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1. Introduction 

Let D be an open set in IR m and let H = H * >  0 be the operator - A  D on L 2 (D) 
subject to Dirichlet boundary conditions, and defined by the method of quadratic 
forms [8, 9], so that Quad (H) = D o m ( H  1/2) = W~' 2(D). The heat kernel pD(x, y; t) 
of e -Ht is a positive C ~ function on (0, m ) x  D x D. It is well-known that if 
D c E, E open, then 

O<pD(x, y; t)<pE(x, y; t). (1.1) 

In particular putting E = IR = yields 

O~pD(X, y; t)<=(4ZCt)-m/2 e -Ix-yl~/(4t). (1.2) 

In previous papers [1, 2, 7] we have been interested in finding necessary and 
sufficient conditions for 

Zv(t)=trace(e-Ht) = ~ dX pD(X, x; t) (1.3) 
D 

to be finite for some t>0 .  While ZD(t) is always finite for t > 0  if the volume 
[D[ of D is finite this is not necessarily the case for regions with infinite volume. 
One reason for the importance of the function ZD(t) is the fact that if ZD(t)< 
for t > 0 and the asymptotic behaviour of ZD(t) as t + 0 is known, then the spec- 
trum of H is discrete: 21 < 22 < 2 z < . . .  < 2j < . . .  and its asymptotic distribution 
(]1"oo) can be obtained via Karamata 's  tauberian theorem. See [1, 2, 13, 17, 
18, 21, 22, 23]. 

In this paper we will be interested in necessary and sufficient conditions 
on D for a closely related function QD(t) to be finite for some t>0 .  Here QD(t) 
is defined by 

QD(t)= S dx ~ dypD(x, y; t). (1.4) 
D D 
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For regions D with finite volume one has in view of (1.2) 

QD(t)<= ~ dx ~ dypD(x,y;t)<lD[, t>O. 
D N rn 

(1.5) 

QD(t) represents the amount of heat contained in D at time t when D has tempera- 
ture 1 at t = 0  and the boundary 8D of D is kept at temperature 0 for all 
t>0 .  

This paper is organized as follows. In Sect. 2 we will prove some elementary 
estimates for Q.D(t) and ZD(t). In Sect. 3 and 4 we prove supercontractive esti- 
mates and gaussian upper bounds for the heat kernel pD(X, y; t) under conditions 
on D which imply compactness of the resolvent of H. These bounds on PD (X, y ; t) 
imply bounds on QD(t). All the results which we obtain support the following. 

Conjecture. If 0 ____ t < oe and D is open in ~m then the following are equivalent. 
(i) QD(s)< oe for all s>t, 

(ii) ZD(S)< Oe for all s>t. 

If D is a horn-shaped region in IR 2 we prove that the conjecture holds 
(Theorem 5.11) and that one cannot sharpen it to the case where s=t  (Theo- 
rem 5.5). Finally in Sect. 6 we obtain the first two terms in the asymptotic expan- 
sion of QD(t) as t+0 for bounded regions D in IR ~ with a smooth boundary. 
(See [3, 5] for the asymptotic behaviour in some special cases). 

The techniques rely on the representation (see [19]) of ~ dypD(x, y; t) as 
D 

a Wiener probability Px [-TD > t] that a brownian motion x(-) with x(0)= x does 
not leave D until t: 

P~[TD > t] = ~ dypD(x, y; t). (1.6) 
D 

A crucial ingredient of our calculations is the quadratic form inequality 

m j" f2(x) dx<  D ~ = D ~ IVf(x)12dx' (1.7) 

for a l l f s  C~ (D). Here the mean distance function re(x) is defined on D by 

dS(~) 
1 _ ~ d2(x ), (1.8) 

m 2 ( x )  Ilul[ =1 

where dS is the normalized surface measure on the unit sphere of N m and 

d,(x)=min {[t]: teN., x + tu~D}, (1.9) 

with du(x)= + oe if the set is empty. The bound (1.7) may be found in [6, 7, 
9] where it is also shown that m(x)>d(x)=min{[x-y]:  y$D}. We say D is 
regular if there exists a constant c > 1 such that d(x)<_<_ re(x)<=_ c d(x) for all x e D, 
and refer to [6, 7, 9] for conditions on 8D which imply regularity. We also 
note that if D is regular, then H has compact resolvent if and only if d(x)~O 
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as Ixl~oo. (H has compact resolvent if and only if the embedding of WoL2(D) 
into L2(D) is compact. More complicated necessary and sufficient conditions 
for this, which do not require D to be regular may be found in [12, 15]). 

