The Hyperbola Billiard: A Model for the Semiclassical Quantization of Chaotic Systems

Dissertation
zur Erlangung des Doktorgrades
des Fachbereichs Physik
der Universität Hamburg

vorgelegt von
Martin Sieber
aus Würzburg

Hamburg
1991
Sie beruhmen sich im Unendlichen!
Wie romantisch!
Zusammenfassung

Die quantenmechanischen Energien des Hyperbelbillards werden durch eine Randelementmethode bestimmt. Eine Korrektur zur asymptotischen Näherung für die spektrale Treppenfunktion $N(E)$, die die Anzahl der Energieeigenwerte der Schrödingergleichung unterhalb eines gegebenen Wertes E angibt, wird numerisch bestimmt. Die Energiestatistik wird untersucht, und es wird gezeigt, daß sie nur für sehr kurzreichweitige Statistiken mit den Vorhersagen der Theorie der Zufallsmatrizen für das Gaußsche orthogonale Ensemble übereinstimmt. Langreichweitige Korrelationen werden mit Hilfe der Spectral-Rigidity $\Delta_3(L)$ und der Varianz $\Sigma^2(L)$ studiert, die schon bei relativ kleinen Werten des Parameters L sättigen.

Abstract

Classical and quantum mechanical properties of a chaotic billiard system are studied with special emphasis on a detailed numerical investigation of the periodic-orbit theory of Gutzwiller. This theory gives semiclassical approximations to the quantum mechanical energies of a classically chaotic system by means of a sum over all periodic orbits of the system. Parts of the derivation of the periodic-orbit theory are reviewed. The convergence properties of the periodic-orbit sum are discussed and smoothing techniques are introduced, which allow the determination of the energies by absolutely convergent sums.

A code is introduced for the periodic orbits of the hyperbola billiard, a chaotic system which is bounded by the x-axis, the y-axis and the hyperbola \(y = 1/x \). An extremum principle for the periodic orbits is proved, which allows a very fast and accurate determination of the periodic orbits. More than 500,000 periodic orbits are determined, out of which the 13,008 shortest orbits are complete. The distributions of lengths and Lyapunov exponents of the orbits are studied. The statistical distribution of lengths is shown to be in good agreement with a Poisson distribution, if not very long-range correlations are considered.

The quantum mechanical energies of the hyperbola billiard are determined by a boundary element method. A correction to the asymptotic approximation for the spectral staircase \(N(E) \), which counts the number of energy eigenvalues of the Schrödinger equation below a given energy \(E \), is determined numerically. The energy statistics is investigated, and it is shown to agree with the predictions of random matrix theory for the Gaussian orthogonal ensemble only for very short-range statistics. Long-range correlations are studied by means of the spectral rigidity \(\Delta_3(L) \) and the number variance \(\Sigma^2(L) \), which saturate at relatively small values of the parameter \(L \).

The properties of the periodic-orbit theory are investigated by an evaluation of the unsmoothed Gutzwiller trace formula and various versions of smoothed trace formulae. The advantage of different smoothing methods are discussed and compared. The effect of the semiclassical approximation is demonstrated by a smoothing, which leads to a truncation of the periodic-orbit sum. An alternative approximation for the energies in terms of a dynamical zeta function is investigated and shown to yield comparable results as the previous trace formulae. Finally, an approximation to this zeta function in analogy to the Riemann-Siegel formula for the Riemann zeta function is studied.
Contents

I Introduction 2

II The Periodic-Orbit Theory 6
 II.1 The Green Function G(q'', q', E) 6
 II.2 The Trace Formula 9
 II.3 Discrete Symmetries 14
 II.4 The Dynamical Zeta Function 18
 II.5 The Convergence Properties of the Trace Formula 21

III The Classical Trajectories of the Hyperbola Billiard 26
 III.1 Code for the Classical Trajectories 27
 III.1.1 Code for the Full Hyperbola Billiard 27
 III.1.2 Code for the Desymmetrized Hyperbola Billiard 33
 III.2 Properties of the Classical Trajectories 34
 III.2.1 The Periodic Orbits with Code Lengths N ≤ 14 35
 III.2.2 The Periodic Orbits with Lengths l ≤ 20 40
 III.2.3 Statistical Properties of the Length Spectrum 41
 III.2.4 The Lyapunov Exponent for Non-Periodic Trajectories 44

IV The Energy Spectrum of the Hyperbola Billiard 45
 IV.1 Determination of the Energy Eigenvalues 46
 IV.2 The Spectral Staircase N(E) 49
 IV.3 The Level Spacings Distribution 52
 IV.4 The Spectral Rigidity and the Number Variance 55

V Numerical Examination of the Periodic-Orbit Theory 58
 V.1 The Generalized Periodic-Orbit Sum Rules for the Hyperbola Billiard 60
 V.2 The Unsmoothed Energy Density 61
 V.3 The Breit-Wigner Smoothed Energy Density 66
 V.4 The Gaussian Smoothed Energy Density 70
 V.5 The Sine³-Smoothed Energy Density 72
 V.6 The Trace of the Cosine-Modulated Heatkernel 73
 V.7 The Dynamical Zeta Function 75
 V.8 The Riemann-Siegel Analogue 79

VI Summary 87

A Contributions of Orbits along the Boundary to the Zeta Function 92

B Calculation of the Monodromy Matrix 94

C Extremum Principle for Periodic Orbits 95

D Form and Number of Code Words with Ra ≡ a 96
I Introduction

Classical mechanics is still an active field despite its long history reaching back several hundred years. This is mainly due to new developments in the second half of this century, which brought a change in the way classical systems are viewed. These developments are connected with the term "chaos", which has become very popular also in areas outside of physics.

About hundred years ago Poincaré discovered that the solutions of the classical equations of motion are for most systems utterly complicated [1]. He also developed methods for the examination of qualitative properties of dynamical systems. A deeper understanding of the main features of classical systems, however, was achieved only during the last few decades. This progress on the one hand is due to the advancement of basic mathematical theorems for dynamical systems. On the other hand the development of fast and powerful computers made extensive numerical investigations of classical systems possible, which led to new insight in the general structure of dynamical systems.

Here we restrict to Hamiltonian systems, that is to systems, for which the energy is conserved. According to the present understanding, classical systems are classified in a range between two extreme cases. One is that of integrable systems. These systems have the property that there exist as many independent constants of motion as degrees of freedom. Let this number be f. The f constants of motion have to satisfy certain conditions, from which follows that the classical motion is restricted to f-dimensional tori in phase space [2]. The equations of motion can be integrated, and the motion is characterized as being regular and predictable. Standard examples for integrable systems are the multidimensional harmonic oscillator, the Kepler problem or the heavy symmetrical top.

On the other end of the scale are systems, which show a very irregular behaviour. If the motion is considered stroboscopically after finite, sufficiently large time intervals, the positions in phase space seem to jump in a very unpredictable way. There is a hierarchy of properties, which describe an increasing degree of randomness: ergodicity, mixing, K-system, B-system. These terms are explained for example in [3]. The weakest property is ergodicity. Ergodic systems are characterized by the fact, that almost all trajectories explore the $(2f-1)$-dimensional constant-energy surface in phase space uniformly. Among systems for which ergodicity could be proved are the Sinai billiard [4] and the stadium billiard of Bunimovich [5]. For the term chaos no mathematically exact definition exists. However, chaos is connected with a property that is stronger than ergodicity. The common definition is, that chaotic systems are characterized by an exponential divergence of trajectories with neighbouring initial conditions. The above two billiard systems are chaotic. A standard example for a chaotic system is the motion on a smooth compact Riemannian surface with constant negative curvature. It was already studied by the mathematician Hadamard at the end of the last century [6].

Most systems, however, are neither completely chaotic nor completely integrable. Instead they exhibit a mixed behaviour. The phase space is divided into parts, where the motion is restricted to invariant tori, and parts, where a typical trajectory fills out regions of dimensionality $2f-1$. The exact way by which integrable systems change into mixed systems, if they are subject to a small generic perturbation, is described by the KAM-theorem, which is named after the three mathematicians Kolmogorov [7], Arnold [8] and Moser [9].

The above classification scheme for classical systems cannot be easily carried over to quantum mechanical systems. Although quantum mechanics is the more general theory,
which contains the classical mechanics as limiting case for which Planck’s constant is equal to zero, quantum mechanical functions are typically not analytic in \(h \) as \(h \to 0 \). For that reason the transition from quantum mechanics to classical mechanics is not straightforward, and the quantum dynamics has qualitatively different properties than the classical dynamics. So it appears to be that quantum systems do not exhibit chaotic behaviour as classical systems do. More precisely, the practical predictability of the time evolution of expectation values of observable operators is not limited in the way it is for classical trajectories. An intuitive argument for this is obtained from the uncertainty principle. In classical systems the extreme sensitivity on the initial conditions prevents an accurate computation of a classical trajectory for a long time \(t \). Due to the exponential divergence of neighbouring trajectories the computation of a trajectory with some given accuracy for a time \(t \) requires the knowledge of the initial conditions to a number of digits, which is proportional to \(t \). This soon exceeds the capacity of any computer. The limits in the predictability of classical systems thus also are a consequence of the fact, that differences in the initial conditions of neighbouring trajectories can be arbitrarily small. In quantum mechanics, however, structures in phase space over areas which are of the order of Planck’s constant can hardly be of significance for the quantum evolution because of the uncertainty relation. This phenomenon is the reason for what is called the quantum suppression of classical chaos. On the other hand there has to be a correspondence between the classical mechanics and the quantum mechanics in the semiclassical limit, that is as \(h \) tends to zero. If the underlying classical motion is chaotic, this has to be reflected by the quantum mechanical time evolution in some way. The answer is that quantum mechanics can mimic chaotic behaviour, but only for a finite time. That is, the quantum mechanical time evolution can be characterized as being unstable, but this instability does not persist as \(t \to \infty \). On the other hand the persistency of instability is a characteristic property of chaotic systems. In this way the absence of chaos in the quantum dynamics can be seen to be a consequence of the fact, that the two limits \(h \to 0 \) and \(t \to \infty \) in general do not commute [10].

Since there seems to be no chaotic quantum evolution, stress is laid on the question: what specific properties do quantum mechanical systems have (in the semiclassical limit), whose classical counterpart is chaotic? The study of this question is named quantum chaosology [11]. Progress in answering this question was achieved by the consideration of the energy statistics of quantum mechanical systems. Extensive numerical and experimental investigations showed, that in the semiclassical limit the energy statistics has universal properties, which are different, if the corresponding classical system is chaotic or not [12]. In this way the nature of the underlying classical motion is reflected by the energy statistics of the quantum system.

For a deeper understanding of the correspondence between classical and quantum mechanical properties in the semiclassical regime analytical methods are necessary. A powerful semiclassical approximation technique is the Einstein-Brillouin-Keller (EBK) quantization method, which is a generalization of the WKB method to multidimensional systems. But this method can be applied to integrable systems only, since its application is based on the assumption that phase space is divided into invariant tori [13]. An extension of this method can be applied to weakly perturbed integrable systems. In case of chaotic systems on the other hand there also is a theory, which semiclassically relates the quantum mechanical energy spectrum to purely classical quantities. This is the periodic-orbit theory of Gutzwiller [14]. In its original formulation it approximates the trace of the Green function \(g(E) = \sum_n (E - E_n)^{-1} \),
a function, which has poles at the energy eigenvalues E_n of the Schrödinger equation. This function is semiclassically expressed by a sum over all periodic orbits of the associated classical system. Since the so-called trace formula, which establishes this relation, allows the semiclassical determination of the quantum mechanical energies, this theory can be considered as a substitute for the EBK quantization rules. The relation between quantum mechanics and classical mechanics is, however, much more complicated than in the integrable case. There is a sum over an infinite number of periodic orbits. Each orbit contributes a term to the sum, which oscillates as a function of the energy E. With an increasing classical action of the periodic orbits the terms oscillate faster, so that the fine structure of the energy spectrum is determined by the very long orbits. An approximation to the periodic-orbit sum by a truncation of the sum often is sufficient for a determination of a lower part of the energy spectrum. By including more and more periodic orbits in the sum the energy resolution can be improved. Yet chaotic systems have the specific property that the number of periodic orbits increases exponentially with period T. This soon sets a limit to the energy resolution, which can be achieved in practice. Furthermore, the periodic-orbit sum is at best conditionally convergent. In case that the sum is divergent the method has to be modified by an appropriate smoothing of the original trace formula. This technique allows the determination of the energies by absolutely convergent periodic-orbit sums. A further question is, how good the semiclassical approximations for the energies are. Due to the complex structure of the trace formula it is very difficult to give any estimation of this accuracy.

Despite of the problems, that are connected with the trace formula, there has been a great interest in the periodic-orbit theory in recent years. It is one of the few analytical tools for the examination of the quantum mechanics of classically chaotic systems in the semiclassical regime. The universality of certain energy statistics could be explained with the use of the trace formula [15]. A new development for the semiclassical quantization of non-integrable systems is a method which was proposed by Bogomolny recently [16]. By this method a quantization condition is obtained from the quantum version of a classical Poincaré mapping.

The present work contains a detailed examination of the classical and quantum mechanical properties of a chaotic system with special emphasis on an investigation of the properties of the periodic-orbit theory. The considered system is the so-called hyperbola billiard, a two-dimensional plane billiard system, which is bounded by the x-axis, the y-axis and the hyperbola $y = 1/x$. This system has properties, which allow a very fast and very accurate determination of the periodic orbits. In addition, all periodic orbits can be classified by a simple code. For that reason very detailed examinations of certain properties of the periodic orbits and the trace formula can be carried out, which for most chaotic systems would not be possible. The hyperbola billiard has a geometrical symmetry, which is the invariance under reflection on the line $y = x$. Most of the numerical investigations were carried out for a desymmetrized version of the hyperbola billiard, which is obtained by introducing an additional boundary along the line $y = x$. The consideration of the desymmetrized hyperbola billiard allows a separate application of the periodic-orbit theory to the energy eigenvalues of even and odd wavefunctions, respectively, of the full hyperbola billiard. In detail the content of this paper is the following:

In chapter II parts of the derivation of Gutzwiller's periodic-orbit theory are given. A special formula for systems with discrete symmetries is derived, and an alternative formulation in terms of a dynamical zeta function is given. The convergence properties of the trace formula are discussed, and it is shown for chaotic billiard systems how absolutely convergent smoothed
trace formulae can be obtained in a mathematically exact way.

Chapter III contains an examination of the properties of the classical trajectories of the hyperbola billiard. Codes for the orbits of the full and the desymmetrized hyperbola billiard are given. Equations for the number of code words with a certain symmetry are presented. The distributions of the lengths and Lyapunov exponents of all periodic orbits of the desymmetrized hyperbola billiard with a constant code length \(N \) are examined for \(N \leq 14 \). Furthermore, the 13,098 shortest periodic orbits are determined completely and statistical properties of their length distribution are investigated.

In chapter IV the method for the determination of the energies is described. The two partial energy spectra of even and odd wavefunctions of the hyperbola billiard are considered separately. The first 294 even and 284 odd energies of the hyperbola billiard are determined, and the results are compared to the mean spectral staircase \(\bar{N}(E) \), for which an analytical approximation exists. A correction to this analytical formula is determined numerically for both subspaces of the energy spectrum. The statistical properties of the two partial energy spectra are investigated numerically, and the results for the spectral rigidity and the number variance are compared with the predictions of Berry's semiclassical theory.

Chapter V contains a detailed numerical investigation of properties of the periodic-orbit theory. First the unsmoothed trace formula for the energy density is evaluated and its convergence properties are examined. Next the advantage of certain methods of smoothing the trace formula are discussed for the Breit-Wigner and the Gaussian smoothing. The effect of the semiclassical approximation is demonstrated by the sine\(^3\)-smoothing for which the periodic-orbit sum is finite. The possibility of a determination of the lengths of the periodic orbits by means of the energy spectrum is shown by a consideration of the trace of the cosine-modulated heat kernel. The representation of the dynamical zeta function by a sum over all possible combinations of periodic orbits is evaluated and its convergence properties are investigated. Finally a formula for this zeta function is examined, which was suggested in analogy with the Riemann-Siegel formula for the Riemann zeta function by Berry and Keating.

In chapter VI the results of this paper are summarized.
II The Periodic-Orbit Theory

The periodic-orbit theory was developed in a series of papers by Gutzwiller [17]. The derivation starts from the Feynman path integral expression for the propagator $K(q''', t'', q', t')$ of the Schrödinger equation. Semiclassical approximation techniques, like the stationary phase approximation for integrals, based on the assumption that occurring classical actions are large in comparison with \hbar, are used in order to arrive at a semiclassical expression for the (regularized) trace $g(E)$ of the Green function of the Schrödinger equation. This trace is a function of energy E, which has poles at the energy eigenvalues of the Schrödinger equation. In case that all periodic orbits of the corresponding classical system are isolated, $g(E)$ is expressed as a sum over all periodic orbits. The periodic-orbit theory therefore relates quantum mechanical energies to classical orbits and can serve as a semiclassical quantization method for chaotic systems.

The Gutzwiller trace formula, however, has to be handled with care. It contains a sum over an infinite number of orbits, which in general is not convergent on the real energy axis. For the discussion of the convergence properties of the trace formula, $g(E)$ is considered as a function of complex values of the energy E. The periodic-orbit theory gives an approximation to this function by a periodic-orbit sum, which is convergent in parts of the complex energy plane only. In general, the region of convergence is too far away from the real energy axis in order to discriminate single energies. A solution to this problem consists in a smoothing of the original trace formula with the effect, that the sum over periodic orbits of the smoothed trace formula is absolutely convergent for real values of the energy E. If the smoothing is done in a proper way, the smoothing parameter can be chosen to be arbitrarily small, so that the smoothing sets no limit for the accuracy of the determination of the semiclassical energies.

This chapter contains parts of the derivation of the Gutzwiller trace formula. Special periodic-orbit sum rules for systems with discrete symmetries are derived, and a periodic-orbit representation of a dynamical zeta function is given. The convergence properties of the periodic-orbit sum are discussed, and methods of smoothing the trace formula are introduced.

