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Summary

The correspondence between a quantum system and its classical limit is closely connected
to the periodic orbits of the system. They characterize the oscillations in quantum spectra
since the Fourier components of the density of energy levels are determined in the semi-
classical limit by periodic orbits. We present here a collection of articles that examine
various properties of semiclassical approximations in terms of periodic orbits. The form of
these approximations depends on the nature of the classical motion. Several applications
are discussed.

In the first part we consider chaotic systems in which the approximation is given
by Gutzwiller’s periodic orbit theory. The original formulation in terms of the spectral
density is not necessarily the most convenient form for calculating semiclassical energies
and we present a different method that uses the spectral staircase. Another efficient
technique involves the spectral determinant that can be semiclassically expressed in terms
of combinations of periodic orbits, so-called pseudo-orbits. We examine the convergence
properties of this sum and reproduce them by a statistical model. Berry and Keating
derived a resummation of the pseudo-orbit sum and expressed it in terms of a finite
number of orbits. This approximation is tested in detail by checking the amplitude as
well as the zeros of the determinant. It requires to carry out a regularization of the
determinant so that it can be accurately determined from a finite number of energies.
We further present a method by which, in billiard systems, particular contributions in
semiclassical approximations can be isolated and studied separately. This is achieved by
choosing parameter-dependent mixed boundary conditions. Finally, we present a method
for deriving periodic-orbit contributions in three-dimensional billiard systems that yields
a simple algorithm for determining the stability matrix and the Maslov index of the orbits.

The second part deals with applications of semiclassical approximations in chaotic
systems in connection with statistics of energy levels. There is much evidence that the
statistical distributions of the energy levels can be described by random matrix theory.
By using the trace formula we show that this property has to be reflected by properties
of the periodic orbits. It leads to the prediction of generalized action correlations that
can be observed numerically. We further semiclassically calculate deviations from random
matrix results in the stadium billiard whose origin is the family of bouncing ball orbits and
which have been observed in a microwave experiment. We further discuss the sensitivity of
semiclassical approximations for the spectral form factor on the definition of the averaging
procedure.

Most two-dimensional conservative systems are not chaotic but have a mixed phase
space dynamics that can show regular as well as chaotic behaviour. These systems are
much less accessible to a semiclassical approximation than either chaotic or integrable
systems since the periodic orbits in these systems form clusters and bifurcate when a pa-
rameter of the system is varied. A semiclassical treatment requires a collective treatment
of these orbits. We derive uniform approximations for all generic cases of orbit bifurca-
tions that occur in two-dimensional systems. We consider also an example of an integrable
system in which bifurcations occur and discuss how the uniform approximations have to
be modified when the system is perturbed.

Another class of systems in which semiclassical approximations have to be modified
are systems in which diffraction occurs, for example billiard systems with corners. In these
systems so-called diffractive orbits that run into the corners yield additional semiclassical



contributions. We derive a uniform approximation for diffractive orbits that run into
one corner. This approximation avoids the divergences of previous treatments by Keller’s
geometrical theory of diffraction.

In the last part we apply semiclassical methods to a problem in nuclear physics, the
well-known asymmetric mass distribution of the fission fragments that arise in the fission
of many actinide nuclei. This asymmetric mass distributions can be reproduced, for
example, in shell correction calculations with realistic shell-model potentials. We show
that there is a simple semiclassical explanation for this asymmetry. It can be related to
the constancy of the actions of the shortest periodic orbits.

We note that references of the form [Pz] where x is a number refer to the publications
that are included in this collection.



1 Introduction

Semiclassical methods are essential tools for the investigation of highly excited quantum
systems. They describe the correct analytical behaviour of wave functions, energy levels,
scattering resonances, etc. in the short-wavelength limit where 7 is small in comparison to
relevant action functions of the corresponding classical system. Being expressed in terms
of classical quantities they are a natural mean for studying how characteristic properties
of a classical system are reflected in the corresponding quantum system. This is one of
the central questions in quantum chaology, the study of quantum properties of chaotic
or, more general, non-integrable systems. Conversely, semiclassical approximations often
allow a simple understanding of the nature of quantum fluctuations that are observed
in experiments or in numerical calculations by relating them to properties of classical
trajectories. They have led to physical insight into a variety of quantum phenomena in
different areas as e.g. atomic, molecular, nuclear or cluster physics.

Semiclassical methods are very powerful in one-dimensional systems where they can
be applied, in form of the WKB-approximation, to accurately calculate energies and wave
functions of highly excited states that would be difficult to determine by directly solving
the Schrodinger equation (see e.g. the review [1]). These methods can be extended to
higher-dimensional systems in cases in which the motion is integrable (or near-integrable).
There they take the form of the EBK-conditions. For general higher-dimensional systems,
however, semiclassical approximations have a different characteristic. For chaotic systems
Gutzwiller obtained an approximation for energy levels that is usually expressed in terms
of the so-called trace formula for the level density [2, 3, 4]

= 25(E - En)
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Here the energies E, are the solutions of the stationary Schrodinger equation. The ap-
proximation for the level density involves the smooth function d(E) describing the average
level density which in leading semiclassical order is given by the Thomas-Fermi approx-
imation for d(E). The sum over v runs over all periodic orbits of the classical system,
including repetitions, and it involves classical properties of these orbits: the period T,
action S, stability matrix A, Maslov index v, and repetition number r.,.

It is implicitly assumed in the derivation of the trace formula (1) that the classical
motion is chaotic. This is because the semiclassical contributions of the periodic orbits
are derived by assuming that they are isolated. This is strictly valid only if they are
unstable. In the vicinity of stable periodic orbits there are always other periodic orbits
which are related to the stable orbit and its repetitions through bifurcations as the energy
(or a parameter) of the system is changed, a point to be discussed in more detail in the
following.

In comparison to EBK-quantization conditions the semiclassical condition (1) for the
energy levels is more indirect. Whereas the EBK-conditions require the solution of a sys-
tem of coupled equations, the quantized levels in (1) arise as peaks through the construc-
tive interference of oscillatory terms that are determined by the periodic orbits. These
orbits are in general not known analytically but have to be determined numerically. More-
over, the number of these orbits increases exponentially with their period. However, the




structure underlying (1) is more general than that of the EBK-conditions and it allows
generalizations also to larger classes of systems. It can be shown in general, that the
leading order contributions to the level density are determined by the periodic orbits of
the classical system. This follows from the fact that the level density can be semiclas-
sically expressed in terms of oscillatory integrals with stationary points that correspond
to periodic orbits. Depending on whether the classical motion is chaotic, integrable or
mixed these orbits are isolated, appear in families or form more complicated clusters. For
integrable systems the corresponding trace formulas have been derived in [5, 6]. More
general symmetries have been treated in [7, 8].

Properties of the trace formula (1) have been examined under various aspects, one of
the early motivations being to find a method for the determination of high-lying energies
that is applicable to chaotic systems. The main obstacle for this is the exponential
proliferation of the number of periodic orbits. As a consequence of this proliferation, the
sum over periodic orbits in (1) is divergent for real values of the energy. In order to
apply the trace formula in a controlled way it has to be brought into a convergent form,
as can be done, for example, by an analytical folding of the formula with appropriate
smoothing functions [9, 10]. But even with an trace formula that involves only absolutely
convergent sums the determination of higher lying energies requires an exponentially
increasing numerical effort. For that reason there has been a large effort to understand
in detail the analytical and general properties of the trace formula in order to find more
efficient quantization conditions. For this purpose different approaches have been applied,
involving the study of motion on Riemann surfaces with constant negative curvature for
which the trace formula is an exact relation (see e. g. [11]), using analogies to trace formulas
for the Riemann zeta function (see e.g. [12]), applying the scattering approach to the
quantization of billiard systems [13, 14, 15], the Fredholm theory for integral equations
in billiard problems [16, 17, 18, 19], or the cumulant expansion for scattering problems
[20]. Very efficient have been approaches in which the quantum levels are determined by
the zeros of a function, for example involving the spectral staircase [P1], or the spectral
determinant [21] which has been treated by curvature expansions [22, 23, 24], as Dirichlet
series [25] or has been resummed and expressed in terms of a finite number of periodic
orbits [26, 27]. These methods have led to a clear reduction of the numerical effort that
is required for the semiclassical determination of energy levels.

Despite this progress there remains the basic problem that the numerical effort for the
calculation of higher-lying energies increases exponentially. There is a different semiclas-
sical method that avoids this problem. This is Bogomolny’s transfer operator approach
[17]. Tt involves the evaluation of determinants of matrices whose elements are expressed
in terms of classical trajectories. However, also this method does not necessarily require
less numerical effort than a direct solution of the Schrodinger equation, and when it is
used for analyzing semiclassical spectra, it reduces to the Gutzwiller trace formula.