2. Elementary Estimates 

Lemma 2.1. For D open in ]R m 

PD (x, x; t) > (4 rc t) -"/2 e-"2 ~/(4 d2(~)). (2.1) 

Proof A cube Cx with centre x and edge length 2d(x)/m 1/2 is contained in 
D. Since the heat kernel for a cube is the product of m one-dimensional heat 
kernels we obtain (2.1) by using Lemma 8 of [4]. 

Lemma 2.2. For D open in N~ m 

dypo(x, y; t)>= 2-me -m2€ 
D 

(2.2) 

Proof By positivity and monotonicity of heat kernels 

dypD(x, y; t)> ~ dypo(x, y; t)> ~ dypcx(X, y; t). 
D Cx Cx 

By the eigenfunction expansion of Pc~ (x, y; t): 

t)  - -  e_mtrc2(2 j  + 1)2/(4d2(x)) 4 " 
dypc~(X, y; - rc(2j+ 1) ( - 1 )  

Cx 

> {e -  mt~r2/(4dZ(x)) 4 - -  e- . t~  9/(4d 2(x)) 4 ] "  
= rc 3rcJ 

> 2 -me-m~tn2 / (4da(x ) ) .  (2.3) 

By combining the above lemmas we obtain the following. 

Corollary 2.3. I f  either ZD (t)< oo or Q1)(t)< oo then 

~ dx e -razrc2t/(4d2(x)) ~ (30. 

D 
(2.4) 

The following lemma gives an upper bound on Qo(t) in terms of pD(x, x; t) 
and the normalized eigenfunction in L2(D) corresponding to 21. 

Lemma 2.4. Suppose the spectrum of- -AD is discrete and c~a is the normalized 
eigenfunetion in I~ (D) corresponding to 21. Then 

QD(t) < e { S po(x, x; 0(r (x)) -1 dx} 2. (2.5) 
D 
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Proof Since pD(x, y; t) is of positive type 

Hence 

po(x, y; t)<(pD(x, x; t)pD(y, y; t)) 1/2. 

QD(t) <= { ~ dx(pD(x, x; 0)1/2} 2. 
D 

(2.6) 

(2.7) 

Using the eigenfunction expansion and the positivity of q~l 

so that 

( ~o 31/2 
(pD(x, X; t))e/2=~j~=le-tZ~(~)d(x))2 ~ 

>=e-t~.,/241(x), 

QD(t)<={ j dxpD(x, x; t)eta'/2(4),(x))-'}2. 
D 

(2,8) 

(2.9) 

The following proposition was proved in [7]. However, the first part follows 
more directly from Lemma 2.1. 

Proposition 2.5. I f  D is an arbitrary open set in Nm then the first of the following 
conditions implies the second. I f  D is regular then the two conditions are equivalent. 

(i) Z ,  (t) < oo for all t > O, 
(ii) ~ e-'/a2~X)dx < oo for all t>O. 

D 
Much of our analysis is motivated by the attempt to find something close 

to a converse of the following result. 

Lemma 2.6. I f  D is open in IR m and QD(t)<oo for some t>0 ,  then ZD(s)<oo 
for all s > t. 

Proof If e > 0 then 

ZD( t+e)=  ]" pD(x, x; t+~3)dx 
D 

= j dx I dyp . (x ,  y; e)p.(y, x; t) 
D D 

(4 n e) -"/2 QD (t). (2.10) 

3. Supercontractive Estimates 

Throughout this section we shall take (p to be the function 

~o (x) = (1 + x ~)-  (3.1) 
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on an open set D in IR", where ~ > m/2. Our key assumption in this section, 
that 

m(x)2=O(log( ll + x2)) (3.2) 

as ]xl--*oo, x~D, should be compared with (2.4). Lemma 3.1 and Theorem 3.4 
are fairly close to being converses to Corollary 2.3. 