II.1 The Green Function $G(q''', q', E)$

Consider a conservative system of f degrees of freedom, whose Hamiltonian is given by

$$\hat{H}(\tilde{q}, \tilde{p}) = \frac{\tilde{p}^2}{2m} + V(\tilde{q}) \ .$$

(1)

It is assumed that this system has a purely discrete quantum mechanical energy spectrum. The Green function of this system is defined by the inhomogeneous equation

$$[E + i \varepsilon - \hat{H}(\tilde{q}'', \tilde{p}'')] G(q''', q', E) = \delta(q''' - q') \ ,$$

(2)

where the ε indicates that the outgoing Green function is considered, which is the solution of eq. (2) in the limit $\varepsilon \to 0$. $G(q''', q', E)$ can be expressed in terms of the eigenfunctions and eigenvalues of the Hamiltonian operator

$$G(q''', q', E) = \sum_\alpha \frac{\psi_\alpha(\tilde{q}'')\psi^*_\alpha(\tilde{q}')} {E + i \varepsilon - E_\alpha} \ ,$$

(3)
with functions $\psi_n(q)$, which form a complete orthonormal set of solutions of the Schrödinger equation

$$H(q, p) \psi_n(q) = E_n \psi_n(q).$$

(4)

In terms of the propagator $K(q^{\prime\prime}, t^{\prime\prime}, q^{\prime\prime}, t^{\prime})$, which is defined by the scalar product

$$K(q^{\prime\prime}, t^{\prime\prime}, q^{\prime\prime}, t^{\prime}) = \langle q^{\prime\prime}, t^{\prime\prime} | q^{\prime\prime}, t^{\prime} \rangle = \Theta(t^{\prime\prime} - t^{\prime})$$

(5)

in the Heisenberg representation, $G(q^{\prime\prime}, q^{\prime}, E)$ is expressed as

$$G(q^{\prime\prime}, q^{\prime}, E) = \frac{1}{i\hbar} \int_0^\infty dt \ K(q^{\prime\prime}, t, q^{\prime}, 0) \exp\left\{ \frac{i(E + i\varepsilon)t}{\hbar} \right\}.$$

(6)

$\Theta(t)$ denotes the step-function

$$\Theta(t) = \begin{cases} 1 & t \geq 0 \\ 0 & t < 0 \end{cases}.$$

(7)

A semiclassical approximation for the Green function is obtained by first deriving an asymptotic expression for the propagator in the limit $\hbar \to 0$, and then evaluating the integral in eq. (6). The propagator $K(q^{\prime\prime}, t^{\prime\prime}, q^{\prime}, t^{\prime})$ can be expressed as a Feynman path integral. In the limit that the actions of the classical paths connecting $q^{\prime\prime}$ and $q^{\prime\prime}$ in time $(t^{\prime\prime} - t^{\prime})$ are large in comparison with \hbar, the main contributions to this path integral come from paths, which are close to classical trajectories from $q^{\prime\prime}$ to $q^{\prime\prime}$. Those contributions can be calculated approximately by expanding the potential energy $V(q)$ around the classical trajectory up to second order and neglecting higher order terms. In this approximation the integral over paths can be evaluated [18,19]. The result is an expression already given by Van Vleck in 1928 [20]. Special care has to be taken, if along the classical trajectory from $q^{\prime\prime}$ to $q^{\prime\prime}$ there are points \tilde{q}, which are conjugate to $q^{\prime\prime}$, i.e. points for which the semiclassical approximation for $K(q^{\prime\prime}, t, q^{\prime}, t^{\prime})$ is infinite. Van Vleck's expression is unambiguously valid only up to the first conjugate point. To go beyond conjugate points, results of Morse theory [21] can be used with the result, that appropriate phase factors have to be chosen, if a conjugate point is passed. The final result is an expression for the propagator as a sum over all classical trajectories from q^{\prime} to $q^{\prime\prime}$. This expression is inserted into eq. (6) and the integral is evaluated using a stationary phase approximation. All these steps are explained in detail for example in [22]. Here only the final result is stated, which is

$$G(q^{\prime\prime}, q^{\prime}, E) \approx \sum_{\text{classical trajectories}} \frac{1}{i\hbar(2\pi \hbar)^{(s-1)/2}} \sqrt{|D|} \exp\left\{ \frac{i}{\hbar} \frac{S(q^{\prime\prime}, q^{\prime}, E)}{2} \right\}.$$

(8)

The sum runs over all classical trajectories which go from q^{\prime} to $q^{\prime\prime}$ with energy E.

$$S(q^{\prime\prime}, q^{\prime}, E) = \int_{q^{\prime}}^{q^{\prime\prime}} \frac{p}{\sqrt{q}} \, dq$$

(9)

is the classical action along these trajectories. Its derivatives satisfy

$$\frac{\partial S}{\partial q^{\prime\prime}} = \frac{p}{q}, \quad \frac{\partial S}{\partial q^{\prime}} = -\frac{p}{q}, \quad \frac{\partial S}{\partial E} = t,$$

(10)
where \(\tilde{p}' \) and \(\tilde{p}'' \) are the momenta at points \(\tilde{q}' \) and \(\tilde{q}'' \), respectively, and \(t \) is the time that is needed to go from \(\tilde{q}' \) to \(\tilde{q}'' \) with energy \(E \) along the considered trajectory. \(D \) is the determinant of an \((f + 1) \times (f + 1)\) matrix and is given by

\[
D = \begin{vmatrix}
1 & \frac{\partial^2 S / (\partial q' \partial q'')}{\partial^2 S / (\partial q' \partial E)} & \frac{\partial^2 S / (\partial q'' \partial q'')}{\partial^2 S / (\partial q'' \partial E)} \\
1 & \frac{\partial^2 S / (\partial q' \partial q''')}{\partial^2 S / (\partial q' \partial E)} & \frac{\partial^2 S / (\partial q''' \partial q'')}{\partial^2 S / (\partial q''' \partial E)} \\
\end{vmatrix}.
\]

(11)

With the use of equations (10) \(D \) can be interpreted as a Jacobian

\[
D = - \det \left(\frac{\partial x_i}{\partial y_j} \right)_{i, j = 1, \ldots, f + 1},
\]

(12)

where

\[
x_i = \begin{cases}
p'_i & i = 1, \ldots, f \\
t & i = f + 1 \end{cases} \quad \text{and} \quad y_j = \begin{cases} q''_j & j = 1, \ldots, f \\
E & j = f + 1 \end{cases}.
\]

(13)

The determinant in eq.(12) is determined by expressing \(\tilde{p}' \) and \(t \) as functions of \(\tilde{q}'' \), \(\tilde{q}''' \) and \(E \) with the use of equations (10), and then holding \(\tilde{q}'' \) fixed. At points \(\tilde{q}''' \) at which the matrix \((A_{ij}) = (\partial y_j / \partial x_i) \) is singular, the semiclassical approximation for \(G(\tilde{q}'', \tilde{q}''' , E) \) is infinite. Those points are called constant-energy conjugate points of \(\tilde{q}' \). The phase \(\mu \) counts the number of conjugate points of \(\tilde{q}' \) along the classical trajectory from \(\tilde{q}'' \) to \(\tilde{q}''' \). If at one point the rank of the matrix \((A_{ij}) = (\partial y_j / \partial x_i) \) is reduced by more than one, then this point is considered as a multiple conjugate point. The number \(\mu \) is increased by one for every reduction in the rank of the matrix \((\partial y_j / \partial x_i) \) by one.

In case that billiard type systems are considered, \(\mu \) contains additional contributions from reflections on the billiard boundary in order to satisfy the boundary conditions. Let us consider the case that there are parts of the boundary, on which the wavefunctions have to satisfy Dirichlet boundary conditions, and parts, on which they have to satisfy Neumann boundary conditions. Then for every reflection of the classical trajectory on those parts of the boundary, on which the wavefunctions vanish, \(\mu \) is increased by two. Reflections on parts of the boundary, on which the normal derivative of the wavefunctions vanishes, do not change \(\mu \).

The cases in which the determinant \(D \) is infinite can be made more explicit by expressing \(D \) in a different form. For that reason a special coordinate system is introduced in the vicinity of a particular trajectory, whose contribution to the semiclassical Green function is considered. The first coordinate \(q_1 \) is chosen to vary along the trajectory, the remaining \((f - 1)\) coordinates are perpendicular to it. In this coordinate system the determinant \(D \) can be shown to have the following form [22]

\[
D = \frac{1}{\tilde{q}''_1 \tilde{q}''_2} \det' \left(- \frac{\partial^2 S}{\partial q'_j \partial q''_1} \right) = \frac{1}{\tilde{q}''_1 \tilde{q}'_1} \det' \left(\frac{\partial \tilde{p}'_j}{\partial q''_1} \right) , \quad i, j = 2, \ldots, f,
\]

(14)

where the prime at the determinant indicates that \(i \) and \(j \) do not take on the value 1. \(\tilde{q}'_1 \) and \(\tilde{q}''_1 \) are the velocities at the starting point and end point, respectively. Now a family of trajectories is considered, which start at point \(\tilde{q}' \) with energy \(E \) and momentum in a volume element \(dp'_2 \ldots dp'_f \) around \(\tilde{p}' \neq 0 \). Their endpoints, which are characterized by having all the same first coordinate \(q''_1 \), lie in the neighbourhood \(d\Omega'' \) of \(\tilde{q}'' \). The determinant \(D \), which is equal to the Jacobian \(d^{f-1}p'/d\Omega'' \) times \(1/\langle \tilde{q}'_1 \tilde{q}''_1 \rangle \), can be infinite for two reasons. First it is infinite, if \(\tilde{q}''_1 \) is equal to zero, and second, if the dimension of the volume element \(d\Omega'' \) is
smaller than $f - 1$. This is the case, if there are different trajectories, which start at point q'' with the same energy E, but with infinitesimally different momentum p'', and which have the same endpoint q'''.

The approximation eq.(8) is quite general. The one-dimensional WKB approximation can be obtained from it. In higher dimensions the Poisson summation formula can be used in order to obtain the EBK approximation for integrable systems, as has been shown on particular examples [22]. In case of the rectangular billiard, for example, eq. (8) has the right poles and the right residues, so that the semiclassical approximation differs from the exact Green function only by an entire function. Eq. (8) was used by Bogomolny as starting point for the derivation of a semiclassical theory for the wavefunctions of chaotic systems [23], which is the theoretical basis for the explanation of the scars of periodic orbits, that were discovered by Heller [24]. In case of the motion on a smooth compact Riemannian surface with constant negative curvature, the theory for the wavefunctions is even exact rather than a semiclassical approximation, as was shown by Aurich and Steiner [25]. A general theory, which contains Bogomolny's theory as a special case, was developed by Berry, who derived a semiclassical approximation for the Wigner function, starting from the semiclassical approximation to the propagator $K(q', t', q'', t'')$ [26].

We end this section by considering the approximation for the contribution of a trajectory to the Green function $G(q'', q', E)$ in the opposite limiting case $S(q'', q', E) \to 0$, so that the action of the classical trajectory from q'' to q''' is small in comparison with \hbar. Naturally a term in eq.(8) in general does not describe correctly this contribution, though it happens that it does if f is odd. In the limit $S(q'', q', E) \to 0$ the contribution of a trajectory to the semiclassical Green function reduces to the free-particle Green function

$$G_{\text{free}}(q'', q', E) = \frac{m}{2i\hbar^2} \left(\frac{\sqrt{2mE}}{2\pi\hbar |q'' - q'|} \right)^{j/2-1} H_{j/2-1}^{(1)} \left(\frac{\sqrt{2mE}}{\hbar} |q'' - q'| \right), \quad (15)$$

where the energy E has to be replaced by $E - V((q'' - q'')/2)$ and $H_{j}^{(1)}$ denotes a Hankel function of the first kind [27].

II.2 The Trace Formula

The Green function $G(q'', q', E)$ contains all information about a quantum mechanical system, but in general the evaluation of eq.(8) is too complicated, since one has to sum over all trajectories from q'' to q''', whose number is in general infinite. Such a sum has to be evaluated for every pair of points q' and q''. In case that one is interested only in the quantum mechanical energies, it is easier to concentrate only on the trace of the Green function, which has poles at the energies E_n, but contains no information on the wavefunctions:

$$g(E) = \int dq \left. G(q'', q', E) \right|_{q'' = q'} = \lim_{\epsilon \to 0} \sum_n \frac{1}{E + i\epsilon - E_n}. \quad (16)$$

In general this trace does not exist, since the sum over energies is divergent, but it can be regularized in a proper way, which is discussed below. A semiclassical approximation for $g(E)$ is obtained by inserting eq.(8) into eq.(16) and evaluating the integral for $\hbar \to 0$.

In the limit $q'' \to q'$ two kinds of trajectories have to be considered. First there are the direct trajectories from q' to q'', whose length goes to zero if $q'' \to q'$. Their contribution to
the trace of the semiclassical \(g(E) \) is denoted by \(g_{00}(E) \). Second there are trajectories which close if \(q'' \to q' \) and whose length does not go to zero. They give an oscillatory contribution to \(g(E) \), which is denoted by \(g_{osc}(E) \).

\[
g(E) \approx g_{00}(E) + g_{osc}(E)
\]

(17)

From now on we restrict ourselves to the two-dimensional case \(f = 2 \).

The term \(g_{00}(E) \) is considered first. Contributions of trajectories, whose length goes to zero if \(q'' \to q'' \), are described by the free Green function eq.(15) with the replacement \(\vec{E} \to \vec{E} - V((\vec{q''} + \vec{q'})'')/2 \). This Green function diverges in the limit \(q'' \to q'' \), and for that reason the term \(g_{00}(E) \) is infinite. Different regularization techniques can be applied in order to obtain a finite result. For example, one can consider the level density \(d(E) \) instead of \(g(E) \).

\[
d(E) = \sum \delta(E - E_n) = \frac{1}{\pi} \lim_{\varepsilon \to 0} \ln \sum_n \frac{1}{E + \varepsilon - E_n} = \frac{1}{\pi} \ln g(E)
\]

(18)

Then the limit \(q'' \to q'' \) can be carried out, and with the limiting form for the Hankel function with small argument

\[
H_{01}^{(1)}(z) \to \frac{2i}{\pi} (\log \frac{z}{2} + \gamma) + 1 \text{ i f } z \to 0,
\]

(19)

one then obtains

\[
d_{00}(E) = \frac{mA}{2\pi \hbar^2}
\]

(20)

where \(A \) is the classically accessible coordinate space at energy \(E \). The fact that eq.(20) does not depend explicitly on the potential \(V(\vec{q}) \) is a special property of two-dimensional systems. Eq.(20) is the Thomas-Fermi approximation for the level density. In case of billiard systems it is equal to Weyl’s law.

If the classically accessible coordinate space is the same for different energies (as is the case for billiard systems, for example), one can choose a reference energy \(E' \) and consider the function \(G(q'', q', E) - G(q'', q', E') \) instead of \(G(q'', q', E) \). In this case the result is

\[
g_{00}(E) - g_{00}(E') = \frac{mA}{2\pi \hbar^2} \ln\left(\frac{E}{E'}\right).
\]

(21)

Next we turn to the term \(g_{osc}(E) \). Consider one particular closed trajectory, which starts at \(q'' = \vec{q} \) and ends at \(q'' = \vec{q} \). If \(\vec{q} \) is slightly changed, then in general there is a neighbouring closed trajectory, which is obtained by a continuous deformation of the original trajectory. For conditions on which this assumption holds see [28]. The integral in eq.(16) has to be evaluated over these continuous families of closed orbits. Again it is assumed that \(S(\vec{q}, \vec{q'}, E) \gg \hbar \) for the considered closed orbits. Then the integrand is a rapidly varying function of \(\vec{q} \), and contributions from neighbouring trajectories usually cancel away. Significant contributions come only from \(\vec{q} \)-values in the neighbourhood of closed trajectories for which the exponent \(S(\vec{q}, \vec{q'}, E) \) is stationary

\[
\left. \left(\frac{\partial S(\vec{q}'', \vec{q'}, E)}{\partial \vec{q}'} + \frac{\partial S(\vec{q}'', \vec{q'}, E)}{\partial \vec{q}''} \right) \right|_{\vec{q}'' = \vec{q}' = \vec{q}} = \vec{p}'' - \vec{p}' = 0
\]

(22)

This means that the largest contribution to the integral comes from closed orbits that are close to periodic trajectories, which satisfy \(\vec{q}'' = \vec{q}' = \vec{q} \) and \(\vec{p}'' = \vec{p}' \). Now a distinction has
to be made between integrable and chaotic systems. In integrable systems one has families of periodic orbits and the integral has to be extended over these families of trajectories. In chaotic systems one has isolated periodic orbits and possibly families of neutral periodic orbits as in the stadium billiard and the Sinai billiard. We restrict ourselves to systems which have isolated and unstable periodic orbits only. Then only coordinate values close to periodic orbits contribute to the integral eq.(16). Again a local coordinate system is introduced in the vicinity of a periodic orbit with the first coordinate along the periodic orbit. The action \(S(\vec{q}, \vec{q}', E) \) does not change along the orbit. Perpendicular to the orbit the action is stationary. The \(q_2 \)-integration is considered first. Since only small \(q_2 \) values contribute to the integral, the exponent is expanded in the variable \(q_2 \) up to second order and higher order terms are neglected. The determinant factor varies very slowly in comparison with the rapidly oscillating exponential function, and it is therefore assumed to be constant with respect to the \(q_2 \)-integration. This approximation is called stationary phase approximation. Taking into account eq.(22) the expansion gives

\[
S(\vec{q}, \vec{q}', E) = \left[S(\vec{q}''', \vec{q}''', E) + \frac{1}{2} \left(\frac{\partial^2 S}{\partial q_2 \partial q_2} + 2 \frac{\partial^2 S}{\partial q_2 \partial q_2''} + \frac{\partial^2 S}{\partial q_2'' \partial q_2''} \right) q_2^2 \right]_{\vec{q}'' = \vec{q}'''} .
\]

where \(\vec{q}''' = \vec{q}''' \) has the same \(q_1 \)-coordinate as \(\vec{q} \) and is the coordinate vector of the nearby periodic orbit. The integral over \(q_2 \) is a Fresnel integral, which results in

\[
gosc(E) = \sum_{\text{periodic orbits}} \frac{1}{\hbar} \int dq_2 \frac{1}{|\vec{q}|} \left[\frac{\partial^2 S}{\partial q_2 \partial q_2} + 2 \frac{\partial^2 S}{\partial q_2 \partial q_2''} + \frac{\partial^2 S}{\partial q_2'' \partial q_2''} \right]_{\vec{q}''' = \vec{q}'''} \exp \left\{ \frac{i}{\hbar} S(\vec{q}''', \vec{q}''', E) - \frac{i\pi}{2} \nu \right\} ,
\]

where

\[
\nu = \begin{cases}
\mu & , \kappa > 0 \\
\mu + 1 & , \kappa < 0
\end{cases}
\]

and

\[
\kappa = \frac{\partial^2 S}{\partial q_2 \partial q_2''} + 2 \frac{\partial^2 S}{\partial q_2 \partial q_2''} + \frac{\partial^2 S}{\partial q_2'' \partial q_2''} .
\]

This result can be expressed more clearly in terms of the monodromy matrix \(M \), which contains information about the stability properties of an orbit. Consider a particular trajectory which starts at \(\vec{q}''' \) with momentum \(\vec{p}''' \) and ends at \(\vec{q}'''' \) with momentum \(\vec{p}'''' \). If the initial coordinates in phase space are changed infinitesimally by \(dq_2' \) and \(dp_2' \), then the final coordinates in phase space, which are determined by having the same \(q_1 \)-coordinate, change infinitesimally by \(dq_2'' \) and \(dp_2'' \). The monodromy matrix is defined by

\[
\begin{pmatrix}
dq_2'' \\
dp_2''
\end{pmatrix} = M \begin{pmatrix}
dq_2' \\
dp_2'
\end{pmatrix} .
\]

From equations (10) one has

\[
\begin{align*}
\dot{dp}_2' &= -\frac{\partial^2 S}{\partial q_2 \partial q_2'} dq_2' - \frac{\partial^2 S}{\partial q_2'' \partial q_2'} dq_2'' \\
\dot{dp}_2'' &= +\frac{\partial^2 S}{\partial q_2 \partial q_2''} dq_2' + \frac{\partial^2 S}{\partial q_2'' \partial q_2''} dq_2'' ,
\end{align*}
\]
so that an explicit expression for M is given by

$$
M = \left(\frac{\partial^2 S}{\partial q_1^a \partial q_2^b} \right)^{-1} \left(\begin{array}{c}
\frac{\partial^2 S / (\partial q_1^a \partial q_2^b)}{\partial^2 S / (\partial q_1^a \partial q_2^b) \partial^2 S / (\partial q_1^a \partial q_2^b) \partial^2 S / (\partial q_1^a \partial q_2^b)} \frac{1}{\partial^2 S / (\partial q_1^a \partial q_2^b) \partial^2 S / (\partial q_1^a \partial q_2^b) \partial^2 S / (\partial q_1^a \partial q_2^b) \partial^2 S / (\partial q_1^a \partial q_2^b)}
\end{array} \right). \tag{29}
$$

M has the property that its determinant is equal to one. If $|\text{Tr} M| = 2$, then the periodic orbit is unstable and M has eigenvalues $\lambda_{1,2} = \exp(\pm u)$ or $\lambda_{1,2} = -\exp(\pm v)$, where $u > 0$ is the stability exponent. The line in (q_2, p_2)-space along the direction of the eigenvector of M with eigenvalue $\lambda = \exp(v)$ or $\lambda = -\exp(u)$ is called the unstable manifold, the line along the direction of the second eigenvector is called the stable manifold. If $|\text{Tr} M| > 2$, then the periodic orbit is stable and M has eigenvalues $\lambda_{1,2} = \exp(\pm i v)$, where v is the angle of stability.