Since the trace formula does not facilitate the determination of high-lying energy levels
its significance lies to a large extend in theoretical applications for analyzing fluctuations
in the spectra of chaotic systems. It is one of the few analytical instruments that is
available for this purpose. One of the central findings in quantum chaology has been
the observation that the statistical distributions of energy levels of chaotic systems have
universal properties that agree with those of the eigenvalues of random matrices [28, 29],
whereas the levels of integrable systems show a Poissonian distribution [30]. By using
the trace formula this agreement could be explained in certain regimes [31] that have



been recently extended [32]. Furthermore, deviations from the universal behaviour for
long-range correlations can be explained in terms of the short periodic orbits in a system
(31, 33].

Another area where periodic-orbit approximations are powerful are applications that
involve only a few of the shortest periodic orbits. This is the case in systems in which the
contributions of long periodic orbits are suppressed, for example by temperature effects
in mesoscopic systems or by pairing correlation corrections to mean-field approximations
in interacting multi-fermion systems. Examples for applications in this area are the semi-
classical description of ground state deformations of atomic nuclei [34] or metallic clusters
[35], the prediction of supershells in metallic clusters [4, 36], conductivity oscillations in
antidot lattices [37, 38] or oscillations of the magnetic susceptibility in ballistic mesoscopic
systems [39]. For an overview see [40].

Due to the central role of the trace formula for studying the correspondence between
classical and quantum properties of a system, one tries to generalize it so that it can
be applied to larger classes of systems. One such class consists of systems in which
diffractive effects are important, for example billiard systems with corners or concave
boundaries. Diffractive effects play also a role in systems like the resonant tunneling
diode (see the cusp-orbits in [41]) or for core-effects in non-hydrogenic Rydberg atoms
[42]. In these systems diffraction leads to additional contributions in the trace formula
in form of diffractive or creeping orbits. The semiclassical contributions of these orbits
have been derived within the framework of Keller’s geometrical theory of diffraction in
[43, 44, 45]. This theory is, however, not sufficient for a complete description of the
diffractive contributions and it has to be modified by uniform approximations near so-
called optical boundaries where it is divergent (see [46, 47],[P9)]).

The largest class of conservative systems are mixed systems in which the motion can
be regular as well as chaotic depending on the initial conditions. With respect to periodic
orbits a characteristic difference between mixed, integrable and chaotic systems is the
presence of stable periodic orbits in mixed systems, whereas in chaotic systems the orbits
are typically unstable and in integrable systems marginally stable. Stable periodic orbits
have the property that they bifurcate if the energy or an external parameter is changed,
i.e. they coalesce with other periodic orbits. For a semiclassical approximation this has
the consequence that in the vicinity of a bifurcation the participating periodic orbits
cannot be treated isolated. Instead they give joint semiclassical contributions to the level
density which have been treated by uniform approximations [48],[P10,P11,P12]. This
allows to apply semiclassical approximations in cases in which mainly the contributions
of the shortest periodic orbits are needed. The inclusion of long periodic orbits would
require the joint treatment of large clusters of periodic orbits that are involved in several
subsequent bifurcations (for two subsequent bifurcations see [49, 50, 51]).

The present work is a collection of articles that examine various aspects of semiclassical
periodic orbit expansions that have been addressed above. These articles are ordered in
four sections.

The first section deals with general properties and applications of the trace formula for
chaotic systems. It discusses different forms of the semiclassical quantization condition
and its convergence properties, and analyzes individual contributions to the trace formula.
In particular, a semiclassical quantization condition is proposed in terms of the spectral
staircase. The convergence properties of a representation of the spectral determinant
in terms of combinations of periodic orbits is examined and explained by a statistical



model. A detailed test of the resummation formula of Berry and Keating for the spectral
determinant is carried out that checks not only the positions of the zeros but also the
amplitude of the determinant. Furthermore, a method is developed for isolating particular
contributions to trace formulas allowing in this way a much more detailed analysis of
semiclassical contributions, and a method for calculating semiclassical contributions in
three-dimensional billiard systems is developed.

The second section contains applications of semiclassical trace formulas in connection
with spectral statistics. The periodic orbits of a chaotic system must satisfy certain con-
ditions in order that the energy levels of the quantum system show universal statistical
distributions. This follows by using the trace formula, and it leads to the prediction
of generalized correlations between the actions of periodic orbits that are also observed
numerically. Furthermore, the influence of the bouncing ball orbits on the energy spec-
trum in the stadium billiard is investigated semiclassically and used for analyzing the
outcome of a microwave experiment. A further topic in this section are subtle properties
of semiclassical approximations for the spectral form factor.

The third section treats extensions of semiclassical periodic orbits approximations to
systems with diffraction and mixed systems. For billiard systems with corners a uniform
approximation is derived for diffractive orbits that run once into a corner. Such uniform
approximations are necessary, for example, if one aims at a semiclassical understanding
of the spectral properties of pseudo-integrable systems. For the semiclassical treatment
of mixed systems uniform approximations are derived for all generic bifurcations that
occur in two-dimensional conservative systems or one-dimensional area-preserving maps.
Furthermore, periodic orbit approximations are derived for an integrable system in which
bifurcations occur, the ellipse billiard, and for a non-integrable perturbation of it.

Finally, the fourth section contains an application of periodic orbit approximations,
including a uniform approximation for a cusp bifurcation, in order to describe shell-
corrections for a nuclear model. In this way a simple physical explanation is obtained for
the asymmetric fission of actinide nuclei.



2 Semiclassical methods in chaotic systems

2.1 A novel rule for quantizing chaos

One of the main goals in the study of quantum systems with a chaotic classical limit has
been to find effective semiclassical techniques for calculating quantum energies of bounded
systems, or quasi-energies of time-periodic systems. Almost all methods that have been
employed for this purpose are based on Gutzwiller’s periodic orbit theory [2, 3], they
differ in the way in which the information about the quantum levels is extracted from the
periodic orbits.

The direct application of the trace formula for the level density, with a sum over
periodic orbits up to some maximal period 7%, typically gives a good approximation for
the first levels. For higher-lying levels it fails since an increase of the cut-off period T™*
leads to the development of larger and larger spurious oscillations which are a sign of the
sum’s divergence. This divergence is a consequence of the form in which the theory is
formulated, namely in terms of a distribution, the level density, which itself diverges at
the energies. By folding the density with a smoothing function one can derive well-defined
trace formulas that contain only absolutely convergent series [9, 10].

The main question then is to find semiclassical methods which require the least number
of periodic orbits for the determination of a certain number of levels. In [P1] a semiclassical
quantization condition was proposed that proved to be very efficient in comparison with
other methods. It is based on the spectral staircase function N(FE) that jumps by one at
every eigenvalue of the Schrodinger equation (or by its multiplicity in case of a degenerate
level). The quantization condition has the form Ng.(E) = n — 1/2, Ny (E) being the
semiclassical approximation to N(E), and it is equivalent to

cos(mNg(E)) = 0. (2)

Again, by a smoothing of the staircase the periodic orbit sum can be brought into an
absolutely convergent form but applications show that this is often not necessary.

There are several explanations for the fact that the condition (2) works often better
than other methods in numerical applications. One expects in general that quantization
conditions in terms of the zeros of a function are more efficient than those in terms of the
peaks of a function. A heuristic argument for this is the following. In order to resolve
two adjacent maxima of a function, one has to include in its Fourier representation at
least all its Fourier components up to those which oscillate once between the maxima.
For periodic orbits this implies a cut-off at the Heisenberg time Ty = 27hd(E), where
d(F) is the mean level density. In contrast to this, two adjacent zeros of a function can
already be resolved by including the Fourier components up to half this value, since an
oscillating function has to perform only half an oscillation between two zeros. A second
reason in favour of (2) is that for Ny.(E) = n—1/2 to work well it is not necessary that the
whole spectral staircase is approximated well by Ny (E), it suffices if Ns.(F) goes through
the middle of the steps. Numerical applications in [P1] show that Ng.(F) often has this
property even at energies where the semiclassical curve is not able to reproduce the steps
of N(E). Furthermore, in contrast to other quantization conditions that are formulated
in terms of the zeros of a function, like the dynamical zeta function that is discussed in
the next section, equation (2) does not require the evaluation of pseudo orbits and thus
needs less numerical effort.