Lemma 3.1. I f  D is open and regular and (3.2) holds then ZD(t ) < o~ for all t > O. 

Proof Since m(x) and d(x) are of the same order of magnitude, (3.2) implies 
that for any u > 0 there exists v > 0 such that 

1 
dZ(x ) => u log(1 -l-X2)--/), x~O.  (3.3) 

Therefore 

S e-t/d2(X)dx <- ~ e-t"a~ +x2)+tVdx <= etV ~ (1 + xZ)-t"dx < 
D D ~ m  

(3.4) 

provided u > m/(2 t). The proof is completed by applying Proposition 2.5. 

Lemma 3.2. The function q9 defined in (3.1) satisfies 

~o(x)dx < o0, (3.5) 
D 

IA q)l < cl q), (3.6) 

for some c 1 < ov and all x~D. Furthermore for all e > 0  there exists 7 > 0  such 
that for all x6D 

E 

- log ~p < m~x~ + ? . (3.7) 

Proof Inequality (3.5) follows from the assumption that c~ > m/2. Inequality (3.6) 
is a direct computation using the formula 

d2q9 q. m - 1  d~0 (3.8) 
A qg = d~-r2 r dr" 

Finally (3.7) follows immediately from (3.1) and (3.2). 
We now follow the standard procedure [9] of transferring the problem to 

the weighted space L2(D, ~o2dx). If we put V=A~o/~o then V is bounded and 
( - A  + V) ~o=0. We define the unitary operator U from LZ(D, ~o2dx) to I_?(D, dx) 
by U f =  cpf and consider the quadratic form Q~o defined on the subspace C~ (D) 
of L2(D, q~2dx) by 

Q~o(/) = S Ivf]2q 92dx" (3.9) 
D 
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This form is closable and its closure is associated with the self-adjoint operator 

0 ~ H , =  U -  1 ( - - z ]  + V) U (3.10) 

on L2(D, (p2dx). The condition ~oeL2(D, dx) often imposed in this argument 
is actually irrelevant. 

Theorem 3.3. 7he operator e - ~  is bounded from the weighted space LP(D, qo2 dx) 
to the weighted space Lq(D, (p2dx) for all 1 < p < q < oo and all 0 < t <  oo. 

Proof Inequality (3.7) implies that if ~ > 0 then 

- l o g  9 <e( - -A + V ) + p  (3.11) 

as a quadratic form inequality on L2(D, dx) for some # > 0 .  Rosen's lemma 
[9, 16] now establishes that for all e > 0 there exists fl(e)< oo such that 

y (f2 logf )~o2dx<eQ,o( f )+f i (e)[ i f  H2 + [[fll2 2 log I[fl[2 (3.12) 
D 

for all O < f e Q u a d ( H , ) n L  1 nL~ It follows by [-16] or by a simplified version 
of Theorem 2.2.7 of [9] that e -not is bounded from L2(D, 92dx)  to Lq(D, (p2dx) 
for all 2_<_ q < oo and t > 0. The result now follows by duality and the fact that 
e -n*t is a self-adjoint semigroup. 

Theorem 3.4. For D open in IR" satisfying (3.2) one has QD(t)< oe for all t>0 .  

Proof If p' is the integral kernel of e - ( -a+v) t  and Po is the integral kernel 
of e -n*t then 

O<=po(x, y; t)<=etHVll~p'(x, y; t) 

= e t II vlL ~po(x, y; t) q~(x) (p(y). (3.13) 

Therefore 

QD(t) < e t tlv II = ~ dx ~ dypo(x,  y; t)(q)(x)) - 1  ((]) (y ) ) -  1 ((j) (X))2 (qo (y))Z 
D D 

=etllVll~ (e-H~t qo- l,qo -1) 
<=etlIv[l~ -It~ot lie [L~-~L~. lifo- 1 it 2 (3.14) 

provided 1 < p < 2 and p - 1 + q - t = 1. But 

D 

< ~ ( l + x E ) - ~ a - ~ ) d x <  oQ, (3.15) 
D 

provided p -  1 > 0 is small enough. 
It is clear that if we replace (3.2) by a stronger hypotheses, it will be possible 

to obtain sharper information about the heat kernel PD and in particular to 
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estimate the rate at which QD(t) diverges as t,10. One such specialization of 
the above calculations is given in Sect. 4, but we emphasize that many intermedi- 
ate situations may also be considered. 

