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1 Introduction

One motivation for deriving semiclassical methods for chaotic systems like the
Gutzwiller trace formula was to find a substitute for the EBK quantisation
rules which provide semiclassical approximations for energy levels and wave
functions in integrable systems [1]. Although the Gutzwiller trace formula
allows to determine energy levels semiclassically from a knowledge of classical
periodic orbits, in practise only a relatively small number of the lowest energies
can be determined in this way due to the exponential proliferation of the
number of long periodic orbits in chaotic systems.

However, the trace formula is very powerful in applications in which one is
interested not in individual levels, but in statistical properties of the spectrum
in the semiclassical regime. These spectral statistics are in the centre of inter-
est in quantum chaos, because they are found to be universal and to provide a
clear signature for chaos in the underlying classical system. All numerical ev-
idence points to an agreement of spectral statistics in generic chaotic systems
with those of random matrix theory (RMT) [2]. The aim of the semiclassical
method is to find a theoretical explanation and, possibly, a proof for this con-
nection between quantum chaos and random matrix theory. Similar as on the
quantum side, what is needed for this task is not a knowledge of individual
periodic orbits, but of statistical properties of long periodic orbits.

The first steps in this direction were made in the seminal works of Han-
nay and Ozorio de Almeida, and Berry. Using the mean distribution of long
periodic orbits [3] Berry showed that two-point statistics agree with RMT
in the regime of long-range correlations in the energy spectrum [4]. To go
beyond Berry’s so-called diagonal approximation requires the evaluation of
correlations between periodic orbits. Vice versa, the conjectured connection
between quantum chaos and random matrix theory can be used to predict the
existence of universal correlations between very long periodic orbits [5, 6]. So
in some sense quantum mechanics reveals fundamental universal properties of
periodic orbits that were not known before.
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In recent years there has been a rapid development of methods to de-
rive these periodic orbit correlations on the classical side. Proofing that these
correlations do indeed exist would show the validity of the random matrix
hypothesis. The purpose of this short lecture series is to give an introduction
into the evaluation of correlations between periodic orbits. This is done by
discussing in detail the simplest example of periodic orbit correlations which
involves orbits with two loops. This example reveals the basic mechanism that
is also behind more complicated correlations.

In accordance with the topic of this school, the calculations are done for the
motion on compact Riemann surfaces of constant negative curvature. For these
systems the derivation is more transparent and can be done with more rigour
than for general chaotic systems. Some of the special features that facilitate
the derivation in these systems are the existence of the exact Selberg trace
formula, the non-existence of conjugate points, the uniform hyperbolicity, and
the tessellation properties of representations of the surfaces on the hyperbolic
plane.

The course is structured as follows. In the second section the semiclassical
approximation of the form factor is derived and its properties are discussed.
The diagonal approximation is evaluated and the two-loop orbits which con-
tribute to the leading off-diagonal approximation are introduced. The third
section contains an introduction to phase space methods for Riemann surfaces
and an evaluation of transition probabilities which are used to calculate the
number of two-loop pairs. In section 4 the contribution of the two-loop orbit
pairs to the form factor are evaluated. Finally, section 5 contains a discussion
and an overview over further developments.

2 The spectral form factor

The spectral form factor is a two-point statistics that is convenient for semi-
classical evaluations, because its argument is directly related to the time along
orbits. In general chaotic systems the semiclassical approximation to the form
factor is derived by applying Gutzwiller’s trace formula. In the case of Rie-
mann surfaces the existence of the exact Selberg trace formula gives the op-
portunity to understand the effect of the approximations involved in arriving
at the semiclassical form factor.

The spectral form factor is defined as the Fourier transform of the two-
point correlation function of the density of states

K(τ) =

〈
∫ ∞

−∞

dη

d̄(E)
〈dosc(E + η/2) dosc(E − η/2)〉E e2π i η d̄(E) τ

〉

τ

. (1)

Here d̄(E) and dosc(E) are the mean and oscillatory part of the density of
states, d(E), respectively,

d(E) =
∑

n

δ(E − En) = d̄(E) + dosc(E) . (2)
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The mean density of states is asymptotically given by Weyl’s law d̄(E) ∼
A/(4π) as E → ∞, where A is the area of the Riemann surface. The energy
average in (1) is performed over an energy window ∆E which is classically
small (i.e. small in comparison to E) and large in comparison to the mean
spacing between levels 1/d̄(E). In addition, a local average is performed over
a small window ∆τ in order to suppress strong fluctuations that would occur
otherwise. The dependence of the form factor K(τ) on E (and the choice of
the smoothing) is omitted in its argument.

The random matrix hypothesis predicts that the form factor of generic
chaotic systems with time-reversal symmetry approaches the form factor of the
Gaussian Orthogonal Ensemble (GOE) of random matrices in the semiclassical
limit, limE→∞ K(τ) = KGOE(τ), where [7]

KGOE(τ) =

{

2τ − τ log(1 + 2τ) if τ < 1

2 − τ log 2τ+1
2τ−1 if τ > 1 .

(3)

Requirements for this assumption to hold are that d̄(E)∆E → ∞, ∆E/E →
0, and ∆τ → 0 in this limit.

