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SummaryThe correspondence between a quantum system and its classical limit is closely connectedto the periodic orbits of the system. They characterize the oscillations in quantum spectrasince the Fourier components of the density of energy levels are determined in the semi-classical limit by periodic orbits. We present here a collection of articles that examinevarious properties of semiclassical approximations in terms of periodic orbits. The form ofthese approximations depends on the nature of the classical motion. Several applicationsare discussed.In the �rst part we consider chaotic systems in which the approximation is givenby Gutzwiller's periodic orbit theory. The original formulation in terms of the spectraldensity is not necessarily the most convenient form for calculating semiclassical energiesand we present a di�erent method that uses the spectral staircase. Another e�cienttechnique involves the spectral determinant that can be semiclassically expressed in termsof combinations of periodic orbits, so-called pseudo-orbits. We examine the convergenceproperties of this sum and reproduce them by a statistical model. Berry and Keatingderived a resummation of the pseudo-orbit sum and expressed it in terms of a �nitenumber of orbits. This approximation is tested in detail by checking the amplitude aswell as the zeros of the determinant. It requires to carry out a regularization of thedeterminant so that it can be accurately determined from a �nite number of energies.We further present a method by which, in billiard systems, particular contributions insemiclassical approximations can be isolated and studied separately. This is achieved bychoosing parameter-dependent mixed boundary conditions. Finally, we present a methodfor deriving periodic-orbit contributions in three-dimensional billiard systems that yieldsa simple algorithm for determining the stability matrix and the Maslov index of the orbits.The second part deals with applications of semiclassical approximations in chaoticsystems in connection with statistics of energy levels. There is much evidence that thestatistical distributions of the energy levels can be described by random matrix theory.By using the trace formula we show that this property has to be reected by propertiesof the periodic orbits. It leads to the prediction of generalized action correlations thatcan be observed numerically. We further semiclassically calculate deviations from randommatrix results in the stadium billiard whose origin is the family of bouncing ball orbits andwhich have been observed in a microwave experiment. We further discuss the sensitivity ofsemiclassical approximations for the spectral form factor on the de�nition of the averagingprocedure.Most two-dimensional conservative systems are not chaotic but have a mixed phasespace dynamics that can show regular as well as chaotic behaviour. These systems aremuch less accessible to a semiclassical approximation than either chaotic or integrablesystems since the periodic orbits in these systems form clusters and bifurcate when a pa-rameter of the system is varied. A semiclassical treatment requires a collective treatmentof these orbits. We derive uniform approximations for all generic cases of orbit bifurca-tions that occur in two-dimensional systems. We consider also an example of an integrablesystem in which bifurcations occur and discuss how the uniform approximations have tobe modi�ed when the system is perturbed.Another class of systems in which semiclassical approximations have to be modi�edare systems in which di�raction occurs, for example billiard systems with corners. In thesesystems so-called di�ractive orbits that run into the corners yield additional semiclassical1



contributions. We derive a uniform approximation for di�ractive orbits that run intoone corner. This approximation avoids the divergences of previous treatments by Keller'sgeometrical theory of di�raction.In the last part we apply semiclassical methods to a problem in nuclear physics, thewell-known asymmetric mass distribution of the �ssion fragments that arise in the �ssionof many actinide nuclei. This asymmetric mass distributions can be reproduced, forexample, in shell correction calculations with realistic shell-model potentials. We showthat there is a simple semiclassical explanation for this asymmetry. It can be related tothe constancy of the actions of the shortest periodic orbits.We note that references of the form [Px] where x is a number refer to the publicationsthat are included in this collection.
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1 IntroductionSemiclassical methods are essential tools for the investigation of highly excited quantumsystems. They describe the correct analytical behaviour of wave functions, energy levels,scattering resonances, etc. in the short-wavelength limit where �h is small in comparison torelevant action functions of the corresponding classical system. Being expressed in termsof classical quantities they are a natural mean for studying how characteristic propertiesof a classical system are reected in the corresponding quantum system. This is one ofthe central questions in quantum chaology, the study of quantum properties of chaoticor, more general, non-integrable systems. Conversely, semiclassical approximations oftenallow a simple understanding of the nature of quantum uctuations that are observedin experiments or in numerical calculations by relating them to properties of classicaltrajectories. They have led to physical insight into a variety of quantum phenomena indi�erent areas as e. g. atomic, molecular, nuclear or cluster physics.Semiclassical methods are very powerful in one-dimensional systems where they canbe applied, in form of the WKB-approximation, to accurately calculate energies and wavefunctions of highly excited states that would be di�cult to determine by directly solvingthe Schr�odinger equation (see e. g. the review [1]). These methods can be extended tohigher-dimensional systems in cases in which the motion is integrable (or near-integrable).There they take the form of the EBK-conditions. For general higher-dimensional systems,however, semiclassical approximations have a di�erent characteristic. For chaotic systemsGutzwiller obtained an approximation for energy levels that is usually expressed in termsof the so-called trace formula for the level density [2, 3, 4]d(E) =Xn �(E � En)� �d(E) + 1��hX T(E)rpj det(M � 1)j cos�S(E)�h � �2�� : (1)Here the energies En are the solutions of the stationary Schr�odinger equation. The ap-proximation for the level density involves the smooth function �d(E) describing the averagelevel density which in leading semiclassical order is given by the Thomas-Fermi approx-imation for d(E). The sum over  runs over all periodic orbits of the classical system,including repetitions, and it involves classical properties of these orbits: the period T,action S , stability matrix M , Maslov index � , and repetition number r .It is implicitly assumed in the derivation of the trace formula (1) that the classicalmotion is chaotic. This is because the semiclassical contributions of the periodic orbitsare derived by assuming that they are isolated. This is strictly valid only if they areunstable. In the vicinity of stable periodic orbits there are always other periodic orbitswhich are related to the stable orbit and its repetitions through bifurcations as the energy(or a parameter) of the system is changed, a point to be discussed in more detail in thefollowing.In comparison to EBK-quantization conditions the semiclassical condition (1) for theenergy levels is more indirect. Whereas the EBK-conditions require the solution of a sys-tem of coupled equations, the quantized levels in (1) arise as peaks through the construc-tive interference of oscillatory terms that are determined by the periodic orbits. Theseorbits are in general not known analytically but have to be determined numerically. More-over, the number of these orbits increases exponentially with their period. However, the3



structure underlying (1) is more general than that of the EBK-conditions and it allowsgeneralizations also to larger classes of systems. It can be shown in general, that theleading order contributions to the level density are determined by the periodic orbits ofthe classical system. This follows from the fact that the level density can be semiclas-sically expressed in terms of oscillatory integrals with stationary points that correspondto periodic orbits. Depending on whether the classical motion is chaotic, integrable ormixed these orbits are isolated, appear in families or form more complicated clusters. Forintegrable systems the corresponding trace formulas have been derived in [5, 6]. Moregeneral symmetries have been treated in [7, 8].Properties of the trace formula (1) have been examined under various aspects, one ofthe early motivations being to �nd a method for the determination of high-lying energiesthat is applicable to chaotic systems. The main obstacle for this is the exponentialproliferation of the number of periodic orbits. As a consequence of this proliferation, thesum over periodic orbits in (1) is divergent for real values of the energy. In order toapply the trace formula in a controlled way it has to be brought into a convergent form,as can be done, for example, by an analytical folding of the formula with appropriatesmoothing functions [9, 10]. But even with an trace formula that involves only absolutelyconvergent sums the determination of higher lying energies requires an exponentiallyincreasing numerical e�ort. For that reason there has been a large e�ort to understandin detail the analytical and general properties of the trace formula in order to �nd moree�cient quantization conditions. For this purpose di�erent approaches have been applied,involving the study of motion on Riemann surfaces with constant negative curvature forwhich the trace formula is an exact relation (see e. g. [11]), using analogies to trace formulasfor the Riemann zeta function (see e. g. [12]), applying the scattering approach to thequantization of billiard systems [13, 14, 15], the Fredholm theory for integral equationsin billiard problems [16, 17, 18, 19], or the cumulant expansion for scattering problems[20]. Very e�cient have been approaches in which the quantum levels are determined bythe zeros of a function, for example involving the spectral staircase [P1], or the spectraldeterminant [21] which has been treated by curvature expansions [22, 23, 24], as Dirichletseries [25] or has been resummed and expressed in terms of a �nite number of periodicorbits [26, 27]. These methods have led to a clear reduction of the numerical e�ort thatis required for the semiclassical determination of energy levels.Despite this progress there remains the basic problem that the numerical e�ort for thecalculation of higher-lying energies increases exponentially. There is a di�erent semiclas-sical method that avoids this problem. This is Bogomolny's transfer operator approach[17]. It involves the evaluation of determinants of matrices whose elements are expressedin terms of classical trajectories. However, also this method does not necessarily requireless numerical e�ort than a direct solution of the Schr�odinger equation, and when it isused for analyzing semiclassical spectra, it reduces to the Gutzwiller trace formula.Since the trace formula does not facilitate the determination of high-lying energy levelsits signi�cance lies to a large extend in theoretical applications for analyzing uctuationsin the spectra of chaotic systems. It is one of the few analytical instruments that isavailable for this purpose. One of the central �ndings in quantum chaology has beenthe observation that the statistical distributions of energy levels of chaotic systems haveuniversal properties that agree with those of the eigenvalues of random matrices [28, 29],whereas the levels of integrable systems show a Poissonian distribution [30]. By usingthe trace formula this agreement could be explained in certain regimes [31] that have4