4. Gaussian Upper Bounds on the Heat  Kernel 

In this section we obtain further upper bounds on the heat kernel under stronger 
hypotheses. Throughout  this section we assume that 

re(x) 2 ~ c(1 q-x2) -~, (4.1) 

for some c > 0, c~ > 0 and all x in an open set D. We also put 

(p (x) = (1 + x z) - P, (4.2) 

for some f l>0.  

Lemma 4.1. For D open in JR" and assuming hypotheses (4.1), (4.2), we have 

0 < PD (x, y; t) <= c q) (x) q) (y) t -  ~/2, (4.3) 

for all 0<t_< 1 and x, y~D,  where 

7 = m + 4/~/~. (4.4) 

Proof  Direct calculations lead to the bounds 

IA (x)l _-< c3 q,(x), (4.5) 

- log ~o (x) < ~ + c4 - ~ log e (4.6) 

for all x e D  and 0 < e < o o .  Applying Rosen's lemma as in the proof  of Theo- 
rem 3.3 we see that (3.12) holds for all 0 < e <  1, with 

fl(e) = a2 --  ~ log (4.7) 
e4 

By [-9, 11] we deduce that 

O<pe(x ,  y; t )<a3 t -~/z, (4.8) 

for all 0 < t < 1. This implies the claimed result as in the proof of Theorem 3.3. 

Theorem 4.2. Let  D be open and (4.1), (4.2) hold, let E > O  be the bottom of  the 
spectrum of  H acting on LZ(D) and let 0 < 3 <  1. Then 

0 < PD (x, y; t) < ca t -  ~/2 eta- E)t- d 2 (x, y)/(4t + 4 at) q? (X) @ (y), (4.9) 
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forallxeD, y~D, 0 < t < o o  where 

d(x, y) = sup {l~b(x)- 0(Y)I" 0 eE}, 
and 

E={~b: D~lR  suchthat [[V4,[Ioo<l}. 

M. van den Berg and E.B. Davies 

(4.10) 

(4.11) 

Proof This is a straightforward application of Theorem 4 of [10]. The replace- 
ment of the dimension of D in that paper by 7 causes no difficulties. The quantity 
d in that paper is called the riemannian distance between x and y in D, but 
(4.10) is the more precise definition. 

For gaussian lower bounds on the heat kernel we refer to Theorem 3 of 
[4]. 

It is always the case that d(x,y)>lx-yl .  The example of the region S;~ 
in Theorem 5.10 shows that d(x, y) may be much larger than the euclidean 

1 
distance. We note that in that example (4.1) holds with e = 2 - - l > 0  so that 

Theorem 4.2 is applicable to this region. Note also that d(x, 0)~ [xl ~/~ as I x l~  oo 
since any curve from 0 to x in S~ must follow the spiral. 

5. Horn-shaped Regions 

In previous papers [-1, 2] we have obtained a theorem for Zv(t), where F is 
a horn-shaped region in lR". In this section we prove a corresponding theorem 
for Qv(t). First we recall the notation and definitions of [1]. 

Notation. A point in IR" (m = 2, 3 ...) is denoted by (x, y) where y ElR"- 1 (orthog- 
onal to the x-axis). Let P~ be the plane through (x, 0) orthogonal to the x 
axis and let F(x) be the orthogonal projection of P~nF onto Po where F is 
an open set in IR m. 

Definition 5.1. An open set F in lR" is (one-sided) horn-shaped if 
(1) F is connected, 
(2) F(x)cF(x') for all x>x'>O, F(x) is empty for x < 0 ,  

(3) ~ [V(x)ldx<oo for 6el0,  oo). 
o 

(IF(x)[ is the (m-1)-dimensional volume of f(x)). 