One difficulty is to define what is meant by “generic”. In the following
we require that the multiplicity of lengths of periodic orbits is typically two.
This means that there are typically only two periodic orbits whose lengths
are identical, an orbit and its time-reverse. This condition excludes systems
with symmetries, and it excludes arithmetic systems for which the mean mul-
tiplicity increases exponentially with their lengths. These arithmetic systems
have spectral statistics that are described by a Poisson process, and not by
one of the random matrix ensembles [8, 9, 10]. It is, in fact, not possible to
require the multiplicity to be exactly two, because it is known that for Rie-
mann surfaces with constant negative curvature the multiplicity of lengths is
unbounded [11]. We assume that lengths with higher multiplicity than two are
so sparse that they do not modify the calculations in the semiclassical limit.

In the following we use the Selberg trace formula to derive the semiclassical
expression for the form factor. The energy spectrum for Riemann surfaces
is the spectrum of minus the Laplace-Beltrami operator −∆Ψ = E Ψ . For
compact Riemann surfaces with constant negative curvature the trace formula
is given by (see [12])

∑

n

h(pn) =
A

4π

∫ ∞

−∞

dp′ h(p′) p′ tanh(πp′) +
∑

γ

Aγ g(Lγ) , (4)

where pn are momentum eigenvalues which are related to the energies by
En = p2

n + 1/4, and

Aγ =
Lγ

2Rγ sinhLγ/2
, g(x) =

1

π

∫ ∞

0

dp h(p) cos px . (5)

The sum on the right-hand side of (4) runs over all periodic orbits γ with
length Lγ and repetition number Rγ . (Repetitions of a primitive periodic orbit
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count as distinct orbits.) The function h(p) has to satisfy certain conditions
(for details see [12]). It has to be an even function in p. It has to be analytic
in a strip | Im p| < 1/2 + η for some η > 0, which guarantees the convergence
of the periodic orbit sum. Finally, it has to fall off sufficiently fast for large
p, |h(p)| = O(|p|−2−δ) as |p| → ∞, for some δ > 0. This guarantees the
convergence of the sum over energies.

One example of an allowed function is

hε(p
′) =

1√
2πε2

(

exp

{

− (p − p′)2

2ε2

}

+ exp

{

− (p + p′)2

2ε2

})

(6)

in terms of which one can define a smoothed density of states dε(E) :=
(2|p|)−1

∑

n hε(pn), where E = p2 + 1/4.
The smoothed density of states has the property that limε→0 dε(E) =

d(E). Clearly the function hε(p
′) that is obtained in the limit ε → 0, h0(p

′) =
δ(p′ − p) + δ(p′ + p) is not an allowed function. Hence we cannot use the
Selberg trace formula directly to evaluate (1). Let us look instead at the
quantity Kε(τ) which is obtained by replacing the spectral density in (1) by
the smoothed density dε(τ). We then can express Kε(τ) in terms of classical
periodic orbits by using Selberg’s trace formula, and evaluate the integral in
(1) in leading semiclassical order. Then we take the limit ε → 0. This leads to a
well-defined, absolutely convergent sum over periodic orbits for the particular
choice of averaging that we will use in the following. Since these steps involve
a semiclassical approximation and the interchange of limit and integral we
will look carefully at the final result in order to see the effect of these steps.

The semiclassical form factor that is obtained in this way is

Ksc(τ) =
1

LH

〈

∑

γ,γ′

Aγ Aγ′ ei p (Lγ−L
γ′) δ

(

L − Lγ + Lγ′

2

)

〉

E,τ

, (7)

where τ = L/LH , and LH = p A is the “Heisenberg length”. We choose to
perform the energy average by a Gaussian in the variable p with width ∆p,
and the τ -average by a Gaussian in the variable L with width ∆L. In more
detail,

〈f(x)〉x =

∫ ∞

−∞

dx′ 1√
2π ∆x

exp

{

− (x − x′)2

2 ∆x2

}

f(x′) , (8)

where x stands for p or L. This has the additional advantage that for the
particular choice ∆p ∆L = 1/2 the form factor can be written as absolute
square of a single sum [13]

Ksc(τ) =

√

2

π

∆p

LH

∣

∣

∣

∣

∣

∑

γ

Aγ exp
{

i p Lγ − ∆p2 (L − Lγ)2
}

∣

∣

∣

∣

∣

2

. (9)

The conditions for the semiclassical limit after (3) then translate into p → ∞
with ∆p/p → 0 and p∆p → ∞.
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Let us consider expression (9) in more detail. The Selberg trace formula
is exact, but we made an approximation by evaluating the integral in (1)
asymptotically for large p and, after introducing a smoothing parameter ε,
interchanged limit ε → 0 and integral. The main question is whether (9) is a
good approximation to (1) and has the same semiclassical limit.

A numerical evaluation of (9) in [14] showed, somewhat surprisingly, that
Ksc(τ) is an exponentially increasing function in τ . This exponential increase
can be understood, however, by using the trace formula again in order to ex-
press (9) in terms of the spectrum. One finds that the semiclassical form factor
is exactly identical to the form factor of the momentum spectrum. Hence the
effect of the approximations involved is to replace the energy spectrum by the
momentum spectrum. One main difference is that there is at least one imag-
inary momentum eigenvalue which is p0 = i/2, corresponding to the ground
state E0 = 0. There might be finitely many other imaginary eigenvalues. These
imaginary momentum eigenvalues are the reason for the exponential increase
of Ksc(τ). To suppress them requires a stronger condition for performing the
semiclassical limit ∆p/

√
p → 0 as p → ∞ instead of ∆p/p → 0 [14]. This is a

necessary condition for limp→∞ Ksc(τ) = KGOE(τ).

