m as above, define ¢ : K — C* by setting 1) (@) = sgn (oo )"|doo|*"™.
If for 5 € K} we define £%(z) = f(5z), then f — f* induces a unitary represen-
tation of K} in 9 (N, ¢, m) which decomposes into a direct sum of irreducible
subrepresentations. By Schur’s lemma (since K} is abelian) the irreducible subrep-
resentations are all 1-dimensional. For a character ¥ of K, let My (N, ¥) denote
the subspace of M (N, 1, m) consisting of all functions f for which f* = W¥(3)f,
and let Sg(NV,¥) C My (N, ¥) denote the subspace of cusp forms. Since £* = f for
s € K*, My(N,¥) is nontrivial only when ¥ is a Hecke character. Note that from
equation (9.22) of [12], we have that ¥(a) = ¥ (a,.)i_(a) for all @ € KX ], Oy
Thus, by a Hecke character extending ¢t  we shall mean a Hecke character ¥ such
that W(a) = ¥ (a,.)y (a) for all @ € K [], Oy There are only a finite number of

such characters; in particular, if ¥ and ® are two such Hecke characters, then U®
is a character on the N-ideal class group (see [14]). By a Hecke character extending
1 we shall mean a Hecke character extending 1 sgn(*)* (i.e. Yih with m = 0) in
the above sense. If P, denotes the K-modulus consisting of the product of all the
infinite primes of K, then it is clear that any Hecke character extending 1) _ has
conductor dividing NPB... Consequently, given ¥, we may define an ideal character
U* modulo NP, by:

(1.4) {‘I’*(p) = U(7,) for pt N and 7O = p

U*(a) =0 if (a, V) #1

Observe that if a € K3 with (aO,N) = 1, then ¥(a) = ¥*(aO)(a,, ), (a), so
that in particular, ¥*(£0)y(€) sgn(€)*|€]?™ = 1 for all £ € O with (£, N') =1 (cf.
[11, p. 650]). Also, ¥ and ¥* both have modulus 1, and they have finite order iff
1 has finite order.

Iff=(f1,...,fn) € M(N,9,m), then f has a Fourier expansion of the form

AT =ax(0)+ Y ax(§)exp(2mitr(ér)).
0<EETy

Following Shimura we define

N(m)ko/2ay (&)¢7F/2 ifm=¢Z,; ' Cc O
0 otherwise

C(m,f) = {

where kg = max{ky,...,k,}; we refer to the C(m,f) as the Fourier coefficients of
f. We use these Fourier coefficients to associate a Dirichlet series to f:

D(s,f) =Y C(m,f)N(m)~*.

mCcO
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Furthermore, it is easy to describe the action of two important operators on My (N, ¥)
— the Hecke operators and the shift operators — in terms of their action on Fourier
coefficients (for complete definitions see [11]).

For functions on G 4, we first define an analog of the classical slash operator: if
f e M(N,¥,m) and y € G4, we define f | y(x) = f(xy*). Then for an integral
ideal q, the shift operator By is characterized as follows: Let ¢ € K with oo =1

and gO = q. Define f | By = N(q) *0/2f | (éagl) . Then By maps My(N,¥) to

My (Nq, ), and if f € My (N, ¥) then C(m,f | By) = C(mg~ ', ) where as always
we understand that C(n, f) = 0 if n is not integral. Clearly, we have f | By, | By, =
f | BCIle'

For an integral ideal n, the Hecke operator T, = T maps My(N,¥) to
My (N, ¥), independent of whether (n,N') = 1. On Fourier coefficients, the ac-
tion is

(1.5) Cm,f[Ty(m)= > ¥ (a)N(a)* 'C(a *mn,f)

m+nCa

where U* is the ideal character defined on ideals prime to N induced from the Hecke
character ¥ and extended to all ideals as described earlier. In particular, even if ¥
is the trivial character, ¥* has the property that ¥*(a) = 0 for (a, N') # 1. Both
B, and T, take cusp forms to cusp forms.

2. THE Wg OPERATOR: DEFINITION AND BASIC PROPERTIES.

In this section we define and give the basic properties of the Wy operator which

is critical to our development of the theory of newforms and to our investigation of
character twists of newforms.
Fix a space Mg(N,¥) C Mi(N,¥,m), where ¥ is a Hecke character extending
Y1) . In the absense of comments to the contrary, we take Q and M to denote
relatively prime integral ideals with N' = QM, and we write 1) = deJM where
¢Q and v, denote numerical chararacters modulo Q and M respectively. Then
somewhat tedious but routine computations give us Propositions 2.1 — 2.7; these
are essentially straightforward generalizations of Propositions 1.1 — 1.5 of [1] and
Lemmas 1 — 4 of [5]. The first of these is

Proposition 2.1. Let q be a prime and suppose that q°> | N and v is a charac-
ter modulo Nq=*. Then Ty maps My(N,¥) to Mx(Nq~ 1, ¥), and hence maps

Our Wy operator is a generalization of Li’s operator Vi and Atkin and Li’s
operator Wg, however in the Hilbert modular case, it depends not only upon the
numerical character of the space but also upon the choice of Hecke character ex-
tending the numerical character. We define it as follows.

Definition. Let Wy be a Hecke character extending ¢, (i.e. vy sgn(*)*). Choose

y € G4 so that yoo = 1, (det y)O = Q, and yy = (g%)o with a0, dO C Q; so

bO C 2! and O C N (recall that yo is the finite part of y). For z € G4, define
Wo(¥g) by:

(21) £ | Wo(¥p)(x) = Pg(det x) ¥, (bt mod Q) (@ mod M) (£ | y)().
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To specify the level, Wy is sometimes denoted WQN .

Remark. In [2], Flath has given a definition of a Wg-operator defined on the Q-ideles
which is essentially the same as our Wgo-operator when K = Q.
We can now state Propositions 2.2 — 2.7.

Proposition 2.2. Let the notation be as above with N' = QM where Q and M are
relatively prime integral ideals and ¢ = ngZJM. Let U be a Hecke character extend-
ing Y1 and Wg a Hecke character extending 1,. Then Wo(¥g) takes My (N, ) to

My (N, \If\If_Qz), and hence takes My (N, 10, m) to My (N, ¢_92,m). Moreover, if f €
Mp(N,P), . then

] Wo(¥) [ Wo(¥) = v, (—1f.

Proposition 2.3. If L is an integral ideal, and QINL with (Q,NLQ™!) =1, and

Ug is a Hecke character extending 1y, then for f € ME(N, ) C M (N, 1, m), we
have

Ur(L) £l W (%) | Be  if(Q,L)=1
NL _ Q Qe
f|Be| Wy~ (Y)= { N(L)ko/2 £ | WA, (W) if £]Q.

Proposition 2.4. Let p be a prime with p 1 Q, and let ¥y be a Hecke character
extending iy,. Forf € M (N, ) we have

—%

£ Wo(Y) | Ty = Y(p) | T, | Wo (o).

Proposition 2.5. Suppose that q is a prime such that q| N, but q*> N, and that
Y is a character modulo N'q='. Let U be a Hecke character extending Yip . Then

Ty + N(q)%/2=1W, maps My(N,¥) to My(Nq~1,¥).
Remark. Here Wy = Wy (1) since g =1

Proposition 2.6. Suppose f =g | By € Sp(N, V) for some prime q. If | N and
Y is a character modulo Nq=!, then g € Sy(Nq~ 1, ¥). If gt N then £ = 0.

Proposition 2.7. Let Q, Q' be divisors of N such that (QNQ™!) = 1 and
(Q,ONQ ") =1, and let f € My(N,¥) C M(N, ¥, m). Let Yy (resp. Yy)
denote the Q- (resp. Q'-) part of ¢ and let Wy (resp. Vo) be Hecke characters
which extend the corresponding numerical characters. Then

f | Wo(T) | Wo (Vo) = Tn(Q) £ | Moo (Yo Ty).

3. NEWFORMS IN Si(N, ¥)

Now that we have developed analogs of the operators defined in [5] and [1]]
and we have established some preliminary propositions describing their interactions
(Propositions 2.1 — 2.7), many of the theorems in [5] have natural generalizations
to the Hilbert modular case. In this section, we give a summary of the theory of
Hilbert modular newforms which culminates in a theorem characterizing newforms
as cusp forms whose associated Dirichlet series has a prescribed Euler product and



TWISTS OF HILBERT MODULAR FORMS 7

which are eigenfunctions for a certain involution (Theorem 3.7). In Theorem 3.3
we characterize the Hecke eigenvalues for primes dividing the level.