Definition 5.2. Let pF((xl, Yl), (x2, Y2); t) be the heat kernel for - A r + ~ t  and 

let PF~)(Yl, Y2; t) be the heat kernel for -Ar(x)+~t, where -Ae(x) is the (m 

-1)-dimensional Dirichlet laplacian for F(x), yl, yz~F(x). Let Pt~,y)[TF> t] be 
the probability with respect to Wiener measure that a brownian motion (x('), 
y(.)) in lR" with (x(0), y(0))= (x, y)~F does not leave F up to time t. We define 
Py [TF(~)> t] for a brownian motion y (.) with y (0)=y E F (x) in lRm-~ similarly. 
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By Definition 5.2, (1.4) and (1.9) we have 

P(~,y)[Tr>t] = [ dxl ~ dylpF((X, y), (xa, YO; t), 
0 F(xl) 

Py[TF(~)>t]= ~ dylPF(x)(Y, Yl; t), 
F(x) 

QF(.)(t)= ~ dyPy[TF(~)>t]. 
F ( x )  

(5.1) 

(5.2) 

(5.3) 

Theorem 5.3. Let F be (one-sided) horn-shaped in ]Rm(m= 2, 3,...). Then for all 
oo 

t for which ~ dx QF(x)(t) isfinite one has 
0 

0o oo 00 

I~ dx Qv(x)(t) (xt)~/22 oj" dxQr,~)(t)S dqe-q2/(4t)<Qv(t)N= I dxQF,x)(t). (5.4) 
0 0 

The proof of this theorem starts at Lemma 5.7. For horn-shaped regions in 
~ 2  it implies the following. 

Theorem 5.4. Let f l , f2 be positive, continuous and decreasing on (0, oo) such that 

t5 
S(f l (x)+f=(x))dx<~,  3e(O, ~), (5.5) 
0 

~o d x (fl (x) +f2 (x)) e-t~,/(f, (~) + ~, (~))2 < 0% (5.6) 
1 

and let 

Then 

where 

F =  {(x, y) lx>0,  -fl(x)<y<f2(x)}. (5.7) 

~ ~ k 2e t~2k2/f2(x) N4 o/2 QF(t)-  dxf(x)  2 - - f dxf(x), (5.8) 
k = l , 3  . . . .  0 

f (x) = f l (x) + f2 (x). (5.9) 

Proof. Since fDf2 are positive, continuous and decreasing and satisfy (5.5) H 
is horn-shaped. Furthermore F(x)= (--fl (x),f2 (x)) and Pv(x)(Y l, 22; t) is the one- 
dimensional heat kernel with eigenfunction expansion 

(5.1o) 
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Hence by (5.3) and (5.10) 

Q~x)(t) = 8~x) 

M. van den Berg and E.B. Davies 

Z k -  2 e - t ~ 2 k 2 / f 2 ( x ) .  

k = 1 , 3  . . . .  

(5.11) 

Finally Qv(~)<f(x) by (1.5) so that 

oo f co ~2~o [,dq e-q~i(40 2 dxQv(x)(t) ~ dqe-qZ/(a~ dxf(x)  
x x 

,1/2 cx) o20 oo 

< ~  ~o dxf(x)  f d ao-q2/(4')--u 2 r dxf(ti/2) 5 dqe-q21(4') 
0 x 

t 1/2 oO tl/2 

--2 ~ dxf(x)+4~z-1/2t:/2f(tl/2) ~ dqq-2e-q~/4<4 ~ dxf(x).  
0 t 0 

(5.12) 

Theorem 5.5. Let F be as in Theorem 5.4 with ft  (x)= 0 and 

f(x) =f2 (x) = ~z {log(3 + x) + fl log log(3 + x)} - 1/2, 

Then 

and 

f l>0,  x > 0 .  (5.13) 

Qv(t)<oo if and only if t > l, f i>0  or t = l ,  fi>�89 (5.14) 

Zv( t )<oo if and only if t > l, f l>0  or t = l ,  f l> l .  (5.15) 

Proof. The term f(x) e -t~2/I~(~) behaves like (3 + x)-t(log(3 + x)) -p ' -  1/2 (1 + o(1)) 
for x ~ + o o .  Hence f (x)e  -t~:/I'(~) is integrable on [0, oo) if and only if t > l ,  
f l>0  or t = l  and fl>�89 The remainder series ~, f(x)e-t~2k~lI~(~)/k2 is inte- 

k = 3 , 5  . . . .  

grable for all t>~.  To prove (5.15) we use Theorem 3 and (43) from [2] 

z v ( t )  1 ~ (4~zt),/2 I dx E e-t'~k:/I2(~) < f ( O ) )  (5.16) 
0 k = i  = 4(7~ t) 1/2" 