been recently extended [32]. Furthermore, deviations from the universal behaviour forlong-range correlations can be explained in terms of the short periodic orbits in a system[31, 33].Another area where periodic-orbit approximations are powerful are applications thatinvolve only a few of the shortest periodic orbits. This is the case in systems in which thecontributions of long periodic orbits are suppressed, for example by temperature e�ectsin mesoscopic systems or by pairing correlation corrections to mean-�eld approximationsin interacting multi-fermion systems. Examples for applications in this area are the semi-classical description of ground state deformations of atomic nuclei [34] or metallic clusters[35], the prediction of supershells in metallic clusters [4, 36], conductivity oscillations inantidot lattices [37, 38] or oscillations of the magnetic susceptibility in ballistic mesoscopicsystems [39]. For an overview see [40].Due to the central role of the trace formula for studying the correspondence betweenclassical and quantum properties of a system, one tries to generalize it so that it canbe applied to larger classes of systems. One such class consists of systems in whichdi�ractive e�ects are important, for example billiard systems with corners or concaveboundaries. Di�ractive e�ects play also a role in systems like the resonant tunnelingdiode (see the cusp-orbits in [41]) or for core-e�ects in non-hydrogenic Rydberg atoms[42]. In these systems di�raction leads to additional contributions in the trace formulain form of di�ractive or creeping orbits. The semiclassical contributions of these orbitshave been derived within the framework of Keller's geometrical theory of di�raction in[43, 44, 45]. This theory is, however, not su�cient for a complete description of thedi�ractive contributions and it has to be modi�ed by uniform approximations near so-called optical boundaries where it is divergent (see [46, 47],[P9]).The largest class of conservative systems are mixed systems in which the motion canbe regular as well as chaotic depending on the initial conditions. With respect to periodicorbits a characteristic di�erence between mixed, integrable and chaotic systems is thepresence of stable periodic orbits in mixed systems, whereas in chaotic systems the orbitsare typically unstable and in integrable systems marginally stable. Stable periodic orbitshave the property that they bifurcate if the energy or an external parameter is changed,i. e. they coalesce with other periodic orbits. For a semiclassical approximation this hasthe consequence that in the vicinity of a bifurcation the participating periodic orbitscannot be treated isolated. Instead they give joint semiclassical contributions to the leveldensity which have been treated by uniform approximations [48],[P10,P11,P12]. Thisallows to apply semiclassical approximations in cases in which mainly the contributionsof the shortest periodic orbits are needed. The inclusion of long periodic orbits wouldrequire the joint treatment of large clusters of periodic orbits that are involved in severalsubsequent bifurcations (for two subsequent bifurcations see [49, 50, 51]).The present work is a collection of articles that examine various aspects of semiclassicalperiodic orbit expansions that have been addressed above. These articles are ordered infour sections.The �rst section deals with general properties and applications of the trace formula forchaotic systems. It discusses di�erent forms of the semiclassical quantization conditionand its convergence properties, and analyzes individual contributions to the trace formula.In particular, a semiclassical quantization condition is proposed in terms of the spectralstaircase. The convergence properties of a representation of the spectral determinantin terms of combinations of periodic orbits is examined and explained by a statistical5



model. A detailed test of the resummation formula of Berry and Keating for the spectraldeterminant is carried out that checks not only the positions of the zeros but also theamplitude of the determinant. Furthermore, a method is developed for isolating particularcontributions to trace formulas allowing in this way a much more detailed analysis ofsemiclassical contributions, and a method for calculating semiclassical contributions inthree-dimensional billiard systems is developed.The second section contains applications of semiclassical trace formulas in connectionwith spectral statistics. The periodic orbits of a chaotic system must satisfy certain con-ditions in order that the energy levels of the quantum system show universal statisticaldistributions. This follows by using the trace formula, and it leads to the predictionof generalized correlations between the actions of periodic orbits that are also observednumerically. Furthermore, the inuence of the bouncing ball orbits on the energy spec-trum in the stadium billiard is investigated semiclassically and used for analyzing theoutcome of a microwave experiment. A further topic in this section are subtle propertiesof semiclassical approximations for the spectral form factor.The third section treats extensions of semiclassical periodic orbits approximations tosystems with di�raction and mixed systems. For billiard systems with corners a uniformapproximation is derived for di�ractive orbits that run once into a corner. Such uniformapproximations are necessary, for example, if one aims at a semiclassical understandingof the spectral properties of pseudo-integrable systems. For the semiclassical treatmentof mixed systems uniform approximations are derived for all generic bifurcations thatoccur in two-dimensional conservative systems or one-dimensional area-preserving maps.Furthermore, periodic orbit approximations are derived for an integrable system in whichbifurcations occur, the ellipse billiard, and for a non-integrable perturbation of it.Finally, the fourth section contains an application of periodic orbit approximations,including a uniform approximation for a cusp bifurcation, in order to describe shell-corrections for a nuclear model. In this way a simple physical explanation is obtained forthe asymmetric �ssion of actinide nuclei.
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2 Semiclassical methods in chaotic systems2.1 A novel rule for quantizing chaosOne of the main goals in the study of quantum systems with a chaotic classical limit hasbeen to �nd e�ective semiclassical techniques for calculating quantum energies of boundedsystems, or quasi-energies of time-periodic systems. Almost all methods that have beenemployed for this purpose are based on Gutzwiller's periodic orbit theory [2, 3], theydi�er in the way in which the information about the quantum levels is extracted from theperiodic orbits.The direct application of the trace formula for the level density, with a sum overperiodic orbits up to some maximal period T �, typically gives a good approximation forthe �rst levels. For higher-lying levels it fails since an increase of the cut-o� period T �leads to the development of larger and larger spurious oscillations which are a sign of thesum's divergence. This divergence is a consequence of the form in which the theory isformulated, namely in terms of a distribution, the level density, which itself diverges atthe energies. By folding the density with a smoothing function one can derive well-de�nedtrace formulas that contain only absolutely convergent series [9, 10].The main question then is to �nd semiclassical methods which require the least numberof periodic orbits for the determination of a certain number of levels. In [P1] a semiclassicalquantization condition was proposed that proved to be very e�cient in comparison withother methods. It is based on the spectral staircase function N(E) that jumps by one atevery eigenvalue of the Schr�odinger equation (or by its multiplicity in case of a degeneratelevel). The quantization condition has the form Nsc(E) = n � 1=2, Nsc(E) being thesemiclassical approximation to N(E), and it is equivalent tocos(�Nsc(E)) = 0 : (2)Again, by a smoothing of the staircase the periodic orbit sum can be brought into anabsolutely convergent form but applications show that this is often not necessary.There are several explanations for the fact that the condition (2) works often betterthan other methods in numerical applications. One expects in general that quantizationconditions in terms of the zeros of a function are more e�cient than those in terms of thepeaks of a function. A heuristic argument for this is the following. In order to resolvetwo adjacent maxima of a function, one has to include in its Fourier representation atleast all its Fourier components up to those which oscillate once between the maxima.For periodic orbits this implies a cut-o� at the Heisenberg time TH = 2��h �d(E), where�d(E) is the mean level density. In contrast to this, two adjacent zeros of a function canalready be resolved by including the Fourier components up to half this value, since anoscillating function has to perform only half an oscillation between two zeros. A secondreason in favour of (2) is that for Nsc(E) = n�1=2 to work well it is not necessary that thewhole spectral staircase is approximated well by Nsc(E), it su�ces if Nsc(E) goes throughthe middle of the steps. Numerical applications in [P1] show that Nsc(E) often has thisproperty even at energies where the semiclassical curve is not able to reproduce the stepsof N(E). Furthermore, in contrast to other quantization conditions that are formulatedin terms of the zeros of a function, like the dynamical zeta function that is discussed inthe next section, equation (2) does not require the evaluation of pseudo orbits and thusneeds less numerical e�ort. 7