The condition Ng.(E) = n — 1/2 has also been used in analytical evaluations. Bogo-
molny and Keating applied it in semiclassical evaluations of spectral statistics in order
to obtain a discrete quantum spectrum from a finite number of periodic orbits [32]. In
this way they derived the leading order oscillatory behaviour of the two-level correlation
function Ry(x) for large values of z.

2.2 Crossing the entropy barrier of dynamical zeta functions

The Riemann zeta function serves often as a guide for the development of semiclassical
theories in chaotic systems. There is a strong similarity between the identity that re-
lates the non-trivial zeros of the Riemann zeta function to the prime numbers, and the
Gutzwiller trace formula which relates the eigenvalues of a Hamiltonian to the classical
periodic orbits [52]. This and the fact that much more is known about prime numbers
than about the periodic orbits of a typical chaotic system often provides hints as how to
progress with the general semiclassical theory (see e.g. [12]).

For a chaotic system the analogue of the Riemann zeta function is the dynamical
zeta function [21] or, for the motion on certain Riemann surfaces with constant negative
curvature, the Selberg zeta function (see e.g. [53]). The former appears in semiclassical
approximations for spectral determinants, and its zeros correspond to the semiclassical
energy levels. There are several reasons for the interest in this function. Firstly, as
discussed above one is interested in quantization conditions in terms of the zeros of a
function. Secondly, there is a powerful method for calculating the zeros of the Riemann
zeta function, the Riemann-Siegel formula, that can be generalized to dynamical zeta
functions [26, 27]. Thirdly, there is an exact quantum analogue to the dynamical zeta
function in the case of billiard systems. This is the Fredholm determinant that is obtained
from a boundary integral equation which determines the quantum energies of the billiard
system [16, 17, 18, 19].

The dynamical zeta function is defined by a product over all periodic orbits of a
system, the so-called Euler product, in the region where this product converges. It is
known that this region does not contain the locations where its zeros are, respectively
the zeros of its analytical continuation [21]. Alternatively, by expanding the product, the
zeta function can be expressed by a series over combinations of periodic orbits, so-called
pseudo-orbits. The sum over pseudo-orbits in general has better convergence properties
than the product over periodic orbits, and it forms the basis for resummation techniques
like the Riemann-Siegel like formulas [27, 54], for direct quantizations [25], or for cycle
expansions [22, 23, 24]. The article [P2] examines in detail the convergence properties of
the pseudo-orbit sum, in particular whether it is convergent on the real energy axis where
the eigenvalues of the Schrodinger equation are located.

The analysis of the convergence properties of the pseudo-orbit sum rests on the prop-
erty of the pseudo-orbit sum that it has, for scaling systems, the form of a generalized
Dirichlet series. For billiard systems or the geodesic motion on Riemann surfaces of con-
stant negative curvature that are considered in [P2] the argument of the Dirichlet series is
the wave number k£ = v/2mFE /h. The convergence properties of such series are well known.
A Dirichlet series converges absolutely in a half-plane Imk > o, and conditionally in a
half-plane Im k£ > o, with 0. < o,. The abscissa of absolute and conditional convergence,
0, and o., can be expressed as the limit of a function of the amplitudes and exponents in
the Dirichlet series, and this provides a means to determine them.



It can be shown that o, is given by o, = 7 — /2 where 7 is the topological entropy
that describes the exponential proliferation of the number of periodic orbits, and X is an
averaged Lyapunov exponent. In bounded systems where 7 = X is expected to hold, this
implies that the series is not absolutely convergence for real values of k£ where the quantum
energies are located. The effect that the non-vanishing topological entropy prevents an
absolute convergence of the pseudo-orbit sum for real £ is denoted by the entropy barrier.
The abscissa of conditional convergence o, depends further on the statistical properties
of the Maslov indices and of the degeneracies of the periodic orbits. They lead to a novel
parameter that we denoted the third entropy d in [P2] which determines the difference
between the abscissa of absolute and conditional convergence § = o, — o.. The size of §
decides whether the Dirichlet series is convergent for real k.

An estimate for ¢ is obtained in [P2] by a simple statistical model for the amplitudes
in the Dirichlet series. It is assumed that they are randomly distributed according to
some probability density with zero mean. Under this assumption and by applying the
central limit theorem one obtains an estimate for § in the form § = (7 — «)/2, where «
describes a possible exponential increase of the multiplicities of lengths of pseudo orbits.
Such an exponential increase for the multiplicities of pseudo orbits can already occur if
the periodic orbits have a constant mean multiplicity. The statistical model thus predicts
that in a typical bounded system with 7 = X one can have at most o, = 0, meaning that
the limit of the region of conditional convergence is exactly the real k-axis, but this is
only possible if & = 0, as for example in a generic chaotic system without symmetries and
without time-reversal symmetry.

The predictions of the statistical model were tested on four hyperbolic systems in
[P2]. For three of them the numerical results were in good agreement with the model,
only for Artin’s billiard there were distinct deviations. This system is of a rather special
type, it belongs to the class of arithmetic systems, and it shows correlations between the
amplitudes in the Dirichlet series so that the conditions of the statistical model are not
fulfilled.

2.3 Calculation of spectral determinants

The dynamical zeta function is a semiclassical approximation to a spectral determinant
A(E) that has zeros at the eigenvalues of the Hamiltonian. A fundamental property
of this spectral determinant is that it satisfies a functional equation. This functional
equation follows from the self-adjointness of the Hamilton operator, and it can be used
in order to extend semiclassical periodic orbit expansions to regions where the orbit sums
are divergent. The dynamical zeta function, i. e. the semiclassical approximation to A(FE),
satisfies the functional equation only in leading semiclassical order, but by imposing it as
an exact equality, Berry and Keating derived a resummation of the pseudo-orbit series
for the dynamical zeta function by a contour integral method [27]. For billiard systems
this resummed series has the following form

oo

E(k) = C(k)e ™) o gy (k, 1) + ) &l 1) - (3)

m=3

Here ((k) is the zeta function as a function of the wavenumber k, and N (k) is the mean
spectral staircase. The functions &,,(k,[) are all given by sums over pseudo-orbits which



are smoothly cut-off at half the Heisenberg time Ty, and [ is a free parameter of the
representation. The m-series is an asymptotic series whose first terms converge very
rapidly if the parameter [ is chosen appropriately, so that only few terms have to be taken
into account. By far the most important term is &,(k, ).

The cut-off of the pseudo-orbit sums in (3) is not an approximation. The contributions
of the long orbits are still present, they are resummed in terms of the short orbits. This
is reflected by the fact that & (k,1) is roughly twice the real part of the original Dirichlet
series, cut-off at half the Heisenberg time. This shows that (3) is not simply obtained by
a cut-off of the original series.

The object of the article [P3] is a detailed investigation of the Riemann-Siegel-type
formula (3) on the example of a strongly chaotic system, the hyperbola billiard (see [55]).
This system is well suited for this purpose, since a large number of periodic orbits is
known completely up to some maximal length of the trajectories .y, altogether more
than 100000 orbits. Furthermore, the unusual form of the asymptotic series for the
mean spectral staircase of this unbounded billiard system allows the investigation of the
correction terms &, (k, 1), m > 3, in (3). In bounded billiard systems these terms vanish.

A detailed test of the orbit resummation underlying the formula (3) has to compare
not only the position of the zeros of the function & with the quantum energies, but also
the amplitude of & with that of the spectral determinant A(FE), since the resummation
process shows up most clearly in the factor 2 by which the pseudo-orbit contributions to
¢ differ from those to the original Dirichlet series. The main obstacle in doing this lies
in the quantum calculation, since the representation of A(E) by a product over energy
levels converges very slowly. This problem was circumvented in [P3] by defining a new
determinant A x(E) that is completely specified by all energies F,, < X, and by deriving
a semiclassical approximation for this new quantity. For energies F < X it is expressed
again in terms of the dynamical zeta function.

The comparison of the quantum result with the semiclassical one shows a remarkable
good agreement for the amplitudes as well as for the position of the zeros. This pro-
vides a confirmation of the resummation ideas underlying equation (3). The error in the
semiclassical energies was approximately three percent of the mean spacing between the
levels. Alternative evaluations of the zeta function by the original Dirichlet series and by
the Fuler product give also good approximations to the spectral determinant, however not
quite as good as the resummed series. Both these semiclassical curves show fluctuations
about the quantum result. For the Euler product it is a sign of its divergence, for the
Dirichlet series the results are not conclusive, since it is not clear whether the amplitude
of the fluctuations increases with an increasing number of orbits. The fluctuations could
also be explained by the sharp cut-off of the sum over pseudo-orbits.