The leading term e -t~2/I2~x) behaves like (3+x)- ' ( log(3+x))-~t (1  +o(1)) for x 
~oo.  Hence e -t~2/I2(x) is integrable on [0, oo) if and only if t >  1, f l>0  or t =  1, 

fl > 1. The remaining series ~, e -t~k2/I2(x) is integrable for all t > 1. 
k = 2  
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Suppose F is horn-shaped as in Theorem 5.4 and f is integrable on [0, oo). 
Then 

GO 

lim Qe(t)= ~ dxf(x) .  (5.17) 
t ~ o  o 

In this case Theorem 5.4 provides the leading term of 

Qr(t)-  ~ dx f (x )  as t.~O. 
0 

Example 5.6. Let F =  {(x, y ) lx>0,  0 < y < e - ~ } .  Then 

Qv(t)-- 2tl/2 
1 - ~ 7 5 - 1 o g t  <14 t  1/2, 0 < t = l .  (5.18) 

Proof. Note that y--+(e -~y~- 1)/y 2 is strictly increasing on [0, oo) for e>0 .  By 
Theorems 5.3 and 5.4 

GO 
8 ~ dx e - x - t l r 2 k 2 e 2 x  

k = 1 , 3  . . . .  0 

GO 

8 ~ dxe_X(e_t,~k~,2,~ 1 ) 
= 1 + ~. n2 k2 

k = l , 3  . . . .  0 

__<1+ ~2kg dx 
k = l  

GO 4 co 

< 1 +  f d k ~ k 2  I dxe-~(e-t~2k~e~x--1) �9 (5.19) 
1 0 

Integration by parts with respect to k gives 

Qv(t)< l - 8 t  j dk dxe x - t ~ k ~  
1 0 

= l - S t ~ d x x  -1 dke -t~2k2 
1 x 

Go 

= 1 - 8 t  ~ dx(logx)e -t~2x2 
1 

Go 

_--<l--8t ~ dx(logx)e -t~x2 
0 

= < 1 + (4 t/rc) 1/2 (C + 10g(47~ 2 t)) (5.20) 
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by 4.333 of [14]. C is Euler's constant. By Theorem 5.4 

co 

8 ~ dxe_X(e_t~2k2e2X_l)_4tl/2 Qv(t)> l + ~ =2 k 2 
k = l , 3 , . . .  0 

4 ~ dxe_X(e_t=~k~e~._l)_4tl/2 __1+ 
k = 2  O 

co 

8 ~ d x e _ X ( e _ t = ~ _ l  ) 
+~o 

co co 

> 1 +  j ' dk .  4 5 dxe-~(e-t=~k~e~--l) -4t l /2  
- 

1 0 

co 

8 j dxe_,(e_,==~=~_l) 
+7 0 

= 1 + (4 t/r 01/2 (C --1- log (4 rc 2 t)) - 4 t U2 
oo 1 

12 ~ dxe_~(e_,=ar +~-o o 

Moreover by 3.464 of [14] 

oo 

12 [ dxe_~(e_t==~. 1)_12 ! dxx_2(e_t==~ 1 ) 
~ 2  0 - -  ~ 2  

and for 0 < t < l  

12 co 
> zg  ~ dx x -  2( e-t~z~2-1)= 12~z-1/2 t 1/2, 
~ 7"g 0 

1 

8 t ~ dx(logx) e -'~2~2 > - 8 ?/2. 
0 

Combining these inequalities with (5.21) we obtain 

Qv(t) > 1 + ( 4 t/n)l/z ( c + log( 4 rtz t ) - 6  n t/2 -6),  

which completes the proof. 

Lemma 5.7. Let F be horn-shaped in IR m and (x, y)EF. Then 

ar 

P{x,y)[Tv > t ]  < S d{p({; t)g[Tv(x_o>t], 
0 

where p(4; t) is given by 

t )=f3  , ~<0 
0(4; l (;ct)-a/Ze-ga/(4t) 4 >  0 " 

M. van den Berg and E.B. Davies 

(5.21) 

O < t < l ,  (5.22) 

(5.23) 

(5.24) 
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Proof Let co=(x(.), y(')) be a brownian path in IR m with (x(0), y(0))=(x, y). 
Then since F is horn-shaped 

{co: (x(z), y(z))eF, O<z<=t} 
~ {co: rain x(z)>x-~,y(z)eF(x-O,O<z<t}. 