2.1 The diagonal approximation

The contributions of pairs of periodic orbits in (7) and (9) are suppressed
by the averaging, and also by cancellations of oscillatory contributions from
different pairs of periodic orbits which are uncorrelated. The main contri-
bution comes from a relatively small number of pairs of orbits which are
correlated. Berry concluded that the most important contribution for small τ
comes from pairs of orbits with identical lengths [4]. This corresponds to the
diagonal approximation in which only pairs of orbits are included which are
either identical or related by time inversion. The diagonal approximation for
(9) has the form

K(1)
sc (τ) =

√

2

π

∆p

LH
2
∑

γ

A2
γ exp{−2 ∆p2 (L − Lγ)2} . (10)

If the semiclassical limit is performed with τ fixed and p → ∞ it follows
that L → ∞. Hence the contributions come from very long orbits and we can
replace the amplitude in (5) by

A2
γ →

L2
γ

eLγ

. (11)

The sum in (10) is evaluated asymptotically for large length by using the
prime geodesic theorem

N(L) = #{Lγ ≤ L} ∼ eL

L
as L → ∞ . (12)
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The mean density of periodic orbits in a length interval is then obtained taking
a derivative

ρ̄(L) ∼ eL

L
as L → ∞ , (13)

and the sum over periodic orbits is replaced by an integral

∑

γ

→
∫

dL′ ρ̄(L′) . (14)

Hence one finds

K(1)
sc (τ) ∼

√

2

π

2 ∆p

LH

∫ ∞

−∞

dL′ L′ exp{−2 ∆p2 (L − L′)2}

∼
√

2

π

2 ∆p L

LH

√

π

2

1

∆p

∼ 2τ (15)

as L → ∞. The calculations in (15) involve an application of the method of
steepest descent with the condition that L ∆p ∝ p ∆p → ∞ as L → ∞, in
accordance with our previous conditions for performing the semiclassical limit.
The result is indeed the first term in the Taylor expansion of the spectral form
factor for the GOE ensemble KGOE(τ) = 2τ − 2τ2 + . . ..

2.2 Off-diagonal terms

ε

Fig. 1. A pair of two-loop orbits.

The assumption behind the evaluation of off-diagonal terms is that corre-
lated orbits follow each other very closely almost everywhere in position space.
They consist of different orbit segments, or loops, along which both orbits are
almost identical. These segments might be traversed in opposite directions in
systems with time-reversal symmetry. The orbits differ in the way in which
the segments are connected.

The simplest example is that of a pair of orbits with two long loops as
shown schematically in figure 1. The two loops are connected by two long
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orbit stretches which are almost parallel. (The schematic picture 1 does not
really show this. Imagine ε being small.) This makes it possible that the two
loops are connected in different ways for the two orbits [15, 16].

Consider now one of the two orbits. We look more closely at the encounter
region where the two segments of the orbit which connect the two loops are
almost parallel. (More precisely, they are anti-parallel if the sense of traversal
is taken into account, but in this section we disregard the direction in which
they are traversed.) We investigate how the two segments approach each other
and separate again in the encounter region. For this purpose we consider the
relative motion along one segment by linearising the motion around the other
segment.

In the vicinity of a geodesic on a surface of constant curvature K the
linearised motion is described by the Jacobi equation [1]. It has the form

d2ρ

dl2
+ K ρ = 0 . (16)

Here l is the distance along the trajectory and ρ measures the distance per-
pendicular to the trajectory. The solution for K = 1 and initial conditions
ρ(0) = ρ0 and ρ′(0) = ρ′0 is

ρ = ρ0 cosh l + ρ′0 sinh l . (17)

Introducing a conjugate momentum variable σ = ρ′ leads to
(

ρ
σ

)

= M

(

ρ0

σ0

)

, where M =

(

cosh l sinh l
sinh l cosh l

)

. (18)

Eigenvalues and eigenvectors are

λu = el , eu =

(

1
1

)

, λs = e−l , es =

(

1
−1

)

. (19)

It is convenient to express the distance vector (in phase space) in terms of the
eigenvectors

(

ρ
σ

)

= s es + u eu , where s = s0 e−l , u = u0 el . (20)

Here u and s are coordinates along the unstable and stable directions, respec-
tively, and u0 and s0 are their initial values.

One sees that, in general, a neighbouring trajectory separates exponen-
tially in positive and negative l-direction from the central trajectory. In be-
tween there is a closest encounter where the distance in phase space is minimal.
If we define the distance as the square root of ρ2 +σ2 = 2(s2 +u2) the closest
encounter occurs when

0 =
d

dl
(s2 + u2) = −2s2 + 2u2 . (21)
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Solutions are either u = s, corresponding to ρ = 2u and σ = 0, or u = −s,
corresponding to ρ = 0 and σ = −2u. The orbits in figure 1 provide examples
for these two cases. For the inner orbit the two segments become closest at
the crossing where ρ = 0 and σ = ε. For the outer orbit the two segments
become closest when they are parallel, i.e. σ = 0 and ρ 6= 0.