2.4 Billiards with mixed boundary conditions

Billiard systems have been introduced in the study of dynamical systems, since they show
the typical qualitative features of general Hamiltonian systems, while they are much more
easy to treat formally. The quantum analogues of classical billiards have the same advan-
tages. There are powerful techniques like the boundary integral method for solving the
Schrédinger equation [56, 57, 58], and for a semiclassical analysis one can often determine
a large number of periodic orbits by simple Newtonian methods (see [59]).

The quantization of a given classical billiard system is not unique. There is the freedom

10



to choose the boundary conditions, restricted to the condition that they lead to a self-
adjoint Hamilton operator. In general, one can require that a linear combination of the
wave function and its normal derivative vanishes on the boundary 0B

K(F) O(F) + 0, ¥(7F) =0, FeoB. (4)

The large freedom of choosing the (positive) function x(7) offers the possibility to study
semiclassical approximations in a much more refined way than is possible when restricting
to one realization of a quantum billiard. This was the motivation for studying mixed
boundary conditions in [P4]. Before we address this point in more detail we discuss some
of the results of [P4].

In the first part of the article the semiclassical theory for billiards with mixed boundary
conditions is developed for piecewise constant functions (7). This includes the derivation
of the smooth and the oscillatory parts of the spectral density. Both are obtained by
several different methods, applicable either to integrable, to chaotic or to general systems.
The smooth part of the level density was obtained, for example, by modifications of the
methods of Stewartson and Waechter [60] and of Balian and Bloch [61], and the oscillatory
part was derived by using the scattering approach to the semiclassical quantization of
billiard systems [13, 14, 15], and by the KKR-method for the Sinai billiard [62]. For
the smooth part one finds that the leading area term is independent of the boundary
conditions, as expected, whereas the higher-order corrections depend on the function
k(7). Explicit expressions are given for the length term, the curvature term and a 90°
corner term. The oscillatory contributions in the trace formula contain, in comparison to
Dirichlet boundary conditions, an additional phase of the form

2) arctan | —== cos®; | , (5)
Z.Zzl <'€(7”z')

where the sum runs over the n points of reflection of a periodic orbit and k cosf; is the
component of the momentum normal to the boundary at the i-th reflection point. Ex-
pression (5) interpolates between the two values 0 and nz for the Dirichlet and Neumann
cases, respectively.

The important point in (5) is that the phase factor depends only on the value of ()
at the points of reflection. If x(7) is changed on a part of the boundary then only those
periodic orbits are effected that are reflected at least once in this region. This property
allows to isolate particular periodic-orbit contributions to the semiclassical trace formula,
for example by taking the difference between two spectral densities corresponding to two
functions x(7) that differ only on a part of the boundary.

In [P4] this method was applied to eliminate the non-generic “bouncing ball”-contri-
butions from the trace formula for two-dimensional Sinai billiards. This was achieved by
applying mixed boundary conditions with a constant value of x on the disk of the Sinai
billiard and varying the value of k. By taking the derivative of the spectral density with
respect to k one is left with a trace formula that contains only the generic contributions of
all unstable periodic orbits. Taking the derivative of the spectral density has the additional
advantage, that also non-generic diffractive contributions of orbits that are tangent to the
disk are removed (at least in leading order). The elimination of non-generic contributions
is even more important in higher dimensions where bouncing ball families contribute
in a higher order of 1/h, and the number of different bouncing ball families increases
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strongly. The examination of the semiclassical accuracy in the three-dimensional Sinai
billiard in [63, 64] would not have been possible without removing bouncing ball and
tangent contributions.

There are various possibilities for further applications of mixed boundary conditions
that extract partial contributions to trace formulas. The method can be convenient if one
is interested in semiclassical contributions from certain regions in coordinate space, if one
examines semiclassical contributions to scarred wave functions, or if one wants to study
correlations between actions of periodic orbits in more detail (see section 3.1). So far only
few of these possibilities have been exploited.

There is a further motivation for studying mixed boundary conditions. A central
characteristic of quantum systems with a chaotic classical limit are the universal properties
of the level statistics. This universality is not restricted to correlations within the spectra
of single systems, it can also be observed in the dependence of a system on an external
parameter (see e.g. [65, 66, 67]). For example, the form in which the correlations between
two spectra for different parameter values decay as the parameter difference is increased
is characteristic for the type of the corresponding classical motion and the symmetries of
the systems. Mixed boundary conditions allow to define a parameter dependence that
effects only the quantum system and not its classical limit. This implies that semiclassical
approximations involve the same set of periodic orbits for all parameter values, and this
strongly simplifies a semiclassical study. In this respect systems with mixed boundary
conditions play the same role for the study of the parameter dependence of a system as
scaling systems do for the energy dependence. Billiard systems with a flux line have similar
properties. In contrast to billiards with mixed boundary conditions, however, they are
systems without time-reversal symmetry or with slightly broken time-reversal symmetry,
and the flux line leads to additional diffractive contributions to the trace formula in case
it goes through the billiard domain.

2.5 The trace formula for three-dimensional billiard systems

In the study of autonomous dynamical systems and their quantized versions many con-
cepts have been developed on basis of the insight that has been gained from the study of
simple model systems. These models are chosen with the point of view that they should
be both simple and in some sense typical. For this reason most of the studies have been
performed on two-dimensional systems, since these are the simplest conservative systems
in which chaotic motion can take place, and they are numerically much less demanding
than higher-dimensional systems. Nevertheless, two-dimensional systems have rather spe-
cial properties in comparison to higher-dimensional ones. In two dimensions invariant tori
separate different regions on the energy surface in phase space whereas in higher dimen-
sions Arnold diffusion takes place. Also the periodic orbits in two-dimensional systems
don’t have the full general form, since loxodromic orbits occur only if the dimension is
larger than two. In order to study more realistic models one has to go to three dimensions,
and, as in two dimensions, convenient models are again billiard system:s.

The article [P5] is a semiclassical study of three-dimensional billiard systems. It con-
tains a derivation of semiclassical contributions of isolated periodic orbits, and of families
of periodic orbits in axially symmetric billiard systems. It gives for the first time a prac-
tical method for calculating the stability matrix and the Maslov index of a periodic orbit
in three dimensions in terms of partial stability matrices for single reflections, the mo-
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tion between reflections, and rotations of the local coordinate system. We discuss in the
following the relation of this work to previous work.

Semiclassical approximations in three-dimensional billiard systems have been derived
before by Balian and Bloch [61, 68, 4]. They performed a systematic investigation of
semiclassical contributions of periodic orbits for various geometrical configurations. Their
results are expressed in terms of the 2n x 2n-matrix of second derivatives of the orbit
length with respect to a change of the n points of reflections. This matrix determines both,
the stability and the Maslov index of an orbit. Although Balian and Bloch completely
specify the semiclassical approximation, their formalism is not convenient for practical
calculations, since it requires a large effort to determine the 2n x 2n-matrix for every
periodic orbit. Instead it is preferable to express the result in the usual Gutzwiller form,
i.e. in terms of the 4 x 4-stability matrix M, and to give an explicit method how to
calculate M and the Maslov index.

For two-dimensional systems the periodic orbit contributions have been derived in the
Gutzwiller form. Harayama and Shudo obtained them starting from a boundary integral
equation[18]. The derivation involved the reduction of n-dimensional matrices where again
n is the number of reflections of an orbit. (That the index in their trace formula is identical
to the usual Maslov index was shown in [69].) For the two-dimensional problem of the
scattering on m disks Wirzba derived the Gutzwiller form directly from the Balian/Bloch-
result [20]. In his case the orbits did not have conjugate points and the index in the trace
formula was twice the number of reflections.

Both methods require the reduction of large matrices. In higher dimensions this would
be a very elaborate task. In [P5] we applied a different method which doesn’t involve
large matrices, and we derived the Gutzwiller form from an iterative method that follows
the trajectory from reflection point to reflection point. This procedure automatically
yields a method for determining the stability matrix and the index of an orbit, and it
is straightforward to show that this index is identical to the Maslov index. The same
method has been used in [P9] for deriving the semiclassical contributions of diffractive
orbits in two dimensions.
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3 Semiclassical methods and spectral statistics

3.1 Correlations in the actions of periodic orbits

There is a great amount of numerical evidence that the energy levels of a generic chaotic
system, when unfolded to a mean spacing of one, have the same statistical distribution
as the eigenvalues of random matrices, chosen from appropriate ensembles (see e.g. [29]).
Recent analytical work has made a large step in explaining this agreement [70, 32, 31]. It
is now possible to obtain from semiclassical considerations the full leading-order random
matrix result, i.e. the leading oscillatory and smooth behaviour, for the two-level corre-
lation function Ry(x) as x — oo [32]. Despite this progress a complete derivation of the
full level distribution is still lacking. This would require a much finer knowledge about
the statistical properties of periodic orbits, including the distributions of their actions,
periods, stabilities and Maslov indices, than is presently available.