The condition Nsc(E) = n � 1=2 has also been used in analytical evaluations. Bogo-molny and Keating applied it in semiclassical evaluations of spectral statistics in orderto obtain a discrete quantum spectrum from a �nite number of periodic orbits [32]. Inthis way they derived the leading order oscillatory behaviour of the two-level correlationfunction R2(x) for large values of x.2.2 Crossing the entropy barrier of dynamical zeta functionsThe Riemann zeta function serves often as a guide for the development of semiclassicaltheories in chaotic systems. There is a strong similarity between the identity that re-lates the non-trivial zeros of the Riemann zeta function to the prime numbers, and theGutzwiller trace formula which relates the eigenvalues of a Hamiltonian to the classicalperiodic orbits [52]. This and the fact that much more is known about prime numbersthan about the periodic orbits of a typical chaotic system often provides hints as how toprogress with the general semiclassical theory (see e. g. [12]).For a chaotic system the analogue of the Riemann zeta function is the dynamicalzeta function [21] or, for the motion on certain Riemann surfaces with constant negativecurvature, the Selberg zeta function (see e. g. [53]). The former appears in semiclassicalapproximations for spectral determinants, and its zeros correspond to the semiclassicalenergy levels. There are several reasons for the interest in this function. Firstly, asdiscussed above one is interested in quantization conditions in terms of the zeros of afunction. Secondly, there is a powerful method for calculating the zeros of the Riemannzeta function, the Riemann-Siegel formula, that can be generalized to dynamical zetafunctions [26, 27]. Thirdly, there is an exact quantum analogue to the dynamical zetafunction in the case of billiard systems. This is the Fredholm determinant that is obtainedfrom a boundary integral equation which determines the quantum energies of the billiardsystem [16, 17, 18, 19].The dynamical zeta function is de�ned by a product over all periodic orbits of asystem, the so-called Euler product, in the region where this product converges. It isknown that this region does not contain the locations where its zeros are, respectivelythe zeros of its analytical continuation [21]. Alternatively, by expanding the product, thezeta function can be expressed by a series over combinations of periodic orbits, so-calledpseudo-orbits. The sum over pseudo-orbits in general has better convergence propertiesthan the product over periodic orbits, and it forms the basis for resummation techniqueslike the Riemann-Siegel like formulas [27, 54], for direct quantizations [25], or for cycleexpansions [22, 23, 24]. The article [P2] examines in detail the convergence properties ofthe pseudo-orbit sum, in particular whether it is convergent on the real energy axis wherethe eigenvalues of the Schr�odinger equation are located.The analysis of the convergence properties of the pseudo-orbit sum rests on the prop-erty of the pseudo-orbit sum that it has, for scaling systems, the form of a generalizedDirichlet series. For billiard systems or the geodesic motion on Riemann surfaces of con-stant negative curvature that are considered in [P2] the argument of the Dirichlet series isthe wave number k = p2mE=�h. The convergence properties of such series are well known.A Dirichlet series converges absolutely in a half-plane Imk > �a and conditionally in ahalf-plane Im k > �c with �c � �a. The abscissa of absolute and conditional convergence,�a and �c, can be expressed as the limit of a function of the amplitudes and exponents inthe Dirichlet series, and this provides a means to determine them.8



It can be shown that �a is given by �a = � � ��=2 where � is the topological entropythat describes the exponential proliferation of the number of periodic orbits, and �� is anaveraged Lyapunov exponent. In bounded systems where � = �� is expected to hold, thisimplies that the series is not absolutely convergence for real values of k where the quantumenergies are located. The e�ect that the non-vanishing topological entropy prevents anabsolute convergence of the pseudo-orbit sum for real k is denoted by the entropy barrier.The abscissa of conditional convergence �c depends further on the statistical propertiesof the Maslov indices and of the degeneracies of the periodic orbits. They lead to a novelparameter that we denoted the third entropy � in [P2] which determines the di�erencebetween the abscissa of absolute and conditional convergence � = �a � �c. The size of �decides whether the Dirichlet series is convergent for real k.An estimate for � is obtained in [P2] by a simple statistical model for the amplitudesin the Dirichlet series. It is assumed that they are randomly distributed according tosome probability density with zero mean. Under this assumption and by applying thecentral limit theorem one obtains an estimate for � in the form � = (� � �)=2, where �describes a possible exponential increase of the multiplicities of lengths of pseudo orbits.Such an exponential increase for the multiplicities of pseudo orbits can already occur ifthe periodic orbits have a constant mean multiplicity. The statistical model thus predictsthat in a typical bounded system with � = �� one can have at most �c = 0, meaning thatthe limit of the region of conditional convergence is exactly the real k-axis, but this isonly possible if � = 0, as for example in a generic chaotic system without symmetries andwithout time-reversal symmetry.The predictions of the statistical model were tested on four hyperbolic systems in[P2]. For three of them the numerical results were in good agreement with the model,only for Artin's billiard there were distinct deviations. This system is of a rather specialtype, it belongs to the class of arithmetic systems, and it shows correlations between theamplitudes in the Dirichlet series so that the conditions of the statistical model are notful�lled.2.3 Calculation of spectral determinantsThe dynamical zeta function is a semiclassical approximation to a spectral determinant�(E) that has zeros at the eigenvalues of the Hamiltonian. A fundamental propertyof this spectral determinant is that it satis�es a functional equation. This functionalequation follows from the self-adjointness of the Hamilton operator, and it can be usedin order to extend semiclassical periodic orbit expansions to regions where the orbit sumsare divergent. The dynamical zeta function, i. e. the semiclassical approximation to �(E),satis�es the functional equation only in leading semiclassical order, but by imposing it asan exact equality, Berry and Keating derived a resummation of the pseudo-orbit seriesfor the dynamical zeta function by a contour integral method [27]. For billiard systemsthis resummed series has the following form�(k) = �(k)e�i� �N(k) ' �0(k; l) + 1Xm=3 �m(k; l) : (3)Here �(k) is the zeta function as a function of the wavenumber k, and �N(k) is the meanspectral staircase. The functions �m(k; l) are all given by sums over pseudo-orbits which9



are smoothly cut-o� at half the Heisenberg time TH , and l is a free parameter of therepresentation. The m-series is an asymptotic series whose �rst terms converge veryrapidly if the parameter l is chosen appropriately, so that only few terms have to be takeninto account. By far the most important term is �0(k; l).The cut-o� of the pseudo-orbit sums in (3) is not an approximation. The contributionsof the long orbits are still present, they are resummed in terms of the short orbits. Thisis reected by the fact that �0(k; l) is roughly twice the real part of the original Dirichletseries, cut-o� at half the Heisenberg time. This shows that (3) is not simply obtained bya cut-o� of the original series.The object of the article [P3] is a detailed investigation of the Riemann-Siegel-typeformula (3) on the example of a strongly chaotic system, the hyperbola billiard (see [55]).This system is well suited for this purpose, since a large number of periodic orbits isknown completely up to some maximal length of the trajectories lmax, altogether morethan 100 000 orbits. Furthermore, the unusual form of the asymptotic series for themean spectral staircase of this unbounded billiard system allows the investigation of thecorrection terms �m(k; l), m � 3, in (3). In bounded billiard systems these terms vanish.A detailed test of the orbit resummation underlying the formula (3) has to comparenot only the position of the zeros of the function � with the quantum energies, but alsothe amplitude of � with that of the spectral determinant �(E), since the resummationprocess shows up most clearly in the factor 2 by which the pseudo-orbit contributions to� di�er from those to the original Dirichlet series. The main obstacle in doing this liesin the quantum calculation, since the representation of �(E) by a product over energylevels converges very slowly. This problem was circumvented in [P3] by de�ning a newdeterminant �X(E) that is completely speci�ed by all energies En � X, and by derivinga semiclassical approximation for this new quantity. For energies E < X it is expressedagain in terms of the dynamical zeta function.The comparison of the quantum result with the semiclassical one shows a remarkablegood agreement for the amplitudes as well as for the position of the zeros. This pro-vides a con�rmation of the resummation ideas underlying equation (3). The error in thesemiclassical energies was approximately three percent of the mean spacing between thelevels. Alternative evaluations of the zeta function by the original Dirichlet series and bythe Euler product give also good approximations to the spectral determinant, however notquite as good as the resummed series. Both these semiclassical curves show uctuationsabout the quantum result. For the Euler product it is a sign of its divergence, for theDirichlet series the results are not conclusive, since it is not clear whether the amplitudeof the uctuations increases with an increasing number of orbits. The uctuations couldalso be explained by the sharp cut-o� of the sum over pseudo-orbits.2.4 Billiards with mixed boundary conditionsBilliard systems have been introduced in the study of dynamical systems, since they showthe typical qualitative features of general Hamiltonian systems, while they are much moreeasy to treat formally. The quantum analogues of classical billiards have the same advan-tages. There are powerful techniques like the boundary integral method for solving theSchr�odinger equation [56, 57, 58], and for a semiclassical analysis one can often determinea large number of periodic orbits by simple Newtonian methods (see [59]).The quantization of a given classical billiard system is not unique. There is the freedom10