The encounter region in figure 1 is thus characterised by the fact that one
orbit has an intersection with a small crossing angle ε, and the other orbit does
not self-intersect. In the following we count the number of two-loop orbit pairs
by counting the number of self-intersections with small crossing angles ε along
periodic orbits. We thus assume that for every self-intersection with small ε
there exists a partner periodic orbit without self-intersection. This is true in
the linearised approximation [15], and is evident in symbolic dynamics [17].
The fact that orbits self-intersect either once or do not self-intersect in the
encounter region is a special property of the uniformly hyperbolic dynamics.
In general chaotic systems the two almost parallel segments of an orbit can,
for example, cross several times before they separate again and the number of
self-intersections does not agree with the number of orbit pairs [18, 19, 20].

In the remaining part of this lecture course we calculate the contribution of
the two-loop orbit pairs to the form factor. This requires two main ingredients.
One is the length difference of the two orbits that form a pair, and the other
is the number of pairs. The latter is calculated in the next section.

The length difference can be evaluated by determining the length difference
in the linearised approximation [15]. For Riemann surfaces there is a simpler
way that uses hyperbolic geometry [17]. Consider a hyperbolic triangle whose
three sides A, B and C are formed by geodesics. The sine-law in hyperbolic
geometry has the form

sin α

sinhA
=

sin β

sinhB
=

sin γ

sinhC
(22)

In figure 1 one can recognise four (approximate) hyperbolic triangles that are
formed by the two orbits and the thin line that connects them at the crossing.
Applying the sine-law with angles α = π/2 β = (π − ε)/2, γ = 0 results in
cos ε/2 = sinhB/ sinhA ≈ exp(B − A). This leads to the following formula
for the length difference that is valid for all angles ε

∆L ≈ −4 ln cos
ε

2
(23)

The error is exponentially small in the lengths of the loops.

3 The number of self-intersections

The aim of section 3 is to calculate the average number of self-intersections
along arbitrary (non-periodic) trajectories of length L. The calculation can
be done rigorously by using specific properties of Riemannian geometry. The
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intention is to transfer this result in section 4 to periodic orbits by using
the uniform distribution of periodic orbits in phase space. The final result of
this section can be obtained more quickly by using heuristic arguments such
as in subsection 3.3 (see also e.g. [21]), but we want to avoid making any
assumptions in this section.

We start by listing some properties of hyperbolic geometry that will be
needed in the following. For details see the lectures of Buser [22].

We consider the upper-half plane model of the hyperbolic plane H = {z =
x + i y | y > 0}. In this model the line element and the volume element are
given by

ds2 =
dx2 + dy2

y2
, dµ̃ =

dx dy

y2
, (24)

where a tilde is used to distinguish dµ̃ from the phase space measure that is
introduced later.

Of particular importance are the orientation preserving isometries of the
hyperbolic plane. In the upper half plane model they take the form of frac-
tional linear transformations.

z 7−→ a z + b

c z + d
, (25)

where the associated matrices are elements of the group

SL(2, R) =

{

g =

(

a b
c d

) ∣

∣

∣

∣

a, b, c, d real; det(g) = 1

}

. (26)

Matrices which differ by an overall sign correspond to the same fractional
linear transformation. Hence the group of orientation-preserving isometries
can be identified with the group

PSL(2, R) = SL(2, R)/{±I} , (27)

where I is the identity matrix.
Phase space (resp. a surface of constant energy in phase space) is repre-

sented by the unit tangent bundle of H. It is parametrised by the coordinate
z = x+ i y and an angle θ which describes the direction of motion at the point
z.

The transformation of θ under the fractional linear transformation (25) is
found by considering the transformation of an infinitesimally modified point
z + dz. This leads to

θ 7−→ θ − 2 arg(c z + d) . (28)

The invariant measure on the unit tangent bundle is

dµ = dµ̃ dθ =
dx dy dθ

y2
. (29)
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3.1 Parametrisation of phase space

In the following a particular parametrisation of points on the unit tangent
bundle is introduced which greatly simplifies the evaluation of coordinate
transformations and time evolution. It exploits a one-to-one relationship that
exists between elements of PSL(2, R) and points on the unit tangent bundle.
This leads to a very convenient method to evaluate transition probabilities in
phase space which will be used to find the number of self-intersections.

Consider a matrix g ∈ SL(2, R) with elements gij . It can be uniquely
written in the form

g =

(

1 x
0 1

) (

y1/2 0

0 y−1/2

) (

cos θ/2 sin θ/2
− sin θ/2 cos θ/2

)

, (30)

where z = x + i y ∈ H, and θ ∈ [0, 4π). The relation between x, y, θ and the
matrix elements of g is given by

x =
g11 g21 + g12 g22

g2
21 + g2

22

, y =
1

g2
21 + g2

22

, θ = −2 arg(g22 + i g21) . (31)

The matrix g changes by an overall sign if θ changes by 2π. Hence by identi-
fying θ-values which differ by 2π we obtain a one-to-one relationship between
elements of PSL(2, R) and points on the unit tangent bundle.

The identification of a point (z, θ) with an element in PSL(2, R) has further
advantages. Consider the following matrix product

g′ :=

(

a b
c d

)

g =

(

1 x′

0 1

)

(

y′1/2
0

0 y′−1/2

)

(

cos θ′/2 sin θ′/2
− sin θ′/2 cos θ′/2

)

. (32)

A short calculation shows that

z′ = x′ + iy′ =
a z + b

c z + d
, θ′ = θ − 2 arg(c z + d) . (33)

These transformation rules are identical to those in equations (25) and (28).
This means that the action of an isometry on a point in the unit tangent
bundle is simply given by a matrix multiplication in this representation. Note
that the point (z, θ) = (i, 0) is represented by the identity matrix I. Hence
a general point (z, θ) is represented by the matrix g that corresponds to the
isometry which maps (i, 0) onto (z, θ).