From eq. (24),(25) and (29) it follows that

$$
\kappa = -\frac{1}{M_{12}} (2 - \text{Tr} M) \tag{30}
$$

and

$$
g_{\text{osc}}(E) = \sum_{p.o.} \frac{1}{i \hbar} \int \frac{1}{|q_1|} \frac{1}{\sqrt{2 - \text{Tr} M}} \exp\left\{ \frac{i}{\hbar} S(\tilde{q}^o, \tilde{q}'^o, E) - \frac{i \pi \nu}{2} \right\} \left|_{\tilde{q}^o = \tilde{q}'} \right. \tag{31}
$$

In order to perform the q_1-integration several points have to be taken into consideration. The action $S(\tilde{q}^o, \tilde{q}'^o, E)$ for the periodic orbit does not depend on q_1, and neither does the trace of the matrix M. This is the case, because if one chooses a different starting coordinate \tilde{q}_1 then

$$
M_{\tilde{q}_1} = M_{\tilde{q}_1 - q_1}^{-1} M_{q_1} M_{q_1 - \tilde{q}_1}, \tag{32}
$$

where $M_{\tilde{q}_1 - q_1}$ is the monodromy matrix of the part of the periodic orbit from \tilde{q}_1 to q_1. The number μ of conjugate points along the periodic orbit can change with q_1. A careful examination of the differential equation, that a deviation δq_2 of the periodic orbit satisfies as a function of time t, shows that μ can change at most between two values, which differ by 1. A detailed description is given in [28]. It further can be shown, that μ has the smaller one of the two values if $\kappa < 0$, and the larger value if $\kappa > 0$. For this reason the quantity ν is constant along the periodic orbit and can be interpreted as the maximum number of conjugate points of the periodic orbit. For a further interpretation we restrict ourselves on unstable periodic orbits, which are not reflected on a hard wall. The points at which μ changes are points, which are conjugate to itself, so-called self-conjugate points. They have the property, that if one starts with $d_2 q_2 = 0$ and $d_2 p_2 \neq 0$, then after a traversal of the periodic orbit one has $d_2 q_2 = 0$. This is the case if and only if one of the eigenvectors of the monodromy-matrix is in the p_2-direction. If one now moves along the periodic orbit, the stable and unstable manifolds of the monodromy matrix for the periodic trajectory rotate in (q_2, p_2)-space around the origin, and it can be shown that the infinitesimal vector $(d_2 q_2, d_2 p_2)$ rotates together with the manifold on which it was at the starting point. Every point, at which the vector $(d_2 q_2, d_2 p_2)$ is orthogonal to the q_2-direction, is a conjugate point of the starting point. Since ν is equal to the number of conjugate points of the considered self-conjugate point, including the point itself, it follows that ν can also interpreted as $1/\pi$ times the total angle that either the unstable or the stable manifold rotates around the origin during one traversal of the periodic orbit. It follows that
the total number of self-conjugate points is equal to 2ν, since one can start along the unstable
or the stable manifold.

We now come back to eq. (31) and perform the q₁-integration. This is done easily and the
result is
\[g_{osc}(E) = \frac{1}{i\hbar} \sum_{\nu} \frac{T_0}{\sqrt{2 \pi} \sqrt{\text{Tr}M}} \exp\left\{ \frac{i}{\hbar} S(E) - \frac{i\pi}{2} \nu \right\}. \] (33)

Here \(S(E) \) is the short-hand notation for the action along the classical orbit. The summation
extends over all periodic orbits of the classical system, including periodic orbits which are multiple repetitions of shorter periodic orbits. The \(q_1 \)-integration is an integration in coordinate-space. It extends only up to the first returning to the starting point \((q''', p'''') \) in phase space, i.e. the integration runs along the underlying primitive periodic orbit. \(T_0 \) is the period of this primitive periodic orbit. If the periodic orbit is self-retracing, i.e. it is invariant
under time reversal, then the \(q_1 \)-integration runs only along one half of the underlying primi-
tive periodic orbit. But in this case every orbit counts twice, since there are two starting
conditions for the momentum \(p'' \) at every point of the orbit, which yield the same periodic
orbit. For this reason again the form in eq. (33) is obtained.

It is convenient to split the sum over all periodic orbits into a double sum over all primitive
periodic orbits and their multiple traversals. If \(k \) is the number of repetitions of the primitive
orbit, then \(S^{(k)}(E) = kS^{(1)}(E), M^{(k)} = [M^{(1)}]^k \) and \(\nu^{(k)} = k\nu^{(1)} \). One obtains
\[g_{osc}(E) = \frac{1}{i\hbar} \sum_{\gamma} \sum_{k=1}^{\infty} \frac{T_0}{\sqrt{2 \pi} \sqrt{\exp(ku_1/2) - \sigma_1^2 \exp(-ku_1/2)}} \] (34)

Here \(\gamma \) labels all primitive periodic orbits, and \(\text{Tr}M_\gamma \) is expressed in terms of the stability
exponent \(u_\gamma \) and the sign \(\sigma_\gamma \) of the trace of \(M_\gamma \).

Eq. (34) is the final result of this section. It was derived in a series of papers by Gutzwiller
[17]. Together with the background term \(g_{01}(E) \) it gives the trace formula for the trace of the
Green function. A corresponding expression for the level density \(d(E) \) follows immediately
from eq. (18). In two papers Balian and Bloch too derived contributions, that periodic orbits
give to the semiclassical level density [29]. A corresponding formula for integrable systems
was derived by Berry and Tabor [30,31].

There are several review articles, which either deal directly with the periodic-orbit theory,
or treat it in connection with the quantum mechanics of classically chaotic systems. Among
these articles are [22,10,32,33,34], see also [14].

In the derivation of the trace formula it is very difficult to keep control over the errors
and to make any statements about the accuracy of the semiclassical approximation. For this
reason it is very remarkable, that there exist strongly chaotic systems, for which the trace
formula is exact rather than asymptotic. These systems describe the motion of particles
on smooth compact Riemannian surfaces with constant negative curvature. In this case the
trace formula is identical to the Selberg trace formula. A review is given by Balazs and
Voros [35]. The Selberg trace formula has been studied intensively by mathematicians for
many years. Mathematical tools have been developed in this connection, which are useful
for the examination of the properties of the trace formula of Gutzwiller. Besides, the fact
that the periodic-orbit theory is exact for some systems, suggests that it also gives useful
approximations for other chaotic systems. Detailed numerical studies of the Selberg trace
formula have been published in [36]. Further numerical examinations of smooth compact
Riemannian surfaces with constant negative curvature concern the classical periodic orbits [37], the quantum mechanical energy spectrum [38,39] and the wavefunctions [25].

The trace formula is one of the few analytical tools for the examination of the quantum mechanical energy spectrum of classically chaotic systems. For that reason there is a great interest in the trace formula despite its complicated structure and the fact, that it contains a sum over an infinite number of periodic orbits, which at best is conditionally convergent.

The trace formula was applied to the anisotropic Kepler model by Gutzwiller. He was able to obtain approximations for the first 22 energies [40,14]. In case of the H-atom in a strong magnetic field there are several papers which establish a relation between classical orbits and the quantum mechanical absorption or energy spectrum [41,42,43]. A generalization of the trace formula to the quasi-energy spectral density of a class of area-preserving maps was given by Tabor [44]. In case of the cat map the relation between the quasi-energy spectrum and the classical fixed points of the map is even exact [45]. Starting from the KKR-method of solid-state physics, Berry obtained a variant of eq. (34) for the Sinai billiard with additional contributions from families of neutral periodic orbits, whose monodromy matrix has eigenvalues $\lambda_{1,2} = 1$ [46]. Keating and Berry showed for the example of the (integrable) motion on the torus that singularities of partial sums of the trace formula not necessarily correspond to energy eigenvalues [47].

Despite the strong interest in the trace formula, up to now only little is known about the properties of the periodic-orbit theory as approximative theory. An analytical examination would require the knowledge about fine details of the asymptotic properties of the long periodic orbits, which is not available. A numerical examination of the accuracy of the trace formula on the other hand is difficult, since an accurate and complete determination of a sufficient number of the shortest periodic orbits is necessary, which is very difficult for most chaotic systems.

II.3 Discrete Symmetries

In this section the treatment of systems with discrete symmetries such as the invariance under reflection on a straight line is discussed. Discrete Symmetries can be used in order to restrict the periodic-orbit approximations to subspaces of the energy spectrum, which are defined by having a fixed eigenvalue of the symmetry operator. Such restrictions allow a much more effective application of the periodic-orbit theory. Part of the following discussion is given in [22]. The contribution of periodic orbits which run along the axis of symmetry is new. The derivation is carried out for one special symmetry, which is the invariance under reflection on the line $y = x$, since this is the symmetry of the system, which is considered in the following chapters. For other discrete symmetries the derivation can be done analogously.

The reflection on the line $y = x$ is represented by the operator R:

$$ R(x,y) := (y,x) . $$

Let us consider a system, whose potential is invariant under the reflection on the line $y = x$:

$$ V(x,y) = V(y,x) . $$

It then is possible to choose a basis of eigenfunctions of the Hamiltonian, which are either even or odd under reflection on the line $y = x$:

$$ U_R\psi_n(x,y) := \psi_n(R(x,y)) = \psi_n(y,x) = \pm \psi_n(x,y) . $$
The Green function of the system can be split into even and an odd part

\[G(q''', q''', E) = \sum_{E_0} \Phi_n(q''') \Phi^*_n(q''') \]

\[= G^+(q''', q''', E) + G^-(q''', q''', E) . \]

(38)

(39)

\(G^+(q''', q''', E) \) and \(G^-(q''', q''', E) \) are even and odd, respectively, with respect to both arguments \(q''' \) and \(\tilde{q}''' \) under the unitary operation \(U_R \). Both functions are represented by sums of the form of eq.(38), where the summation is restricted to even and odd wavefunctions, respectively. They can be expressed as

\[G^\pm(q''', q''', E) = \frac{1}{2} [G(q''', q''', E) \pm G(Rq''', q''', E)] , \]

(40)

and using eq.(40) a periodic-orbit representation for their trace can be obtained

\[\bar{g}^\pm(E) = \int dx \int dy \ G^\pm ((x, y), (x, y), E) . \]

(41)

We restrict ourselves to the derivation of the oscillatory part of \(\bar{g}^\pm(E) \). The following steps are carried out analogously to the derivation of the general trace formula eq.(34). The Green function \(G(q''', \tilde{q}'', E) \) is represented by the sum over classical trajectories in eq.(8). The main contributions to the integral in eq.(41) come from trajectories from \((x, y)\) to \((x, y)\), which are close to trajectories, for which the phase of their contribution to the sum over trajectories is stationary. For the first term on the right-hand side of eq.(40) this argument gives the usual condition for periodic orbits, and the integration then yields the previously obtained periodic-orbit sum eq.(34) with an additional factor 1/2. For the second term on the right-hand side of eq.(40) the stationary phase argument gives the condition

\[\frac{d}{dx''} S((y'', x''), (x', y'), E) + \frac{d}{dy''} S((y'', x''), (x', y'), E) \bigg|_{(x''', y'')} = (x', y') = (x, y) = 0 , \]

(42)

and an analogous condition for the \(y \)-derivatives. Both conditions can be combined into

\[[(R\vec{\nabla}'') S(\tilde{q}'', \tilde{q}'', E) + \vec{\nabla}' S(q''', \tilde{q}'', E)]_{Rq''' = \tilde{q}'''} = 0 , \tilde{q}'' = (x, y) , \]

(43)

which results in

\[R\tilde{p}''' = \tilde{p}' . \]

(44)

The stationary phase argument thus selects trajectories, that start at point \(\tilde{q}''' \) with momentum \(\tilde{p}''' \), and end at point \(\tilde{q}''' = R\tilde{q}''' \) with momentum \(\tilde{p}''' = R\tilde{p}''' \). Let the time of the trajectory from \(\tilde{q}''' \) to \(\tilde{q}''' \) be \(T \). Because of the invariance of the system under the reflection \(R \), a trajectory that starts at \(\tilde{q}''' \) with momentum \(\tilde{p}''' \) will after time \(T \) arrive at \(R\tilde{q}''' = \tilde{q}' \) with momentum \(R\tilde{p}''' = \tilde{p}' \). That means that \(\tilde{q}' \) and \(\tilde{p}' \) are also the initial conditions of a periodic orbit. This periodic orbit has the property that it is invariant under reflection on the line \(y = x \). For that reason the trajectories, which are obtained by the stationary phase argument, can be given a direct interpretation. In doing so one has to consider two cases. If there are periodic orbits which run along the line \(y = x \) only, then these orbits satisfy the conditions \(\tilde{q}''' = R\tilde{q}' = \tilde{q}' \) and \(\tilde{p}''' = R\tilde{p}' = \tilde{p}' \), which in this case are the conditions for the periodic orbit itself. In all other cases the conditions \(\tilde{q}''' = R\tilde{q}' = \tilde{q}' \) and \(\tilde{p}''' = R\tilde{p}' = \tilde{p}' \) mark
trajectories, which are halves of periodic orbits, which are invariant under reflection on the line \(y = x \).

The integral in eq. (41) is done by stationary phase approximation. The main contributions to the integral come from trajectories, which run from a point \(\bar{q}' \) to its mirror point \(R\bar{q}' \), and which are close to a trajectory that additionally satisfies eq. (44). In the following this trajectory is called the central trajectory. The contributions of trajectories, which are close to the central trajectory, are approximated by expanding the phase of their contribution to the Green function up to second order. For that reason again a local coordinate system is introduced, whose first coordinate \(q_1 \) varies along the trajectory, and whose second coordinate \(q_2 \) is perpendicular to it. Let the starting point of the central trajectory be \(\bar{q}'' \) and its end point be \(\bar{q}'' = R\bar{q}' \). Now consider a trajectory, which starts at \(\bar{q} = \bar{q}'' + \delta \bar{q}'' \) and ends at \(R\bar{q} = \bar{q}'' + \delta \bar{q}'' = R\bar{q}' + R\delta \bar{q}' \). If \(\delta \bar{q}'' \) has only a component in the \(q_1 \)-direction then

\[
S(R\bar{q}'', \bar{q}''', E) = S(\bar{q}'', \bar{q}'', E), \tag{45}
\]

which follows from the symmetry of the system. For that reason it is assumed in the following that \(\delta \bar{q}''' \) has only a component in the \(q_2 \)-direction. This component is denoted by \(q_2 \). The component of \(\delta \bar{q}''' \) in the \(q_2 \)-direction then is equal to \((- q_2)\). In order to see this it is assumed that the coordinate \(q_1 \) increases monotonically with time, and that the positive axis of the coordinate \(q_2 \) is anticlockwise with respect to the positive \(q_1 \)-axis. If \(\delta \bar{q}''' \) is clockwise with respect to \(\bar{p}' \), then \(\delta \bar{q}''' \) is anticlockwise with respect to \(\bar{p}' \) and vice versa. From this it follows that the \(q_2 \)-coordinate of \(\delta \bar{q}''' \) has the opposite sign of the \(q_2 \)-coordinate of \(\delta \bar{q}''' \). The expansion of the action then gives

\[
S(R\bar{q}'', \bar{q}''', E) = \left[S(\bar{q}'', \bar{q}'', E) + \frac{1}{2} \left(\frac{\partial^2 S}{\partial q_2 \partial q_2''}(- q_2)q_2'' + \frac{\partial^2 S}{\partial q_2'' \partial q_2''}(- q_2)^2 \right) \right]_{R\bar{q}'' = \bar{q}''}. \tag{46}
\]

After the \(q_2 \)-integration the contribution of one trajectory is given by

\[
\pm \frac{1}{2} \frac{1}{i\hbar} \int dq_1 \frac{1}{|q_1|} \left[\frac{-\partial^2 S}{\partial q_2 \partial q_2''} \right] \kappa \exp \left\{ \frac{i}{\hbar} S(\bar{q}'', \bar{q}'', E) - \frac{i\pi}{2} \nu \right\} \right|_{R\bar{q}'' = \bar{q}''}, \tag{47}
\]

where

\[
\kappa = \frac{\partial^2 S}{\partial q_2 \partial q_2''} - \frac{\partial^2 S}{\partial q_2'' \partial q_2''} + \frac{\partial^2 S}{\partial q_2'' \partial q_2''}, \tag{48}
\]

and

\[
\nu = \begin{cases}
\mu, & \kappa > 0 \\
\mu + 1, & \kappa < 0
\end{cases}. \tag{49}
\]