Given Sp(N,¥) C Si(N,¢,m), let S (N, ¥) be the subspace of Si(N,T)
generated by all g | Bg where g € S (N, ¥) C S (N, ¢, m) with N'|N, N # N,
and ON’|N. As in the elliptic modular case, it is easy to see that S, (N, ¥) is
invariant under the action of the Hecke operators T, with (n, ') = 1. With this
notation, the proof of Theorem 3.1 below follows in analogy to the proof in [5]
for the case of K = Q; since no significantly new ideas are required to prove this
generalization, we state it without proof.

Theorem 3.1. If f € Si(N, V) has the property that C(m,f) = 0 if (m,a) = 1
where a is a fized integral ideal, then f € S, (N, ).

Shimura defines ((2.28) of [11]) a Petersson inner product (f,g) for f,g €
SN, ). If f = (f1,...,fn) and g = (g1,... ,9n), then (f,g) = Z];:l(f;\,g/\>
where (f, g,) is given by (2.27) of [11]. A standard argument shows that for a matrix
A e GLY(K), (f, | A,g | A) = (f,, ) (see e.g. (3.4) of [13]). This invariance ex-
tends in an obvious way to (f,g): Let £ = (f1,..., fn),8 = (91,--- ,9n) € Sk(N, V),
T be an operator which maps Si (N, ¥) to Sx(M, ®), and put £ = (f{,..., fn), & =
(g1,---,9,) € Sk(M, @), where f | T'=1f" and g | T = g’. If for each index p there
exists an index A and a Ay € GLJ (K) such that ﬂ = fi | Ax and gl: =g | Ax,
then (f | T,g | T') = (f,g). This will be the case with most of the operators we
define.

With respect to this inner product defined above, the Hecke operators are essen-
tially hermitian (Proposition 2.4 of [11]):

U (m)(f | Tw,g) = (f,g | Tw)
for all integral ideals (m,N) = 1. Let S;" (N, ¥) denote the orthogonal complement
of S (N, ¥) in Sg(N,¥). It follows from the invariance of S, (N, ¥) under the

Hecke operators and the hermitian property of the Hecke operators that S,j (N, D)
is also invariant under all Hecke operators T}, where (n, N') = 1.

Definition. A newform f € S;(NV,¥) is a form in S (N, ¥) which is a simulta-
neous eigenform for all Hecke operators T, with p a prime, p { . The form is
normalized if C(O,f) = 1.

As in the classical case, if f is a newform in Sp(N,¥) and f | T, = Apf then
C(p,f) = X\ C(O, 1) for all p t N. It follows from Theorem 1 that C(O,f) # 0, and
hence f can be normalized. Moreover, if f, g € Slj (N, ¥) are both newforms with
the same eignevalues for all T}, for p t+ A/ then by Theorem 3.1, we have f — g €
S, (N, ¥), hence f is uniquely determined up to a scalar multiple by its eigenvalues.
(From a representation-theoretic point of view, this result is due to Miyake [7]
although the results there are in a different context which is difficult to compare
to our own.) Since {7} | p t N} is a commuting family of hermitian operators,
S: (N, ¥) has an orthogonal basis consisting of newforms. A form g € S, (N, ¥)
is an oldform if g = h | Bg for some newform h € S (N, ¥) C &y (N, ¢, m) with
ON'|N. Tt is easy to see that S (N, ¥) is generated by the oldforms in S, (N, ¥),
and if g € S (N, V) is a simultaneous eigenform for all T}, p f N, then there exists
anewform h € S (N, ¥) C &, (N, ¥, m) with N”|N having the same eigenvalues
as g for all such T,. In fact, we have the following result which is crucial to a
number of arguments in this paper (e.g. Theorem 3.6).
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Proposition 3.2. Let g € Sp(M, V) be a newform, and suppose that M|N. Then
{g| Ba:a|NM~1} is linearly independent.

Proof. Clearly, Z ¢a g | By = 0if and only if Z ca C(ma™t, g) =0 for all
alNM—1 alNM-1

integral ideals m. The idea then is to choose an ideal m for which C'(ma=1,g) # 0
for some a occuring in the sum, but for which mb~! is not integral (and hence
C(mb~1 g) = 0) for any other ideal b occuring in the sum. This forces c¢q = 0,
and the result follows by induction. Since the only coefficient of g that we know is
nonzero is C(O, g), the choice of m is clear.

Suppose Z cag | By = 0; fix an ideal a of minimal (absolute) norm, and

alN M—1

put m = a. Then

Z ca C(ma™t g) = Z ey Cab™t, g) + Z cp C(ab™, g).

alN M-t bINM™? bIN M
N(b)=N(a) N(b)>N(a)

If N(b) > N(a) then clearly ab™! is not integral, so the second sum vanishes.
So suppose N(a) = N(b); then a and b lie above the same primes of Q. Write
a=p'---plrand b = p;/l x -pZ; where the p; are primes of K. With m = a fixed
we see that mb~1 = ab™! C O if and only if b|a and hence if and only if T <1y
for 1 < j <s. If b # a then r| < ry for some k, hence N(b) < N(a), contrary to
assumption. Thus only one term survives in the first summand as desired. [J

Now we come to an important theorem about newforms which generalizes The-
orem 3 of [5].

Theorem 3.3. Let f be a normalized newform in Sp(N, W), and p,q primes with
ptN and q|N.

(1) The Dirichlet series attached to f, D(s,f) = Z C(m,f)N(m)™*% has the

mCcO
FEuler product
D(s,f) = [[(1 = C(a, £)N(a) )"
qlNV
[T —Cw.ONm)™ + T (p)N(p)ko'72)~"
pIN

(2) If ¢ is not defined modulo N'q~*, then either C(q,f) = 0 or |C(q,f)| =
N (q)*0=D/2 " Moreover, C(q,f) # 0 whenever the inertial degree of q (over
Q) is 1, or when q || N.

(3) If 1 is a character modulo N'q=!, then C(q,f) =0 if g>| N and C(q,f)? =
N(@)o~? if ¢ { '

Remark. The referee informs us that it follows from the representation theory that
in part (2) of Theorem 3.3 the coefficient C(q,f) is never zero. We are not able
to verify this from our classical point of view however, the stated condition is not
overly restrictive since the set of primes having inertial degree one over Q has
density one (see [4, p. 131]). Moreover, if K/Q is an abelian extension, then class
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field theory tells us that the rational primes which split completely are described by
congruence conditions in Q, so we can explicitly compute levels at which C'(q, f) # 0.
Nonetheless, it would be interesting to have a classical proof that C(q,f) # 0
without restrictions on the prime q when v is not defined modulo ANq=!. The
issue of nonvanishing of this coefficient represents far more than idle curiosity for
as Theorem 5.8 suggests, whether C(q,f) vanishes is at the heart of the question
of whether the twist of a newform f is again a newform.

Proof. The proofs of parts (1) and (3) are analogous to the proofs in [5]. For part
(2), one must generalize Theorems 3 and 4 of [8]; here we find that Ogg’s proof of
Theorem 3 is valid only for primes of degree one. In this context, the generalizations
are straightforward. [

To proceed, we need several operators: Let f € My (N, ¥) C My (N, ¢, m) and
suppose that 1 is a character modulo M where M |N. Choose w; € W(M) such
that (w;j)e = 1 and

W(M) = U W(N)w; (disjoint);

define the trace operator Trﬁ; by

£ T, :Z@(wj) £ | w;.

J

Notice that this expression is clearly well-defined, and if {A4,} is a complete set
of coset representatives for I'y(M)\I'x(N), then we may take (w;), = z54;2," =
zy ' Ajzy. Tt is straightforward to check that f | Tr/xl € Mp(M,¥).

The conjugation operator, K, can be defined by its action on Fourier coefficients:
C(m,f | K) = C(m,f) (where the bar denotes complex conjugation), or by its
action on the components of f: if f = (f1,..., f), then f | K = (¢1,...,9gn) where
gj(z) = f;(—%) (this operator is defined in [11] and denoted there as 7).

Now we define the operator Hxs (the “canonical involution”); this is essentially
Shimura’s operator Jys, although we rescale it here for consistency with the operator

nty 0
Yoo = 1; define (f | Hyr)(z) = (f | y)(x™*). For f € Mp(N, V), we have f | Hy =
(—=DFW(E)E | .