As a consequence the time evolution also simplifies to a matrix multipli-
cation. The point (i, 0) evolves in time t (with unit speed) to

(i, 0) 7−→ (i et, 0) =̂

(

et/2 0

0 e−t/2

)

. (34)

The time evolution of a general point is obtained by applying the isometry g
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g 7−→ g Φt , where Φt =

(

et/2 0

0 e−t/2

)

. (35)

We will avoid using the time variable t in the following, because it is conve-
nient to express all quantities in terms of the lengths of trajectories. We will
represent time t by the length l that is covered during the time evolution.

Finally, we need delta-functions on the unit-tangent bundle. They are in-
troduced by

∫

δ0(g
′, g) f(g′) dµ(g′) = f(g) , dµ(g′) =

dx′ dy′ dθ′

y′2
. (36)

where f(g) is here a continuous function of g. The delta-function is symmetric
and invariant under the application of isometries

δ0(g, g′) = δ0(g
′, g) = δ0(h g′, h g) = δ0(g

′ h, g h) . (37)

It can be factorised in the form

δ0(g
′, g) = y2 δ(x − x′) δ(y − y′) δp(θ − θ′) (38)

where δp denotes the 2π-periodic delta-function.
So far we have considered the motion on the full hyperbolic plane, but

we are interested in the motion on compact smooth Riemann surfaces. These
surfaces are represented by a compact area on the hyperbolic plane with the
property that one can tessellate the full hyperbolic plane with copies of it.
They are associated with a discrete subgroup Γ of PSL(2, R) whose elements
map one copy onto all other copies. For a compact smooth Riemann surface
this subgroup contains only hyperbolic elements (with the exception of the
identity). The hyperbolic elements correspond to boosts which are analogs of
translations in the Euclidean plane and are characterised by |Tr g| > 2. The
boosts in Γ cannot be arbitrarily small, in mathematical terms Γ is a strictly
hyperbolic Fuchsian group [22]. A delta-function on a Riemann surface is then
defined by periodising the original delta-function by summing over all copies

δ(g, g′) =
∑

γ∈Γ

δ0(γ g, g′) . (39)

3.2 The average number of self-intersections

Consider an arbitrary trajectory of length L. To each self-intersection of this
trajectory there is a corresponding loop which starts and ends at the self-
intersection. In the following l denotes the length of the loop, ε its opening
angle, and l′ the distance along the trajectory up to the starting point of the
loop.

The average number of self-intersections with intersection angle in an in-
terval [ε,ε+dε] along trajectories of length L is then given by P (ε, L) dε where
the density of self-intersections P (ε, L) is
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P (ε, L) =
1

Σ

∫

dµ(g)

∫ L

0

dl

∫ L−l

0

dl′ δ(gΦl′gε, gΦl′+l) | sin ε| . (40)

Here the average is taken over all initial conditions on the unit tangent bundle,
and Σ =

∫

dµ(g) = 2πA. The matrix gε rotates the θ-coordinate by ε − π.

gε =

(

cos ε−π
2 sin ε−π

2
− sin ε−π

2 cos ε−π
2

)

=

(

sin ε
2 − cos ε

2
cos ε

2 sin ε
2

)

. (41)

Equation (40) can be understood in the following way: gΦl′ is the starting
point of a loop, and the integral gives a contribution if after an evolution of
length l the trajectory arrives at a point in phase space that is obtained from
the starting point by a rotation by ε− π. The | sin ε|-term in (40) arises from
a Jacobian that is necessary in order that the l- and l′- integrals correctly
count the number of self-intersections. More accurately, with an additional
integral over some ε-interval ∆ε, the l- and l′-integrals yield a one for any
self-intersection with intersection angle in ∆ε. The origin of the | sin ε|-term
is most easily seen by considering the transformation from the arguments of
the delta-function in x- and y- coordinates, x(l+ l′)−x(l′) and y(l+ l′)−y(l′)
to the l- and l′- coordinates with the Jacobian

|J | =

∣

∣

∣

∣

dx(l + l′)

dl

dy(l′)

dl′
− dy(l + l′)

dl

dx(l′)]

dl′

∣

∣

∣

∣

. (42)

This can be recognised as cross-product of two direction-vectors with length
y, hence |J | = y2| sin ε|. (The y2 term of J is obtained by the factorisation of
the delta-function.)

After interchanging integrals and changing the integration variable gΦl′ 7→
g one obtains

P (ε, L) =

∫ L

0

dl (L − l) p(ε, l) | sin ε| , (43)

where p(ε, l) is defined as

p(ε, l) =
1

Σ

∫

dµ(g) δ(g gε, g Φl) . (44)

It can be interpreted as the probability density to form a loop with opening
angle ε and length l. It is different from zero only if is there is a trajectory of
length l which forms a loop with opening angle ε.