{~: O_<~_-<x} 0 ~ - < t  

Since x(.) and y(.) are independent and the random variable rain x(z) has 
0_<~_<t 

probability density p(~; t) the lemma follows. 

Lemma 5.8. Let F be horn-shaped in ~'~, (x, y)~F. Then 

P~x,y) [Tp > t] >= ] d~Py[TF(~+o>t ] ~ P~ [T~o,x+o > t], 
{~: ~ => O, yeF (x + ~)} 

(5.25) 

where 

P~[T(o,~+o>t ] - -P~[0<x(z)<x+~,  0=<z=<t]. (5.26) 

Proof Let co be as in the proof of Lemma 5.7. Then since F is horn-shaped 

{co: (x(z), y(z))eF, O<=z<=t} 
(._) {co: min x(z)>O, max x(z)<_x+~, y(z)eF(x+O, O_<z<t}. (5.27) 

~->0 O<'~<t O<z_<t 

Since x(-), y(-) are independent and the random variable max x(z) conditioned 
O ~ z ~ t  

to rain x(z)>O has probability density ~ P~E~o,~+o>t] on [x, ~) the lemma 
O ~ z ~ t  v g  

follows. 

Lemma 5.9. For x > 0, ~ > 0 

oO oO 

P~ [T~o,.+r t] > 1 -  ~ p(~'; t ) d r  ~ p(~'; t)d~'. 
x r 

(5.28) 

Proof 

P~ ET~o,x+o > t] =Px[O<x(~)<x+~, 0<~__<t] 

>P~[max x ( ~ ) < x + ~ ] - P x [  min x(~)<0] 
O-<~-<t O<r=<_t 

r oo 

= I p C ;  t)d~'- I P(~'; t)d~'. 
0 x 

(5.29) 
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Proof of Theorem 5.3. By Lemma 5.7 and Fubini's theorem 
x 

dyP(x,y)[Tr>t]<=~d~p(~;t) ~ dyPr[TF(x_r ] 
F(x)  0 F(x)  

<=~d~p(r ~ dyPr[TF(x_r ] 
o F (x - r 

= {p(.;  t ) ,  0~(.)(t)} (x), (5.30) 

where * denotes convolution (with respect to x). Hence 
o9 0O 

Q~(t)<= j dxp('; t)*Qr(.)(t)(x)= ~ dxQm~)(t). (5.31) 
o o 

We define Py [Tv(~+ O > t] to be zero if yr (x + 4). Then by Lemma 5.8, Fubini's 
theorem and integration by parts we have 

dyP(x,,)[TF>t]>= ~ dy ~ d~Pr[Tm~+r162 j 
F(x)  f ( x )  [0. ~ )  

~ dy ~ d~Py[Tv(~+r ] 
F ( x +  ~) [0, o9) 

8 
= - S d r P~ IT(o, ~+r t] ~ Qp(~+r (5.32) 

o 

8 
Since F is horn-shaped -~Qv(x+r is positive. Hence by Lemma 5.9 and 

further integrations by parts 

I dYG,,)[Tv>t]>!d~ 1 - fp (~ ' ; t )d~ ' -  p(~';t)d~' . -  Qvt~+~)(t) 
V(x)  r x 

=Qr(~)(t)+ I d~{QF(~+r162 t) 
[0, o~) 

-Qv(~)(t) Sp(~'; t)d~'. (5.33) 
X 

Hence 
o 9  o9  

dx ~ dyP(~,,)[TF>t]>= dxQv(~)(t ) -  ~ d~p(~;t)~dxQr(x)(t) 
0 F(x)  0 0 0 

o o  

-- S dxQv(x)(t) ;p ( r  t)dr 
0 x 

A further integration by parts completes the proof. 