From eq. (20) it follows that

\[
\kappa = -\frac{1}{M_{12}}(2 - \text{Tr} M) = -\frac{1}{(-M_{12})}(2 - \text{Tr}(-M)), \tag{50}
\]

where \(M \) is the monodromy matrix of the trajectory from \(\bar{q}' \) to \(\bar{q}''' \). In contrast to eq. (30), in eq. (50) all elements of the monodromy matrix enter with an additional minus sign. This result can be interpreted in a different way. For that purpose a desymmetrized system is introduced, which is defined by restricting the original system to the region \(\{(x, y)|x > y\}, \)
and introducing a hard wall along the line \(y = x \). For every orbit in the full system a corresponding trajectory in the desymmetrized system is found, by reflecting that part of the trajectory, which runs in the region \(\{(x, y) | x > y\} \), about the line \(y = x \) into the region \(\{(x, y) | x < y\} \). Every crossing of the line \(y = x \) in the full system corresponds to a reflection on the line \(y = x \) in the desymmetrized system. In the following discussion we first do not consider possible periodic orbits along the line \(y = x \). Trajectories, which run from \(q' \) to its mirror point \(q'' = Rq' \) in the full system, correspond to periodic orbits in the desymmetrized system, which are reflected an odd number of times on the line \(y = x \). The monodromy matrix of such a periodic orbit in the desymmetrized system differs from the monodromy matrix of the corresponding trajectory in the full system by an overall minus sign, whose origin is the odd number of reflections on the line \(y = x \). Expressed in terms of the monodromy matrix of the periodic orbit in the desymmetrized system, the quantity \(\kappa \) has the previous form as in eq. (30). The \(q_1 \)-integration is carried out in the full system along the symmetrical periodic orbit, which has the property, that the trajectory from \(q' \) to \(q'' \) is one half of it. By integration the period of the underlying primitive periodic orbit is obtained, which is twice the period of the corresponding periodic primitive orbit in the desymmetrized system. This factor two cancels the factor 1/2 of the term (47). The total result, which is obtained from the second term in eq. (40), can be written as

\[
\frac{1}{i\hbar} \sum_{p.o. \text{ odd}} T_0 \exp\left\{iS(E)/\hbar - i\pi \nu/2\right\} \frac{1}{\sqrt{|2 - \text{Tr}M|}} + \frac{1}{2} \frac{1}{i\hbar} \sum_{p.o. \text{ even}, y=x} T_0 \exp\left\{iS(E)/\hbar - i\pi \nu/2\right\} \frac{1}{\sqrt{|2 + \text{Tr}M|}}.
\]

(51)

The first term is the contribution of all periodic orbits of the desymmetrized system, which are reflected an odd number of times on the line \(y = x \). All classical quantities are determined in the desymmetrized system, and the contributions of the periodic orbits have the same form as in eq. (33). The sign \(\pm \) is included in the phase factor \(\exp\{-i\pi \nu/2\} \). In the case of even wavefunctions, which satisfy Neumann boundary conditions on the line \(y = x \), \(\nu \) does not contain contributions from the reflections on the line \(y = x \). In the case of odd wavefunctions, which satisfy Dirichlet boundary conditions on the line \(y = x \), the odd number of reflections on the line \(y = x \) contribute an odd multiple of 2 to the integer \(\nu \). The second term in (51) is the contribution of the orbits along the line \(y = x \). In this case the factor 1/2 does not cancel, since the length of such an orbit is the same in the full and the desymmetrized system. The monodromy matrix \(M \) in eq. (51) for these orbits is the monodromy matrix of the full system.

The result, which is obtained from the first term of eq. (40), is the usual sum over all periodic orbits of the full system, weighted with a factor 1/2. This also can be reinterpreted in terms of the periodic orbits of the desymmetrized system. In doing so, one has to consider the contributions of three different kinds of periodic orbits separately. The periodic orbits along the line \(y = x \) give the contribution

\[
\frac{1}{2} \frac{1}{i\hbar} \sum_{p.o., y=x} T_0 \exp\left\{iS(E)/\hbar - i\pi \nu/2\right\} \frac{1}{\sqrt{|2 - \text{Tr}M|}}.
\]

(52)

A periodic orbit, which is symmetric with respect to the reflection on the line \(y = x \), corresponds to a periodic orbit in the desymmetrized system, which is an even number of times repetition of a primitive periodic orbit. The underlying primitive periodic orbit is reflected an odd number of times on the line \(y = x \), and twice its period is equal to the period of the
underlying primitive periodic orbit in the full system. This factor two cancels the factor $1/2$ coming from eq. (40).

A periodic orbit, which is not symmetric with respect to the reflection on the line $y = x$, corresponds to a periodic orbit in the desymmetrized system, whose underlying primitive periodic orbit is reflected an even number of times on the line $y = x$. In this case the period of the two underlying primitive periodic orbits in the full and the desymmetrized system are the same. But there are two periodic orbits in the full system, which are related by reflection on the line $y = x$, which correspond to the same orbit in the desymmetrized system, and this factor two cancels the factor $1/2$ coming from eq. (40).

Putting everything together, the final result is

$$g_{osc}(E) = \frac{1}{i\hbar} \sum_{p_{even}} T_0 \exp\left\{iS(E)/\hbar - i\pi\nu/2\right\} \frac{1}{\sqrt{2 - TrM}} + \frac{1}{i\hbar} \sum_{p_{odd}} T_0 \exp\left\{iS(E)/\hbar - i\pi\nu/2\right\} \frac{1}{\sqrt{2 - TrM}}$$

$$+ \frac{1}{i\hbar} \sum_{\gamma, k_{even}} \exp\left\{iS(E)/\hbar - i\pi\nu/2\right\} \frac{1}{2} \left(\frac{T_0}{\sqrt{2 - TrM}} \pm \frac{T_0}{\sqrt{2 + TrM}} \right). \quad (53)$$

An analogous formula for bordered Riemann surfaces was derived by Bolte and Steiner [48]. The last term in eq. (53) can also be given an interpretation in terms of the quantities of the desymmetrized system. Its special form is the result of the fact, that for orbits along the line $y = x$ there is no unique monodromy matrix. For such an orbit two monodromy matrices M^+ and M^- have to be defined, which differ by an overall minus sign: $M^+ = M = -M^-$, where M is the monodromy matrix of the full system. The behaviour of trajectories, which are infinitesimally close to the periodic orbit and are reflected an even number of times on the line $y = x$ during one traversal, is described by M^+. In case of an odd number of reflections the monodromy matrix is equal to M^-. The final result eq. (53) can be expressed in terms of the primitive periodic orbits

$$g_{osc}(E) = \frac{1}{i\hbar} \sum_{\gamma} \sum_{k=1}^{\infty} T_0 \exp\left\{ik\gamma(E)/\hbar - i\pi\nu/2\right\} a_{\gamma,k} \frac{1}{\sqrt{2 - TrM}} \exp(\pm ku_\gamma/2) \sigma_k, \quad (54)$$

where

$$a_{\gamma,k} = \begin{cases} \left[1 + \sigma_k \exp(-ku_\gamma/2)\right]^{-1} & \text{for orbits along the line } y = x \\ 1 & \text{otherwise} \end{cases} \quad (55)$$

and

$$\frac{1}{i\hbar} \sum_{\gamma, k_{even}} \exp\left\{iS(E)/\hbar - i\pi\nu/2\right\} \frac{1}{2} \left(\frac{T_0}{\sqrt{2 - TrM}} \pm \frac{T_0}{\sqrt{2 + TrM}} \right). \quad (53)$$

and σ_k is the sign of the trace of the matrix M^+ in case of orbits along the line $y = x$.

II.4 The Dynamical Zeta Function

Up to now the periodic-orbit approximation for the trace of the Green function $g(E)$ was considered, which has poles at the quantum mechanical energies. In this section an alternative formulation in terms of a dynamical zeta function is given, whose zeros approximate the quantum mechanical energies. This zeta function is defined in analogy to the Selberg zeta function for the motion on smooth compact Riemannian surfaces with constant negative curvature.
The result is given in a form, which can be applied also to the two partial spectra of a system, which is invariant under reflection on a straight line. Then the periodic-orbit sum is evaluated with the periodic orbits of the desymmetrized system. We again choose the axis of symmetry to be equal to the line \(y = x \). The results of this section, however, can also be applied to systems with no symmetry, which possibly have periodic orbits, that run along a straight line segment of the boundary only.

In this section the derivation is given for orbits, that do not run along the boundary. The calculation for orbits along the boundary is carried out in appendix A, and the result is stated.

\[
\begin{align*}
g(E) & \approx g_0(E) + \frac{1}{ih} \sum_{n=0}^{\infty} \sum_{\gamma} \sum_{\kappa = 1}^{\infty} T_\gamma \frac{\exp(ikS_\gamma(E)/h - i\pi k\nu_\gamma/2)}{\exp(ku_\gamma/2) - \sigma_\gamma^k \exp(-ku_\gamma/2)} \\
& = g_0(E) + \frac{1}{ih} \sum_{n=0}^{\infty} \sum_{\gamma} \sum_{\kappa = 1}^{\infty} T_\gamma \frac{\exp(ikS_\gamma(E)/h - i\pi k\nu_\gamma/2 - ku_\gamma/2)}{1 - \sigma_\gamma^k \exp(-ku_\gamma)} \\
& = g_0(E) + \frac{1}{ih} \sum_{n=0}^{\infty} \sum_{\gamma} \sum_{\kappa = 1}^{\infty} T_\gamma \sigma_\gamma^n \frac{\exp(iS_\gamma(E)/h - i\pi n\nu_\gamma/2 - ku_\gamma/2 - ku_\gamma)}{1 - \sigma_\gamma^n \exp(iS_\gamma(E)/h - i\pi n\nu_\gamma/2 - ku_\gamma/2 - ku_\gamma)} \\
& = g_0(E) + \sum_{n=0}^{\infty} \frac{\partial}{\partial E} \log(1 - \sigma_\gamma^n \exp(iS_\gamma(E)/h - \frac{i\pi}{2} \nu_\gamma - \frac{u_\gamma}{2} - ku_\gamma)) \\
& = g_0(E) + \frac{\partial}{\partial E} \log Z(E), \quad (57)
\end{align*}
\]

where

\[
Z(E) = \prod_{n=0}^{\infty} [1 - \sigma_\gamma^n \exp\{\frac{i}{\hbar} S_\gamma(E) - \frac{i\pi}{2} \nu_\gamma - u_\gamma(\frac{1}{2} + n)\}] \quad (58)
\]

The general result including contributions of possible orbits along the line \(y = x \) for a desymmetrized system, whose corresponding full system is invariant under reflection on this line, is given by

\[
Z(E) = \prod_{n=0}^{\infty} [1 - \sigma_\gamma^n b_{\gamma,n} \exp\{\frac{i}{\hbar} S_\gamma(E) - \frac{i\pi}{2} \nu_\gamma - u_\gamma(\frac{1}{2} + n)\}] \quad (59)
\]

where in the case of Neumann boundary conditions along the line \(y = x \) one has

\[
b_{\gamma,n} = \begin{cases}
\sigma_\gamma^n \exp\{-nu_\gamma\} & \text{for orbits along the line } y = x \\
1 & \text{otherwise}
\end{cases} \quad (60)
\]

and in the case of Dirichlet boundary conditions

\[
b_{\gamma,n} = \begin{cases}
\sigma_\gamma^{(n+1)} \exp\{-(n+1)u_\gamma\} & \text{for orbits along the line } y = x \\
1 & \text{otherwise}
\end{cases} \quad (61)
\]

This can be interpreted in the following way. The zeta function of the full system is the product of the two zeta functions of the desymmetrized system: \(Z(E) = Z^+(E) \cdot Z^-(E) \). In particular the contribution of an orbit along the line \(y = x \) to \(Z(E) \) consists of the product of the contributions of this orbit to \(Z^+(E) \) and \(Z^-(E) \). From equations (59), (60) and (61) it
follows that the contribution of this orbit to \(Z^s(E) \) is identical to the product over all even \(n \) in the contribution of this orbit to \(Z(E) \). The product over all odd \(n \) in the contribution to \(Z(E) \) is identical to contribution of this orbit to \(Z(E) \).

In deriving eq. (58) the convergence properties of the occurring sums and products have not been considered. A discussion of the problems that are connected with the product representation of the zeta function is given in \([49]\).

There is an analogy between eq. (58) and the Euler product representation of the Riemann zeta function \(\zeta(z) \). According to the famous Riemann hypothesis all complex zeros of \(\zeta(z) \) have real part \(1/2 \). On the assumption that this hypothesis is true, there are suggestions to interpret the imaginary parts of the complex zeros of \(\zeta(z) \) as the eigenvalues of a Hermitian operator, which has a classical limit that describes a chaotic system \([50]\).

The product eq. (58) is the starting point for the cycle-expansion of Cvitanović for systems, in which an effective code for the periodic orbits is available. By this method the product eq. (58) is expanded and subsequently the terms are sorted according to certain properties of the code of the periodic orbits \([51,52,53]\).

The product representation of the zeta function is transformed into a series by using the Euler identity \([54]\)

\[
\prod_{n=0}^{\infty} (1 - yx^n) = \sum_{m=0}^{\infty} \frac{(-1)^m y^m x^{m(m-1)/2}}{\prod_{j=1}^{m} (1 - x^j)} \tag{62}
\]

where \(\prod_{j=1}^{m} (1 - x^j) \) is defined to be equal to one. The contribution of an ordinary orbit to the product representation of the zeta function then is transformed in the following way

\[
\prod_{n=0}^{\infty} \left[1 - \sigma_n \exp \left\{ \frac{i}{\hbar} S_n(E) - \frac{i\pi}{2} \nu_n - u_n \left(\frac{1}{2} + n \right) \right\} \right]
= \sum_{m=0}^{\infty} \frac{(-1)^m \sigma_n^{m(m-1)/2} \exp \{ im S_n(E) / \hbar - i\pi m \nu_n / 2 - m u_n / 2 - m(m - 1) u_n / 2 \}}{\prod_{j=1}^{m} [1 - \sigma_n \exp(-j u_n)]} \\
= \sum_{m=0}^{\infty} \frac{(-1)^m \sigma_n^{m(m-1)/2} \exp \{ im S_n(E) / \hbar - i\pi m \nu_n / 2 - u_n m(m - 1) / 4 \}}{\prod_{j=1}^{m} [\exp(j u_n / 2) - \sigma_n \exp(-j u_n / 2)]} \tag{63}
\]

The total result is given by

\[
Z(E) = \prod_{\gamma} \left[\sum_{m=0}^{\infty} (-1)^m \sigma_n^{m(m-1)/2} \exp \left\{ \frac{i}{\hbar} m S_\gamma(E) - \frac{i\pi}{2} m \nu_\gamma - u_\gamma \frac{m(m - 1)}{4} \right\} \right] \\
\times \prod_{j=1}^{m} \frac{c_{\gamma,j}}{\exp(j u_\gamma / 2) - \sigma_n \exp(-j u_\gamma / 2)} \tag{64}
\]

where in the case of Neumann boundary conditions along the line \(y = x \) one has

\[
c_{\gamma,j} = \begin{cases}
\sigma_n \exp(u_\gamma) [1 + \sigma_n \exp(j u_\gamma)]^{-1} & \text{for orbits along the line } y = x \\
1 & \text{otherwise}
\end{cases} \tag{65}
\]

and in the case of Dirichlet boundary conditions

\[
c_{\gamma,j} = \begin{cases}
[1 + \sigma_n \exp(j u_\gamma)]^{-1} & \text{for orbits along the line } y = x \\
1 & \text{otherwise}
\end{cases} \tag{66}
\]
A representation of the zeta function by a series is obtained by expanding the product over primitive periodic orbits in eq. (64). The result is a series of the form

$$ Z(E) = 1 + \sum_{n=1}^{\infty} A_n \exp\left\{ \frac{i}{\hbar} S_n(E) \right\} , \quad (67) $$

where the sum extends over all possible combinations of primitive periodic orbits. More precisely, the quantities $S_n(E)$ denote all possible linear combinations of the actions of all primitive periodic orbits

$$ S_n(E) = \sum_{i=1}^{k} m_i S_i(E) , \quad (68) $$

where $k \geq 1$, all m_i are arbitrary positive integers, and all γ_i are different. These linear combinations of periodic orbits are called pseudo-orbits, and the quantities $S_n(E)$ denote their actions. The amplitudes A_n are defined as

$$ A_n = \prod_{i=1}^{k} \frac{(-1)^m \sigma_{\nu_i}^{m_i(m_i-1)/2} \exp\left\{ -i\pi m_i \nu_i \right\}}{\prod_{j=1}^{m_i} \exp(j \nu_i/2)} \frac{\exp(-j \nu_i/2)}{c_{\nu_i,\gamma_i}^{m_i}} , \quad (69) $$

An approximation for eq. (67) by a sum over a finite number of pseudo-orbits in analogy with the Riemann-Siegel formula for the Riemann zeta function was suggested by Berry and Keating [55]. It is discussed in more detail in section V.8.

II.5 The Convergence Properties of the Trace Formula

Gutzwiller’s semiclassical approximation for $g_{\text{osc}}(E)$ eq. (34) has the general form of a sum over an energy-dependent oscillating term multiplied by an amplitude factor. The convergence of the periodic-orbit sum strongly depends on the phase-factors ν_i. In the general case there is not sufficient information about asymptotic properties of long periodic orbits available, in order to estimate, whether the periodic-orbit sum converges for real values of the energy E or not. The sum is, however, not absolutely convergent for real values of E. This is a consequence of the specific property of chaotic systems, that the number of periodic orbits proliferates exponentially with period T. In the limit $T \to \infty$ the number of periodic orbits, which have a period between T and $T + dT$, is given by

$$ dN \to \frac{\exp(hT)}{T} \, dT , \quad T \to \infty , \quad (70) $$

where h is the topological entropy. For an estimation, if the periodic-orbit sum converges absolutely, also the asymptotic properties of the stability exponents u_γ are needed. From the property, that very long orbits of bounded chaotic systems explore the surface of constant energy in phase space uniformly, it is estimated that [10]

$$ \langle \exp\left(\frac{u_\gamma}{2}\right) \rangle \to \langle \exp\left(\frac{hT}{2}\right) \rangle , \quad T \to \infty , \quad (71) $$

where the average is taken over all periodic orbits with a period in the interval between T and $T + dT$. The sum of amplitudes in the interval $[T, T + dT]$ thus increases like $\exp(hT/2)$ as $T \to \infty$, and thus the periodic-orbit sum is not absolutely convergent.
A solution to the problem of a divergent periodic-orbit sum is the smoothing of the original trace formula. By this smoothing the function \(g(E) \), which has poles at the energies \(E_n \), is replaced by a function, which has peaks of finite height and width at the energies \(E_n \). The width of the peaks has to be sufficiently smaller than the mean level spacing, in order to allow the discrimination of individual energies. In the following the convergence properties of the periodic-orbit sum are examined in more detail, and it is shown, how the smoothing can be done in a mathematically exact way. Further it is discussed, what kind of smoothing leads to absolutely convergent periodic-orbit sums.