In the following it will be shown that p(ε, l) and hence P (ε, L) can be ex-
pressed in terms of the periodic orbits of the Riemann surface. A substitution
g 7→ g g−1

ε leads to

p(ε, l) =
1

Σ

∫

dµ(g) δ(g, g g−1
ε Φl) , (45)

where
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g−1
ε Φl =

(

el/2 sin ε
2 e−l/2 cos ε

2

−el/2 cos ε
2 e−l/2 sin ε

2

)

. (46)

The eigenvalues of this matrix are real with modulus |λ| = e±L̃/2 where

cosh
L̃

2
=

1

2

∣

∣Tr g−1
ε Φl

∣

∣ = cosh
l

2
sin
∣

∣

∣

ε

2

∣

∣

∣ , −π < ε ≤ π . (47)

The matrix g−1
ε Φl can be diagonalised by a similarity transformation g−1

ε Φl =

h−1 ΦL̃ h and we find

p(ε, l) =
1

Σ

∫

δ(g, g h−1ΦL̃h) dµ(g)

=
1

Σ

∫

δ(g h−1, g h−1ΦL̃) dµ(g)

=
1

Σ

∫

δ(g, g ΦL̃) dµ(g) . (48)

The last expression is identical to p(π, L̃), the probability density to return
in phase space. It is different from zero only if there exists a periodic orbit γ
with length Lγ = L̃.

The above calculation shows that there is a unique relationship between a
loop of length l and opening angle ε and a periodic orbit of length L̃ given by
(47). Geometrically this signifies that any loop can be continuously deformed
into a periodic orbit [16]. This relationship is not one-to-one, but there is a
one-parameter family of loops with the same length l and angle ε whose initial
points lie on a closed curve which are related by (47) to a periodic orbit..

The relationship between a transition probability density in phase space
and periodic orbits is not restricted to loops, but holds more general. In order
to see this it is convenient to introduce a second parametrisation of PSL(2, R).
A matrix g can be uniquely decomposed into

g =

(

er/2 0

0 e−r/2

) (

1 s
0 1

) (

1 0
u 1

)

=

(

er/2 (1 + u s) er/2 s

e−r/2 u e−r/2

)

. (49)

Using (31) one finds

y =
er

u2 + 1
, x = er

(

u

u2 + 1
+ s

)

, θ = −2 arg(1 + i u) . (50)

Let us denote the particular form of the matrix on the right-hand side of
equation (49) by grsu. The interpretation of the coordinates r, s and u can be
understood by letting the time-evolution matrix act on it

grsu

(

el/2 0

0 e−l/2

)

=

(

e(r+l)/2 0

0 e−(r+l)/2

) (

1 s e−l

0 1

) (

1 0
u el 1

)

. (51)
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Hence r is a coordinate along a trajectory, and s and u are coordinates on the
stable and unstable manifolds, respectively. For infinitesimal distances s and
u agree with the previously introduced coordinates in section 2.2. The phase
space measure is given by

dx dy dθ

y2
= 2 dr ds du . (52)

Analogous to the calculation for p(ε, l) one can express also the probability
density for an arbitrary transition in phase space in terms of periodic orbits.

p̂(r, s, u, l) =

∫

δ(g grsu, gΦl) dµ(g) =

∫

δ(g, g ΦL̃) dµ(g) = p(π, L̃) , (53)

where

g−1
rsu Φl =

(

e−(r−l)/2 −s e(r−l)/2

−u e(−r−l)/2 (1 + u s) e(r−l)/2

)

= h−1 ΦL̃ h . (54)

Now

cosh
L̃

2
=

∣

∣

∣

∣

cosh
r − l

2
+

u v

2
exp

r − l

2

∣

∣

∣

∣

. (55)

This means that the transition probability density p̂(r, s, u, l) can be expressed
in terms of the probability density to return p(π, L̃) and hence in terms of
periodic orbits.

The remaining step for the evaluation of p(ε, l) consists of an evaluation
of the probability density to return

p(π, L̃) =
1

Σ

∫

dµ(g) δ(g, gΦL̃) =
1

Σ

∫

dµ(g)
∑

γ∈Γ

δ0(γ g, gΦL̃) . (56)

The steps in this calculation follow very closely those in the derivation of the
trace formula [12] and we give here only the final result. The sum over the
elements in γ is split into a sum over all conjugacy classes and a sum over
all elements within each conjugacy class. The sum over the elements within
a conjugacy class is used to replace the integral over the area of the surface
by an integral over a strip in the full hyperbolic plane. The final integral over
the delta- function is conveniently done in local coordinates r, s and u. The
result is

p(π, L̃) =
1

Σ

∑

γ

Lγ δ(L̃ − Lγ)

Rγ (2 sinhLγ/2)2
, (57)

where the sum runs over all periodic orbits γ with length Lγ and repetition
number Rγ .

Finally, by using the relation between loop length and periodic orbit length

cosh
lγ(ε)

2
sin
∣

∣

∣

ε

2

∣

∣

∣ = cosh
Lγ

2
, (58)
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we arrive at the following expression for p(ε, l) = p(π, L̃)

p(ε, l) =
1

Σ

∑

γ

Bγ(ε) δ(l − lγ(ε)) , (59)

where

Bγ(ε) =
Lγ

4Rγ sinhLγ/2
√

sinh2 Lγ/2 + cos2 ε/2
. (60)

The integration in (43) yields the result

P (ε, L) =
| sin ε|
2πA

∑

lγ(ε)<L

(L − lγ(ε)) Bγ(ε) (61)

for the average density of self-intersections with angle ε along trajectories of
length L.