From [11] (pp 653 — 655), we see that both K and Hy map My (N,¥) C
My, (N, 1, m) to My(N,¥) C My (N, ¥, —m), that K maps S, (N, ¥) to S, (N, ¥)
and S (N, V) to S (N, 0), that £ | T, | K =f | K | Ty, and that £ | Hy | Ty =
U (m)f | Ti | Hp for all (m, V) = 1. It is trivial to check that for f € M (N, ¥),
f|Hy | Hv = (-1 f| K| K=f,f| B, | K=f| K| By,andthatf | Hy | K =
(=1)*f | K | Hyr. Also, one can easily show that if g € S, (M, ¥) with M|A and a
an integral ideal such that a M|\, then g | B, | Hy = N(a) "o N(NM~1)k/2 g | Hyg | Byag-1a-15
so Hy maps S (N, ) to S (N, ¥). Moreover, since (f,g) = (f | Hy,g | Hy) =
22:10& | ﬁgl,gA | By1) with By € GLF(K) (see (2.47) of [11]), it follows that
Hy maps S (N, ) to S;" (N, ¥). Finally, from Proposition 2.10 of [11], we have

1
Wo when Q = N. Let n € K with nO = N, and put yo = ( 0t > with
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that if f € S;" (N, ¥) is a newform then f | Hy = ~f | K for some constant v with

vl =1
As before, given these newly defined operators, it is now straightforward to

obtain the following two generalizations of theorems in [5].

Theorem 3.4. Let f € Sy(N,¥) C &,(N,¢,m). Then f € S (N, V) if and only
if for all primes q| N for which v is defined modulo N'q~t, we have

N N
f| TTqul :O:f | HNl T’I"qul.

Theorem 3.5. Let f, g be normalized newforms in Sp(N,¥), Sp(M,¥) respec-
tively such that C(p,f) = C(p,g) for almost all primes p. Then f =g and M =N

We note here that while a knowledge of the eigenvalues C(p,f) for almost all
primes p is sufficient to determine the level of a newform, it is not sufficient to
determine the character. However, we can make the following statement.

Theorem 3.6. Letf € Sp(N, V) C Sr(N, 1, m), andg € Sp(M,P) C Sx(M, p,m’)
be normalized newforms, and assume that they have the same eigenvalues for all

the Hecke operators Ty, for (m, MN) =1. Then ¥ =®, M =N, andf =g

Proof. We need only show that m = m’ and ¥ = ®; the result will then follow
from the previous theorem.
Let p { MN be a prime. Then

f|Tpe =1 [(L)° = Np)*© £ | S(p) = [C(p, £)* = N(p)™~ 0" (p)] £

(see [11] for the definition of S(p)). Similarly, g | T2 = [C(p,g)*—N(p)*~10*(p)] g.
Since C(p,f) = C(p,g), and C(p, £)* — N(p)™ " ¥*(p) = C(p,)*> — N(p) " ®*(p),
we have U*(p) = ®*(p) for all p { MN. Thus (¥®)* =1

Let S be the set of primes dividing N'M together with the infinite primes of K,
and let ij g be the set of ideles which are 1 at all places in S. From above, we
know that U®(a) = (¥®)*(a0) = 1 for all ideles a € K} g Moreover, since U
is a Hecke character, it is trivial on K*. By Proposition VIL.15 of [15], K* K} ¢
is dense in K%, so by continuity of U, the Hecke character ¥ is trivial on all of
K ; hence ® = .

Since 1_(a) = sgn (oo )" [doo|*™ and ¢_ () = sgn(tos)*| o 2im" e have (Vo) (a) =
|doo|?™ where r = m — m/ € R™; we claim that r = 0. To see this, consider a se-
quence of ideles @, with all components of @, = 1 except for the ;' infinite place.
In that place of Gy, let the value be ef (e the base for the natural logarithm). Then
1 =Ud(ay) = (o) (ag) = |e‘[*"7 = s, This implies that r; € (7/¢) Z for all
¢ > 1, hence r; = 0, which implies m = m’ and so completes the proof. [J

The final result from [5] which we need to generalize is
Theorem 3.7. Supposef € Sp(N,¥) C &i(N, ¢, m), and D(s,f) = Z C(m,f)N(m)~*

MCO
is the Dirichlet series attached to f£. If f | K | Hy = ~f for some v € C* and

D(s,£) = [](1 - C(a, )N (@) ")
qlNV

[T —Cw.ONE)™ + T (p)N(p)ko'72)""
PNV
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then £ is a normalized newform in S(N, V).

Proof. The proof of Theorem 3.7 is somewhat tedious, but follows exactly the line
of argument in [5]. On the other hand, a few comments are in order. The proof
relies in two places on Proposition 3.2, and requires a nontrivial estimate of the size
of Fourier coefficients of cusp forms. The most general result to date is provided
by [9]. Throughout the proof in the Hilbert modular case, the operator Wy is used
in place of Li’s Vg which results in minor but inconsequential variations. [J

4. MORE ON Wp

In this section we extend the definition of the operator Wo(®) somewhat by
allowing ® to be a Hecke character extending wQ or wgwoo, and we develop some
properties of Wgo which are crucial to analyzing twists of newforms by characters
whose conductors are not prime to the level of the newform.

With the notation as in (2.1) we have:

f | Wo(®@)(x) = B(det @)Y, (bty mod Q) (@ mod M) (£ | y)(=).

In the case that ® extends 1, Wo(®) maps My (N, ¥) to My (N, \1'52) and

thus MM (N, ¥, m) to M (N, @D@Q, —m). Except for the difference in the range
of Wu(®), it is easy to see that the rest of Proposition 2.2 as well as Propostions
2.3 and 2.4 remain valid with this extended definition. Moreover, Proposition 2.7
remains valid in the case that the infinite part of at most one of the two Hecke
characters Wy or Wy extends 9.

Proposition 4.1. Let f,g € S, (N, ¥) C S (N, v, m) and let  be a Hecke char-
acter extending Y, or yyth . Then (f | Wo(®), g | Wo(®)) = (£, g).

Proof. Givenf = (f1,..., fn),g=(91,--- . gn) € SeN, V), put £ = (f],..., f) =
f| Wo(®) and g’ = (¢,...,9;,) = g | Wo(®) where y € Ga, Yy = 1 and
det(yo)O = @ as described in §2. We shall show that (f | W (®),g | Wo(®)) =

YA g) = Y5 1 (k. g) = (f.g) by showing that (£/,g)) = (fu(r) Gu(n)) for
each .

Let z € H" and let we € GL2(R)™ such that we (i) = 2. Let wy = 1 and
W = WoWeso- From (2.1) we have that

R T woso(i) = det(woo) ™™ £ | Wo (@) (2 "wso)
= det(woo) " ®(det 7 “woo) @(gfa mod Q)¢ (@ mod M) f(z} y'wes).

For each index A there is a uniquely determined index p = p(A) and a totally
positive element a, € K such that ¢, ' det(y) = au%vljl. By (1.1) we have that
r\ 'yt = Pz, v with 3 € Gk and v € W(N). Comparing infinite parts, we see that
Voo = 371 hence 3 € GL (K). Thus

Jg\/ | Weo (1) = det(woo) ™™ ®(det 23 *) @(gtNa mod Q) ¢, (@ mod M) f(Bz, vee)
= B(det 2, ") Uy, (bty mod Q) Y, (@ mod M) 1y, (v") det(voe)™ fo | Vooso (i)
from which it follows that

j;\’(z) = ®(det zy") %(5% mod Q) %(’d mod M) ¢Y(UL) det(voo)im fu ﬁ_l(z),
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B € GLI(K). The expression for g, is identical, so it is trivial to see that

PG = £, | 81(=)g [ B (=), hence (£, ) = (£ | 80105 | B71) = (fur 9,
which completes the proof. [J

Proposition 2.3 implies that Wo (®) maps S, (N, ¥) to S, (N, 11152), and Lemma
4.1 implies that it maps S;7 (N, ¥) to S; (N, \1162). By Propostion 2.4, Wy (®) takes
Hecke eigenforms to Hecke eigenforms, hence Wy (®) takes newforms to newforms.
Thus if f € Sk(N, ¥) is a normalized newform, we have

£ Wo(®) =Xge(f)g=ro(f)g

where g is a normalized newform in S (N, ‘1152). Following [1], we call Ag ¢ (f)
the pseudo-eigenvalue of Wy (®) at f. It follows from Proposition 2.4 that f = g if
Yy = 1, and from Proposition 2.2 it follows that Ag .o (f) Ag 5(8) = ¥5(—1), so that
in particular, Ag ¢ (f) # 0 . Finally we have defined Wy so that when f € Si(N, ¥)
and @ = N, f | Wo (V) = f | Hy; consequently, if f is a normalized newform in
Sk (N, ¥), then by Proposition 2.10 of [11] we have f | Hyr = ~f | K (with |y| = 1)
hence f | i (V) = A ,w(F)f | K with [A\y w| = 1. That the pseudo-eigenvalue of
Wo has modulus 1 is true in general:

Theorem 4.2. Let Q| N with (QNQ™Y) = 1, and let Wy be a Hecke char-
acter extending wg or wg¢m. Let £ € Sg(N, V) be a normalized newform with

f | Wo(¥) = Aou, (f) g where g is a normalized newform in Si(N, \If\I/—Q2) Then
Ao g, ()] = 1.
To prove this we first require a lemma.