The article [P6] followed an opposite strategy. It assumed that we know that the
spectral statistics of a chaotic system follow random matrix theory in the semiclassical
limit. Based on this assumption it examined what predictions the semiclassical theory
makes about the statistical properties of periodic orbits. The result is an explicit, universal
expression for a classical distribution function for the periodic orbits which has the form
of a weighted action correlation function. For systems as e.g. the geodesic motion on
some compact Riemannian surfaces with constant negative curvature, this distribution
function is a pure action correlation, and it predicts a tendency towards action repulsion,
i.e. a lowered probability for two periodic orbits with approximately the same period to
have a small action difference. In general, the correlation function includes weight factors
depending on the stabilities and Maslov indices of the orbits.

The remarkable point about this result is that these classical correlations have been
previously unnoticed and they were obtained purely from observed quantum properties
of the system, and by applying a semiclassical approximation. Numerical tests on chaotic
systems in [P6] showed that these action correlations are indeed present. Further evi-
dence is provided by the Riemann zeta function for which the action correlation function
describes the correlations between pairs of prime numbers. It is shown that the results of
[P6] are consistent with the Hardy-Littlewood conjecture on the pairwise distribution of
primes.

It is still an open question, how these classical correlations can be explained from
purely classical considerations. Detailed numerical examinations in [71] indicate that the
correlations occur mainly between orbits that share some common properties, e.g. have
the same number of bounces in a billiard system, or, if a classification of the periodic orbits
by a symbolic code is possible, share some common features in the code words. Similar
results can be obtained by considering the response of a system to a small perturbation.
One finds that the action correlations occur mainly between periodic orbits that are
similarly affected by a perturbation [72].

If classical correlations between periodic orbits could indeed be derived from classical
arguments this would strongly enlarge the scope of semiclassical approximations. It would
allow also direct evaluations of off-diagonal contributions in sums over periodic orbits.
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3.2 Non-universal spectral statistics in the quantized stadium
billiard

Billiard systems are not merely convenient theoretical models, they can also be realized
in experiments [73, 74, 75, 76, 77]. These experiments are macroscopic and use the
equivalence of the Schrodinger equation for billiard systems with the Helmholtz equation
for electromagnetic waves in order to model quantum billiards by microwave cavities.
If the cavities are chosen as flat quasi two-dimensional systems then also the boundary
conditions for the lowest states agree with Dirichlet boundary conditions and one can
obtain by a measurement the spectrum of two-dimensional quantum billiards up to some
maximal energy that is determined by the height of the cavity. The experimental group
of Prof. Achim Richter in Darmstadt performed measurements on one of the standard
examples of a chaotic system, a desymmetrized stadium billiard [76]. When the measured
spectrum was analyzed and the spectral correlations were determined in form of the
spectral rigidity the outcome was distinctly different from the characteristics that are
expected for a generic chaotic system.

The spectral rigidity Az(L) is a two-level statistic that measures how well the spectral
staircase of a system can be approximated by a straight line. If it is calculated from a finite
portion of the spectrum of a chaotic system, then one expects to reproduce the results
of random matrix theory (RMT), if L is not too large. For long range-correlations (large
L) A3(L) typically shows a smaller increase than the logarithmic form of the RMT curve
and finally saturates at a constant value. This saturation is predicted by the semiclassical
theory of Berry [31] and is related to the shortest periodic orbits of the system.

In contrast to this the Az(L)-statistic of the stadium billiard shows a strong increase
beyond the RMT curve. This deviation was the original motivation for the article [P7].
It was soon clear that the cause for the deviations was the non-generic family of bouncing
ball orbits in the stadium billiard. In [P7] these deviations were described quantitatively.
The semiclassical contributions of bouncing ball trajectories to the spectral density were
derived, and with this result the influence of these orbits on the spectral rigidity was
calculated. The final result states that the bouncing ball orbits yield an additional con-
tribution to the spectral rigidity that has to be added to the semiclassical expression for
the rigidity of a generic chaotic system. The results of [P7] were used for the analysis of
the data in [76].

From another point of view, the existence of additional terms in the trace formula
that are of higher power in 1/h than the contributions of isolated orbits were the reason
for the additive contribution to As(L). Similar results were obtained recently in [78]
for bifurcating periodic orbits that likewise yield an additive contribution to the number
variance, or, equivalently, to the spectral rigidity. Here the difference in the power of 1/
between isolated periodic orbit and bifurcating periodic orbit contributions is given by
the singularity index of the bifurcation.

In [P7] further non-generic semiclassical contributions in the stadium billiard were
derived, that are due to the borders of the family of bouncing ball orbits, and to edge
orbits, that run along a part of the boundary. The full trace formula was applied for a
Fourier analysis of the measured spectrum of the microwave cavity. Overall there was
a good agreement between semiclassics and experiment, which confirms that microwave
cavities are an appropriate means for carrying out experiments in quantum chaos.
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3.3 An exponentially increasing semiclassical spectral form fac-
tor

The simplest statistical distributions of energy levels which show universal behaviour are
two-level statistics. They can be measured by different distribution functions like the
two-level correlation function, the two-level form factor, or the spectral rigidity. These
statistical measures emphasize different aspects of the fluctuations in the spectrum, but
they are all equivalent.

For semiclassical investigations the most easily accessible measure is the spectral form
factor K (7), the Fourier transform of the two-level correlation function. Its argument 7 is
directly related to the period T of the orbits that contribute semiclassically by 7 = T/T}y,
where Ty is the Heisenberg time, and all non-universal features are restricted to small
T-regimes, near 7 = 0 and 7 = 1.

The semiclassical theory for the form factor was developed by Berry [31] and extended
by Bogomolny and Keating [32]. By using a sum rule for the periodic orbits [79] the form
factor can be described correctly in the ranges 7 < 1 and 7 = 1. Up to now these are the
only regimes which are fully accessible to a semiclassical analysis. For 7 > 1 a different
reasoning is applied. It can be shown that the exact form factor approximates the value 1
for large values of 7 if the spectrum doesn’t have systematic degeneracies. Based on the
assumption that the semiclassical form factor shows the same behaviour, this leads to a
semiclassical sum rule for the periodic orbits, equivalent to K,.(7) ~ 1 for 7 > 1.

In the article [P8] we show that the semiclassical form factor does not necessarily obey
this semiclassical sum rule, in fact it can drastically deviate from it. We consider in [P8§]
systems for which the Maslov index for all periodic orbits is equal to zero. Examples are
defocusing billiard systems with Neumann boundary conditions or the geodesic motion
on certain Riemann surfaces with constant negative curvature. For these systems the
correspondence between the form factor and its semiclassical approximation depends very
sensitively on the form of the averaging procedure that is chosen for evaluating K (7). A
natural choice would be a Gaussian averaging, however, as is shown in [P8], this leads to
an exponentially increasing semiclassical form factor for sufficiently large 7.

The exponential increase of K.(7) is shown in [P8] by numerical as well as analytical
calculations, where the analytical results are obtained by approximating the sum over
periodic orbits by an integral. This is only possible if all Maslov indices vanish. A better
understanding of this unexpected behaviour of K.(7) is obtained by considering a system
for which Gutzwiller’s trace formula for the spectral density is exact and corresponds to
the Selberg trace formula, the example in [P8] is an asymmetric hyperbolic octagon. For
this system the exponential increase can be proven rigorously. The only semiclassical
approximation that is made for Ky (7) for this system consists in linearizing the energy
dependence of the action when taking the Fourier transform of the two-level correlation
function. It can be shown that this leads to an exact replacement of the form factor for
the energy spectrum by the form factor for the momentum spectrum. The hyperbolic
octagon has, however, an imaginary momentum eigenvalue that correspond to the zero-
mode energy F = 0, and this is the origin of the exponential increase. The imaginary
momentum eigenvalue is also the reason why Berry’s semiclassical sum rule is not valid
for the momentum spectrum.