3.3 Asymptotic expansion of the density of self-intersections

In this section the asymptotic behaviour of P (ε, L) for large L is determined.
But before we do this let us look at the relation between loop length and
periodic orbit length in (58) in more detail. For large Lγ this simplifies to

lγ(ε) ∼ Lγ − 2 log sin
|ε|
2

, (62)

and for small angles

lγ(ε) ∼ Lγ − 2 log
|ε|
2

. (63)

The logarithmic divergence in (63) has a simple physical interpretation. Con-
sider a loop with a very small angle ε, and consider the two legs of the loop
as two trajectories with initial conditions that differ by a small ε. The sepa-
ration of the two legs during time evolution is governed by the unit Lyapunov
exponent, and it has to be at least of order one for the two legs to be able
to meet and form a closed loop. This leads to an estimate for the minimum
length that a loop with angle ε must have

|ε| exp(lmin/2) = O(1) , (64)

and lmin ∼ −2 log cε for some constant c in agreement with (63). Hence the
logarithmic divergence of the loop length is due to the existence of a minimal
loop length for small ε.

Now we go back to P (ε, L) and use (61) to determine its asymptotic be-
haviour for large L. We will need not only the leading order term, but the
next-to-leading order term as well. For this purpose the sum over periodic
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orbits is split into a sum Lγ < L∗ and a sum Lγ ≥ L∗. The first sum is eval-
uated exactly, whereas the second sum is evaluated asymptotically by using
the prime geodesic theorem (12).

P (ε, L) =
sin |ε|
2πA

∑

lγ(ε)<L

Bγ(ε) (L − lγ(ε))

∼ sin |ε|
2πA

∑

Lγ<L∗

Bγ(ε) (L − lγ(ε))

+
sin |ε|
2πA

∫ L+2 log sin |ε|/2

L∗

dL′

(

L − L′ + 2 log sin
|ε|
2

)

∼ sin |ε|
2πA

∑

Lγ<L∗

Bγ(ε) (L − lγ(ε))

+
L2

4πA
sin |ε|

(

1 − 2L∗

L
+

4

L
log sin

|ε|
2

)

+ O(1) . (65)

Note that the correction to the prime geodesic theorem is exponentially small
as L → ∞ and can be neglected. One can let L∗ go to infinity as well as
L → ∞ and obtains the following two terms in the asymptotic expansion of
P (ε, L) for L → ∞

P (ε, L) ∼ L2

4πA
sin |ε|

(

1 +
2C(ε)

L
+

4

L
log sin

|ε|
2

)

, (66)

where

C(ε) = lim
L∗→∞





∑

Lγ<L∗

Bγ(ε) − L∗



 . (67)

The limit in (67) converges uniformly in ε.
As will become clear later we actually need the asymptotic behaviour in

the joint limit L → ∞ and ε ∝ L−1/2 → 0. This can be obtained from (66),
further corrections do not contribute

P (ε, L) ∼ L2

4πA
sin |ε|

(

1 +
4

L
log c|ε|

)

, (68)

where c = 1
2 exp(C(0)/2).

4 Contribution to the form factor

In the following we use the information about P (ε, L) from the last section in
order to evaluate the contribution of the pairs of two-loop orbits to the form
factor in (9). Let us look at the leading order term as L ∝ p → ∞. The orbits
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have a length difference ∆L given by (23). As a consequence the amplitudes
of the orbits differ slightly too, however this difference contributes to the
next-to-leading order (see below). The number of orbit pairs are counted by
counting the self-intersections of periodic orbits. As will be seen below, only
self-intersections with small ε contribute. We are led to

K(2)
sc (τ) ∼

√

2

π

4 ∆p

LH
Re

∫

dε
∑

γ

A2
γeip∆L(ε) e−2∆p2(L−Lγ)2 Pγ(ε) (69)

where Pγ(ε) dε is the number of self-intersections along the orbit γ with angle
in [ε, ε + dε].

Long periodic orbits are uniformly distributed on the unit tangent bundle.
As a consequence, averages over periodic orbits can be replaced by averages
over the unit tangent bundle in the asymptotic limit of long orbit lengths. This
property is applied in order to effectively replace the average number of self-
intersections along periodic orbits by the average number of self-intersections
along non-periodic trajectories within the integral in (69)

∑

γ

A2
γ Pγ(ε) →

∫

dL′ L′ P (L′, ε) (70)

Doing this we arrive at

K(2)
sc (τ) ∼

√

2

π

4 ∆p

LH
Re

∫

dε

∫

dL′ eip∆L(ε) e−2∆p2(L−L′)2 L′ P (L′, ε)

∼ 2L3

πpA2
Re

∫ ∞

0

dε eipε2/2 sin ε

∼ 2τ3

π
pA Re i

where we evaluated the integral over L′ by the method of steepest decent,
using the leading order approximation of P (L, ε) in (66), and the integral
over ε in stationary phase approximation. In this step sin ε was replaced by ε.
First we notice that the important contribution to the ε-interval comes from
an interval of order 1/