For simplicity from now on we restrict ourselves to plane billiard systems. The classical motion of a particle in a billiard system consists of the free motion within the billiard area and elastic reflections on the boundary. The corresponding quantum mechanical problem is described by the free Schrödinger equation with Dirichlet boundary conditions on the billiard boundary. In the following only systems are considered, which have unstable periodic orbits only. A sufficient condition for this is, that the boundary consists of concave and straight pieces only, with the additional condition, that every classical trajectory is reflected from a concave part of the boundary at least once.

The classical action is given by \(S_\gamma = p l_\gamma \) and the period is \(T_\gamma = (m/p)l_\gamma \), where \(l_\gamma \) is the length of the orbit \(\gamma \) and \(p = \sqrt{2mE} \) is the momentum of the moving particle with mass \(m \). The stability exponents \(u_\gamma > 0 \) can be expressed by geometrical quantities and are energy-independent. They can be determined according to the method of appendix B. In order to obtain a convergent periodic-orbit sum, the momentum \(p \) is considered to be complex with a positive imaginary part. In the double sum over periodic orbits this leads to an exponential damping of the contributions of orbits with large length \(l_\gamma \). In case of the energy density the introduction of a finite positive imaginary part for the energy \(E \to E + i\Gamma/2 \) corresponds to a substitution of the \(\delta \)-functions by \(\text{Breit-Wigner curves} \)

\[
\delta(E - E_n) \Rightarrow \frac{1}{\pi \text{Im} \frac{1}{E + i\Gamma/2 - E_n}} = \frac{1}{\pi (E - E_n)^2 + (\Gamma/2)^2}. \quad (72)
\]

For an estimation of the values of momentum \(p \), for which the periodic-orbit sum for the oscillatory part of \(g(E) \) is absolutely convergent, the sum over the absolute values of the terms in the series over periodic orbits is considered. From now on the more general form eq. (54) for the trace of the Green function is used.

\[
\sum_{\gamma} \sum_{k=1}^{\infty} \frac{ml_\gamma \exp\{ikpl_\gamma/h\} \chi_\gamma^k a_{\gamma,k}}{hp \sqrt{2 - TrM^2}} = \sum_{\gamma} \sum_{k=1}^{\infty} \frac{ml_\gamma \exp\{-Impkl_\gamma/h\} |a_{\gamma,k}|}{h|p| \exp\{ku_\gamma/2\} - \sigma_\gamma^k \exp\{-ku_\gamma/2\}} < \frac{c_1}{|p|} \sum_{\gamma} \sum_{k=1}^{\infty} l_\gamma \exp\{-k(u_\gamma/2\}) \nonumber
\]

\[
= \frac{c_1}{|p|} \sum_{\gamma} l_\gamma \exp\{-Impl_\gamma/h - u_\gamma/2\} < \frac{c_2}{|p|} \sum_{\gamma} l_\gamma \exp\{-Impl_\gamma/h - u_\gamma/2\}, \quad (73)
\]

where \(a_{\gamma,k} \) is equal to \(a_{\gamma,k}^+ \) or \(a_{\gamma,k}^- \) in equations (55) and (56), respectively, depending on the choice of the boundary conditions. \(\chi_\gamma = \exp\{i\pi u_\gamma/2\} \) denotes the phase factors of the individual terms. For the above estimation it is assumed that \(u_\gamma \geq u_{\text{min}} > 0 \) and
\[l \geq l_{\text{min}} > 0 \] for all \(\gamma \). \(c_1 \) and \(c_2 \) are two constants, whose value is not important for the present consideration. From eq. (70) follows, that in the limit \(l \to \infty \) the number of periodic orbits, which have a length \(l \), in the interval \([l, l + dl]\), is given by
\[
d\mathcal{N} \to \frac{\exp(\tau l)}{l} \, dl \quad , \quad l \to \infty ,
\]
where \(\tau = \frac{h}{n} \). For the stability exponents it is assumed that
\[
\exp\{ -\frac{\lambda_0}{2} \} = O(\exp\{ -\frac{\lambda}{2} \}) \quad , \quad l \to \infty , \quad \lambda > 0 ,
\]
which is weaker than eq. (71). On these conditions the sum in eq. (73) is convergent, if the integral
\[
\int_0^\infty dl \, \exp\{\tau l\} \exp\{-\frac{\lambda}{2} l\}
\]
converges. This leads to the condition
\[
\frac{\text{Im} p}{\hbar} > \tau - \frac{\lambda}{2} =: \frac{\sigma}{\hbar}
\]
for the imaginary part of \(p \). Similar considerations for systems with a homogeneous potential have been carried out by Eckhardt and Aurell [56]. Eq. (77) is a condition on the minimum width \(\Gamma_{\text{min}} \) of the Breit-Wigner curves in eq. (72) of the smoothed level density, \(\Gamma > \Gamma_{\text{min}} := 4\sigma \text{Re} p \). For billiards with finite area \(A \) the mean level spacing is asymptotically constant. When \(\Gamma_{\text{min}} \) as a function of \(\text{Re} p \) becomes larger than the mean level spacing, it is impossible to resolve different peaks. Therefore it is desirable to have a different kind of smoothing, which leads to convergent sums, but with no condition on the minimum width of the peaks.

This can be achieved by carrying out the smoothing with suitable functions \(h(p) \). In order to derive the corresponding generalized periodic-orbit sum rules one considers a regularization of the trace \(g(E) \) of the Green function. For billiards with finite area \(A \) the sum \(\sum_n (E - E_n)^{-1} \) is infinite, since the eigenvalues \(E_n \) obey asymptotically \(E_n = O(n) \), \(n \to \infty \). However, the trace of the combination \((E - \tilde{H})^{-1} - (E' - \tilde{H})^{-1} \) is finite. Its semiclassical representation is obtained by using equations (21) and (54)
\[
\sum_n \left(\frac{2m}{p^2 - p_n^2} - \frac{2m}{p'^2 - p_n^2} \right)
\approx \frac{mA}{\pi \hbar^2} \ln \frac{p'}{p'} - \frac{i}{\hbar} \sum_{k} \sum_{k=1}^{\infty} \frac{m_{kl}^k}{\sqrt{2 - \text{Tr} M_{kk}^k}} \left(\frac{\exp\{ipk\lambda_l / \hbar\} - \exp\{ip'k\lambda_l / \hbar\}}{pp'} \right),
\]
where \(p_n = \sqrt{2mE_n} \) and \(A \) is the area of the billiard. Here all sums are absolutely convergent, if \(\text{Im} p > \sigma \) and \(\text{Im} p' > \sigma \).

All derivations up to this point have been carried out on the assumption, that the values of energy \(E \) have a positive imaginary part. The corresponding formula for energies \(E \) with negative imaginary part is obtained by using the relation
\[
G(q'', q', E') = |G(q'', q', E)|^* .
\]
A careful examination of the limiting process \(q'' \to q' \) then shows, that formula (78) is also valid for the trace of the ingoing Green function (\(\text{Im} E < 0 \)), if the momentum \(p \) satisfies the
conditions \(p^2 = 2mE \) and \(\text{Im}p > 0 \). This means that eq. (78) is valid for all values of \(p \) with \(\text{Im}p > \sigma \).

Now eq. (78) is multiplied on both sides by \(i \rho h(p)/(2\pi m)^{1/2} \) and integrated over \(p \) from \((i\sigma_x - \infty) \) to \((i\sigma_x + \infty)\), where \(\sigma_x = \sigma + \epsilon \) for some \(\epsilon > 0 \), and \(\sigma \) is defined in eq. (77). The function \(h(p) \) has to satisfy the following three conditions:

a) \(h(p) \) is an even function of \(p \)

b) \(h(p) \) is analytic in the strip \(|\text{Im}p| < \sigma + \epsilon \)

c) \(|h(p)| \leq a |p|^{-\delta - 6} \) for some \(\delta > 0 \), \(a > 0 \), \(|p| \to \infty \).

The significance of these conditions will become clear in the following. The integration over the left-hand side of eq. (78) yields

\[
\begin{align*}
\sum_n & \frac{i}{\pi} \int_{i\sigma_x - \infty}^{i\sigma_x + \infty} \text{d}p \, h(p) \left(\frac{1}{p^2 - p_n^2} - \frac{1}{p'^2 - p_n^2} \right) \\
= & \sum_n \frac{i}{2\pi} \left[\int_{i\sigma_x - \infty}^{i\sigma_x + \infty} \text{d}p \, h(p) \left(\frac{1}{p^2 - p_n^2} - \frac{1}{p'^2 - p_n^2} \right) + \int_{-i\sigma_x - \infty}^{-i\sigma_x + \infty} \text{d}p \, h(p) \left(\frac{1}{p'^2 - p_n^2} - \frac{1}{p^2 - p_n^2} \right) \right] \\
= & \sum_n h(p_n) .
\end{align*}
\]

(80)

Here the evenness of \(h(p) \) was used and the residue theorem was applied. Condition c) ensures the convergence of the last sum.

The integral over the first term on the right-hand side of eq. (78) can be evaluated by shifting the contour of integration to the real axis. The result is

\[
\frac{iA}{2\pi^2 \hbar^2} \left[\int_{-\infty}^{0} \text{d}p \, h(p)(\ln \frac{|p|}{p'} + i\pi) + \int_{0}^{\infty} \text{d}p \, p \, h(p) \ln \frac{|p|}{p'} \right] = \int_{0}^{\infty} \text{d}p \, p \, h(p) \frac{A}{2\pi \hbar^2} ,
\]

(81)

where again the evenness of \(h(p) \) was used.

The integral over the last term in eq. (78) yields

\[
\begin{align*}
\sum_{\gamma} & \sum_{k=1}^{\infty} \frac{l_{\gamma} \chi_{\gamma}^k \alpha_{\gamma,k}}{2\pi \hbar \sqrt{2 - \text{Tr}M_{\gamma}^k}} \int_{i\sigma_x - \infty}^{i\sigma_x + \infty} \text{d}p \, p \, h(p) \left(\frac{\text{exp}\{ipk_{\gamma}/h\}}{p} - \frac{\text{exp}\{ip'k_{\gamma}/h\}}{p'} \right) \\
= & \sum_{\gamma} \sum_{k=1}^{\infty} \frac{l_{\gamma} \chi_{\gamma}^k \alpha_{\gamma,k}}{2\pi \hbar \sqrt{2 - \text{Tr}M_{\gamma}^k}} \int_{-\infty}^{\infty} \text{d}p \, p \, h(p) \left(\frac{\text{exp}\{ipk_{\gamma}/h\}}{p} - \frac{\text{exp}\{ip'k_{\gamma}/h\}}{p'} \right) \\
= & \sum_{\gamma} \sum_{k=1}^{\infty} \frac{l_{\gamma} \chi_{\gamma}^k \alpha_{\gamma,k}}{\hbar \sqrt{2 - \text{Tr}M_{\gamma}^k}} g\left(\frac{k_{\gamma}}{\hbar} \right) ,
\end{align*}
\]

(82)

where

\[
g(x) = \frac{1}{\pi} \int_{0}^{\infty} \text{d}p \, h(p) \cos(px) .
\]

(83)

Here the contour of integration could be shifted to the real axis, since condition b) implies, that \(g(x) \) drops faster than \(\text{exp}(-\sigma x) \) as \(x \to \infty \). The total result is

\[
\sum_n h(p_n) \approx \frac{1}{m} \int_{0}^{\infty} \text{d}p \, p \, h(p) d(E) + \frac{1}{\hbar} \sum_{\gamma} \sum_{k=1}^{\infty} \frac{l_{\gamma} \chi_{\gamma}^k g(k_{\gamma}/h)}{\sqrt{2 - \text{Tr}M_{\gamma}^k}} \alpha_{\gamma,k} , \quad E = p^2 ,
\]

(84)
where \(d(E) = mA(2\pi h^2)^{-1} \) is the mean level density of the billiard system. On conditions a), b) and c) all series and the integral in eq. (84) converge absolutely.

Eq. (84) was published previously in [57] for the case that \(a_{xy} = 1 \). By using a Gaussian smoothing one obtains a series, which is absolutely convergent, independently of the width of the peaks. This technique was applied successfully in [36,59,60,61] for the Selberg trace formula, in [58] for the hyperbola billiard and in [62] for the diamond billiard.
The system which is studied in this paper is a two-dimensional plane billiard system, the so-called hyperbola billiard. Its domain is given by

\[D := \{(x, y) | x \geq 0 \land y \geq 0 \land y \leq \frac{1}{x}\}, \tag{85} \]

i.e. it is bounded by the \(x \)-axis, the \(y \)-axis and the hyperbola \(y = 1/x \). This system is unbounded and has an infinite area. However, no classical trajectory can escape to infinity, if trajectories along the axes are excluded. Every trajectory that runs into one of the two horns of the billiard region comes back after a finite time. Thus despite of the infinite billiard area the system is no scattering system, which on the quantum mechanical side is reflected by the fact, that the energy spectrum is purely discrete as was shown by Simon [63]. Previous studies of the hyperbola billiard have been published in [58,64]. Several reasons qualify the hyperbola billiard as a system, which is well suited for a systematic test of Gutzwiller’s periodic-orbit theory.

Two-dimensional billiards are the simplest conservative systems that can show chaos. The classical motion in a billiard system consists of the motion along straight lines within the billiard area and elastic reflections on the boundary. For that reason the computational effort to follow a trajectory is low, since the equations of motion need not be integrated numerically. Neighbouring trajectories in a billiard system are focussed or defocussed depending on the curvature of the boundary and the lengths of the trajectories between consecutive hits on the boundary. The choice of the boundary determines, whether the system shows regular, chaotic or mixed behaviour (for examples see [65]). In case of the hyperbola billiard all orbits are isolated and unstable (see appendix B), and the system thus is chaotic.

For an efficient application of Gutzwiller’s trace formula it is necessary to have a classification of the periodic orbits. This means that every orbit is characterized by a sequence of letters, which contains information about certain properties of the orbit. Without such
a code the search for periodic orbits is difficult, since one has no clue where to seek for the orbits in phase space. In addition, one has no control if any orbits have been missed. The simple geometrical form of the hyperbola billiard is the origin of a very effective code. All the periodic orbits can be classified by sequences of three different letters.

The most important advantage of the hyperbola billiard, however, is the fact, that there exists a very powerful method for the determination of the periodic orbits with high accuracy. Chaotic systems have the property that initially close neighbouring trajectories diverge exponentially with time. For that reason small numerical errors grow very rapidly and it seems impossible to determine very long orbits with any reasonable accuracy. In case of the hyperbola billiard it is possible to avoid this problem by determining the reflection points on the hyperbola not one by one while following the trajectory, but all of them at the same time. This can be done since there exists an extremum principle for the periodic orbits, which is explained and proved in appendix C. It states that the length of a periodic orbit is minimal within a certain class of neighbouring "trial" trajectories, which do not satisfy the elastic reflection condition on the boundary curve $y = 1/x$.

For theoretical considerations it is sometimes of advantage, to consider the hyperbola billiard as limiting case of a family of chaotic billiard systems, which are bounded and have a finite area. This family of billiard systems is described most conveniently in hyperbolic coordinates

\[
\begin{align*}
\eta &= xy \\
\xi &= \frac{1}{2}(x^2 - y^2)
\end{align*}
\] (86)

In these coordinates the domain of the hyperbola billiard is an infinite strip and is given by $0 \leq \eta \leq 1$, $-\infty < \xi < \infty$. Now consider the family of billiard systems with $0 \leq \eta \leq 1$ and $-\xi_0 \leq \xi \leq \xi_0$. For $0 < \xi_0 < \infty$ these systems are bounded, chaotic and have isolated unstable periodic orbits only. In cartesian coordinates their form is that of a hyperbola billiard, whose two infinite horns are cut symmetrically by two hyperbolae. Most of the numerical results in this paper would be identical within the numerical accuracy with results for a billiard system with finite ξ_0, if ξ_0 is chosen large enough.

In this chapter the properties of the classical orbits of the hyperbola billiard are examined. The code for the full hyperbola billiard and its desymmetrized version are given. The determination of a large number of periodic orbits allows a detailed study of properties of the lengths and Lyapunov exponents of the periodic orbits.

III.1 Code for the Classical Trajectories

III.1.1 Code for the Full Hyperbola Billiard

Every trajectory in the hyperbola billiard consists of straight line segments and reflections on the axes or the hyperbola. For geometrical reasons there are only three possibilities for the particle to move between two consecutive hits on the hyperbola. It can be reflected on the x-axis only, on the y-axis only, or once on both axes. From this property an efficient code for the periodic orbits is obtained. A periodic trajectory is traversed once and the number of reflections on the hyperbola is counted. Let this number be N. The N points on the
hyperbola divide the orbit into N segments. Each segment is denoted by one of the letters "x", "y" or "b" according as the particle is reflected in the segment on the x-axis only, on the y-axis only or on both axes, respectively. In this way a ternary sequence of the form

$$a = (a_1, \ldots, a_N), \quad \text{where} \quad a_i = x, y \text{ or } b,$$

(87)

is associated to every periodic orbit. In order to obtain a code word, a starting point on the hyperbola has to be chosen. If one starts at a different point, one obtains a word which is a cyclic permutation of the original one. Thus all cyclic permutations of a word describe the same periodic orbit. For that reason it is useful to associate not one code word but a class of code words to a periodic orbit. This class is called cyclic class. Two words a and \tilde{a} belong to the same cyclic class if

$$a \equiv \tilde{a} \iff a_i = \tilde{a}_{i+n} \quad \forall i = 1, \ldots, N \quad \text{for one } n \in \{1, \ldots, N\},$$

(88)

where $a_{j+N} = a_j$.

The code can also be used in order to characterize unperiodic trajectories. In this case the sequence, that is assigned to a trajectory, is infinitely long. The sequence of letters labels a trajectory uniquely in the sense, that there is at most one trajectory for every sequence. This is a consequence of the exponential divergence of neighbouring trajectories and of the fact, that the starting points of trajectories, which have a first finite part of their sequences in common, form a connected set. However, not for every sequence a corresponding trajectory exists. For example, periodic orbits corresponding to the code words (x) and (y) must have the property, that they are reflected on the hyperbola and one of the axes only. Those orbits cannot exist, since the slope of the hyperbola is negative and finite everywhere. For other sequences the question, if a corresponding orbit exists, is examined numerically.