There are several remedies to the exponentially increasing semiclassical form factor.
One can subtract the mean exponential behaviour of the periodic orbit sum, one can use
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a different averaging that cuts off the zero-mode contribution, e. g. a window averaging, or
one can push the start of the exponential increase to larger values of 7 by going higher up
in the spectrum. We note that the exponential Ky (7) does not interfere with the action
correlations in section 3.1 as discussed in detail in [80].
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4 Semiclassical methods in diffractive and mixed sys-
tems

4.1 Uniform approximation for diffractive contributions in trace
formulas

By varying the boundary of a billiard system one can generate a large variety of dynamical
systems. Besides integrable, mixed and chaotic dynamics, billiard systems can exhibit also
dynamical behaviour that is not found in smooth Hamiltonian systems. An example is the
class of pseudo-integrable billiards. These systems have as many independent constants
of motion as degrees of freedom, and the motion in the 2n-dimensional phase space is
restricted to an n-dimensional surface. Due to singularities in the boundary, however,
this surface does not have the topology of a torus as in the case of an integrable system,
but it is of higher genus (see the discussion in [81] and references therein). For pseudo-
integrable systems semiclassical approximations cannot be purely expressed in terms of
the periodic orbits. For some of these systems it is not even known if periodic orbits
exist. Instead there are additional semiclassical contributions which are related to the
diffraction of quantum wave functions on the singularities of the boundary.

Pseudointegrable systems are only one example of billiard systems in which diffractive
effects influence the spectral properties. More general, if part of the billiard boundary
is concave or if it has corners with angles different from m/n then there are additional
contributions in semiclassical trace formulas which are not related to periodic orbits.
They can be expressed in terms of creeping orbits that creep along a part of the convex
boundary, or diffractive orbits that run into a corner from where they can depart in
arbitrary directions.

A theory for the treatment of these additional contributions was already developed
in the fifties for electromagnetic waves by Keller (see e.g. [82]). Keller's geometrical
theory of diffraction (GTD) can be considered as an extension of geometrical optics that
includes the treatment of diffractive effects by additional non-classical trajectories. These
additional contributions appear also in the context of semiclassical trace formulas, and
they were derived within the framework of Keller’s theory in [43, 44, 45].

Let us consider now a billiard system with corners. One might ask whether a trace
formula which includes the contributions of diffractive orbits, derived from GTD, is suf-
ficient for describing, for example, spectral properties of pseudo-integrable systems. This
is in general not the case, since Keller’s theory has only a limited range of validity. It
diverges at optical boundaries which, in the language of geometrical optics, separate illu-
minated and shadowed regions. The regions where Keller’s theory is not valid shrink with
increasing energy, but this is counterbalanced by the fact that longer orbits, that become
relevant for a larger energy, approach optical boundaries on average closer than shorter
orbits. There is a very similar effect in mixed systems for orbits near bifurcations (see
section 4.2). In mixed systems short orbits near bifurcations can be considered isolated
if the energy is sufficiently high, but there are always longer orbits for which this cannot
be done, independently how large the energy is.

The reason for the divergence of Keller’s theory is that diffractive orbits contribute
with a lower power in & on optical boundaries. Consequently, Keller’s theory breaks down
where the contributions of diffractive orbits are most important. In order to remedy this
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situation, a uniform approximation for the semiclassical contributions of diffractive orbits
is derived in [P9]. This uniform approximation interpolates between the two asymptotic
regimes, the optical boundary and the regime where Keller’s theory is valid. The deriva-
tion is based on the boundary integral method and an exact integral representation for
the Green function of an infinite wedge with an arbitrary angle. The final result is valid
for orbits which run once into a corner. This gives the most important diffractive contri-
bution. The method can, in principle, also be applied to orbits with arbitrary points in
corners, but the corresponding expressions become increasingly more complex and involve
multiple Fresnel integrals.

Numerical applications in [P9] show that the uniform approximation is in excellent
agreement with quantum results, whereas the simple geometrical theory of diffraction is in
many cases inadequate. For example, the uniform approximation has also to be applied if
a corner angle is close to a value 7/n where n is an integer. Results of [P9] reveal a further
similarity between diffractive orbits and bifurcating periodic orbits. If a corner angle is
varied and goes through a value 7/n then a new periodic orbit is born out of a diffractive
orbit. This kind of bifurcation is correctly described by the uniform approximation.

4.2 Uniform approximations and bifurcations of periodic orbits

The form of semiclassical approximations depends on the structure of the underlying
classical motion. In integrable systems the energy surface is filled by layers of tori on which
the classical motion is confined. In the semiclassical limit wave functions concentrate on
single tori that are selected by the EBK-quantization conditions. In chaotic systems on
the other hand a typical trajectory fills the whole energy surface in phase space ergodically,
and no manifolds are left invariant under the classical flow except the whole energy surface,
and the set of periodic orbits. This is reflected by the quantum ergodicity [83, 84, 85, 86],
i.e. the property that almost all wave functions are distributed uniformly over the energy
surface in phase space in the limit of large energies. In a general system the structures
in phase space are much more complicated. Regular and irregular regions coexist in
phase space and are intermingled in a complex form. We discuss this structure briefly for
two-dimensional conservative systems.

As an integrable system is disturbed all rational tori, i. e. tori which consist of periodic
orbits, break-up immediately into an equal number of stable and unstable periodic orbits.
This is a consequence of the Poincaré-Birkhoff theorem (see e.g. [87]). Around the stable
orbits there are small islands of regular motion whereas the unstable orbits are contained
in a small layer of chaotic motion that surrounds the islands. On a Poincaré surface of
section this structure appears as a chain of islands with a layer of stochastic motion around
them. According to the KAM-theorem many of the irrational tori of the unperturbed
integrable system will survive a small perturbation and are only slightly deformed. These
KAM-tori separate neighbouring chains of islands. The original torus-structure of the
integrable system is thus replaced by alternating layers of KAM-tori and island-chains
that are surrounded by a layer of chaotic trajectories exploring a tiny portion of the phase
space. The whole structure is self-similar, since the islands consist again of alternating
invariant tori and secondary island chains and this pattern repeats itself up to arbitrary
small scales.

As the perturbation is increased, more and more of the KAM-tori will be destroyed and
the stochastic regions that were separated by them will merge. When the last invariant
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torus that remains of the integrable system is destroyed all chaotic layers of the primary
structure will have merged into a global chaotic sea in which the remaining invariant tori
of the islands are embedded. A fully chaotic system is obtained only if all invariant tori
are destroyed, also those of the secondary and higher-order structures.

The difficulty for semiclassical theories in mixed systems is that they have to take
these complicated classical patterns into account. At a fixed value of the energy, quantum
mechanics does not resolve all the details of the phase space structures since it smoothes
over regions of the order of h?. However, as E is increased (or i diminished) more and
more structures will be resolved. The difficulty in performing the semiclassical limit
E — oo or i — 0 is due to the fact that classical structures exist up to arbitrary small
scales. No matter how large E is there are always new details that become semiclassically
relevant. Up to now, no general semiclassical theory has been developed that can handle
these difficulties. Semiclassical methods that are applied in mixed systems are typically
restricted to some energy regime, and if the energy is changed then also the method has
to be adjusted to the new relevant structures in phase space.

An example are EBK-like quantization rules that can be applied also to weakly dis-
turbed integrable systems (see e. g. [88]). They interpolate smoothly over the island-chain
structures if the energy is not too high. As the energy is increased they become inaccu-
rate. However, when the energy is high enough so that wave functions can concentrate
on one of the islands, then EBK-quantization rules can be applied again, but now for
the quantization of the islands. This is because the islands have a very similar struc-
ture as the perturbed integrable system [89]. It is an interesting mechanism how the
EBK-quantization conditions for the primary KAM-structure is replaced by the EBK-
conditions for the primary islands for a particular island chain [90]. The application of
the torus quantization requires the knowledge of the two action variables for two irre-
ducible circuits around an torus. These can be determined for the invariant tori of the
islands, and for the periodic orbits, but not for the regions in between. In order to apply
the EBK-quantization rules one therefore has to interpolate the action variables over the
regions between the invariant tori. Although this method often works well, it does not
have a firm theoretical basis.

The alternative approach to the semiclassical approximation follows the line of Gutz-
willer’s periodic orbit theory. Periodic orbits give in general the leading order oscillatory
contribution to the level density since they correspond to stationary points in represen-
tations of the level density by oscillatory integrals. This applies also to mixed systems.
The difference with respect to chaotic systems is that in mixed systems periodic orbits
can also be stable, and stable orbits are never isolated from other periodic orbits in their
neighbourhood. A semiclassical contribution of stable periodic orbits was derived by
Gutzwiller by a linearization of the motion around them [2]. This approximation neglects
the presence of other neighbouring periodic orbits and yields

dy(E) = %n;i;l % cos (SVTEE) - gw,) : (6)

Here the sum runs over all repetitions m of the orbit . S,(E), T,(E), and v, are the
action, period and the number of turning points of the orbit, respectively. The quantity
o, is the stability angle that specifies the angle by which neighbouring trajectories wind
around the stable orbit in phase space during one traversal. They are related to the two
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eigenvalues of the stability matrix by A o = exp(Zic., ).