Lemma 4.3. With the notation as above and p a prime ideal, the p** Fourier
coefficients of £ and g are related as follows:

g (p) C(p, f) ifptQ
(W5 (p) Clp,f) ifp|Q.

Cp,g) = {

Proof. 1f p1 Q then Proposition 2.4 yields
f1T, | Wa(l) = Y5(p) £ | Wo(¥y) | T,
from which we obtain

Clp,f) Aou, (F) g = Y5 () Aou, (Fg | Tp.

It follows that

C(p, f)D(Sa g) = WS(]J)D(S, g | Tp)a
where D(s,h) is the Dirichlet series attached to h. For a fixed integral ideal m,
the coefficients of N(m)~* in the above Dirichlet series are C(p,f)C(m,g) and

U5 (p)[C(mp, g) + (‘I/\I/—QQ)*(p)N(p)kO_lc’(mp_l, g)| respectively. When m = O, the
coefficients must be equal which yields the result in the first case.
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Next assume that p| Q. By Proposition 2.7 with Q' = N'Q~!, we have
FVA(®) = BHNQY) £ | Wo(l) | Wiom (WU5Y)
which implies

)\N,\I/(f)f | K | Tp = \IJS(NQ_l) f | WQ(Q’g) ‘ WNQfl(\II\IJg_l) ’ Tp
— \Ig(NQfl) (\Il\Ilg_l)*(p) £ | Wo(Y) | Ty | WNQ_I(\I,\I,;)

and hence
A (0, D) £ | K = BNO) (V057 (p) £ | WolVo) | Ty | Wyg- (V5 1).

On the other hand,

A (B)C(p, £) £ | K

Clp, ) f | W (T)
Clp, H) TSN Q™) £ | Wa(Tg) | Wyrg-1 (PT5Y)

which implies
Clp,D)f | Wo(¥o) = (W5")*(p) £ | Wa(¥o) | Ty
or equivalently,

C(p,f) g = (0¥ ")*(p) g | Ty

For a fixed integral ideal m, the coefficients of N(m)~* in the associated Dirichlet
series are C'(p, f)C'(m, g) and (\Illlfg_l)*(p) C(mp, g) respectively. When m = O, they
must be equal, hence C(p, f) = (\I/\Ilg_l)*(p) C(p, g) which completes the proof.

Proof (of Theorem 4.2). We first claim that the m'® Fourier coefficients of f and g
have the same modulus. Since f and g are both newforms, it suffices to show this
(see Theorem 3.3) when m = p”, p a prime. The case of » = 1 is Lemma 4.3, and
the general result follows from equation (1.5) by an easy induction on r.

For f € Si(N, 1, m) and g € Si(N, ¢, —m) Shimura defines (p 355 of [12])

L(s;f,g) = Y C(m,f)C(m,g)N(m)"*

mCO

and he discusses its analytic continuation. From the proof of Theorem 9.8 of [12]
(see also Proposition 4.9 and 4.13 of [11]) we have that the residue of L(s;f | K, f)
at s = 0 is equal to k(f,f) where k is a nonzero constant, and L(s,g | K,g) =
(g, g) for the same constant x. However from above we have that L(s;f | K,f) =
L(s,g | K,g) hence (f,f) = (g,g). On the other hand, by Proposition 4.1 we have

(£,£) = (f | Wa(Y),f | Wo(¥)) = Ao, (F)*(g,8) = (g )

from which the theorem follows. O
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5. TwisTs OF NEWFORMS

In this section we characterize the exact level of twists of newforms and give
the strong relationship between nonvanishing of eigenvalues of Hecke operators and
whether the twist of a newform is again a newform.

Let ® be a Hecke character with conductor dividing M. Here and henceforth,
the word conductor will mean only the finite part of the conductor. The infinite
part of ® has the form ®.(a) = sgn(a)’|a|’ for £ € Z", r € R" and a € KX;
typically in the applications below, we shall choose r = 0. Let 7(®) be the Gauss
sum defined in (9.31) of [12].

Definition. Let f € S (N, V) C &, (N, ¢, m). Let

f | Ry(M) = d(detz) > oo () @ (M) £ | (54),(2).
vEM-1o-1 /01

The twist of f by ®, f, is defined by

fy(z) = (D)7 | Ry (cond(®))

Proposition 5.1. Let the notation be as above. If Ny is the conductor of ¥, My
is the conductor of ®, and L = lem(N, MoNy, M3), then f, € Sk(L, Ud?) and
C(m,fy) = ®*(m)C(m,f) for all integral ideals m.

Proof. This is Proposition 9.7 of [12] (cf. Propositions 4.4 and 4.5 of [11]). O

Similarly it is easy to see that f | Ry (M) € Sp(L, ¥®?) where £ = lem(N, MNy, M?)

The following two Propositions are trivial to verify using the action of the various
operators on Fourier coefficients. Note that the Fourier coefficients C'(m, f) capture
the modular form f, although the Dirichlet series D(s,f) need not.

Proposition 5.2. Let ® be a Hecke character with conductor M, and let p be a
prime with p{ M. Then for f € Sp(N,¥) we have fy | T, = @*(p) (f | Tp) 4

Proposition 5.3. Let ® be a Hecke character with conductor M and f € Si(N, ).
Then fy | K = (f | K)3.

A simple and straightforward computation gives us

Proposition 5.4. Let f € Sp(N,¥), QIN with (Q,NO™ ') =1. Let ® be a Hecke
character with conductor M and suppose that (Q, M) = 1. Finally, let ¥y be a
Hecke character extending . Then £, | Wo(¥g) = ©*(Q)(f | Wa(¥g)),-

Now we wish to explore the actions of newforms under character twists. When
the conductor of the character by which we twist is prime to the level of the modular

form, the situation is completely straightforwward. We have (cf. comments on p228
of [1])

Theorem 5.5. Let f € Si(N,¥) be a normalized newform and let ® be a Hecke
character with conductor M. If (M,N) =1 then £, is a normalized newform in

SN M2, Ud?).

Proof. Since f is a normalized newform, Theorem 3.3 tells us that D(s,f) has an
Euler product representation; consequently, we immediately see that D(s,fy) =
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Z C(m,f;)N(m)~* has the Euler product
mCcO

D(s,fy) =[[(1 — ®*(a)C(a,£)N(q)~*) "
qlNV

[1(1=2*(m)Cp. )N ()™ + " (p)@* (p)*N(p) "~ 7) 7",
PN

Moreover, a computation analogous to Proposition 3.65 of [10] (see also equation
9.32 of [12] and Proposition 4.5 of [11] — beware of the two typographical errors)
yields that fy | Hya2 = +'(f | Hy)g for ' € C* with |[y'| = 1. Also recall that
since f is a newform, f | K | Hy = ~f for some v € C* with |y| = 1. Thus

fo | K | Hyare = (1), | Hyae | K = (D)"Y (f | Hy)g) | K
= (D" | Hy | K)o =7 | K | Hy)g =71,

The result now follows from Theorem 3.7.

Next we turn to the more complicated case in which we consider a Hecke char-
acter whose conductor is not relatively prime to the level. Clearly it suffices to
consider characters whose conductor is a prime power which divides the level. We
first need a lemma (cf. Lemma 7 of [5]).

Lemma 5.6. Suppose that £ € Si,(M, V) N Sp(N, V). Then £ € S,(D,¥) where
D is the greatest common divisor of M and N .

Proof. Tt is clear that WU is defined modulo DPo.. Write N' = p® N’ and M = pP M’
where p is a prime dividing MN and with p + M/N’. Wlog assume a > (.
Then f € Sp(N,¥) N Sk (p I M’,¥). By induction, it suffices to show that f €
Sk(po‘_lj\/’, \1/)

Since p t N M’ we may decompose W (p*~IN”) as W (p*~N) = U; W(N)w;
where w; € W(p* N’ M’). Thus for any w € W (p*~*N”’) with we = 1 we have
w = wiws where w1 € W(N), we € W(p* ' M’) and (w1)oo = (w2)oo = 1. Then
flw=1F]wws =y, (w)f | w1 =1y (w2)Yy (w1)f = 1Yy (w)f, so by equation(1)
following (1.3), f € Sp(p®~*N”) as desired. [

Now we determine the exact level of a twist by a character whose conductor is
not prime to the level (cf. Theorem 3.1 of [1]). For an integral ideal A and a prime
q dividing NV, let Q = q” where v = ordq(N). Then N' = OM with (Q, M) = 1;
we call Q the g-primary part of N.