to choose the boundary conditions, restricted to the condition that they lead to a self-adjoint Hamilton operator. In general, one can require that a linear combination of thewave function and its normal derivative vanishes on the boundary @B�(~r) (~r) + @n̂  (~r) = 0 ; ~r 2 @B : (4)The large freedom of choosing the (positive) function �(~r) o�ers the possibility to studysemiclassical approximations in a much more re�ned way than is possible when restrictingto one realization of a quantum billiard. This was the motivation for studying mixedboundary conditions in [P4]. Before we address this point in more detail we discuss someof the results of [P4].In the �rst part of the article the semiclassical theory for billiards with mixed boundaryconditions is developed for piecewise constant functions �(~r). This includes the derivationof the smooth and the oscillatory parts of the spectral density. Both are obtained byseveral di�erent methods, applicable either to integrable, to chaotic or to general systems.The smooth part of the level density was obtained, for example, by modi�cations of themethods of Stewartson and Waechter [60] and of Balian and Bloch [61], and the oscillatorypart was derived by using the scattering approach to the semiclassical quantization ofbilliard systems [13, 14, 15], and by the KKR-method for the Sinai billiard [62]. Forthe smooth part one �nds that the leading area term is independent of the boundaryconditions, as expected, whereas the higher-order corrections depend on the function�(~r). Explicit expressions are given for the length term, the curvature term and a 90�corner term. The oscillatory contributions in the trace formula contain, in comparison toDirichlet boundary conditions, an additional phase of the form2 nXi=1 arctan� k�(~ri) cos �i� ; (5)where the sum runs over the n points of reection of a periodic orbit and k cos �i is thecomponent of the momentum normal to the boundary at the i-th reection point. Ex-pression (5) interpolates between the two values 0 and n� for the Dirichlet and Neumanncases, respectively.The important point in (5) is that the phase factor depends only on the value of �(~r)at the points of reection. If �(~r) is changed on a part of the boundary then only thoseperiodic orbits are e�ected that are reected at least once in this region. This propertyallows to isolate particular periodic-orbit contributions to the semiclassical trace formula,for example by taking the di�erence between two spectral densities corresponding to twofunctions �(~r) that di�er only on a part of the boundary.In [P4] this method was applied to eliminate the non-generic \bouncing ball"-contri-butions from the trace formula for two-dimensional Sinai billiards. This was achieved byapplying mixed boundary conditions with a constant value of � on the disk of the Sinaibilliard and varying the value of �. By taking the derivative of the spectral density withrespect to � one is left with a trace formula that contains only the generic contributions ofall unstable periodic orbits. Taking the derivative of the spectral density has the additionaladvantage, that also non-generic di�ractive contributions of orbits that are tangent to thedisk are removed (at least in leading order). The elimination of non-generic contributionsis even more important in higher dimensions where bouncing ball families contributein a higher order of 1=�h, and the number of di�erent bouncing ball families increases11



strongly. The examination of the semiclassical accuracy in the three-dimensional Sinaibilliard in [63, 64] would not have been possible without removing bouncing ball andtangent contributions.There are various possibilities for further applications of mixed boundary conditionsthat extract partial contributions to trace formulas. The method can be convenient if oneis interested in semiclassical contributions from certain regions in coordinate space, if oneexamines semiclassical contributions to scarred wave functions, or if one wants to studycorrelations between actions of periodic orbits in more detail (see section 3.1). So far onlyfew of these possibilities have been exploited.There is a further motivation for studying mixed boundary conditions. A centralcharacteristic of quantum systems with a chaotic classical limit are the universal propertiesof the level statistics. This universality is not restricted to correlations within the spectraof single systems, it can also be observed in the dependence of a system on an externalparameter (see e. g. [65, 66, 67]). For example, the form in which the correlations betweentwo spectra for di�erent parameter values decay as the parameter di�erence is increasedis characteristic for the type of the corresponding classical motion and the symmetries ofthe systems. Mixed boundary conditions allow to de�ne a parameter dependence thate�ects only the quantum system and not its classical limit. This implies that semiclassicalapproximations involve the same set of periodic orbits for all parameter values, and thisstrongly simpli�es a semiclassical study. In this respect systems with mixed boundaryconditions play the same role for the study of the parameter dependence of a system asscaling systems do for the energy dependence. Billiard systems with a ux line have similarproperties. In contrast to billiards with mixed boundary conditions, however, they aresystems without time-reversal symmetry or with slightly broken time-reversal symmetry,and the ux line leads to additional di�ractive contributions to the trace formula in caseit goes through the billiard domain.2.5 The trace formula for three-dimensional billiard systemsIn the study of autonomous dynamical systems and their quantized versions many con-cepts have been developed on basis of the insight that has been gained from the study ofsimple model systems. These models are chosen with the point of view that they shouldbe both simple and in some sense typical. For this reason most of the studies have beenperformed on two-dimensional systems, since these are the simplest conservative systemsin which chaotic motion can take place, and they are numerically much less demandingthan higher-dimensional systems. Nevertheless, two-dimensional systems have rather spe-cial properties in comparison to higher-dimensional ones. In two dimensions invariant toriseparate di�erent regions on the energy surface in phase space whereas in higher dimen-sions Arnold di�usion takes place. Also the periodic orbits in two-dimensional systemsdon't have the full general form, since loxodromic orbits occur only if the dimension islarger than two. In order to study more realistic models one has to go to three dimensions,and, as in two dimensions, convenient models are again billiard systems.The article [P5] is a semiclassical study of three-dimensional billiard systems. It con-tains a derivation of semiclassical contributions of isolated periodic orbits, and of familiesof periodic orbits in axially symmetric billiard systems. It gives for the �rst time a prac-tical method for calculating the stability matrix and the Maslov index of a periodic orbitin three dimensions in terms of partial stability matrices for single reections, the mo-12