The form (6) yields direct quantization conditions for a set of energy levels. They
are obtained by expanding the fraction with the sine function in the denominator into a
geometric series and applying the Poisson summation formula. This yields a sum over
delta-functions whose positions are determined by the condition [91]

S.(E) — ah (m + %) = ot (n + %) . (7)

The same quantization condition was obtained by Voros by applying EBK-quantization
to the torus structure that is obtained by a linearization of the motion around a stable
orbit [92]. Rigorous results are given by Ralston [93]. The energy levels determined by (7)
correspond to quasimodes that are approximate solutions of the Schrodinger equation.

The quantization conditions (7) in general cannot be good approximations to quantum
levels if the corresponding wave functions are not concentrated sufficiently close to the
stable orbit, since the actual island structure around a stable orbit differs distinctly from
the torus structure that is obtained from the linearization. Thus there are restrictions to
the values of m and n for which (7) is good. The formula (6) on the other hand sums
over semiclassical energies £, ,,, for all values m,n > 0 and thus has to be modified.

That equation (6) must be wrong in general can also be seen directly. The sine in the
denominator is zero if its argument is a multiple of 7. If «, is a rational multiple of 27
then there is always a positive integer m such that the sine is zero and the formula (6)
diverges. The reason for this divergence is, as mentioned before, the fact that a stable
periodic orbit is never isolated from neighbouring periodic orbits. The divergence of the
m-th term in the sum in (6) implies that the stability matrix of the m-th repetition of the
stable orbit has eigenvalues A; 2 = 1 which in turn means that there is another periodic
orbit in an infinitesimal neighbourhood. This occurs either if a periodic orbit is part of
a family of orbits or if it coalesces with another periodic orbit in a bifurcation. Since
generically there are no families in mixed systems, it signifies that the orbit undergoes a
bifurcation.

Bifurcations are a typical phenomenon in mixed systems and occur very often. Every
arbitrarily small but finite change of «.,, as caused for example by a small parameter
change of the system, immediately causes an infinite number of different bifurcations
since a, will go through an infinite number of rational multiples of 2w. Most of these
bifurcations occur for large values of m, i.e. for orbits with long periods. Bifurcations
are the reason for the strong increase of the number of periodic orbits when an integrable
system is transformed into a chaotic system (from a power law dependence on the period
to an exponential dependence).

In order to treat bifurcations semiclassically one has to apply approximations that take
neighbouring orbits into account. In the derivation of semiclassical trace formulas this is
equivalent to the semiclassical evaluation of oscillatory integrals with almost coalescing
stationary points. Such integrals cannot be evaluated by stationary phase approximations
which diverge if different stationary points coalesce. One has to apply uniform approxi-
mations that are valid at bifurcations as well as in regions where orbits are well separated
and stationary phase approximations can be applied. Uniform approximations are typi-
cally necessary when there is a transition between two different asymptotic regimes. In
the case of bifurcations coalescing periodic orbits contribute semiclassically with a dif-
ferent power in A than isolated periodic orbits. The difference in the power is given by
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the singularity index of the bifurcation. The derivation of uniform approximations for all
typical bifurcations in two-dimensional systems is the topic of the articles [P10-P12].

Bifurcations occur in several different forms. The appearance or disappearance of pe-
riodic orbits in smooth systems is always connected to bifurcations. But bifurcations can
also occur in the form that orbits become identical and then part again. A classification
of all different bifurcations that typically occur in two-dimensional systems without sym-
metries was given by Meyer and Bruno [94, 95, 96]. These bifurcations are realized if one
parameter in a system is changed, they are called bifurcations of codimension one. One
finds that the form of the bifurcation depends only on the lowest repetition number m of
a stable orbit for which the stability matrix has eigenvalues A;» = 1. The correspond-
ing bifurcations are period-m-tupling bifurcations since they involve other periodic orbits
which have a primitive period that is m times larger than that of the considered stable
orbit.

There is only a finite number of different characteristic forms of the bifurcations. For
m = 1 one has a saddle-node or tangent bifurcation in which two periodic orbits appear
(or disappear). The case m = 2 is a pitchfork bifurcation in which a central orbit changes
its stability from stable to unstable or vice versa, and a new orbit appears (or disappears).
For m = 3 two orbits coalesce in a touch-and-go bifurcation and part again. For m = 4
there are two forms of the bifurcation. One case looks like a touch-and-go bifurcation,
but it involves three orbits in contrast to the case m = 3. One orbit disappears at the
bifurcation and a new one appears. The second case is an island-chain bifurcation in
which two new orbits are born, one stable and one unstable. The remaining cases m > 5
all have the form of island-chain bifurcations.

In the following we briefly discuss how the uniform approximations are obtained in
[P10-P12]. Semiclassical contributions for bifurcating periodic orbits follow from a semi-
classical evaluation of the trace of the Green function which leads to integrals of the
form

de(E) = /dq /dp a(q, p) exp {%f(q,p)} (8)

where the stationary points of the function f(g,p) correspond to the positions of the
periodic orbits in a Poincaré section of surface. In the vicinity of a bifurcation the integral
(8) can be evaluated by expressing f(q,p) in terms of the normal form of the bifurcation
that describes the positions of the neighbouring periodic orbits, and considering a(q, p)
constant [48]. This expresses d¢(E) in terms of catastrophe diffraction integrals. It yields
a transitional approximation that is only valid in the vicinity of a bifurcation. It does not
give the correct contributions of isolated periodic orbits far away from the bifurcation.

In [P10] a method was developed for obtaining a complete uniform approximation. It
involves the extension of the normal form by including higher-order correction terms. The
extended normal form is inserted into (8) and the exponent is simplified by appropriate
coordinate transformations. Furthermore the amplitude factor a(q, p) is also expanded up
to an order consistent with the expansion of the exponent. By this way a uniform approx-
imation is obtained that has the correct Gutzwiller limit far away from the bifurcation.
An application of this formula was given in the article [P13].

In [P11] uniform approximations were derived for the cases m =1, m =2 and m = 3
by applying the method of [P10]. The results were tested on the example of a kicked
top and compared to the exact quantum result, the transitional approximation and the
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Gutzwiller approximation, respectively. There was hardly any difference between the
uniform approximation and the quantum calculation, whereas the transitional approxi-
mation showed clear deviations in some distance from the bifurcation, and the Gutzwiller
approximation diverged at the bifurcation.

The article [P12] treats the remaining case m = 4 which is more complicated because
it involves three periodic orbits that have to be treated on the same footing. It is the
only case in which the uniform approximation cannot be expressed in terms of known
functions. We used a different method for the derivation in [P12]. It consist in a mapping
of the function f(g,p) onto the normal form by an implicitly defined coordinate transfor-
mation. The amplitude factor a(g, p) is then approximated by an interpolating function
that has the correct values at the positions of the stationary points. The resulting uni-
form approximation was again tested on the kicked top with similar results as for m =1,
m =2 and m = 3.

The articles [P10-P12] give a complete treatment of uniform approximations for all
generic bifurcations that occur in two-dimensional systems. In systems with discrete
symmetries further types of bifurcations can occur, which however often have the normal
forms of generic bifurcations but with a different interpretation. For example pitchfork
bifurcations occur in which not one orbit with twice the period is born, but two symmetric
orbits with the same period as the central stable orbit. Bifurcations of this kind can be
treated by slight modifications of the generic formulas.

Although the treatment of the generic bifurcations in [P10-P12] is for many applica-
tions sufficient, it does not allow a complete semiclassical treatment of mixed systems.
As longer and longer orbits are involved, bifurcations occur more and more rapidly, and
there is a point were different subsequent bifurcations of a periodic orbit cannot be treated
separated. This requires an extension of the normal forms such that it describes also the
treatment of subsequent bifurcations. A series of bifurcations can often also be considered
as a bifurcation of a higher codimension since the different bifurcations can typically be
brought to a coalescence if one varies several parameters of a system. Bifurcations of
codimension two are treated in [49, 50, 51].

4.3 Semiclassical transition from an elliptical to an oval billiard

In integrable systems semiclassical approximations are generally considered to be rather
simple. The generalization of the WKB-approximation to higher dimensions leads to the
EBK-quantization rules, and by applying the Poisson summation formula one obtains the
Berry-Tabor trace formula in terms of a sum over all tori of periodic orbits. Yet also
in integrable systems complications can occur. There can be separatrices that separate
different dynamical regimes, there can be isolated periodic orbits, stable as well as unsta-
ble, that are not part of a periodic torus, and there can be bifurcations of periodic orbits
that lead to the appearance of new tori of periodic orbits as a parameter of the system is
changed. All these features can be observed in an apparently simple system like a billiard
in form of an ellipse.