Theorem 5.7. Let N be an integral ideal and let q be a prime, q|N. Write
N = QM where Q is the q-primary part of N'. Take f to be a normalized newform
in Sk (N, ¥) with ordg(cond(¥)) = a, a > 0. Let ® be a character of conductor q°,
B>1, and put Q' =lem(Q,q**P,q??). Then:
(1) For each prime p| M, £ is not of level Q' Mp~1.
(2) The exact level of £y is Q' M provided that
(a) max(a+ 3,203) < ordq(Q) if Q' = Q, or
(b) ordg(cond(¥®)) = max(a, ) if ordq(Q") > ordq(Q).
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Remarks. (1) Theorem 7.1 gives a refinement of this theorem in which essentially,
the phrase “the exact level of f is Q' M” can be replaced by the phrase “f; is a new-
form of level o'M”.
(2) There are cases in which the level of f is a proper divisor of Q' M (see Theorem
7.2).

Proof. By Proposition 5.1, f; € Sp(Q'M,¥®?). If f, € Si(Q' Mp~!, ¥d?), then
(f3)5 € Sp(N, ) where N = g Mp~—1, where v = max(ord, (Q'), ordy(cond(V®?))+
B, Zﬂ) Now (fj)z is equivalent to a newform h, written (f;)z ~ h (i.e. has the
same eigenvalues for almost all Hecke operators 77, [ a prime) where the level of
h divides N. By Proposition 5.2, f ~ (f;)5 , so f ~ h, and so by Theorem 3.5,
fe Sk(./v, U) N S,(QM, V). By Lemma 5.6, f € Sp(QMp~!, ¥), a contradiction.

Now suppose that f; has level Q' Mgq~!. First note that f, # 0 otherwise
f ~ (f;)z = 0, contradicting that f is a newform (see Theorem 3.1). Let w; €
W(Q' Mq™1) (with (w;)e = 1) be a set of representatives for W(Q' M)\W (Q'Mq~1).
Then

(5.1) @VHQMfl E:ngﬁ%\wj:E:EQ@ﬂwﬂwﬂ%:dWQ%.

On the other hand, since we may take {w;} = {(} (1))0|c € O'Mq1to/Q' Mo},
@%

<1> |TI“QM -1 ) = Z%(wj)f¢(mw§)

=@ ledet() Y Bae® a0t (o 13) (57),)-
ceQ’' Mq~1o/Q' Mo
veq—Po—1/o-1

Case I: ¢°+2| Q'

The proof is very similar to the proof in [1], but for completeness, we sketch
it. Since q#t2|Q’, for each v € q=%0~! there is a unique v/ € q~?2~! such that
v—1v'(1+vc) €0 L. Tt follows that

£(2(20), (67) =€ (=(677), (L9) w)

wo = (D ) e W(QM), wae = 1.

where

1—cv’

Equation (5.2) now yields
@@

£, | TrQM _i(z) = 7(®) "1 @(det(z))  x

> e (), (1))

ceQ’' Mq~to/Q' Mo
veq—Po—1/p1

Since W (QM) C W(Q'M) we have

£ (:c((l) _1,//)0<_1C(1)>0wL> = v+ Cyl)f (:c((l) _f/)()(_lc(l))o) '
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It is easy to see that B (v)® (rq°d) depends only on the value of ¥ mod 2! so

ve))® (V' (1 + ve)g’o)
ve)(1—v'e))® (V' (1 +ve)(1 —1e)q?0) B (1 — /) B ((1 — Ve))

where @, is the g-part of the Hecke character ®, which may be viewed as a numerical
character modulo q®. Thus (5.3) becomes

£, | fﬁgﬁ L (2) = 7(®) " d(det(z)) X

(5.4) > oo () (Ve 0wyt (2(51) (L1),)-
c€Q' Mg~ '0/Q' Mo
v'eq=Foa—1/o1

Subcase A. o> 3, or a = 3 > (1/2) ordq Q and ordy(cond(y®,)) = «
If ordg @ > ord, Q, then cond(djq(bq) =q% c € No, and ¢/ € g M. If

Q' = Q, then max(a + 3,20) < ordg Q, COIld(Q/Jqq)q) = q% c € @ Mq o, and
cv' € g M.
Thus equation (5.4) yields

7(®)P(det(x)) £y | T1rQ Mq,l(a:)

zy, (V) (v'9°0)1, @ (1 + VO)f (2 (O—f’)o) if ord, @' > ord, Q

Z’/(I) )_ (v'a0)f (m( V)o(‘“)o) if @'=Q
VD (Vg0 f <£L‘<0 1/>0> Zcz/)qcbq(l—i-u’c) if ordqg @" > ord, Q

meMq,l) () if Q' =Q

in the first case since either @ (v/q%0) =0 or ¥, ) ®q(1+2'c) =0 (for 1 —v/c runs
over a group on which 1/1q @, is nontrivial), and in the second case by Theorem 3.4.
This contradicts equation (5.1).

Subcase B. a < for a = < (1/2) ord, Q.

If ordg @ > ordy Q, then cond(z/)q(I)q) =q% c € No, and e/ € ¢° M. If
Q' = Q, then max(a + 3,26) < ordq Q, cond(quIJq) | q%, ¢ € @' Mq~ 10, and
cv' € ¢° M. The argument proceeds in analogy to the one above.

Case II: ¢°12 1 Q'
Here we must have Q = q, Q' = ¢2, and cond(¢) ®q) = q = cond(®q). The
argument here is in analogy to that in [6].
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Starting from equation (5.2), it is sufficient to show that

(5.5) S D)@ () £ (54), | (19)y(x) =0
Veq_lb_l/D_l
cEqMD/q2 Mo

Note that we may assume that (vq0d,q) = 1 otherwise ® (vq0) = 0. We first
show that Z oo (V) (vq0) £ (} o | (L)), =0, so given ¢, v assume that

v,c
14créeq

14+ € q Let ¢ € K with qO = q and g = 1, and let y € G4, with
vo = ((1)II>0<(1;(1J)0((1)691>0 _ <1—|—Ccl/ ?)O’ Yoo = 1. Finally, let W5 be a Hecke
character extending wq. Then we can use y to define the action of Wp(¥y). It
follows that

3 Yoo @@ @m) £ (57)y | (29)o()
veq~1o-1/0-1 ceqMd/q> Md
1+cveq
— Up(Gdetz) Y 3 6m(y)5*<yqa)%(yq~%})f|WQ(\IJQ)y(3691)0(@
veq—1o—1/o-1 ceqMa /g Mo
1+creq
= Up(Fdet)B(qhor) Y. et (vhe) Y. f|WQ<\11Q)|(3691)0(x).
veq—lo-1/p-1 cEqMDV /g2 Mo
14créeq

As v runs over q~ 071 /o7, vGt, runs over O/q, and since <I>q1/)q #1,
Y Pty (vgh) =0
veq—lo—1/0-1

which proves the first claim.
Thus, we are reduced to showing that

(5.6) > Yoo @@ wa) £ ] (57), | (27)g@) =0
veq=1o—1/0-1 ceqMd/q> Md
1+cvéq

For each ¢, v with 1+ cv ¢ q there is a unique v’ € ¢~ 1071 /07! such that /(1 +
ev) = vmod . Then (37),(19),(571"), = (o ), € Wiam) =
W(N). Hence

2. S B @F ) 1 (57, | (L))

veq=to~1/o1 ceqMo /g2 Mo

14+cvéq
Gn = 2 P Ee)T e te) £ (§Y) (@)
I terg
= Z 600(V’>$*(y/qa)®q¢q(]_—|—cy) f | <(1)V1,>0(x>'

1+c71/¢q
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Observe that /(1 +cv) = v mod 071 iff v/ = (1 — ev/)v mod 071, so we can change
the variables ¢, v to ¢, v’ where v/ runs over q~1071/07! with (+/qd,q) = 1 and ¢
runs over gM0/q> M0 with 1 —cv/ ¢ q. Also note that ®qwq(1+cy) = Qquq(l —cv')

so equation (5.7) becomes

> T ERE(3Y) @ Y g-a)=0
v'eq—lo-1/0-1 cEqMD /g2 Mo
1—cv’€q
since for fixed v/, 1 — ¢v/ runs over (O/q)*, and @41y is a nontrivial character on

(O/q)*. This provides the desired contradiction and completes the proof of the
theorem. [

Now we have

Theorem 5.8. Let q| N and let Q be the q-primary part of N. Write N = QM
and let ® be a Hecke character of conductor q°, 3 > 1. Let £ be a normalized
newform in Sk(N, V). Then there exists a normalized newform g € Sk(éj\/l, UH2)
with Q = q” for some v > 0 such that fy, =g —g | Ty | By.

Remark. In the case K = Q, more precise information can be obtained about 8)
(see Theorem 3.16 of [3]).