tion between reections, and rotations of the local coordinate system. We discuss in thefollowing the relation of this work to previous work.Semiclassical approximations in three-dimensional billiard systems have been derivedbefore by Balian and Bloch [61, 68, 4]. They performed a systematic investigation ofsemiclassical contributions of periodic orbits for various geometrical con�gurations. Theirresults are expressed in terms of the 2n � 2n-matrix of second derivatives of the orbitlength with respect to a change of the n points of reections. This matrix determines both,the stability and the Maslov index of an orbit. Although Balian and Bloch completelyspecify the semiclassical approximation, their formalism is not convenient for practicalcalculations, since it requires a large e�ort to determine the 2n � 2n-matrix for everyperiodic orbit. Instead it is preferable to express the result in the usual Gutzwiller form,i. e. in terms of the 4 � 4-stability matrix M , and to give an explicit method how tocalculate M and the Maslov index.For two-dimensional systems the periodic orbit contributions have been derived in theGutzwiller form. Harayama and Shudo obtained them starting from a boundary integralequation[18]. The derivation involved the reduction of n-dimensional matrices where againn is the number of reections of an orbit. (That the index in their trace formula is identicalto the usual Maslov index was shown in [69].) For the two-dimensional problem of thescattering on m disks Wirzba derived the Gutzwiller form directly from the Balian/Bloch-result [20]. In his case the orbits did not have conjugate points and the index in the traceformula was twice the number of reections.Both methods require the reduction of large matrices. In higher dimensions this wouldbe a very elaborate task. In [P5] we applied a di�erent method which doesn't involvelarge matrices, and we derived the Gutzwiller form from an iterative method that followsthe trajectory from reection point to reection point. This procedure automaticallyyields a method for determining the stability matrix and the index of an orbit, and itis straightforward to show that this index is identical to the Maslov index. The samemethod has been used in [P9] for deriving the semiclassical contributions of di�ractiveorbits in two dimensions.
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3 Semiclassical methods and spectral statistics3.1 Correlations in the actions of periodic orbitsThere is a great amount of numerical evidence that the energy levels of a generic chaoticsystem, when unfolded to a mean spacing of one, have the same statistical distributionas the eigenvalues of random matrices, chosen from appropriate ensembles (see e. g. [29]).Recent analytical work has made a large step in explaining this agreement [70, 32, 31]. Itis now possible to obtain from semiclassical considerations the full leading-order randommatrix result, i. e. the leading oscillatory and smooth behaviour, for the two-level corre-lation function R2(x) as x ! 1 [32]. Despite this progress a complete derivation of thefull level distribution is still lacking. This would require a much �ner knowledge aboutthe statistical properties of periodic orbits, including the distributions of their actions,periods, stabilities and Maslov indices, than is presently available.The article [P6] followed an opposite strategy. It assumed that we know that thespectral statistics of a chaotic system follow random matrix theory in the semiclassicallimit. Based on this assumption it examined what predictions the semiclassical theorymakes about the statistical properties of periodic orbits. The result is an explicit, universalexpression for a classical distribution function for the periodic orbits which has the formof a weighted action correlation function. For systems as e. g. the geodesic motion onsome compact Riemannian surfaces with constant negative curvature, this distributionfunction is a pure action correlation, and it predicts a tendency towards action repulsion,i. e. a lowered probability for two periodic orbits with approximately the same period tohave a small action di�erence. In general, the correlation function includes weight factorsdepending on the stabilities and Maslov indices of the orbits.The remarkable point about this result is that these classical correlations have beenpreviously unnoticed and they were obtained purely from observed quantum propertiesof the system, and by applying a semiclassical approximation. Numerical tests on chaoticsystems in [P6] showed that these action correlations are indeed present. Further evi-dence is provided by the Riemann zeta function for which the action correlation functiondescribes the correlations between pairs of prime numbers. It is shown that the results of[P6] are consistent with the Hardy-Littlewood conjecture on the pairwise distribution ofprimes.It is still an open question, how these classical correlations can be explained frompurely classical considerations. Detailed numerical examinations in [71] indicate that thecorrelations occur mainly between orbits that share some common properties, e. g. havethe same number of bounces in a billiard system, or, if a classi�cation of the periodic orbitsby a symbolic code is possible, share some common features in the code words. Similarresults can be obtained by considering the response of a system to a small perturbation.One �nds that the action correlations occur mainly between periodic orbits that aresimilarly a�ected by a perturbation [72].If classical correlations between periodic orbits could indeed be derived from classicalarguments this would strongly enlarge the scope of semiclassical approximations. It wouldallow also direct evaluations of o�-diagonal contributions in sums over periodic orbits.
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3.2 Non-universal spectral statistics in the quantized stadiumbilliardBilliard systems are not merely convenient theoretical models, they can also be realizedin experiments [73, 74, 75, 76, 77]. These experiments are macroscopic and use theequivalence of the Schr�odinger equation for billiard systems with the Helmholtz equationfor electromagnetic waves in order to model quantum billiards by microwave cavities.If the cavities are chosen as at quasi two-dimensional systems then also the boundaryconditions for the lowest states agree with Dirichlet boundary conditions and one canobtain by a measurement the spectrum of two-dimensional quantum billiards up to somemaximal energy that is determined by the height of the cavity. The experimental groupof Prof. Achim Richter in Darmstadt performed measurements on one of the standardexamples of a chaotic system, a desymmetrized stadium billiard [76]. When the measuredspectrum was analyzed and the spectral correlations were determined in form of thespectral rigidity the outcome was distinctly di�erent from the characteristics that areexpected for a generic chaotic system.The spectral rigidity �3(L) is a two-level statistic that measures how well the spectralstaircase of a system can be approximated by a straight line. If it is calculated from a �niteportion of the spectrum of a chaotic system, then one expects to reproduce the resultsof random matrix theory (RMT), if L is not too large. For long range-correlations (largeL) �3(L) typically shows a smaller increase than the logarithmic form of the RMT curveand �nally saturates at a constant value. This saturation is predicted by the semiclassicaltheory of Berry [31] and is related to the shortest periodic orbits of the system.In contrast to this the �3(L)-statistic of the stadium billiard shows a strong increasebeyond the RMT curve. This deviation was the original motivation for the article [P7].It was soon clear that the cause for the deviations was the non-generic family of bouncingball orbits in the stadium billiard. In [P7] these deviations were described quantitatively.The semiclassical contributions of bouncing ball trajectories to the spectral density werederived, and with this result the inuence of these orbits on the spectral rigidity wascalculated. The �nal result states that the bouncing ball orbits yield an additional con-tribution to the spectral rigidity that has to be added to the semiclassical expression forthe rigidity of a generic chaotic system. The results of [P7] were used for the analysis ofthe data in [76].From another point of view, the existence of additional terms in the trace formulathat are of higher power in 1=�h than the contributions of isolated orbits were the reasonfor the additive contribution to �3(L). Similar results were obtained recently in [78]for bifurcating periodic orbits that likewise yield an additive contribution to the numbervariance, or, equivalently, to the spectral rigidity. Here the di�erence in the power of 1=�hbetween isolated periodic orbit and bifurcating periodic orbit contributions is given bythe singularity index of the bifurcation.In [P7] further non-generic semiclassical contributions in the stadium billiard werederived, that are due to the borders of the family of bouncing ball orbits, and to edgeorbits, that run along a part of the boundary. The full trace formula was applied for aFourier analysis of the measured spectrum of the microwave cavity. Overall there wasa good agreement between semiclassics and experiment, which con�rms that microwavecavities are an appropriate means for carrying out experiments in quantum chaos.15



3.3 An exponentially increasing semiclassical spectral form fac-torThe simplest statistical distributions of energy levels which show universal behaviour aretwo-level statistics. They can be measured by di�erent distribution functions like thetwo-level correlation function, the two-level form factor, or the spectral rigidity. Thesestatistical measures emphasize di�erent aspects of the uctuations in the spectrum, butthey are all equivalent.For semiclassical investigations the most easily accessible measure is the spectral formfactor K(�), the Fourier transform of the two-level correlation function. Its argument � isdirectly related to the period T of the orbits that contribute semiclassically by � = T=TH ,where TH is the Heisenberg time, and all non-universal features are restricted to small� -regimes, near � = 0 and � = 1.The semiclassical theory for the form factor was developed by Berry [31] and extendedby Bogomolny and Keating [32]. By using a sum rule for the periodic orbits [79] the formfactor can be described correctly in the ranges � � 1 and � � 1. Up to now these are theonly regimes which are fully accessible to a semiclassical analysis. For � � 1 a di�erentreasoning is applied. It can be shown that the exact form factor approximates the value 1for large values of � if the spectrum doesn't have systematic degeneracies. Based on theassumption that the semiclassical form factor shows the same behaviour, this leads to asemiclassical sum rule for the periodic orbits, equivalent to Ksc(�) � 1 for � � 1.In the article [P8] we show that the semiclassical form factor does not necessarily obeythis semiclassical sum rule, in fact it can drastically deviate from it. We consider in [P8]systems for which the Maslov index for all periodic orbits is equal to zero. Examples aredefocusing billiard systems with Neumann boundary conditions or the geodesic motionon certain Riemann surfaces with constant negative curvature. For these systems thecorrespondence between the form factor and its semiclassical approximation depends verysensitively on the form of the averaging procedure that is chosen for evaluating K(�). Anatural choice would be a Gaussian averaging, however, as is shown in [P8], this leads toan exponentially increasing semiclassical form factor for su�ciently large � .The exponential increase of Ksc(�) is shown in [P8] by numerical as well as analyticalcalculations, where the analytical results are obtained by approximating the sum overperiodic orbits by an integral. This is only possible if all Maslov indices vanish. A betterunderstanding of this unexpected behaviour of Ksc(�) is obtained by considering a systemfor which Gutzwiller's trace formula for the spectral density is exact and corresponds tothe Selberg trace formula, the example in [P8] is an asymmetric hyperbolic octagon. Forthis system the exponential increase can be proven rigorously. The only semiclassicalapproximation that is made for Ksc(�) for this system consists in linearizing the energydependence of the action when taking the Fourier transform of the two-level correlationfunction. It can be shown that this leads to an exact replacement of the form factor forthe energy spectrum by the form factor for the momentum spectrum. The hyperbolicoctagon has, however, an imaginary momentum eigenvalue that correspond to the zero-mode energy E = 0, and this is the origin of the exponential increase. The imaginarymomentum eigenvalue is also the reason why Berry's semiclassical sum rule is not validfor the momentum spectrum.There are several remedies to the exponentially increasing semiclassical form factor.One can subtract the mean exponential behaviour of the periodic orbit sum, one can use16