One motivation for studying the elliptical billiard and small deformations of it in [P13]
was the interest in the relation between bifurcations in integrable and mixed systems.
Generic bifurcations in mixed systems involve only a finite number of periodic orbits,
whereas in integrable systems whole tori appear (or disappear). But bifurcations in the
integrable case can be considered as a limit of bifurcations in mixed systems. If a torus is
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close to undergoing a bifurcation, and the integrable system is perturbed, then the torus
breaks up into a finite number of periodic orbits, and the distribution of the periodic
orbits in phase space is then identical to that of the orbits near a generic bifurcation. For
this reason, the uniform approximations of the last section 4.2 describe also the break-
up of tori near bifurcations as an integrable system is perturbed. [P13] contains thus
an application and a first numerical test of the results of [P10]. (Only the results for
bifurcations with high repetition numbers were needed in [P13].)

The first part of [P13] gives a short overview of classical and quantum properties
of the elliptical billiard. It discusses further the EBK-quantization rules that require a
uniformization in the elliptical billiard. There is a separatrix in the ellipse that separates
the classical motion between the two foci from the motion around the two foci. This
separatrix leads to a discontinuity in the EBK-quantization conditions since the Maslov
index is different for both regions. The discontinuity is removed by an interpolating
uniform approximation for the Maslov index [97].

Starting from the uniformized EBK-quantization rules a trace formula is derived in
[P13] for the ellipse which includes a uniform treatment of the bifurcations. Numerical
tests of this formula with quantum calculations show a good agreement, and the small
semiclassical error was taken as a reference for the semiclassical calculations in a nearly-
integrable system that was examined in the second part of [P13].

This second part investigates how the semiclassical approximations change if the ellipse
is slightly deformed into a non-integrable oval. One has to distinguish two cases. For
tori not involved in a bifurcation one can apply general uniform approximations for the
break-up of generic tori [98, 99, 100, 101]. The break-up of tori which are close to a
bifurcation on the other hand is described by the uniform formulas for generic bifurcations
as discussed above. By using these formulas numerical examinations in [P13] show that the
semiclassical error in the near-integrable oval billiard is of the same size as the semiclassical
error in the elliptical billiard. This confirms that the uniform approximations are indeed
the appropriate substitute for torus or isolated orbit contributions in trace formulas.
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5 Semiclassical methods in nuclear physics

Many properties of multi-fermion systems like atoms, nuclei or metallic clusters can be
explained by assuming that the particles move independently in a common potential. In
this approximation the correlations between the positions of the particles are neglected
and the particle interaction is incorporated into a mean field that determines the common
potential. This mean field depends itself on the density of the particles and has to be
determined in a self-consistent way, as is done by the Hartree-Fock method or the density
functional method. In this way the N-particle problem is reduced to N one-particle
problems.

Mean-field approximations can be used, for example, to explain and determine “magic
numbers” that denote the number of particles in a system for which it is most stable.
These magic numbers are a consequence of the fact that the energy levels of the single-
particle spectrum for the collective potential are not uniformly distributed, but show a
strong clustering that is due to high symmetries of the systems. The appearance of magic
numbers is thus a typical shell effect that can be observed in large fluctuations of the
coarse grained level density. It is in applications like these that semiclassical methods
are most powerful. It often suffices to sum only over a few periodic orbits in order to
determine fluctuations in the spectrum of a system that are responsible for the main shell
structure. (For the determination of magic numbers this applies to metallic clusters. In
nuclei additional spin-orbit forces are essential for an understanding of closed shells.)

In the same context semiclassical methods have been successful in explaining ground
state deformations of atomic nuclei [34] and small metallic clusters [35], and the occur-
rence of “supershells” in the metallic clusters that show up as long-range oscillations in
the coarse grained level density superposing the fluctuations corresponding to the shell
structure [4, 36]. In the articles [P14,P15] we present a further application of semiclassical
periodic orbit approximations in nuclear physics. It allows a simple interpretation of the
origin of the asymmetric fission of heavy atomic nuclei.

The fission of many actinide nuclei results in an asymmetric mass distribution of the
fission fragments. This mass asymmetry cannot be explained by the classical liquid drop
model that favors symmetric fission. In order to explain the asymmetry one has to include
shell corrections, i.e. deviations from the mean distribution of the single particle energies
due to the discreteness of the spectra, as is done by Strutinsky’s shell correction method
[102]. According to Strutinsky the total binding energy of a nucleus consisting of N
neutrons and Z protons has the form

Eio (N, Z;def) = Eupm(N, Z; def) + 0B, (N def) + 0 E,(Z; def) (9)

where Eppy is the liquid drop model (LDM) energy, and 0E, (N;def) and 0E,(Z;def)
are the shell-correction energies of the neutrons and protons, respectively. All quantities
depend on the shape of the nucleus which is described by several deformation parameters
summarized by ‘def’.

The shell corrections in (9) where calculated in the seventies from realistic nuclear
shell-model potentials of Wood-Saxon form [103]. For a typical actinide nucleus they
lead to three characteristic deviations from the liquid drop model: the ground state is
deformed and not spherical, the potential energy has a second local minimum for larger
deformations, the so-called fission isomer, and, starting from the fission isomer, left-right
asymmetric deformations are energetically more favourable than symmetric deformations.
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(All these deformations still have an axial symmetry.) The shell-correction method thus
yields an asymmetric mass distribution and it has been very successful in reproducing
experimental nuclear binding energies and fission barriers, however, it does not lead to an
intuitive understanding of the physical origin of the asymmetry.

In [P14,P15] we give a simple and transparent semiclassical interpretation of the asym-
metric fission. We use a simple model for the nuclear mean field by replacing it by a
three-dimensional cavity, and we neglect spin-orbit interactions. Furthermore, we con-
sider only the neutron contributions 0FE,, in (9) since they contain the main shell effects.
The boundary of the cavity is parameterized by three parameters ¢, h and «, where ¢
determines the longitudinal elongation of the cavity, h regulates the formation of a neck
that leads to the scission of the nucleus into two fragments, and « controls the left-right
asymmetry. The parameters are chosen such that an increase of ¢ with h = o = 0 follows
the adiabatic path through the parameter space in the liquid drop model.

In this model we calculate the shell correction d F for the neutrons. It is obtained from
the level density for the neutrons by summing over all energies up to the Fermi energy
and subtracting the mean level density. This leads to a trace formula of the form:

where Er denotes here the Fermi energy. Eq. (10) sums over the contributions of one-
parameter families of periodic orbits in the axially symmetric billiard system, and the
quantity o, takes half-integer values. The formula differs from the oscillatory part of the
level density by a factor (i/T,)%.

In order to evaluate (10) the shortest orbits of the system were determined as a function
of the parameters. Since the starting point for the development of left-right asymmetric
shapes is the fission isomer, it is sufficient to restrict the consideration to large deforma-
tions of the cavity. For these the shortest orbits all lie in planes perpendicular to the
symmetry axis of the billiard. In one such plane the orbits are those of a circular billiard.

If one changes the parameters then one finds that the number of these equatorial planes
are not constant. During the neck formation two new planes of periodic orbits arise in a
bifurcation, and this requires a modification of the contributions in the trace formula (10).
As in section 4.2 one has to derive a uniform approximation for their contribution. The
particular bifurcation is not generic. It is a bifurcation of codimension two corresponding
to the cusp bifurcation of catastrophe theory. Its uniform approximation is expressed in
terms of Pearcey’s integral and its derivatives [P14]. A test of this uniform approximation
is carried out in [P15] by comparing it to quantum calculations for the three-dimensional
cavity.

With this modification the shell-correction energy is evaluated. By plotting it as a
function of the parameters one finds that this simple semiclassical calculation produces
correctly the gross parameter dependence of JF, as obtained previously from quantum
calculations for a realistic Wood-Saxon potential, including spin-orbit interaction and
pairing correlations. In particular the semiclassical calculations predict correctly the
onset of the asymmetry at the fission isomer. Furthermore, the adiabatic path that the
system follows in the parameter space starting from the fission isomer in the semiclassical
approximations follows the line on which the actions of the most important periodic orbits
are constant. This provides a simple intuitive interpretation of the asymmetric fission, it
relates it semiclassically to the constancy of the shortest periodic orbits.
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