Proof. By Theorem 5.7, f; € Si(Q' M, U®?) where Q' = lem(Q, q**”,¢%7) where
o = ordg(cond(¥)). Since fy is a simultaneous eigenform for all T}, with p { N,
there exists a newform g € S,(QM’, Ud?) with f, ~ g. Here Q| Q and M|
M. Then gz ~ (fy)g ~ f and gz has level Q' M’ where Q' = q7, where v =
max(ordq(é), 23, ordy(cond (¥®?) cond(P))). Since f is a newform of level QM we
have QM | O'M’'. Thus M = M’ and 95 = Z cof | Bq. Finally,

aQ’ Q-1

g—gl|Ty|By=(85)p = Z (caf | Ba)g = cofy.
a|é/g—1

Comparing first (i.e., O-th) Fourier coefficients yields co = 1. O

Corollary 5.9. If ord,(cond(¥®?)) < ord, Q, then £y is a newform if and only if
7’| Q.
Proof. By Theorem 5.8, f; is a newform if and only if g | Ty = 0. Since g is a

newform, g | T, = 0 if and only if C(q,g) = 0. The result now follows by Theorem
3.3(3). O

6. g-PRIMITIVE NEWFORMS

In this section we obtain most of our results concerning when twists of newforms
are newforms, and we consider the question of when a newform can be expressed
as the twist of a newform of “lower” level (i.e., the question of primitivity).

Throughout this section fix a normalized newform f € Si(N,¥) and a prime
q|N. Let Q be the g-primary part of ' and write N' = QM as before. We shall
consider only Hecke characters ® whose conductor is a power of q. The character
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®, is the restriction of the Hecke character ® to the g-part of the ideles, but may
be viewed as a numerical character on (O/ cond(®))*. Put

Q:b = lem(Q, cond(zpq) cond(®), cond(®)?).

Theorem 6.1. Let ® be a Hecke character with q-primary conductor. If Qlcond(®)
and cond(wgq)) = cond(®), then fy is a newform in Sk(QiDM,\IICIﬂ). Moreover,
if U1 is a Hecke character extending ¢Q<I>3 (viewing ®q as a numerical character),
then Ag,w, (f5) = ©q(—1)T1 (£)7(V1®)7(P) 1.

Proof. Put Q" = Q7 and Q" = cond(®). By Theorem 5.7 (2b), the exact level

of £, is @' M, and Q' = (Q")%. Let y € Ga, yo = (%%)0 represent Wy (V1) =
WM (Wy). Then

£, | Wor (1) (x) = Ty (det 2)¢, 82 (bF ) (a)7(F) "L @(det(zy)) x
> Do (1)@ (1Q") £ (54), | y(2)

ve(Qra)~1 /o1

We may assume that (vQ”0,q) = 1, so for each such v there exists a unique

v € (Q"0)71 /o7t such that (vv/¢ — b)O € Q"0 L. Then

1lv ab 1 - ~
(01)0(63)()(0 1 >O:qw
where ¢ € K with ¢gO = Q" and ¢ = 1, and where w € W(Q"M) C W(N).

Thus /
EL(50) lv@) = £ quw(3) (@

A straightforward but tedious computation permits us to rewrite the sum over v
as a sum over /. The end result is

£y | Wor (1) = éq(—l)ﬁl(tD)T(\Pli)T(@)_lfalé,

which confirms the claim about the pseudo-eigenvalue.

By Theorem 5.8, there is a normalized newform g € Sk(@M, \I/<I)2) such that é
is g-primary and f;, =g —g | Ty | By. The exact level of g — g | Ty | By is q@M
or OM (the later case if C(g,g) = 0). Thus (Q”)2 = Q or qQ. By Corollary 5.9,
f, must be a newform unless Q" = Q = Q= g, so we assume this later condition
and derive a contradiction.

From the first part of the proof we have that

Oq (1)W1 (t)T(V1D)fg 4 = T(P)fy, | Wor (V1) = 7(2)(g — & | Tg | By) | Wiz (¥1)

Also,
g | W (1) = g | W(w1)(39) = N(@)/2(0T;0%) (@) g | Wo(W1) | By

and
g | Ty | By | W2(¥1) = C(q,8)N(q) /g | W(Ty).
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Note that by Theorem 3.3, C(q,g) # 0. Taking g to be the normalized newform
such that g | W (¥1) = A\;(g)8g, we have

Oq (1)W1 (t)7(V1B)fg, 4 = 7(B)C(a,8)N(a) */* A (g) (8—C(a,8) "N ()& | By).
Comparing the absolute values of the O-th Fourier coefficients of both sides yields
N(@)'? = N(@)'/|C(a,2)|N(a)"/* | Aq ()]

From Theorem 4.2, |\q(g)| = 1, which shows that |C(q,g)| = N(q)*°/2, contrary
to Theorem 3.3. Therefore, f; is a newform. [

The following corollary is an immediate consequence of the theorem above.

Corollary 6.2. If Q = q and ord,(cond(¥)) = 0 then the twist of f by any non-
trivial q-primary Hecke character ® is a normalized newform of level QZI)M.

Theorem 6.3. Suppose that cond(y),) = Q and ordg(cond(®)) < ordq(Q). If
C(q,f) # 0 then £y is a normalized newform in Sp(N cond(®), ¥d?).

Remark. The condition C(q,f) # 0 is discussed more fully in the remark following
Theorem 3.3.

Proof. Put Q" = cond(®) and write N' = QM as usual. By Proposition 5.2, fy is
an eigenform for all Hecke operators T, with p # q. We observe that C(m,f, | Ty) =
®*(mq)C(mq, f) = 0, so f; is an eigenform for Hecke operators T, for all primes p.
By Theorem 5.7 (2b), f; has exact level N'Q", so by Theorem 3.7, we need only
show that f; is an eigenform for the operator Hygr K.

Consider (f | Tor | Hy)g | folg,. A straightforward but tedious calculation
completely analogous to Theorem 4.2 of [1] yields that

(f| Tor | Hy)g | K = (f | Tor | Hy)g | Hygr | Hyor | K =C(Q7,£) (f | Hy)g | K

By Proposition 5.3, f; | K = (f | K)z and since f | Hy | K = ~f for |y| =1, we
have

(f | Tor | Hy)g | K= C(Q", £)y £y
Since f | Hyor | K = (=1)*f | K| Hyor, | Hyor | Hyor = (—1)*f, and
f| K| K =f we have
(f | Tor | Hy)g | K = (£ | Tor | Hx)g | Hyon | Hyor | K = C(Q7,f)7 £y,
from which it follows that fy is an eigenform for Hxrgr K and hence is a newform
of level N'Q" provided C(Q”, f) = C(q, f)°*4a(2") =£ 0, which has been assumed. [
From this we get

Corollary 6.4. Suppose that COIld(”g/JQ) = Q, ¢ is nontrivial, and C(q,f) # 0. Put

~ ( cond(®) if ordg(cond(¥®)) > ord,(Q)
{ cond(y,Pq) if Yy ®q # 1 and ordg(cond(¥P)) < ordq(Q).
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Then £y, is a normalized newform in Sk(@./\/', Ud2) if  does not extend EQ. If ¢

does extend EQ then £y is not a newform of any level.

Remark. The condition C' (gq,f) # 0 is not required for the case where ® does not
extend ¢, and ordg (cond(¥®)) > ord,(Q). See also the remark following Thoerem
3.3.

Proof. Let ¥y be a Hecke character extending Q/JQ, and consider f@Q. Let g €
Sk(N, \IJWS) be the normalized newform such that f | Wo (%) = Ag v, (f)g. From

—x

Lemma 4.3, we know that for any prime p { Q we have C(p,g) = V5 (p)C(p, f), and
Cla,g) = (¥¥5")*()C(q,f). Moreover, for pt Q, C(p.fg,) = Ug(p)C(p,f), thus
g ~ fﬁg' By Theorem 5.8, f@Q =h—h | T, | By where h is a normalized newform

in Sk(Q'M, \Pﬁé) for @ a power of g, so f@Q ~ h, and hence g ~ h. By Theorem
35, g =h,sofy =g—g|Ty| By # g since Ca,8) = (V") (a)C(a,f) # 0,

hence f@Q is not a newform.