Various properties of a periodic orbit follow directly from the code. It can be seen, for example, if a periodic orbit is primitive or if there exists an underlying shorter periodic orbit, which is traversed several times. In the latter case the code word is a multiple repetition of a shorter word. For example the word

$$a = (x\underbrace{,x,y,b,x,x,y,b,x,x,y,b})$$

(89)
Figure 3: a) to e) Examples of periodic orbits f) Forbidden periodic orbit
describes an orbit, which is a three times repetition of the primitive orbit that is associated to the word \((x,y,x,y,\ldots)\). The number of cyclic classes of \(N\) letters, which correspond to a primitive orbit are given by the recursion relation

\[
Z(N) = \frac{1}{N} \left(3^N - \sum_{M \mid N \text{ and } M < N} M \cdot Z(M)\right), \tag{90}
\]

where the sum runs over all integers \(M\) which are divisors of \(N\) excluding \(M = N\). For \(N = 1\) the result is \(Z(1) = 3\). As has been mentioned above for two of this three cyclic classes there exists no corresponding periodic orbit.

Possible symmetries of an orbit can be read off from the code. If a periodic orbit is geometrically reflected on the straight line \(y = x\), another periodic orbit is obtained, since the system is invariant under the reflection \(R\) on this line. The sequence belonging to the reflected orbit, \("Ra"\), is obtained from the sequence of the original orbit \("a"\) by replacing all \("x"\) by \("y"\) and all \("y"\) by \("x"\):

\[
Ra := \bar{a} \text{ where } \bar{a}_i = \begin{cases} \ x \text{ if } a_i = y \\ \ y \text{ if } a_i = x \\ \ b \text{ if } a_i = b \end{cases}, \quad i = 1, \ldots, N. \tag{91}
\]

An orbit is invariant under this reflection, if \(Ra \equiv a\) holds.

Another possible symmetry of an orbit is time-reversal. If an orbit is traversed in reverse direction, the sequence of the reversed orbit, \("Ta"\), is the reverse sequence of the original orbit:

\[
Ta := \bar{a} \text{ where } \bar{a}_i = a_{N+1-i}, \quad i = 1, \ldots, N. \tag{92}
\]

An orbit is invariant under time-reversal, if \(Ta \equiv a\) holds.

In the following a more detailed examination of the properties of code words with a certain symmetry is given, and formulae for their numbers are presented. The form of code words with a certain symmetry are obtained from geometrical properties of orbits with this symmetry.

Code words with \(Ra \equiv a\):

Primitive code words with this symmetry exist only for even \(N\) or \(N = 1\). For \(N = 1\) there is only one code word, which is \(a = (b)\). For even \(N\) all cyclic permutations of the code word have the form

\[
a = c \oplus Rc, \tag{93}
\]

where \(c\) is an arbitrary word of length \(N/2\). The symbol \(\oplus\) denotes the composition of the word \(a\) by words of smaller length. For example \((x,y) \oplus (y) = (x,y,y)\). The number of primitive cyclic classes with this symmetry satisfies \(Z_R(1) = 1\) and

\[
Z_R(N) = (3^{N/2} - \sum_{M \mid N, M \neq 1, M \neq N/2} M \cdot Z_R(M) - 1) / N, \quad N \text{ even}, \tag{94}
\]

where the sum runs over all integers \(M \neq N\), which are divisors of \(N\) but not of \(N/2\). The derivation is given in appendix D.
Code words with $Ta \equiv a$:

N odd: One cyclic permutation of the code word has the form

$$a = c \oplus e \oplus Tc \;,$$

where c and e stand for arbitrary words of lengths $(N - 1)/2$ and 1, respectively. The number of primitive cyclic classes with $Ta \equiv a$ then is given by

$$Z_T(N) = 3^{(N+1)/2} \sum_{\substack{M|N \\ M < N}} Z_T(M) \;.$$ \hfill (96)

Again for two of the three cyclic classes with $N = 1$ no corresponding periodic orbit exists.

N even: Two cyclic permutations of the code word have the form

$$a = c \oplus e \oplus f \oplus Tc$$ \hfill (97)

or

$$a = d \oplus Td \;,$$

where c, d, e and f are arbitrary words of lengths $(N - 2)/2$, $N/2$, 1 and 1, respectively. The recursion relation for the number of primitive cyclic classes follows as

$$Z_T(N) = 2 \cdot 3^{N/2} \sum_{\substack{M|N \\ M < N}} Z_T(M) \;.$$ \hfill (99)

Code words with $RTa \equiv a$:

N odd: One cyclic permutation of the code word has the form

$$a = c \oplus (b) \oplus RTc \;,$$

where c is an arbitrary word of lengths $(N - 1)/2$. The number of primitive cyclic classes with $RTa \equiv a$ is given by

$$Z_{RT}(N) = 3^{(N-1)/2} \sum_{\substack{M|N \\ M < N}} Z_{RT}(M) \;.$$ \hfill (101)

N even: Two cyclic permutations of the code word have the form

$$a = (b) \oplus c \oplus (b) \oplus RTc$$ \hfill (102)

or

$$a = d \oplus RTd \;,$$

where c and d are arbitrary words of lengths $(N - 2)/2$ and $N/2$, respectively. The recursion relation for the number of primitive cyclic classes then is given by

$$Z_{RT}(N) = 2 \cdot 3^{(N-2)/2} \sum_{\substack{M|N \\ M < N}} Z_{RT}(M) \;.$$ \hfill (104)
<table>
<thead>
<tr>
<th>(N)</th>
<th>cyclic classes</th>
<th>symm. classes</th>
<th>(Tu = u)</th>
<th>(Tu \equiv Ru)</th>
<th>(Ru \equiv u)</th>
<th>(Tu \equiv u \equiv Ru)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>9</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>20</td>
<td>24</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>116</td>
<td>44</td>
<td>42</td>
<td>14</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>312</td>
<td>104</td>
<td>78</td>
<td>26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>810</td>
<td>253</td>
<td>144</td>
<td>48</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>2184</td>
<td>624</td>
<td>234</td>
<td>78</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>5880</td>
<td>1628</td>
<td>456</td>
<td>152</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>16104</td>
<td>4268</td>
<td>726</td>
<td>242</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>44220</td>
<td>11534</td>
<td>1392</td>
<td>464</td>
<td>60</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>122640</td>
<td>31388</td>
<td>2184</td>
<td>728</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>341484</td>
<td>86840</td>
<td>4290</td>
<td>1430</td>
<td>156</td>
<td>52</td>
</tr>
</tbody>
</table>

Table 1: For \(N = 1\) to \(N = 14\) this table contains the total number of primitive cyclic classes, the number of primitive symmetry classes, the number of primitive cyclic classes with \(Tu \equiv u\), \(Tu \equiv Ru\), \(Ru \equiv u\) and \(Tu \equiv u \equiv Ru\).

Code words with \(a \equiv Ra \equiv Ta \equiv RTa\):

These code words exist for \(N = 1\) and even \(N\) only. For \(N = 1\) there is one code word with this symmetry: \(a = (b)\). In the case of even \(N\) two cases have to be considered separately:

- **\(N/2\) odd:** Two cyclic permutations of the code word have the form
 \[
a = c \oplus (b) \oplus RTc \oplus Rc \oplus (b) \oplus Tc
 \]
 (105)
 or
 \[
a = c \oplus d \oplus RTd \oplus Rc \oplus Rd \oplus Td
 \]
 (106)
 where \(c\) and \(d\) are arbitrary words of length \((N - 2)/4\), and \(e\) is an arbitrary word of length 1. The recursion relation for the number of primitive cyclic classes is given by
 \[
 Z_{R,T,RT}(N) = 2 \cdot 3^{(N-2)/4} - \sum_{\substack{M|N \\ M < N}} Z_{R,T,RT}(M),
 \]
 (107)
 where it is implied that \(Z_{R,T,RT}(1) = 1\) and \(Z_{R,T,RT}(2M + 1) = 0\) for \(M = 1, 2, \ldots\).

- **\(N/2\) even:** Two cyclic permutations of the code word have the form
 \[
a = c \oplus RTc \oplus Rc \oplus Tc
 \]
 (108)
 or
 \[
a = c \oplus d \oplus (b) \oplus RTd \oplus Rc \oplus Rd \oplus (b) \oplus Td
 \]
 (109)
 where \(c, d\) and \(e\) are arbitrary words of length \(N/4\), \((N - 4)/4\) and 1, respectively. The recursion relation for the number of primitive cyclic classes is given by
 \[
 Z_{R,T,RT}(N) = 3^{N/4} - \sum_{\substack{M|N, M < N \\ M < N/2}} Z_{R,T,RT}(M) - 1.
 \]
 (110)

32
Different orbits which are related by reflection and/or time reversal give an identical contribution to the periodic-orbit sum in the trace formula. For that reason it is useful to combine different cyclic classes to a bigger class, which we call symmetry class, if their sequences can be transformed into each other by reflection and/or time-reversal. A multiplicity is associated to every symmetry class, which counts the number of different cyclic classes which are contained in it. This number can be 1, 2 or 4. It then suffices to determine one periodic orbit for each symmetry class. In table 1 the number of all cyclic classes, symmetry classes, and the number of cyclic classes with certain symmetries are listed for $N = 1$ to $N = 14$.

III.1.2 Code for the Desymmetrized Hyperbola Billiard

If a system has discrete geometrical symmetries, the periodic-orbit theory can be applied separately to subspaces of the quantum mechanical energy spectrum, which are defined by having fixed eigenvalues of the geometrical symmetry. In order to do this, the periodic orbits of a desymmetrized version of the full system have to be determined.

In case of the hyperbola billiard the desymmetrized system is that billiard system, which is obtained by introducing an additional wall along the axis of symmetry $y = x$, i.e. the billiard system which is bounded by the x-axis the hyperbola $y = 1/x$ and the line $y = x$. There is a direct correspondence between orbits of the full system and orbits of the desymmetrized system. Every orbit of the full system is mapped onto an orbit of the desymmetrized system by reflecting down that part of the orbit, which is above the line $y = x$, into the lower half of the billiard system. In this way an orbit in the full system, which is not invariant under reflection on the line $y = x$, is mapped onto an orbit in the desymmetrized system, which has the same length. Orbits which in the full system are related by reflection on the line $y = x$ are mapped onto the same orbit in the desymmetrized system. An orbit which in the full system is invariant under reflection on the line $y = x$ is mapped onto an orbit which has half the length. (An exception is the orbit along the symmetry line $y = x$.)

A code for the orbits of the desymmetrized system is obtained from the original code according to the following rules:

A code word is read from left to right. Every "b" is replaced by a "0". If one arrives at a letter "x" or "y", two cases have to be considered. If the first letter to the left of the this letter, which is different from "b", is identical to the considered letter, it is replaced by a " +". If this is not the case, it is replaced by a " -". If there are only letters "b" to the left of the considered letter, the comparison has to be made with the utmost right letter in the code word, which is different from "b". For example

$$(x,b,b,x,y,x,b,y) \rightarrow (-,0,0,+,-, -,0, -) .$$

Original code words a and \bar{a}, which are related by $\bar{a} \equiv Ra$, are replaced by identical code words in the new code. Symmetrical code words $a \equiv Ra$, $a \neq (b)$, are replaced by a word, which consists of two identical halves, so that the underlying primitive code word is half as long. The relation between the two codes thus correctly reproduces the relation between the orbits in the full and the halved system.

The number of primitive cyclic classes of words with word length N is identical to that of the full billiard system.

In the desymmetrized system the only symmetry an orbit can have is the invariance under time-reversal. The code word for a time-reversed orbit in the new code is obtained in two steps:
The letters "b" are kept fixed in the code word, and the remaining letters are cyclically permuted one step to the left.

Then the sequence of all letters in the word is reversed.

For the above example the two steps result in

\[(-, 0, 0, +, - _, - , 0, -) \rightarrow (+, 0, 0, - , -, -, 0, -) \rightarrow (-, 0, -, -, 0, 0, +) \].

If after the two steps a word is obtained, which is a cyclic permutation of the original word, then this word corresponds to an orbit which is invariant under time-reversal.

An equivalent code is used by Eckhardt and Wintgen for the hydrogen atom in a magnetic field [66]. For this system the equipotential lines are shaped like hyperbolae in an appropriate coordinate system. The difference between their code and the code used here, is that the meaning of "+" and "-" is exchanged.

III.2 Properties of the Classical Trajectories

In the following section properties of the periodic orbits of the desymmetrized billiard system are examined. The reason for the restriction to the desymmetrized hyperbola billiard is the fact, that the application of the periodic-orbit theory to this system yields much better results than the application to the full system. If in both cases all orbits up to a certain length \(l \) are included in the periodic-orbit sum, then in the desymmetrized case much more energy levels can be resolved. One reason for this is that the energy density is about half as large as in the full system. A further reason is that the energy spectrum of the desymmetrized billiard shows level repulsion, i.e. it has the tendency to avoid small distances between neighbouring energy levels. In the full system small spacings between neighbouring energy levels occur frequently and make the resolution of single energies difficult.

The total number of orbits that are needed in order to resolve a certain energy difference \(\Delta E \) is in both systems about the same. In the full system, however, only about one fourth of this number of orbits have to be determined numerically. Most orbits are not invariant under time-reversal or reflection on the line \(y = x \), and thus they belong to a group of four orbits, which give an identical contribution to the periodic-orbit sum. It suffices to determine one member of this group and multiply its contribution to the periodic-orbit sum by four. In the desymmetrized system orbits, which give an identical contribution to the periodic-orbit sum, can only be related by time reversal. Thus about twice the number of orbits as in the full system have to be determined.

The method by which the periodic orbits are determined is for both systems the same. As has been mentioned above there is a direct correspondence between orbits of the full system and orbits of the halved system. For that reason the orbits of the halved system can be determined by finding the corresponding orbits of the full system. The method of determination of the orbits consists of the following steps:

- The code word is fixed for the orbit one is looking for. Let the number of letters in this code word be \(N \).

- \(N \) arbitrary points are chosen on the hyperbola \(y = 1/x \) and are labelled by \(P_1, \ldots, P_N \).
These points are connected by \(N \) segments which correspond to the \(N \) letters of the code word as is shown in figure 2. For example, if the first letter is an "x", then \(P_1 \) and \(P_2 \) are connected by a segment, which is reflected on the \(x \)-axis once. By this construction a unique closed curve is defined, which in general does not represent a physical orbit for two possible reasons. First although the reflection condition is satisfied on the \(x \)-axis and the \(y \)-axis, it in general is not satisfied on the hyperbola. Second the segment which connects two consecutive points \(P_i \) and \(P_{i+1} \) on the hyperbola may run partly outside of the billiard region.

The obtained curve has a length, which is a function of the points \(P_1, \ldots, P_N \). The periodic orbit which belongs to the given code word is found by determining the minimum of this function of \(N \) variables.

The minimum of the length function was found by using a NAG-routine. The accuracy of the obtained result was improved by subsequently applying a Newton method with quadruple precision. In this way the periodic orbits are determined very quickly and with a very high accuracy. The mean CPU time on an IBM 3090 for the determination of a periodic orbit with an accuracy of 16 significant digits was 0.03 seconds.

The method was slightly varied when applied to orbits, whose length in the full system is twice the length of the corresponding orbits in the desymmetrized system. The code words of these orbits in the full system have an even number \(2N \) of letters, and the orbits are invariant under reflection on the line \(y = x \). It suffices to search for these orbits within the class of orbits, which are invariant under this reflection, too. This reduces a \(2N \)-parameter search to a \(N \)-parameter search.

III.2.1 The Periodic Orbits with Code Lengths \(N \leq 14 \)

All orbits with code length \(N \leq 14 \) were determined. The number of orbits that were found for each \(N \) are given in table 2. Their number is approximately equal to \(3^N/N \). In addition, the number of different lengths, the mean degeneracy of lengths \(\bar{g}_l(N) \) and the numbers \(n_s \) and \(n_u \) of orbits, whose corresponding orbits in the full system are symmetric and unsymmetric, respectively, with respect to reflection on the line \(y = x \), are listed. The degeneracy of the length of an orbit is one, if the orbit is invariant under time reversal. It is two, if the orbit is not invariant under time reversal, since then a different time reversed orbit exists, which has the same length. No accidental degeneracy of lengths has been found, i.e. no pair of different orbits has been found, which have the same length, but are not related by time reversal. The mean degeneracy \(\bar{g}_l(N) \) approximates two if \(N \to \infty \) since the number of orbits, which are invariant under time reversal, increases only proportional to \(3^{N/2} \). The numbers \(n_s \) and \(n_u \) are approximately equal.

The number of orbits that were found is slightly less than the number of primitive code words for \(N = 1 \) to \(N = 14 \). The reason for this is that not to every code word a periodic orbit can be found. There are code words for which the orbit which corresponds to the minimum of the length function is unphysical, since it runs partly outside of the billiard region. An example of such an orbit is shown in figure 3f). The number of forbidden orbits is, however, very small in comparison with the total number of orbits. In table 3 the number of forbidden orbits and its quotient with the total number of orbits are listed. For \(N = 1 \) there is one code word, for which no corresponding orbit exists, that is the word (+). The results for
<table>
<thead>
<tr>
<th>N</th>
<th>orbits</th>
<th>length</th>
<th>$g_l(N)$</th>
<th>$n_s(N)$</th>
<th>$n_s(N)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1.000</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1.000</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>8</td>
<td>1.000</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>16</td>
<td>1.125</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>40</td>
<td>1.200</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>115</td>
<td>81</td>
<td>1.420</td>
<td>59</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>310</td>
<td>206</td>
<td>1.505</td>
<td>154</td>
<td>156</td>
</tr>
<tr>
<td>8</td>
<td>808</td>
<td>487</td>
<td>1.659</td>
<td>408</td>
<td>400</td>
</tr>
<tr>
<td>9</td>
<td>2182</td>
<td>1246</td>
<td>1.751</td>
<td>1090</td>
<td>1092</td>
</tr>
<tr>
<td>10</td>
<td>5878</td>
<td>3202</td>
<td>1.836</td>
<td>2950</td>
<td>2928</td>
</tr>
<tr>
<td>11</td>
<td>16102</td>
<td>8534</td>
<td>1.887</td>
<td>8050</td>
<td>8052</td>
</tr>
<tr>
<td>12</td>
<td>44217</td>
<td>22919</td>
<td>1.929</td>
<td>22138</td>
<td>22079</td>
</tr>
<tr>
<td>13</td>
<td>122630</td>
<td>62768</td>
<td>1.954</td>
<td>61316</td>
<td>61314</td>
</tr>
<tr>
<td>14</td>
<td>341439</td>
<td>173211</td>
<td>1.971</td>
<td>170793</td>
<td>170646</td>
</tr>
</tbody>
</table>

Table 2: For $N = 1$ to $N = 14$ this table contains the total number of primitive periodic orbits of the desymmetrized system, the number of different lengths, the mean degeneracy of lengths $g_l(N)$, and the numbers $n_s(N)$ and $n_s(N)$ of orbits, whose corresponding orbits in the full billiard system are symmetric and unsymmetric, respectively.