a di�erent averaging that cuts o� the zero-mode contribution, e. g. a window averaging, orone can push the start of the exponential increase to larger values of � by going higher upin the spectrum. We note that the exponential Ksc(�) does not interfere with the actioncorrelations in section 3.1 as discussed in detail in [80].
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4 Semiclassical methods in di�ractive and mixed sys-tems4.1 Uniform approximation for di�ractive contributions in traceformulasBy varying the boundary of a billiard system one can generate a large variety of dynamicalsystems. Besides integrable, mixed and chaotic dynamics, billiard systems can exhibit alsodynamical behaviour that is not found in smooth Hamiltonian systems. An example is theclass of pseudo-integrable billiards. These systems have as many independent constantsof motion as degrees of freedom, and the motion in the 2n-dimensional phase space isrestricted to an n-dimensional surface. Due to singularities in the boundary, however,this surface does not have the topology of a torus as in the case of an integrable system,but it is of higher genus (see the discussion in [81] and references therein). For pseudo-integrable systems semiclassical approximations cannot be purely expressed in terms ofthe periodic orbits. For some of these systems it is not even known if periodic orbitsexist. Instead there are additional semiclassical contributions which are related to thedi�raction of quantum wave functions on the singularities of the boundary.Pseudointegrable systems are only one example of billiard systems in which di�ractivee�ects inuence the spectral properties. More general, if part of the billiard boundaryis concave or if it has corners with angles di�erent from �=n then there are additionalcontributions in semiclassical trace formulas which are not related to periodic orbits.They can be expressed in terms of creeping orbits that creep along a part of the convexboundary, or di�ractive orbits that run into a corner from where they can depart inarbitrary directions.A theory for the treatment of these additional contributions was already developedin the �fties for electromagnetic waves by Keller (see e. g. [82]). Keller's geometricaltheory of di�raction (GTD) can be considered as an extension of geometrical optics thatincludes the treatment of di�ractive e�ects by additional non-classical trajectories. Theseadditional contributions appear also in the context of semiclassical trace formulas, andthey were derived within the framework of Keller's theory in [43, 44, 45].Let us consider now a billiard system with corners. One might ask whether a traceformula which includes the contributions of di�ractive orbits, derived from GTD, is suf-�cient for describing, for example, spectral properties of pseudo-integrable systems. Thisis in general not the case, since Keller's theory has only a limited range of validity. Itdiverges at optical boundaries which, in the language of geometrical optics, separate illu-minated and shadowed regions. The regions where Keller's theory is not valid shrink withincreasing energy, but this is counterbalanced by the fact that longer orbits, that becomerelevant for a larger energy, approach optical boundaries on average closer than shorterorbits. There is a very similar e�ect in mixed systems for orbits near bifurcations (seesection 4.2). In mixed systems short orbits near bifurcations can be considered isolatedif the energy is su�ciently high, but there are always longer orbits for which this cannotbe done, independently how large the energy is.The reason for the divergence of Keller's theory is that di�ractive orbits contributewith a lower power in �h on optical boundaries. Consequently, Keller's theory breaks downwhere the contributions of di�ractive orbits are most important. In order to remedy this18



situation, a uniform approximation for the semiclassical contributions of di�ractive orbitsis derived in [P9]. This uniform approximation interpolates between the two asymptoticregimes, the optical boundary and the regime where Keller's theory is valid. The deriva-tion is based on the boundary integral method and an exact integral representation forthe Green function of an in�nite wedge with an arbitrary angle. The �nal result is validfor orbits which run once into a corner. This gives the most important di�ractive contri-bution. The method can, in principle, also be applied to orbits with arbitrary points incorners, but the corresponding expressions become increasingly more complex and involvemultiple Fresnel integrals.Numerical applications in [P9] show that the uniform approximation is in excellentagreement with quantum results, whereas the simple geometrical theory of di�raction is inmany cases inadequate. For example, the uniform approximation has also to be applied ifa corner angle is close to a value �=n where n is an integer. Results of [P9] reveal a furthersimilarity between di�ractive orbits and bifurcating periodic orbits. If a corner angle isvaried and goes through a value �=n then a new periodic orbit is born out of a di�ractiveorbit. This kind of bifurcation is correctly described by the uniform approximation.4.2 Uniform approximations and bifurcations of periodic orbitsThe form of semiclassical approximations depends on the structure of the underlyingclassical motion. In integrable systems the energy surface is �lled by layers of tori on whichthe classical motion is con�ned. In the semiclassical limit wave functions concentrate onsingle tori that are selected by the EBK-quantization conditions. In chaotic systems onthe other hand a typical trajectory �lls the whole energy surface in phase space ergodically,and no manifolds are left invariant under the classical ow except the whole energy surface,and the set of periodic orbits. This is reected by the quantum ergodicity [83, 84, 85, 86],i. e. the property that almost all wave functions are distributed uniformly over the energysurface in phase space in the limit of large energies. In a general system the structuresin phase space are much more complicated. Regular and irregular regions coexist inphase space and are intermingled in a complex form. We discuss this structure briey fortwo-dimensional conservative systems.As an integrable system is disturbed all rational tori, i. e. tori which consist of periodicorbits, break-up immediately into an equal number of stable and unstable periodic orbits.This is a consequence of the Poincar�e-Birkho� theorem (see e. g. [87]). Around the stableorbits there are small islands of regular motion whereas the unstable orbits are containedin a small layer of chaotic motion that surrounds the islands. On a Poincar�e surface ofsection this structure appears as a chain of islands with a layer of stochastic motion aroundthem. According to the KAM-theorem many of the irrational tori of the unperturbedintegrable system will survive a small perturbation and are only slightly deformed. TheseKAM-tori separate neighbouring chains of islands. The original torus-structure of theintegrable system is thus replaced by alternating layers of KAM-tori and island-chainsthat are surrounded by a layer of chaotic trajectories exploring a tiny portion of the phasespace. The whole structure is self-similar, since the islands consist again of alternatinginvariant tori and secondary island chains and this pattern repeats itself up to arbitrarysmall scales.As the perturbation is increased, more and more of the KAM-tori will be destroyed andthe stochastic regions that were separated by them will merge. When the last invariant19



torus that remains of the integrable system is destroyed all chaotic layers of the primarystructure will have merged into a global chaotic sea in which the remaining invariant toriof the islands are embedded. A fully chaotic system is obtained only if all invariant toriare destroyed, also those of the secondary and higher-order structures.The di�culty for semiclassical theories in mixed systems is that they have to takethese complicated classical patterns into account. At a �xed value of the energy, quantummechanics does not resolve all the details of the phase space structures since it smoothesover regions of the order of �h2. However, as E is increased (or �h diminished) more andmore structures will be resolved. The di�culty in performing the semiclassical limitE ! 1 or �h ! 0 is due to the fact that classical structures exist up to arbitrary smallscales. No matter how large E is there are always new details that become semiclassicallyrelevant. Up to now, no general semiclassical theory has been developed that can handlethese di�culties. Semiclassical methods that are applied in mixed systems are typicallyrestricted to some energy regime, and if the energy is changed then also the method hasto be adjusted to the new relevant structures in phase space.An example are EBK-like quantization rules that can be applied also to weakly dis-turbed integrable systems (see e. g. [88]). They interpolate smoothly over the island-chainstructures if the energy is not too high. As the energy is increased they become inaccu-rate. However, when the energy is high enough so that wave functions can concentrateon one of the islands, then EBK-quantization rules can be applied again, but now forthe quantization of the islands. This is because the islands have a very similar struc-ture as the perturbed integrable system [89]. It is an interesting mechanism how theEBK-quantization conditions for the primary KAM-structure is replaced by the EBK-conditions for the primary islands for a particular island chain [90]. The application ofthe torus quantization requires the knowledge of the two action variables for two irre-ducible circuits around an torus. These can be determined for the invariant tori of theislands, and for the periodic orbits, but not for the regions in between. In order to applythe EBK-quantization rules one therefore has to interpolate the action variables over theregions between the invariant tori. Although this method often works well, it does nothave a �rm theoretical basis.The alternative approach to the semiclassical approximation follows the line of Gutz-willer's periodic orbit theory. Periodic orbits give in general the leading order oscillatorycontribution to the level density since they correspond to stationary points in represen-tations of the level density by oscillatory integrals. This applies also to mixed systems.The di�erence with respect to chaotic systems is that in mixed systems periodic orbitscan also be stable, and stable orbits are never isolated from other periodic orbits in theirneighbourhood. A semiclassical contribution of stable periodic orbits was derived byGutzwiller by a linearization of the motion around them [2]. This approximation neglectsthe presence of other neighbouring periodic orbits and yieldsd(E) = 1��h 1Xm=1 T(E)2 sin�m�2 � cos�S(E)�h � �2 �� : (6)Here the sum runs over all repetitions m of the orbit . S(E), T(E), and � are theaction, period and the number of turning points of the orbit, respectively. The quantity� is the stability angle that speci�es the angle by which neighbouring trajectories windaround the stable orbit in phase space during one traversal. They are related to the two20