Now suppose that ® # U,. Consider first the case where ord,(cond(¥®)) >
ordg(Q). If ordg(cond(®)) < ordq(Q) = ordg(cond(¥)) then Theorem 6.3 yields
the result. If ordg(cond(®)) = ordg(cond(¥)), then cond(yy, ¥4)|Q, which combined
with the hypothesis of the theorem gives cond(y), V) = Q = cond(yy,) = cond(®).
If ordg(cond(®)) > ordg(cond(¥)), then cond(y,¥q) = cond(®) of which Q is a
proper divisor. In either of the later two cases, the result follows from Theorem
6.1. Next, suppose that ordgq(cond(¥U®)) < ordq(Q). Then & = Uy®’ with &’ # 1

and ordy(®’) < ord(Q). Let g € Sip(N, \IJW;) be the normalized newform with

f| Wo(¥y) = )\Qv%(f)g. Then fig =g—g | Ty | By (as above), so fy, = (fag)q), =

g4 is a normalized newform of level @./\/' by Theorem 6.3. [
In strict analogy with [1], we introduce the notion of a primitive newform.

Definition. Suppose that the prime q divides N. A newform g € Si (N, ¥) is said
to be g-primitive if g is not the twist of any newform of level N7 where N’ is a
proper divisor of ' by a Hecke character whose conductor is a power of q. Clearly
g is g-primitive if C(q,g) # 0.

Proposition 6.5. Iff is a q-primitive newform and C(q,f) = 0, then all twists of
f by g-primary Hecke characters ® are normalized newforms with level divisible by

N.

Proof. Let ® be such a character. By Theorem 5.8, there exists a normalized
newform g € Si(Q' M, ¥®?) such that f,=g—g| Ty | By Since C(q,f) =0, we
have f = gz = f 5. If f; is not a newform then C(q,g) # 0, for if C(q,g) = 0
then f, = g—g [Ty | By = g — C(q,8)g | By = g which would imply that f
is a newform, a contradicition. By Theorem 3.3, C(q,g) # 0 implies either that

cond(wgq)z) = Q' or q | @ and ord, (cond(1/19<1>2)) < ordq(Q’). In the first case,
Coroallary 6.4 implies that gz = f has level N = Q0O’' M; in particular, ordq(Q') <

ordy(Q'Q) = ord,(Q). In the second case, Q" = q and ord, (cond(wgqﬂ)) =0, so

Corollary 6.2 implies that gz = f has level N = lem(Q’, cond(®), cond(®)?) M. In
either case, it is clear that Q' M is a proper divisor of N and f = g5 implies that
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f is not g-primitive, contrary to assumption. Therefore f; is a newform. The level

of f is divisible by N otherwise f = (f; )5 would not be g-primitive. O

Conversely, we have

Proposition 6.6. If all twists of £ by Hecke characters ® with q-primary conduc-
tors are newforms, then £ is the twist of some q-primitive normalized newform.

Proof. Let ® be a Hecke character with g-primary conductor such that the level
of f; is minimal. That is f; € S(Q'M, ¥®?) with Q' dividing the level of every
twist of f by a Hecke character with g-primary conductor. By Theorem 5.8 there
exists a normalized newform g € S,(QM, ¥®?) such that £, =g —g | T, | By. If
C(q,f) # 0, then f is g-primitive and hence is the twist by the trivial character of
a g-primitive newform. Otherwise C(q,f) = 0 and as in the previous proposition
we have f = gz = f 5. Clearly g is g-primitive by minimality of Q'. O

The proof of the following technical lemma is analogous to Lemma 4.11 of [1].

Lemma 6.7. Let ® be a Hecke character with conductor dividing 9°, 3 < ordq(Q).
Let o = ordg(¥) and put

Q' =lem(Q,q**? ¢*) Q" =lem(q,q°7Q,q727Q?).

Finally, let Yo be a Hecke character extending wQ. Then

| Ry(a”) | Wor(To®?) = wf | To(To) | - Ry, Q1) | Wor (%) | Raygg ("),
31

where K 1s a nonzero constant and where the sum is over Hecke characters P,
one for each numerical character defined on (Q/q°)*. The particular choice of the
Hecke character extending the numerical characters is irrelevant but fixed.

Now we have

Theorem 6.8. Let v = ordq(¥y,). If (1/2)ordq(Q) < o < ordy(Q) and C(q,f) =
0, then £ is not q-primitive. Moreover, there exists a Hecke character ® of conductor

Qq~* and a normalized newform g € Sp(q*M,V¥®") such that f = g

Proof. The proof that f is not g-primitive is completely analogous to the first part
of the proof of Theorem 4.3 of [1]. The proof of the second statement has minor
variations which we indicate below. Since f is not g-primitive, there exists a Hecke
character ® of conductor g°, a proper divisor Q of Q, and a g-primitive newform
g € Sp(aM, \1152) such that f = g . We claim that ordq(cond(\PEQ)) = a.

=gs5 =88 | Ty | By Put Q@ =lem(Q, qt?, q%8)
and v = ordq(cond(\lfag)). If v > a, then § > « and ordy(Q’) = 208 > ord,4(Q). By

Since f = g, , we have fz

Theorem 5.7, % has exact level @’ M which implies Q| Q, contrary to assumption.
If v < a then cond(®?) = g%, so either 3 = « if q is nondyadic or q is dyadic of
degree greater than 1, or § = o+ 1 if q is a dyadic prime of degree 1. In either
case, ordy(Q) < ordq(Q’) and ordg(cond(¥®)) = max(a, 3). Using Theorem 5.7
as above leads to a contradiction, so we conclude that ord, (Cond(\IIEQ)) = « as
claimed.



24 THOMAS R. SHEMANSKE AND LYNNE H. WALLING

Using arguments similar to those above, we see that ord, (cond(\IIEQ)) = « forces
cond(®) = ¢ |q®. Moreover, we claim that @ = q®. Now « > 1 by hypothesis, so

if ordg(Q) > «, then C(q,g) = 0 by Theorem 3.3. Moreover, since ordq(Q) > a >
(1/2)ordq(Q) > (1/2) ordq(é), the first part of this theorem implies that g is not
g-primitive, contrary to asumption, hence 0= q“ as desired.

To complete the proof, we need only verify that ¢° = Qq~®. We know that
B <a If B<a,then q° = Qq~ by Theorem 5.7 applied to g, Now assume
that 3 = a. If ord,(cond(¥®)) = «, then by Theorem 5.7 again, we have Q = g°,
contrary to assumption, so ordgq(cond(¥®)) < . This implies that ® = Uy®’
where ¥y is a Hecke character extending wg and where ®’ is a g-primary Hecke
character with ordg(cond(®’)) < a. Note that ®’ is nontrivial, otherwise since

g—g|Ty| By = f@, and f | Wo(¥g) ~ f@ ~ g, we would have that g is a

newform of level N, contrary to assumption. Now let g’ € Si(q*M, \IIE;) be the

normalized newform such that g | Wéa(\I!Q§2) = A (g)g’. Then as above,

qa,\lfg$2
8y e = g g |T—q|Bjand f =g, = g&}ga = g%,. By the same argument as

above, we have cond(®’) = Qq~*. O
As an immediate consequence of Theorems 6.8 and 3.3 we have

Corollary 6.9. Iff is q-primitive and C(q,f) = 0 then either ordg(cond(yy)) <
(1/2) ordq(Q) or ordg(cond(yy,)) = ordq(Q), 92| Q and the inertial degree of q is

greater than one.
Finally we have

Theorem 6.10.

(1) If Q = ¢**! and cond(yy,)[q”, then f is g-primitive.

(2) If Q = q*¢ where q is a dyadic prime of degree one, and Cond(wg) = g”,
then f is q-primitive.

(3) If q is a dyadic prime of degree one, Q = q*° with p > 2 and cond(wg)\
q°~ 1, then the exact level of £, divides Nq~! for any Hecke character ® of
conductor q°. In particular, f is not q-primitive.

(4) If q is a dyadic prime of degree one,Q = q*, and Yy = 1, then f is q-
primitive.

Proof. The proof has only minor variations to the proof of Theorem 4.4 in [1], but
for completeness we sketch it.

Case 1) By Theorem 5.5, f is g-primitive if Q@ = q and wg = 1, so we may assume
that p > 1. Suppose that cond(¢g) |g” and f is not g-primitive. Then f = g for a

g-primitive normalized newform g € S, (Q' M, 11152) where Q' is a proper divisor of
Q and @ has g-primary conductor. Then fz = g—g | Ty | By. Since Q' is a proper
divisor of Q, we must have that cond(®)|q” otherwise Theorem 5.7 would give N'
to be a proper divisor of the level of f = g,. On the other hand, if cond(®) | g”
then Proposition 5.1 gives the level of f = g, as a proper divisor of N, contrary to
assumption. Thus f is g-primitive.