√
p. This means that we have to consider the joint limit

L ∝ p ∝ ε−2 → ∞ instead of a limit where ε is considered constant.
Second, assuming that (70) is still valid under the new limit, we see that

the leading order contribution vanishes. Hence one has to consider the next-
to-leading order contribution to K(2)(τ) in the semiclassical limit. This arises
from several corrections: the next-to-leading order term for P (L, ε), the dif-
ference in the amplitudes of the orbits, the next-to-leading order correction to
∆L(ε), and the next term in the expansion of sin ε for small ε. Looking at the
L-dependence of the contributions one sees that only the first contribution
contributes to a τ2 term whereas the other three contribute to a τ3 term of
the form factor.
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Let us consider the first correction. We would like to use the uniform
distribution of periodic orbits in order to conclude that the number of self-
intersections along periodic orbits has the same asymptotic behaviour (68) as
that along non-periodic trajectories. However, the argument of the uniform
distribution can only applied to obtain the leading term in a large L expansion,
and not the next-to-leading order term for a joint large L small ε expansion.
We assume here that periodic and non-periodic trajectories have a similar
asymptotic behaviour in the considered limit, and that we can effectively
make the replacement

∑

γ

A2
γ Pγ(ε) →

∫

dL′ L′ L′2

4πA
sin |ε|

(

1 +
4

L′
log c̃|ε|

)

(71)

where the constant c̃ may possibly be different from the constant in the case
of non-periodic trajectories. A justification is that the log |ε| term originates
from the minimum loop length that exists for both, periodic and non-periodic
trajectories.

Inserting (71) into (69) and following the same steps as before we arrive
at

K(2)
sc (τ) ∼ 8L2

πpA2
Re

∫ ∞

0

dε eipε2/2 ε log(c̃ε) (72)

The integral can be evaluated by substituting ε = eiπ/4 ε′ and rotating the
integration contour by π/4. This leads to

K(2)
sc (τ) ∼ − 8L2

πpA2
Im

∫ ∞

0

dε′ e−pε′2/2 ε′ log(c̃ε′eiπ/4) = −2τ2 (73)

This result agrees with the second term in the Taylor expansion of the GOE
form factor (3) at τ = 0.

Finally let us look at the other three corrections that contribute to a τ3-
term. Using the definition of the amplitude (5), the next-to-leading term of
the length difference (23) for small ε, and the next-to-leading term in the
Taylor expansion of sin ε we obtain

2L3

πpA2
Re

∫ ∞

0

dε eip(ε2/2+ε4/48) (1 +
1

4
ε2)(ε − 1

6
ε3)

≈ 2L3

πpA2
Re

∫ ∞

0

dε′ eipε′2/2 ε′(1 + O(ε′
4
)) (74)

where a substitution ε′ = ε + ε3/48 has been made. The different corrections

of relative order ε′
2

cancel each other and hence the term (74) vanishes in the
semiclassical limit [23]. So although each of the three corrections contributes
to a τ3 term their joint contribution vanishes. In summary, we find that the
two-loop orbit pairs contribute a τ2 term to the spectral form factor that is
in agreement with random matrix theory.
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5 Discussion

In these notes we have discussed the simplest form of correlations between
different periodic orbits on compact Riemann surfaces. It was shown that
these orbit pairs are responsible for a τ2-term of the spectral form factor
which is in agreement with the τ2-term of the GOE form factor of random
matrix theory. Specific properties of Riemann surfaces were used in order to
arrive at this result. Many of the steps in the derivation can be done quicker
by using heuristic arguments, however, a main emphasis was on using rigorous
methods. One remaining assumption is that the large L small ε asymptotics
of the number of self-intersections has the same form for general trajectories
and periodic orbits (see equation (71)).

During recent years there have been a number of developments (some of
them after this lecture series was given) which extend the present results in
several directions.

— For quantum graphs the τ2 and τ3 terms of the form factor were derived
semiclassically and shown to be in agreement with random matrix theory
[24, 25, 26]. Recently it was proved by a different method that uses a
supersymmetric σ-model that the full form factor of individual quantum
graphs does indeed agree with random matrix theory [27, 28].

— The transport through an open chaotic cavity was investigated in [29]. Here
one has to consider correlations between trajectories that go from an en-
try lead to an exit lead of the cavity. It was shown that the leading-order
off-diagonal terms give a weak-localisation correction to the conductance
which is in quantitative agreement with results from random matrix the-
ory. This result was generalised to all higher-order terms in [30], and to
the treatment of shot noise in [31].

— Generalisations of periodic-orbit correlations to non-uniformly hyperbolic
systems were considered in [18, 19, 20]. One main difference to the uni-
formly hyperbolic case is that self-intersections are not appropriate for
counting the number of orbit pairs, because there is no one-to-one cor-
respondence between self-intersections with small ε and pairs or periodic
orbits. Instead one considers encounter regions with a finite length.

— Universality classes for systems with spin were treated in [32, 33, 34], and
transitions between universality classes in [18, 35, 36].

— Higher dimensions and fluctuations of matrix elements were considered in
[37].

— Higher order terms in the Taylor expansion of the form factor for general
chaotic systems were calculated semiclassically in the following articles:
the τ3 term was obtained in [21] and, finally, all higher orders of τ in
[38, 39].

One main remaining problem is to show that other pairs of periodic orbits,
which have been omitted in the evaluation of off-diagonal contributions, do
indeed not contribute to the form factor in the semiclassical limit.
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Another mayor problem is to obtain the form factor semiclassically in the
regime beyond its singularity, which in the GOE-case occurs at τ = 1. In this
region the form factor has a different functional form, see (3). Possibly this
requires to identify a further kind of periodic orbit correlations. A first step
to evaluate the form factor in this regime was taken in [40].
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