<table>
<thead>
<tr>
<th>N</th>
<th>2-5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n_f(N)$</td>
<td>0</td>
<td>0</td>
<td>8.70 x 10^{-3}</td>
<td>6.45 x 10^{-3}</td>
<td>2.47 x 10^{-3}</td>
<td>9.17 x 10^{-4}</td>
</tr>
<tr>
<td>$n_f(N)/n_l(N)$</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>N</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>$n_f(N)$</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>45</td>
<td>166</td>
<td>518</td>
</tr>
<tr>
<td>$n_f(N)/n_l(N)$</td>
<td>1.24 x 10^{-4}</td>
<td>6.78 x 10^{-5}</td>
<td>8.15 x 10^{-5}</td>
<td>1.32 x 10^{-4}</td>
<td>1.74 x 10^{-4}</td>
<td>1.93 x 10^{-4}</td>
</tr>
</tbody>
</table>

Table 3: The number of forbidden orbits $n_f(N)$ and its fraction with the total number of periodic orbits $n_l(N)$ for $N \leq 16$.

$N=15$ and $N=16$ are obtained by a systematic search for forbidden orbits with these values of N. From $N=12$ on, the fraction of the number of forbidden orbits with the total number of orbits is slightly increasing.

The distribution of lengths $p_N(l)$ of all periodic orbits with a fixed value of N was examined for $N=1$ to $N=14$. $p_N(l)\Delta l$ is the probability that a randomly chosen orbit with N reflections on the hyperbola has a length between l and $l+\Delta l$. The exact distribution of lengths is a sum over δ-functions with peaks at the lengths of the periodic orbits; here by $p_N(l)$ a distribution is denoted, which is obtained by smoothing the exact distribution over some interval in order to obtain a smooth function. It is found that the length distributions can be approximated very well by Gaussian curves, if N is large enough ($N \gtrsim 8$)

$$p_N(l) \approx \frac{1}{\sqrt{2\pi \sigma_N}} \exp\left\{-\frac{(l-l_N)^2}{2\sigma_N^2}\right\}. \tag{111}$$
Figure 4: a) The distribution of lengths \(p_{14}(l) \) in comparison with a Gaussian. b) Scaled distributions of lengths \(p_N(l + lN)/p_N(lN) \) as a function of \(l/(\sigma \sqrt{N}) \) for \(N = 10 \) to \(N = 14 \).

![Graph](image)

Figure 5: The quantities \(\bar{l}_N/N \) and \(\sigma_N/\sqrt{N} \). The horizontal lines represent the values of \(\bar{l} \) and \(\sigma \), respectively.

![Graph](image)

\(\bar{l}_N \) and \(\sigma_N \) denote the mean value and the standard deviation of the distribution, respectively. The result for \(p_{14}(l) \) and the corresponding Gaussian curve are plotted in figure 4 a). The deviation of the distribution of lengths from the Gaussian curve is slightly asymmetric with respect to the mean value of the distribution.

If \(N \) is large enough, the \(N \)-dependence of \(\bar{l}_N \) and \(\sigma_N \) is to a very good approximation given by

\[
\bar{l}_N \approx \bar{l} \quad , \quad \bar{l} = 2.027 \\
\sigma_N \approx \sigma \sqrt{N} \quad , \quad \sigma = 0.682
\]

(112)

In order to demonstrate the scaling behaviour of the length distributions, \(p_N(l + lN)/p_N(lN) \) is plotted as a function of \(l/(\sigma \sqrt{N}) \) for \(N = 10 \) to \(N = 14 \) in figure 4 b). As can be seen there is a good agreement between length distributions that correspond to different values of \(N \).

In figure 5 the \(N \)-dependence of \(\bar{l}_N \) and \(\sigma_N \) is shown by a plot of \(\bar{l}_N/N \) and \(\sigma_N/\sqrt{N} \). The horizontal lines represent the values of \(\bar{l} \) and \(\sigma \) of eq. (112), respectively.

A characteristic property of chaotic systems is the asymptotic exponential proliferation
of the number of periodic orbits. This is expressed by the asymptotic law eq. (74)

$$\frac{d}{d\ell}N(l) \sim e^{\ell l/l} \cdot l \to \infty,$$ \hspace{1cm} (113)

where $N(l)$ is defined as the number of primitive periodic orbits γ with length l, $\gamma \sim l$

$$N(l) := \# \{\text{primitive periodic orbits } \gamma \text{ with length } l, \quad \gamma \sim l\}.$$ \hspace{1cm} (114)

τ is equal to $1/v$ times the topological entropy of the billiard system at energy $E = \frac{mv^2}{2}$. In the dimensionless units that are used for the numerical calculations in this paper ($h = 1 = 2m$), τ is equal to the topological entropy at energy $E = 1/4$.

The explicit dependence of the approximated distributions of lengths $p_N(l)$ on N in equations (111) and (112) allows an analytical examination of the asymptotic behaviour of the staircase function $N(l)$:

$$\frac{d}{d\ell}N(l) = \sum_{N=1}^{\infty} p_N(l) \cdot Z(N)$$

$$\approx \sum_{N=1}^{\infty} \frac{1}{\sqrt{2\pi N\sigma}} \exp\left\{-\frac{(l - \bar{l}N)^2}{2\sigma^2 N}\right\} \frac{3^N}{N},$$ \hspace{1cm} (115)

$Z(N)$ is the number of primitive periodic orbits with N reflections on the hyperbola. For large values of l the sum can be approximated by a stationary phase approximation, which yields the following result

$$\frac{d}{d\ell}N(l) \approx \frac{1}{l} \exp\left\{\frac{l}{\sigma^2} \left[\bar{l} - \sqrt{\bar{l}^2 - 2\sigma^2 \log 3}\right]\right\}, \quad l \gg 1.$$ \hspace{1cm} (116)

A comparison with the expected asymptotic behaviour in equation (113) gives an explicit expression for τ of the form

$$\tau = \frac{1}{\sigma^2} \left\{\bar{l} - \sqrt{\bar{l}^2 - 2\sigma^2 \log 3}\right\}.$$ \hspace{1cm} (117)

From this equation a numerical value of $\tau \approx 0.58$ is obtained.

A measure of the stability properties of a periodic orbit γ is given by the stability exponent u_γ. For an unstable orbit it is defined as the absolute value of the logarithm of the absolute value of an eigenvalue of the monodromy matrix. These stability exponents are determined by the method of appendix B. The stability exponents u_γ are related to the Lyapunov exponents λ_γ by the equation $\lambda_\gamma = u_\gamma / T_\gamma(E)$, where $T_\gamma(E)$ is the period of the orbit γ at energy E. Because of the scaling property of billiard systems, that periodic orbits in coordinate space do not depend on the energy, it is convenient to consider the energy independent quantity $\lambda_\gamma := u_\gamma / l_\gamma$, which in dimensionless units is equal to the Lyapunov exponent at energy $E = 1/4$.

The distribution $\tilde{p}_N(\lambda)$ of the so-defined Lyapunov exponents for fixed values of N was examined for $N=1$ to $N=14$. Again it was found that this distribution is approximated well by a Gaussian curve, if N is large enough. The values of N for which this approximation is good are, however, higher than in case of the distributions of lengths $p_N(l)$. The distribution $\tilde{p}_{14}(\lambda)$ and the corresponding Gaussian curve are shown in figure 6 a). The deviation of the
Figure 6: a) The distribution of Lyapunov exponents \(\tilde{p}_N(\lambda) \) in comparison with a Gaussian. b) Scaled distributions of Lyapunov exponents \(\tilde{p}_N(\lambda + \lambda)/\tilde{p}_N(\lambda) \) as a function of \(\lambda \sqrt{N}/\sigma \) for \(N=12 \) to \(N=14 \).

Figure 7: The quantities \(\bar{\lambda}_N \) and \(\bar{o}_{\sqrt{N}} \). The horizontal lines represent the values of \(\bar{\lambda} \) and \(\bar{o} \), respectively.

distributions of Lyapunov exponents from the Gaussian curves is more symmetric than in case of the length distributions.

The mean values \(\bar{\lambda}_N \) and the standard deviations \(\bar{o}_{\sqrt{N}} \) of the distributions \(\tilde{p}_N(\lambda) \) again have a simple \(N \)-dependence, if \(N \) is large enough:

\[
\begin{align*}
\bar{\lambda}_N & \approx \bar{\lambda}, \quad \bar{\lambda} = 0.703 \\
\bar{o}_{\sqrt{N}} & \approx \bar{o}/\sqrt{N}, \quad \bar{o} = 0.199 .
\end{align*}
\]

Figure 6 b) shows the scaling property of the distributions \(\tilde{p}_N(\lambda) \) by a plot of the scaled distributions \(\tilde{p}_N(\lambda + \lambda)/\tilde{p}_N(\lambda) \) as a function of \(\lambda \sqrt{N}/\sigma \) for \(N=12 \) to \(N=14 \). The \(N \)-dependence of \(\bar{\lambda}_N \) and \(\bar{o}_{\sqrt{N}} \) is shown in figure 7 by a plot of \(\bar{\lambda}_N \) and \(\bar{o}_{\sqrt{N}} \). The horizontal lines represent the values of \(\bar{\lambda} \) and \(\bar{o} \), respectively.

The fact that the mean Lyapunov exponents are to a good approximation constant for different values of \(N \) is remarkable in view of the fact, that the Lyapunov exponent of a finite segment of a non-periodic trajectory approximates zero, if the length of the segment goes to infinity, as will be discussed below. An explanation for this fact is, that for every value
of \(N \) the number of orbits, which are situated in the central region of the billiard area, is much larger than the number of orbits, which run into the horn, because the number of code words which contain a sequence of consecutive “+” are small in comparison with the total number of code words. In addition, forbidden code words are mainly among code words, which contain a sequence of several consecutive “+”.

III.2.2 The Periodic Orbits with Lengths \(l, \leq 20 \)

<table>
<thead>
<tr>
<th>(l)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>orbits</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>lengths</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>(\bar{g})</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.222</td>
</tr>
<tr>
<td>(\bar{\lambda})</td>
<td>0.881</td>
<td>0.623</td>
<td>0.925</td>
<td>0.731</td>
<td>0.739</td>
<td>0.724</td>
<td>0.720</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(l)</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>orbits</td>
<td>16</td>
<td>24</td>
<td>43</td>
<td>79</td>
<td>124</td>
<td>221</td>
<td>390</td>
</tr>
<tr>
<td>lengths</td>
<td>14</td>
<td>19</td>
<td>32</td>
<td>58</td>
<td>88</td>
<td>140</td>
<td>246</td>
</tr>
<tr>
<td>(\bar{g})</td>
<td>1.143</td>
<td>1.263</td>
<td>1.344</td>
<td>1.362</td>
<td>1.409</td>
<td>1.579</td>
<td>1.585</td>
</tr>
<tr>
<td>(\bar{\lambda})</td>
<td>0.736</td>
<td>0.717</td>
<td>0.708</td>
<td>0.705</td>
<td>0.705</td>
<td>0.705</td>
<td>0.703</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(l)</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>orbits</td>
<td>648</td>
<td>1084</td>
<td>1839</td>
<td>3201</td>
<td>5402</td>
</tr>
<tr>
<td>lengths</td>
<td>391</td>
<td>622</td>
<td>1035</td>
<td>1756</td>
<td>2913</td>
</tr>
<tr>
<td>(\bar{g})</td>
<td>1.657</td>
<td>1.743</td>
<td>1.777</td>
<td>1.823</td>
<td>1.854</td>
</tr>
<tr>
<td>(\bar{\lambda})</td>
<td>0.707</td>
<td>0.703</td>
<td>0.705</td>
<td>0.704</td>
<td>0.706</td>
</tr>
</tbody>
</table>

Table 4: For \(l = 2 \) to \(l = 20 \) this table contains the total number of primitive periodic orbits with length \(l \), in the interval \(l - 1 < l, \leq l \). Further it contains the number of different lengths, the mean degeneracy of lengths \(\bar{g} \) and the mean Lyapunov exponent \(\bar{\lambda} \) of orbits in this interval.

A detailed analysis of the statistical properties of the length spectrum can only be given, if the orbits are completely known up to a certain length. Also for an examination of the accuracy of the periodic-orbit theory it is necessary to have a complete length spectrum up to a certain length. The problem of obtaining such a complete length spectrum is, that one cannot read off the length of an orbit from its corresponding code word. Although there is the general tendency that with increasing word length also the lengths of the orbits increase, there are also orbits, which have a long code word but a relatively small length. For example, for \(N=14 \) most lengths are distributed around \(l_{14} \approx 28.37 \) with a standard deviation of \(\sigma_{14} \approx 2.55 \), but the shortest orbit has the length \(l_{5} \approx 12.99 \). However, orbits which have the smallest lengthsodule values for a given value of \(N \) all have the property that they spend some time in the horn of the billiard system, where the lengths of the sections of the orbit between consecutive hits on the hyperbola are small. In the code word this behaviour is reflected by the occurrence of a group of consecutive “+”. This property allows a systematic search for all periodic orbits with a length below a certain given length. In this way all orbits of the hyperbola billiard with length \(l \), \(\leq 20 \) were determined. The highest code length that was
Figure 8: The staircase function $N(l)$ in comparison with the asymptotic curve $\text{Ei}(\tau l)$ for $\tau = 0.5925$ (dashed line), a) linear scale, b) logarithmic scale.

obtained for such an orbit is $N = 32$. Altogether 13098 orbits with 7339 different lengths were determined.

Properties of the periodic orbits within different lengths intervals are listed in table 4. The mean multiplicity of lengths is approximating two as is expected. The mean Lyapunov exponent again lies constantly between 0.70 and 0.71 for $l > 10$.

The obtained length spectrum allows a numerical determination of the topological entropy τ. Figure 8 shows $N(l)$ for $l \leq 20$ in linear and logarithmic scale. In the range $15 < l < 20$ a fit is made with the asymptotic curve

$$N(l) \sim \text{Ei}(\tau l), \quad l \to \infty,$$

(110)

which is obtained by integrating eq. (113). A value of $\tau = 0.593$ was obtained for the topological entropy, and the corresponding asymptotic curve is also shown in figure 8. Both curves agree very well for $15 < l < 20$, which is an indication for the quality of the asymptotic approximation, since only a one parameter fit is made.

III.2.3 Statistical Properties of the Length Spectrum

The examination of the statistical properties of quantum mechanical energy spectra is one of the most common tools for the distinction of systems, which are classically chaotic or integrable, respectively. This motivates the examination of statistical properties of the lengths of periodic orbits, which are related to the quantum mechanical energies by means of the periodic-orbit theory. A further reason for the examination of the length statistics is the fact, that in applications of the periodic-orbit theory it often is assumed that the lengths of chaotic systems are Poisson distributed, but there are almost no systems for which a sufficient number of orbits is available so that this assumption can be tested.

Asymptotically the degeneracy of lengths of the periodic orbits of the hyperbola billiard is equal to two. Then all the relevant statistical information is contained in the distribution of different lengths. For that reason this is the distribution which is examined.

The statistics are determined for a scaled spectrum of lengths, which has the property that the mean distance between neighbouring lengths is equal to one. The scaled spectrum is
Figure 9: a) The distribution of spacings between neighbouring lengths $P_l(S)$, b) the deviations δ_n of the scaled lengths l'_n from the mean values $n - 1/2$, c) the number variance $\Sigma^2(L)$ and d) the rigidity $\Delta_3(L)$.

obtained with the use of the asymptotic law for the total number of orbits $\mathcal{N}(l)$ of eq. (119) and a smooth approximation for the mean degeneracy $\bar{g}(l)$ of all orbits with length $l_n \leq l$:

$$\bar{g}(l) = \sum_{l_n \leq l} g_n \cdot (\sum_{l_n \leq l} 1)^{-1}. \quad (120)$$

In this notation n labels all different lengths l_n, which are ordered in an ascending sequence. g_n denotes the multiplicity of the length l_n. In the range $16 < l < 20$ the function $\bar{g}(l)$ varies slowly and it is approximated by a polynomial of degree three. This approximation is denoted by $\langle \bar{g}(l) \rangle$. The normalized length spectrum is obtained by the equation

$$l'_n = \frac{\mathcal{N}(l_n)}{\langle \bar{g}(l_n) \rangle}, \quad (121)$$

and it is evaluated between $1014 \leq l'_n \leq 7339$, which corresponds to the range $16 \leq l_n \leq 20$ in the original spectrum.

First the distribution of spacings between neighbouring lengths $P_l(S)$ was determined. This distribution contains information about short-range correlations. The result for $P_l(S)$ is shown in figure 9a). It agrees very well with a Poisson distribution.
In figure 9 b) the deviations of the scaled lengths \(l_n' \) from mean values \(n = 1/2 \) are plotted

\[
\delta_n := n - \frac{1}{2} \cdot l_n'.
\]

The deviations \(\delta_n \) that are found are relatively high, and they increase with increasing \(n \). This is in agreement with the expectation for a Poisson distributed spectrum.

The long-range correlations are examined by the number variance \(\Sigma^2(L) \) and the rigidity \(\Delta_3(L) \). \(\Sigma^2(L) \) is defined as the local variance of the number \(n(l',L) \) of scaled lengths \(l_n' \) in the interval from \(l' - L/2 \) to \(l' + L/2 \):

\[
\Sigma^2(L) = \left\langle |n(l',L) - L|^2 \right\rangle. \tag{123}
\]

Let \(N'(l') \) denote the number of scaled lengths \(l_n' \) that are less or equal \(l' \). \(\Delta_3(L) \) is defined as the local average of the mean square deviation of the staircase \(N'(l') \) from the straight line that fits it best over the range \(L \):

\[
\Delta_3(L) = \left\langle \min_{[a,b]} \frac{1}{L} \int_{-L/2}^{L/2} dl \left| N'(l' + l) - a - bl \right|^2 \right\rangle. \tag{124}
\]

It can be expressed as

\[
\Delta_3(L) = \left(\frac{1}{L} \int_{-L/2}^{L/2} dl N'^2(l' + l) - \left[\frac{1}{L} \int_{-L/2}^{L/2} dl N'(l' + l) \right]^2 - 12 \left[\frac{1}{L^2} \int_{-L/2}^{L/2} dl l N'(l' + l) \right]^2 \right)^2. \tag{125}
\]

Both statistics are closely related, which is expressed by the equation

\[
\Delta_3(L) = \frac{2}{L^4} \int_0^L dr \left(L^3 - 2L^2r + r^3 \right) \Sigma^2(r). \tag{126}
\]

For a Poisson distributed sequence the number variance is equal to \(\Sigma^2(L) = L \) and the spectral rigidity obeys \(\Delta_3(L) = L/15 \). The result of the numerical determination of the number variance \(\Sigma^2(L) \) is shown in figure 9 c). Again there is a good agreement with the Poisson expectation if \(L < 200 \). But above \(L = 200 \) the curve \(\Sigma^2(L) \) clearly lies under the curve for the Poisson distribution. This means that very long-range correlations are not described by a Poisson distribution. Concerning the energy level statistics the number variance is expected to saturate, i.e. it approaches a finite value if \(L \to \infty \). This is a consequence of the fact, that there is a shortest length in the periodic-orbit sum. The results for the \(\Sigma^2 \)-statistics of the lengths are an indication that the number variance of the distribution of lengths also saturates. The rigidity \(\Delta_3(L) \) is plotted in figure 9 d). Here the agreement with the Poisson expectation is good over the total range of the parameter \(L \). On the other hand a saturation of the number variance \(\Sigma^2(L) \) implies also a saturation of the rigidity \(\Delta_3(L) \) by eq. (126). But the saturation of \(\Delta_3(L) \) in general occurs at higher values of \(L \) as the saturation of \(\Sigma^2(L) \). This point is discussed in more detail in context with the statistics of energy eigenvalues.