Case 2) We have that Q = g% where q is a dyadic prime of degree one, and
cond(wg) = ¢°. If f is not g-primitive, then as above, f = g, and f7 = g —
g | Ty | By with cond(®) = g”. Note that since q is a dyadic prime of degree one,
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cond(®?) | q?~!, hence ordq(cond(\If52)) = p > ordg(Q'). By Theorems 6.8 and
3.3, we have that Q" = ¢”. Let WUy be a Hecke character extending 1/19 and let

g € Sp(Q'M, \I’\II—Q2®2) be the normalized newform such that g | WQ/(\I!Q52) =
)\le‘IIQEQ
B < p, we have f = g, = 87, 0%0,F = g(yga since g’ = 8y 07 = g —g' | Ty | By
Here \IIQE has nontrivial conductor since f is a newform and g’ and f have different

levels. It follows from Theorem 6.3 — notice that we again use that the degree of
q is one (see Thoerem 3.3 ii) — that g(y 5 = I has exact level Q' Mq” which is a
)

(g)g’. Writing & = @QCIDQ\IIQE where \IJQE is a character of conductor g°,

proper divisor of N' = QM, a contradiction. Thus f is g-primitive.
Case 3) Here we assume that q is a dyadic prime of degree one, Q = g?” with
p = 2 and cond(yy) | q°~!. Let ® be a Hecke character of conductor gq°. By

Proposition 5.1, the exact level of f; divides V. Let (gg) e WWNqg™ 1) — W(WN).
In a computation completely analogous to the proof in [1], and using Theorem
3.4, we deduce that fg | <% g) = ®,(a)f,, which implies the result. Note that

once again we have used that the degree of q is one since in this case [W(Nq™1) :
W(N)] = N(q) = 2.

Case 4) This follows easily from Theorem 6.1 and from the fact that there are
no numerical characters of conductor q since ¢ is a dyadic prime of degree one. [J

7. SOME APPLICATIONS

We now present two applications of the preceding results. The first application
which we give strengthens Theorem 5.7 from a result characterizing the exact level
of a twist to a theorem telling us that the twists described by Theorem 5.7 are
newforms. The authors thank Arnold Pizer for suggesting this result.

Theorem 7.1. Let N be an integral ideal and let q be a prime, q|N. Write
N = QM where Q is the q-primary part of N'. Take f to be a normalized newform
in Sp(N, V) with ord,(cond(V)) = a, a > 0. Let ® be a character of conductor q°,
B >1, and put Q' = lem(Q,q**P8,q?%). Then f, is a newform in Sp(Q' M, ¥d?)
provided that

(1) max(a + 3,20) < ordq(Q) if Q' = Q, or

(2) ordg(cond(¥®)) = max(c,3) if ordq(Q') > ordq(Q) and q is a prime of

degree one.

Proof. By Theorem 5.8, f, = g—g | Ty | By where g € Sk(@/\/l, Ud?) is a newform
and Q is g-primary. Since by Theorem 5.7, f; has exact level Q' M, it follows from
Proposition 2.1 that Q" = é or Q' = qé.

First suppose that Q" = Q and max(a + 3,20) < ordq(Q). Since 8 > 1 and
23 < ordg(Q) = ordy(Q’), we have q®>| Q’, hence q? | Q. Moreover, we see that

ord, (cond(¥®?)) < ord,(Q) as follows: If & < 3, then ord,(cond(¥®?)) < 3. By

hypothesis, 28 < ord,(Q’), so 8+1 < 28 < ordy(Q’) or B < ordq(Q')—1 < ord4(Q).
If o > 3, then ord,(cond(¥®?)) = . By hypothesis, a +1 < a + 3 < ord4(Q) =

ordg(Q'), hence a < ordy(Q’') — 1 < ordy(Q) as claimed. By Theorem 3.3iii, we

have g | Ty = 0 hence fy

Q' M, we have q' = é, and the result follows in this case.

= g is a newform of level OM. As f, has exact level
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Next suppose that ord,(Q’) > ordy(Q) and ord,(cond(¥®)) = max(c, 3). We
consider the cases a > 3 and o < 3 separately.

Case A. If a > (3, then ord,(cond(¥®?)) = ord,(cond(¥®)) = ord4(¥) = a.
Subcase 1. ¢?| 0.

If O = Q' then ordq (cond(¥®?)) < ordg(q), so by Corollary 5.9, f is a newform
of level Q' M, as desired. Otherwise, 0=09 q:l; we show that this can’t happen.
If Q = Q'q™!, then ord,(cond(V®?)) = ord,(Q), for if ordy(cond(¥®?)) < ordy(Q)
then f, =g —g | T, | By would have level Q by Proposition 2.1, and since Q' M is
the exact level, Q'|Q = Q'q !, a contradiction. Now ordg (cond(¥®?)) = ordq(é),

q a prime of degree one, and Theorem 5.8 imply that f is not a newform of any
level. From this we derive a contradicition.

Since ord, (cond(¥®?)) = ord4(Q), we have

ordq(@) = ordy(cond(¥®?)) = ord,(cond(¥®)) = ord,(cond(¥)) = a < ord,(Q).
If ordg(cond(¥)) < ord,(Q) then ordq(@) = ordy(cond(¥)) < ordy(Qq~!) <
ordg(Q'q™1) = ordy(Q), a contradiction. Otherwise, ordy(cond(¥)) = (Q).
Observe that ® does not extend EQ since ordg(cond(¥®)) = a > § > 1, so by
Corollary 6.4, f; is a newform, a contradiction.

Subcase 2. Q = q.

If O = Q then 1 = ordq(@) = ordq(Q’) > ordq(Q) > 1, a contradicition. If
Q= Q’q~!, then ordy(q') = 2 = max(a+ 3, 20), which implies § =1 and o = 0, 1.
But we are assuming that o > 3, a contradiction.

Case B. If a < 3, then ordy(cond(¥®) = 3 and ord,(cond(¥®?)) < f.
Subcase 1. g2 | é

If @ = Q'(= ¢*%), then ord,(cond(¥$?)) < ords(Q) and so by Corollary
5.9, fq) is a newform of level @’ M. Otherwise, @ = Q'q~'; we show that this
can’t happen. We must have ord,(cond(¥®?)) = ordq(@) otherwise by The-
orem 3.3iii, f<I> is a newform of level @M contradicting that its exact level is

Q'M. By Theorem 5.8 (since the degree of Q is one), f, is not a newform

of any level. Now, 3 = ordy(cond(¥®)) > ord,(cond(¥P?) = ordq(@) implies
28 = ord,(Q') = ordq(qQ) < B+ 1 which in turn implies that 3 = 1. Thus
a=010 =q2and Q =q= Q. Since 3 = ordg(cond(¥®)) = 1, ® does not
extend Q/)Q. If o = 1 then Corollary 6.4 implies that f; is a newform, while if o = 0,
f, =g —g| T, | By is a newform since g | T; = 0 by Theorem 3.3iii. In either
case, this provides the desired contradiction.
Subcase 2. é =q.

If O = Q then q= 0=0Q = 9?8, a contradiction. If 0= Q'q ! then Q' = ¢?
implies f = 1. Then a = 0,1 give contradictions as above. [

Our second application gives a decomposition of a space of newforms as a direct
sum of twists of other spaces of newforms. (Such decomposition theorems were
studied extensively in [3] where the predominant tool was the Eichler-Selberg trace
formula.) Here we let S® denote the space of cusp forms consisting of {f, [f € S}
where S is a space of cusp forms and ® is a Hecke character.
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Theorem 7.2. Let q be a dyadic prime of degree one and M an integral ideal prime
to q. Let v be an even integer, v =2p > 4, ® a q-primary Hecke character of con-
ductor q°, and assume that ordq(cond(¥)) < p. Finally, let e = ordg(cond(¥®?)).
Then

v—1 . =
SH@M,¥) = @ S (ag'M,vd?)*.

Proof. Over the rationals, this is Theorem 3.14 of [3]. Let f € S;f (¢“M, ¥) be a nor-
malized newform. By Theorem 6.10iii, the exact level of f divides q“~' M. By The-
orem 5.8, f, =g —g | T, | B where g is a normalized newform in S (q* M, ¥®?).
It is easy to se that e < u < v —1 for if g > v then by Theorem 3.3iii, g | T, = 0
which would imply f; = g and hence pu < v, a contradiction. Now f &z = gz €
Sk (9" M, ¥) by Theorem 5.1 and so gz ~ f. Since f is a newform in Si(q" M, V),
we have f = gz by Theorem 3.5 (multiplicity one). It follows that

v—1
Si@M ¥y c )y S(a'M, v,

i=e

Conversely, if g € S,j (q* M, UP?) is a normalized newform, then Theorem 7.1

implies that gz is a newform in Si(q” M, ¥), thus

v—1
SE (@MW) = 3 8F (M, 08?7,

i=e

That the sum on the right hand side is direct follows immediately from multiplicity
one theorem (Theorem 3.5). [

10.

11.

12.

13.
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