eigenvalues of the stability matrix by �1;2 = exp(�i�).The form (6) yields direct quantization conditions for a set of energy levels. Theyare obtained by expanding the fraction with the sine function in the denominator into ageometric series and applying the Poisson summation formula. This yields a sum overdelta-functions whose positions are determined by the condition [91]S(E)� ��h�m + 12� = 2��h�n+ �4� : (7)The same quantization condition was obtained by Voros by applying EBK-quantizationto the torus structure that is obtained by a linearization of the motion around a stableorbit [92]. Rigorous results are given by Ralston [93]. The energy levels determined by (7)correspond to quasimodes that are approximate solutions of the Schr�odinger equation.The quantization conditions (7) in general cannot be good approximations to quantumlevels if the corresponding wave functions are not concentrated su�ciently close to thestable orbit, since the actual island structure around a stable orbit di�ers distinctly fromthe torus structure that is obtained from the linearization. Thus there are restrictions tothe values of m and n for which (7) is good. The formula (6) on the other hand sumsover semiclassical energies En;m for all values m;n � 0 and thus has to be modi�ed.That equation (6) must be wrong in general can also be seen directly. The sine in thedenominator is zero if its argument is a multiple of �. If � is a rational multiple of 2�then there is always a positive integer m such that the sine is zero and the formula (6)diverges. The reason for this divergence is, as mentioned before, the fact that a stableperiodic orbit is never isolated from neighbouring periodic orbits. The divergence of them-th term in the sum in (6) implies that the stability matrix of the m-th repetition of thestable orbit has eigenvalues �1;2 = 1 which in turn means that there is another periodicorbit in an in�nitesimal neighbourhood. This occurs either if a periodic orbit is part ofa family of orbits or if it coalesces with another periodic orbit in a bifurcation. Sincegenerically there are no families in mixed systems, it signi�es that the orbit undergoes abifurcation.Bifurcations are a typical phenomenon in mixed systems and occur very often. Everyarbitrarily small but �nite change of � , as caused for example by a small parameterchange of the system, immediately causes an in�nite number of di�erent bifurcationssince � will go through an in�nite number of rational multiples of 2�. Most of thesebifurcations occur for large values of m, i. e. for orbits with long periods. Bifurcationsare the reason for the strong increase of the number of periodic orbits when an integrablesystem is transformed into a chaotic system (from a power law dependence on the periodto an exponential dependence).In order to treat bifurcations semiclassically one has to apply approximations that takeneighbouring orbits into account. In the derivation of semiclassical trace formulas this isequivalent to the semiclassical evaluation of oscillatory integrals with almost coalescingstationary points. Such integrals cannot be evaluated by stationary phase approximationswhich diverge if di�erent stationary points coalesce. One has to apply uniform approxi-mations that are valid at bifurcations as well as in regions where orbits are well separatedand stationary phase approximations can be applied. Uniform approximations are typi-cally necessary when there is a transition between two di�erent asymptotic regimes. Inthe case of bifurcations coalescing periodic orbits contribute semiclassically with a dif-ferent power in �h than isolated periodic orbits. The di�erence in the power is given by21



the singularity index of the bifurcation. The derivation of uniform approximations for alltypical bifurcations in two-dimensional systems is the topic of the articles [P10-P12].Bifurcations occur in several di�erent forms. The appearance or disappearance of pe-riodic orbits in smooth systems is always connected to bifurcations. But bifurcations canalso occur in the form that orbits become identical and then part again. A classi�cationof all di�erent bifurcations that typically occur in two-dimensional systems without sym-metries was given by Meyer and Bruno [94, 95, 96]. These bifurcations are realized if oneparameter in a system is changed, they are called bifurcations of codimension one. One�nds that the form of the bifurcation depends only on the lowest repetition number m ofa stable orbit for which the stability matrix has eigenvalues �1;2 = 1. The correspond-ing bifurcations are period-m-tupling bifurcations since they involve other periodic orbitswhich have a primitive period that is m times larger than that of the considered stableorbit.There is only a �nite number of di�erent characteristic forms of the bifurcations. Form = 1 one has a saddle-node or tangent bifurcation in which two periodic orbits appear(or disappear). The case m = 2 is a pitchfork bifurcation in which a central orbit changesits stability from stable to unstable or vice versa, and a new orbit appears (or disappears).For m = 3 two orbits coalesce in a touch-and-go bifurcation and part again. For m = 4there are two forms of the bifurcation. One case looks like a touch-and-go bifurcation,but it involves three orbits in contrast to the case m = 3. One orbit disappears at thebifurcation and a new one appears. The second case is an island-chain bifurcation inwhich two new orbits are born, one stable and one unstable. The remaining cases m � 5all have the form of island-chain bifurcations.In the following we briey discuss how the uniform approximations are obtained in[P10-P12]. Semiclassical contributions for bifurcating periodic orbits follow from a semi-classical evaluation of the trace of the Green function which leads to integrals of theform d�(E) = Z dq Z dp a(q; p) exp� i�hf(q; p)� (8)where the stationary points of the function f(q; p) correspond to the positions of theperiodic orbits in a Poincar�e section of surface. In the vicinity of a bifurcation the integral(8) can be evaluated by expressing f(q; p) in terms of the normal form of the bifurcationthat describes the positions of the neighbouring periodic orbits, and considering a(q; p)constant [48]. This expresses d�(E) in terms of catastrophe di�raction integrals. It yieldsa transitional approximation that is only valid in the vicinity of a bifurcation. It does notgive the correct contributions of isolated periodic orbits far away from the bifurcation.In [P10] a method was developed for obtaining a complete uniform approximation. Itinvolves the extension of the normal form by including higher-order correction terms. Theextended normal form is inserted into (8) and the exponent is simpli�ed by appropriatecoordinate transformations. Furthermore the amplitude factor a(q; p) is also expanded upto an order consistent with the expansion of the exponent. By this way a uniform approx-imation is obtained that has the correct Gutzwiller limit far away from the bifurcation.An application of this formula was given in the article [P13].In [P11] uniform approximations were derived for the cases m = 1, m = 2 and m = 3by applying the method of [P10]. The results were tested on the example of a kickedtop and compared to the exact quantum result, the transitional approximation and the22



Gutzwiller approximation, respectively. There was hardly any di�erence between theuniform approximation and the quantum calculation, whereas the transitional approxi-mation showed clear deviations in some distance from the bifurcation, and the Gutzwillerapproximation diverged at the bifurcation.The article [P12] treats the remaining case m = 4 which is more complicated becauseit involves three periodic orbits that have to be treated on the same footing. It is theonly case in which the uniform approximation cannot be expressed in terms of knownfunctions. We used a di�erent method for the derivation in [P12]. It consist in a mappingof the function f(q; p) onto the normal form by an implicitly de�ned coordinate transfor-mation. The amplitude factor a(q; p) is then approximated by an interpolating functionthat has the correct values at the positions of the stationary points. The resulting uni-form approximation was again tested on the kicked top with similar results as for m = 1,m = 2 and m = 3.The articles [P10-P12] give a complete treatment of uniform approximations for allgeneric bifurcations that occur in two-dimensional systems. In systems with discretesymmetries further types of bifurcations can occur, which however often have the normalforms of generic bifurcations but with a di�erent interpretation. For example pitchforkbifurcations occur in which not one orbit with twice the period is born, but two symmetricorbits with the same period as the central stable orbit. Bifurcations of this kind can betreated by slight modi�cations of the generic formulas.Although the treatment of the generic bifurcations in [P10-P12] is for many applica-tions su�cient, it does not allow a complete semiclassical treatment of mixed systems.As longer and longer orbits are involved, bifurcations occur more and more rapidly, andthere is a point were di�erent subsequent bifurcations of a periodic orbit cannot be treatedseparated. This requires an extension of the normal forms such that it describes also thetreatment of subsequent bifurcations. A series of bifurcations can often also be consideredas a bifurcation of a higher codimension since the di�erent bifurcations can typically bebrought to a coalescence if one varies several parameters of a system. Bifurcations ofcodimension two are treated in [49, 50, 51].4.3 Semiclassical transition from an elliptical to an oval billiardIn integrable systems semiclassical approximations are generally considered to be rathersimple. The generalization of the WKB-approximation to higher dimensions leads to theEBK-quantization rules, and by applying the Poisson summation formula one obtains theBerry-Tabor trace formula in terms of a sum over all tori of periodic orbits. Yet alsoin integrable systems complications can occur. There can be separatrices that separatedi�erent dynamical regimes, there can be isolated periodic orbits, stable as well as unsta-ble, that are not part of a periodic torus, and there can be bifurcations of periodic orbitsthat lead to the appearance of new tori of periodic orbits as a parameter of the system ischanged. All these features can be observed in an apparently simple system like a billiardin form of an ellipse.One motivation for studying the elliptical billiard and small deformations of it in [P13]was the interest in the relation between bifurcations in integrable and mixed systems.Generic bifurcations in mixed systems involve only a �nite number of periodic orbits,whereas in integrable systems whole tori appear (or disappear). But bifurcations in theintegrable case can be considered as a limit of bifurcations in mixed systems. If a torus is23