43
Figure 10: The mean Lyapunov exponent of 100 trajectories as a function of the trajectory length l. The dashed lines mark the distance of the standard deviation below and above the mean value.

III.2.4 The Lyapunov Exponent for Non-Periodic Trajectories

This section contains an examination of the stability properties of non-periodic trajectories, which are followed over a long distance. The stability exponent $\nu(l)$ of a finite part of length l of a non-periodic trajectory is determined by the method of appendix B. The Lyapunov exponent of this part of the trajectory is defined by $\lambda(l) = \nu(l)/l$. In figure 10 the mean value of the Lyapunov exponents of 100 trajectories is shown for $l < 10000$. The initial conditions of the trajectories are chosen randomly in the central billiard region. If only one trajectory is considered, the Lyapunov exponent shows an irregular behaviour. Periods in which the trajectory runs into the horn, where the Lyapunov exponent decreases, alternate with periods in which the trajectory is in the central region of the billiard domain, where the Lyapunov exponent increases again. The mean value of the Lyapunov exponents of several trajectories is taken in order to see the average behaviour of $\lambda(l)$ as a function of the trajectory length l. Figure 10 shows that $<\lambda(l)>$ continuously decreases for long l as a function of l. In addition, the standard deviation slowly decreases. This suggests that for a non-periodic trajectory $\lambda(l)$ goes to zero, if $l \to \infty$. An explanation of this behaviour is that periods in which the trajectory runs a very long distance into the horn occur seldom, but they lead to a strong decrease of $\lambda(l)$. Let the maximum x-value that is reached within such a period be x_{max}. As $l \to \infty$ arbitrary large values of x_{max} occur, which possibly have the effect that $\lambda(l) \to 0$ as $l \to \infty$. In this case one has a strongly chaotic system with the property that the Lyapunov exponent of infinitely long non-periodic trajectories is equal to zero. This seemingly contradictory behaviour is a consequence of the unboundedness of the billiard system.
IV The Energy Spectrum of the Hyperbola Billiard

All information about a conservative quantum mechanical system is contained in the energy eigenvalues and eigenfunctions of the Hamiltonian operator of the system. It is therefore natural to ask what distinguishes the energy spectrum and eigenfunctions of a quantum system which is classically chaotic from one which is not. There are further arguments which suggest that some quantities in the context of the quantum mechanics of classically chaotic systems \[10,11\]. Chaos is typically connected with the infinite time limit. Chaotic properties like ergodicity, mixing or the emergence of complexity on infinitely fine scales during the time-evolution of initially smooth curves in classical phase space all occur or are defined in the limit \(t \to \infty \). The non-existence of chaos in the quantum mechanical time evolution is directly connected with the fact that the two limits \(\hbar \to 0 \) and \(t \to \infty \) in general do not commute. For that reason the properties of a classical system at infinite times are significantly different from the infinite time quantum mechanical behaviour. The energy eigenvalues and eigenfunctions are stationary objects, that is objects, which do not change as \(t \) goes to infinity. The studies of these quantities in the semiclassical limit therefore automatically represent also studies of quantum mechanical behaviour at infinite times in the limit \(\hbar \to 0 \).

Most of the numerical investigations were carried out on the energy spectrum. It was found that a very effective tool for the distinction between quantum systems, which are classically chaotic, and those, which are classically integrable, is the statistics of the energy eigenvalues. More precisely, the characteristic information lies in the deviation of the level density from the mean level density. For that reason one usually considers a scaled energy spectrum, which has a mean level distance of one. For most systems the statistics of the scaled energy levels then depend only upon whether the considered system is classically chaotic or integrable, and also on the presence of certain symmetries. A prerequisite for this is, that the statistics have to be evaluated in the semiclassical regime, and that one has to restrict to statistics, which do not describe very long-range correlations. The property that on these assumptions most systems show the same fluctuation statistics of the level density is called universality.

Berry and Tabor first showed that generic integrable systems have a spectrum, whose short-range statistics is that of Poisson distributed numbers \[67\]. They also presumed that the spectra of classically chaotic quantum systems show level repulsion. This was based on the analogy with the statistical theory of spectra \[68\], which was developed in order to explain the spectra of complicated nuclei and atoms. This theory models the level statistics of complex systems by the eigenvalue statistics of certain ensembles of random matrices \[69\]. Level repulsion in the spectra of classically chaotic systems was also supposed by Zaslavsky \[70\]. Bohigas, Giannoni and Schmit then demonstrated that the results of random matrix theory can also be applied in order to describe the short-range statistical properties of the spectra of low-dimensional chaotic systems \[71,72\]. This means that the energy statistics of classically chaotic systems is the same as the eigenvalue statistics of certain ensembles of infinite dimensional matrices, whose elements are Gaussian distributed random elements. The kind of matrices which form a certain ensemble depends on the symmetry properties of the considered system. One distinguishes three cases:

- The Gaussian Unitary Ensemble (GUE), which consists of complex hermitian matrices. It describes the energy statistics of systems without any symmetry.
— The Gaussian Orthogonal Ensemble (GOE), which consists of real symmetric matrices. It describes the energy statistics of systems with time-reversal symmetry, but no geometrical symmetry, which have an integer spin.

— The Gaussian Symplectic Ensemble (GSE), which consists of “quaternion real” matrices. It describes the energy statistics of systems with time-reversal symmetry, but no geometrical symmetry, which have a half integer spin.

The above classification considers only the most common cases. There is a more general classification, which for example takes into consideration also the existence of arbitrary anti-unitary symmetries, for which the time-reversal symmetry is one example. If discrete geometrical symmetries are present, then one has to consider the subspaces of the spectrum, which are defined by having fixed eigenvalues of the geometrical symmetry, separately. The results of the random matrix theory then have to be applied to every subspace of the spectrum.

The universal properties of the energy statistics have been verified on a variety of systems. The above classification has to be slightly restricted in that it is a property of generic systems, but must not hold for every classically chaotic quantum system. There can be particular quantum systems, which do not have the expected energy statistics, as well as there are integrable systems like the harmonic oscillator, which do not have a Poisson distributed spectrum.

A theoretical explanation for the observed spectral universality was given by Berry for statistics, that are bilinear in the level density, like the spectral rigidity \(\Delta_3(L) \) and the number variance \(\Sigma^2(L) \) [16,10]. This theory is based on semiclassical formulae, which express these statistical quantities by sums over classical periodic orbits by means of Gutzwiller's trace formula for the spectral density. Universal behaviour in the quantum mechanical energy spectrum then can be explained as a consequence of universal properties of very long classical orbits, which were discovered by Hannay and Ozorio de Almeida [73]. Berry's theory also predicts departure from universality, if long-range statistics are considered, since their properties are determined by short orbits, which are non-universal.

Up to this point only the two extreme cases of completely integrable or completely chaotic systems have been considered. Most systems, however, are partly chaotic and partly integrable. The energy statistics of those mixed systems has properties, which lie in between the properties of the energy spectra of integrable systems on the one hand and chaotic systems on the other hand. Families of systems, which show a transition from integrability to chaos by changing one parameter, in general have an energy statistics, which changes from a Poisson statistics to one, which is described by random matrix theory [74,75,76].

This chapter describes the method by which the energy eigenvalues of the hyperbola billiard were determined and examines the statistical properties of the numerically obtained energy spectrum.

IV.1 Determination of the Energy Eigenvalues

For billiard systems there exists a variety of numerical methods for the determination of the energies. An overview over different methods is given by Kuttler and Sigillito [77]. However, most of these methods yield unsatisfactory results, if one tries to determine higher eigenvalues. First results for the hyperbola billiard were obtained by using the method of Rayleigh and Ritz. This method is numerically stable and gave results, which were sufficient for a first
testing of the periodic-orbit theory \[58\]. But the accuracy of the results was not very high. A method which yields a higher accuracy for the first eigenvalues is the collocation method, which was used by Heller for the determination of the eigenvalues of the stadium billiard \[78\]. Even very high-lying stadium energies could be obtained by this method. In case of the hyperbola billiard, however, this method becomes numerically unstable, if one tries to determine more than about the first twenty eigenvalues, although the accuracy for the first eigenvalues is quite high. A variant of this method was used by Schmit in order to obtain the first 1500 eigenvalues of a desymmetrized part of the octagon, a smooth compact Riemannian surface with constant negative curvature \[38\]. For the hyperbola billiard this method turned out to be numerically too expensive for the determination of a greater part of the spectrum. The method which gave by far the best results is a boundary element method, which is explained in the following.

The quantum mechanics of the hyperbola billiard is described by the stationary Schrödinger equation, which in dimensionless units is equal to the Helmholtz equation

\[
- \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \psi_n(x, y) = E_n \psi_n(x, y) , \quad (x, y) \in D ,
\]

with Dirichlet boundary conditions

\[
\psi_n(x, y) = 0 \quad \text{if} \quad (x, y) \in \partial D .
\]

The units are chosen such that \(\hbar = 2m = 1 \). \(D \) denotes the domain of the billiard system

\[
D := \{ (x, y) | x \geq 0 \wedge y \geq 0 \wedge y \leq \frac{1}{x} \} ,
\]

and \(\partial D \) is its boundary.

Simon proved that the energy spectrum of this system is purely discrete despite of the infinite billiard area \[63\]. The invariance of this system under reflection on the straight line \(y = x \) allows the choice of a basis of eigenfunctions \(\psi_n(x, y) \), which are either even or odd with respect to reflection on the line \(y = x \).

The numerical method for the determination of the energies \(E_n \) consists in the approximate solution of a one-dimensional integral equation by discretization. Here we give a sketch of the derivation of this equation. The starting point is the free (outgoing) Green function in two dimensions, which is the solution of the inhomogeneous Schrödinger equation

\[
\{ E + i\varepsilon + \vec{\nabla}^2 \} G(\vec{q}, \vec{q}', E) \bigg|_{\varepsilon \to 0} = \delta(\vec{q} - \vec{q}') ,
\]

and is given by

\[
G(\vec{q}, \vec{q}', E) = -\frac{i}{4} H_0^{(1)}(\sqrt{E}|\vec{q} - \vec{q}'|) ,
\]

where \(\vec{q} = (x, y) \), \(\vec{q}' = (x', y') \). \(\vec{\nabla} \) is the gradient vector with respect to \(\vec{q} \), and \(H_0^{(1)} \) is a Hankel function. Let \(\psi(\vec{q}) \) be any solution of the Schrödinger equation

\[
\{ E + \vec{\nabla}^2 \} \psi(\vec{q}) = 0 .
\]

Eq. (\ref{eq:131}) is multiplied by \(\psi(\vec{q}) \), eq. (\ref{eq:132}) is multiplied by \(G(\vec{q}, \vec{q}', E) \), both equations are subtracted and integrated over the domain \(D \). After applying Green’s theorem one finally
obtains the Helmholtz representation for the wavefunction $\hat{\psi}$ \cite{79,80,81}:

$$
\int_{\partial D} d\sigma' \{ \hat{\psi}(\bar{q}') \hat{n}' \cdot \nabla' G(\bar{q}, \bar{q}', E) G(\bar{q}, \bar{q}'', E) \hat{n}' \cdot \nabla' \hat{\psi}(\bar{q}'') \} = \begin{cases}
\hat{\psi}(\bar{q}) & \bar{q}' \in D \setminus \partial D \\
\hat{\psi}(\bar{q})/2 & \bar{q}' \in \partial D \\
0 & \bar{q}' \not\in D
\end{cases} \quad (133)
$$

Here \hat{n}' is the outward normal unit vector to the boundary ∂D at point \bar{q}', ∇' is the gradient vector with respect to \bar{q}', and $d\sigma'$ denotes the line element along the boundary ∂D.

Eq. (133) is an integral equation for the wavefunction $\hat{\psi}(x, y)$, if the boundary condition eq. (128) is inserted, but the kernel of this equation is singular. This singularity can be removed by taking the normal derivative on both sides of eq. (133), choosing \bar{q} to lie on the boundary, and inserting the Dirichlet boundary condition. This leads to the equation

$$
- \int_{\partial D} d\sigma' \hat{n} \cdot \nabla G(\bar{q}, \bar{q}', E) \hat{n}' \cdot \nabla \hat{\psi}(\bar{q}') = \frac{1}{2} \hat{n} \cdot \nabla \hat{\psi}(\bar{q}) , \quad \bar{q}' \in \partial D \quad , \quad (134)
$$

which is a Fredholm equation of the second kind for the normal derivative of $\hat{\psi}$. Eq. (134) is very efficient for the determination of the energies of billiard systems (see e.g. \cite{82,83,84}). In case of the hyperbola billiard the numerical effort for the computation of the energies can be considerably reduced by making use of the fact, that the x-axis and the y-axis form part of the boundary, and that the system is invariant under reflection on the line $y = x$. This is achieved by choosing instead of the free Green function the Green function for the domain $\{(x, y) | \ x \geq 0 \land y \geq 0 \}$, which vanishes on the x-axis and on the y-axis. This Green function is obtained by the method of images. In addition the eigenvalues of even and odd energy eigenfunctions can be determined separately by requiring the Green function to be even and odd, respectively, with respect to reflection on the line $x = y$:

$$
G^\pm(\bar{q}, \bar{q}', E) := G(\bar{q}, (x', y'), E) - G(\bar{q}, (-x', y'), E) - G(\bar{q}, (x', -y'), E) + G(\bar{q}, (-x', -y'), E) = G(\bar{q}, (y', x'), E) = G(\bar{q}, (y', -x'), E) + G(\bar{q}, (-y', -x'), E) \quad . \quad (135)
$$

Here G denotes the free Green function given in eq. (131). Even functions are denoted by a plus sign and odd functions by a minus sign. Starting with the Green functions of eq. (135) separate equations for even and odd eigenfunctions can be derived

$$
- \int_C d\sigma' \hat{n} \cdot \nabla G^\pm(\bar{q}, \bar{q}', E) \hat{n}' \cdot \nabla \hat{\psi}(\bar{q}') = \frac{1}{2} \hat{n} \cdot \nabla \hat{\psi}^\pm(\bar{q}) , \quad \bar{q} \in C \quad , \quad (136)
$$

where $C = \{(x, y) | \ y = 1/x , \ x \geq 1 \}$, so that now the line integral is evaluated only along one half of the hyperbola $y = 1/x$.

Equations (136) are solved approximately by discretizing the boundary curve C. The infinite boundary is cut off at some finite point $(\bar{x}, 1/\bar{x})$, and the remaining boundary is divided into N equal pieces of length ΔL. (The choice of \bar{x} and ΔL depends on the energy value and the required accuracy.) The function $\hat{n} \cdot \nabla \psi(\bar{q})$ is replaced by a N-dimensional vector v and the integral term by a Riemannian sum. Equations (136) then become systems of N linear equations for the vector v

$$
A v = 0 , \quad A_{ij} = \Delta L \hat{n}_i \cdot \nabla_i G^\pm(\bar{q}, \bar{q}_j, E) + \frac{1}{2} \delta_{ij} , \quad i, j = 1, \ldots, N \quad . \quad (137)
$$
The requirement that these equations have a nontrivial solution \(r \) leads to the condition, that the determinant of \(A \) has to vanish. Due to the error introduced by the discretization the zeros of the determinant of \(A \) as a function of the energy \(E \) will in general be complex. But the absolute value of the determinant of \(A \) as a function of real energy \(E \) shows very pronounced minima at values of \(E \), which are close approximations to the energy eigenvalues, if \(\Delta L \) is chosen small enough and \(x \) is large enough (\(\Delta L < 2\pi/\sqrt{E}, x > \sqrt{E}/2\pi \)).

The results for the energy eigenvalues below \(E = 200 \) are given in tables 5 and 6. It is estimated that the last given digit is uncertain by \(\pm 1 \).

11.7358	27.325	36.278	45.79	56.93	62.90	73.62	84.21	87.34
96.55	103.83	111.10	118.29	125.63	135.55	143.36	147.66	154.84
158.17	165.76	174.64	180.73	185.77	194.85			

Table 5: The energy eigenvalues of even wavefunctions below \(E = 200 \)

21.456	36.278	49.43	59.50	67.94	77.04	86.24	97.27	105.12
110.21	120.81	129.20	134.24	138.86	149.54	160.39	163.34	172.02
179.04	185.01	194.91	198.47					

Table 6: The energy eigenvalues of odd wavefunctions below \(E = 200 \)

IV.2 The Spectral Staircase \(N(E) \)

A test for the calculated energies \(E_\alpha \) is carried out by the examination of the spectral staircase function \(N(E) \), which is defined by the number of states with energies below \(E \):

\[
N(E) := \# \{ E_\alpha | E_\alpha \leq E \} \quad (138)
\]

The mean increase of this function is described by the smooth function \(\tilde{N}(E) \). The asymptotic behaviour of \(\tilde{N}(E) \) for large energies \(E \) can be determined analytically, and the comparison of the numerically calculated \(N(E) \) with the analytic expression for \(\tilde{N}(E) \) shows, if the calculated spectrum has the correct mean behaviour. For example, in this way it is noticed, if two adjacent energy levels, which are very close together, are not resolved as two separate energies.

For billiards with finite area \(A \), the first leading terms in the asymptotic formula for \(\tilde{N}(E) \) are known, and they depend on geometrical properties of the billiard system [85]:

\[
\tilde{N}(E) = \frac{A}{4\pi} E - \frac{L}{4\pi} \sqrt{E} + \sum b(\gamma_i) + \sum c(\alpha_j) + \ldots , \quad E \to \infty . \quad (139)
\]

This is valid for billiards with Dirichlet boundary conditions, whose boundary consists of a finite number of smooth continuous pieces \(\gamma_i \) and corners with angles \(\alpha_j \). Further it is assumed that no cusps are present. \(L \) is the total length of the boundary. If only the first