close to undergoing a bifurcation, and the integrable system is perturbed, then the torusbreaks up into a �nite number of periodic orbits, and the distribution of the periodicorbits in phase space is then identical to that of the orbits near a generic bifurcation. Forthis reason, the uniform approximations of the last section 4.2 describe also the break-up of tori near bifurcations as an integrable system is perturbed. [P13] contains thusan application and a �rst numerical test of the results of [P10]. (Only the results forbifurcations with high repetition numbers were needed in [P13].)The �rst part of [P13] gives a short overview of classical and quantum propertiesof the elliptical billiard. It discusses further the EBK-quantization rules that require auniformization in the elliptical billiard. There is a separatrix in the ellipse that separatesthe classical motion between the two foci from the motion around the two foci. Thisseparatrix leads to a discontinuity in the EBK-quantization conditions since the Maslovindex is di�erent for both regions. The discontinuity is removed by an interpolatinguniform approximation for the Maslov index [97].Starting from the uniformized EBK-quantization rules a trace formula is derived in[P13] for the ellipse which includes a uniform treatment of the bifurcations. Numericaltests of this formula with quantum calculations show a good agreement, and the smallsemiclassical error was taken as a reference for the semiclassical calculations in a nearly-integrable system that was examined in the second part of [P13].This second part investigates how the semiclassical approximations change if the ellipseis slightly deformed into a non-integrable oval. One has to distinguish two cases. Fortori not involved in a bifurcation one can apply general uniform approximations for thebreak-up of generic tori [98, 99, 100, 101]. The break-up of tori which are close to abifurcation on the other hand is described by the uniform formulas for generic bifurcationsas discussed above. By using these formulas numerical examinations in [P13] show that thesemiclassical error in the near-integrable oval billiard is of the same size as the semiclassicalerror in the elliptical billiard. This con�rms that the uniform approximations are indeedthe appropriate substitute for torus or isolated orbit contributions in trace formulas.
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5 Semiclassical methods in nuclear physicsMany properties of multi-fermion systems like atoms, nuclei or metallic clusters can beexplained by assuming that the particles move independently in a common potential. Inthis approximation the correlations between the positions of the particles are neglectedand the particle interaction is incorporated into a mean �eld that determines the commonpotential. This mean �eld depends itself on the density of the particles and has to bedetermined in a self-consistent way, as is done by the Hartree-Fock method or the densityfunctional method. In this way the N -particle problem is reduced to N one-particleproblems.Mean-�eld approximations can be used, for example, to explain and determine \magicnumbers" that denote the number of particles in a system for which it is most stable.These magic numbers are a consequence of the fact that the energy levels of the single-particle spectrum for the collective potential are not uniformly distributed, but show astrong clustering that is due to high symmetries of the systems. The appearance of magicnumbers is thus a typical shell e�ect that can be observed in large uctuations of thecoarse grained level density. It is in applications like these that semiclassical methodsare most powerful. It often su�ces to sum only over a few periodic orbits in order todetermine uctuations in the spectrum of a system that are responsible for the main shellstructure. (For the determination of magic numbers this applies to metallic clusters. Innuclei additional spin-orbit forces are essential for an understanding of closed shells.)In the same context semiclassical methods have been successful in explaining groundstate deformations of atomic nuclei [34] and small metallic clusters [35], and the occur-rence of \supershells" in the metallic clusters that show up as long-range oscillations inthe coarse grained level density superposing the uctuations corresponding to the shellstructure [4, 36]. In the articles [P14,P15] we present a further application of semiclassicalperiodic orbit approximations in nuclear physics. It allows a simple interpretation of theorigin of the asymmetric �ssion of heavy atomic nuclei.The �ssion of many actinide nuclei results in an asymmetric mass distribution of the�ssion fragments. This mass asymmetry cannot be explained by the classical liquid dropmodel that favors symmetric �ssion. In order to explain the asymmetry one has to includeshell corrections, i. e. deviations from the mean distribution of the single particle energiesdue to the discreteness of the spectra, as is done by Strutinsky's shell correction method[102]. According to Strutinsky the total binding energy of a nucleus consisting of Nneutrons and Z protons has the formEtot(N;Z; def) = ELDM(N;Z; def) + �En(N ; def) + �Ep(Z; def) (9)where ELDM is the liquid drop model (LDM) energy, and �En(N ; def) and �Ep(Z; def)are the shell-correction energies of the neutrons and protons, respectively. All quantitiesdepend on the shape of the nucleus which is described by several deformation parameterssummarized by `def '.The shell corrections in (9) where calculated in the seventies from realistic nuclearshell-model potentials of Wood-Saxon form [103]. For a typical actinide nucleus theylead to three characteristic deviations from the liquid drop model: the ground state isdeformed and not spherical, the potential energy has a second local minimum for largerdeformations, the so-called �ssion isomer, and, starting from the �ssion isomer, left-rightasymmetric deformations are energetically more favourable than symmetric deformations.25



(All these deformations still have an axial symmetry.) The shell-correction method thusyields an asymmetric mass distribution and it has been very successful in reproducingexperimental nuclear binding energies and �ssion barriers, however, it does not lead to anintuitive understanding of the physical origin of the asymmetry.In [P14,P15] we give a simple and transparent semiclassical interpretation of the asym-metric �ssion. We use a simple model for the nuclear mean �eld by replacing it by athree-dimensional cavity, and we neglect spin-orbit interactions. Furthermore, we con-sider only the neutron contributions �En in (9) since they contain the main shell e�ects.The boundary of the cavity is parameterized by three parameters c, h and �, where cdetermines the longitudinal elongation of the cavity, h regulates the formation of a neckthat leads to the scission of the nucleus into two fragments, and � controls the left-rightasymmetry. The parameters are chosen such that an increase of c with h = � = 0 followsthe adiabatic path through the parameter space in the liquid drop model.In this model we calculate the shell correction �E for the neutrons. It is obtained fromthe level density for the neutrons by summing over all energies up to the Fermi energyand subtracting the mean level density. This leads to a trace formula of the form:�E =X A(EF )� �hT(EF )�2 cos�S(EF )�h � �2�� ; (10)where EF denotes here the Fermi energy. Eq. (10) sums over the contributions of one-parameter families of periodic orbits in the axially symmetric billiard system, and thequantity � takes half-integer values. The formula di�ers from the oscillatory part of thelevel density by a factor (�h=T)2.In order to evaluate (10) the shortest orbits of the system were determined as a functionof the parameters. Since the starting point for the development of left-right asymmetricshapes is the �ssion isomer, it is su�cient to restrict the consideration to large deforma-tions of the cavity. For these the shortest orbits all lie in planes perpendicular to thesymmetry axis of the billiard. In one such plane the orbits are those of a circular billiard.If one changes the parameters then one �nds that the number of these equatorial planesare not constant. During the neck formation two new planes of periodic orbits arise in abifurcation, and this requires a modi�cation of the contributions in the trace formula (10).As in section 4.2 one has to derive a uniform approximation for their contribution. Theparticular bifurcation is not generic. It is a bifurcation of codimension two correspondingto the cusp bifurcation of catastrophe theory. Its uniform approximation is expressed interms of Pearcey's integral and its derivatives [P14]. A test of this uniform approximationis carried out in [P15] by comparing it to quantum calculations for the three-dimensionalcavity.With this modi�cation the shell-correction energy is evaluated. By plotting it as afunction of the parameters one �nds that this simple semiclassical calculation producescorrectly the gross parameter dependence of �E, as obtained previously from quantumcalculations for a realistic Wood-Saxon potential, including spin-orbit interaction andpairing correlations. In particular the semiclassical calculations predict correctly theonset of the asymmetry at the �ssion isomer. Furthermore, the adiabatic path that thesystem follows in the parameter space starting from the �ssion isomer in the semiclassicalapproximations follows the line on which the actions of the most important periodic orbitsare constant. This provides a simple intuitive interpretation of the asymmetric �ssion, itrelates it semiclassically to the constancy of the shortest periodic orbits.26
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