(5.34) 

It is possible to obtain the precise asymptotic behaviour of Z(t), Q(t) as 
t+0 for other unbounded regions. In particular we have the following. 
Theorem 5.10. Let SxclR 2 be the complement of the range of the curve 7: [0, oo) 

N~ 2 defined by 
?(s)=(sXcoss, s;'sins), 0 < 2 < 1 .  (5.35) 
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Then Sx is open and dense in N. 2 and has infinite volume�9 Furthermore 

lim Qs~(t)t ~'/(~ - z ) =  2 •22/(i -a)(4~/(a - z )  1) F (1 / (1 -2 ) )  ((2/(1 -2 ) ) ,  (5.36) 
t$0 g 

1 
lira Zs~ (t) t 1/(~ - a) - 2 ~1 + a)/(x - a)2 ~ 3 a 13/(2 - a)F((1 + 2)/(2 - 2 2)) 
t+o / t t /2 (1--)~)  

�9 (((1 + 2)/(1 - 2)), (5.37) 

where (, F are the Riemann function, gamma function respectively. 

Sketch of  Proof By "unro l l ing"  the spiral one obtains a (one-sided) horn-shaped  
region of the form (5.7) with f ( x ) ~ ( s + 2 7 r ) ; ' - s ~ 2 7 r 2 s  ~-1 as sToo and dx  
~(sZ'~-F,~Zs2"~-2)l /Zds~s~ds as  s ~ o o .  Formulas  (5.8) and (5�9 yield (5.36) and 
(5.37) respectively. 

Theorem 5.11. Let F be horn-shaped in N~ 2. 7hen for 0 < t <  oo the following are 
equivalent. (i)  QF(S)< oo for all s>t ,  (ii) ZF(S)< oo for all s>t .  

Proof  Because of L e m m a  2.6 we only have to prove that  QF(S)<Oo for s > t  
implies Z e ( s ) <  oo for s>t .  F r o m  (5.8) and [2] we obta in  (for one-sided horn-  
shaped regions in lit 2) 

ZF(S)<= (4nl)l/2 ~ dxk~le-~2k2/f~(~) 

tl/2 1 1 ~o 
<- ~a dx f (x ) - i  dx  ~. e -~g~/f~(~) 
= 47rs _ (4rcs) 1/z tl/2 k = 1 

tl/2 1 2 
< ~ d x f ( x )  dx  ~ e -~k~/f~(~) 
- - 4 u s  _ -~(47~s)1/2tI/2 k = l , 3  .... 

tl/2 
1 2 

=4~zs<-- _o ~ dx  f ( x )q  (47~s)a/2ta/2 dXk=1,32 . . . .  e-(S+t)r~2kZ/(2fZ(x))-(s-t)g2k2/(2f2(x)) 

1 tl/2 4 1 oo 
< ~odXf(x)4 f dxf2(x) ~ k-2e -(s+''~k~i(2.r~(~')) 
--  4zcs (47~S) 1/2 ~ t  1 k= l ,  3 .... 

~o 8 1 t,l~ f ( t l /2)  r d x f ( x )  ~ e -(~+t)~k~/t2f~(~)) 
< [. dx f (x ) - t  (16zcs)ll2(s_t) ~ --7.l;2k 2 
= 4 u s  o k= l , 3  . . . .  

1 f ( t  1/2) 
< ~ dxf(x)-~ (161rs)llZ(s_t) QF((s+t)/2)+4 ~ d x f ( x )  . (5.38) : 47CS 0 0 

This is finite since f is integrable at 0 and Qr((s + 0/2) is finite by (s + t)/2 > t. 

6. Bounded Regions with R-smooth Boundaries 

Before we state the main  theorem of this section we make  the following definition. 

Definition 6.1. A b o u n d a r y  OD of an open  set D in R " ,  m = 2, 3 . . . .  is R-smooth  
if for each point  Xo~SD there exist two open  balls B1, B2 with radius R such 
that  B1 c D, B2 c]Rm\(D u ~ D), O B1 ~ O B2 = xo. 
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Theorem 6.2. Let D be an open, bounded and connected set in IR ~, m=2,  3, ... 
with R-smooth boundary O D. Then for all t >0  

QD(t)-IDI+~2 tl/21ODi _<-IO~IDItR-2, 

(4 nt)m/z ZD(t)--lDI + ~ t t/210 DI -<__2mm4lD[ t R - e, 

where [~?D I is the area of the boundary ~D. 

(6.1a) 

(6.1b) 

The proof of (6.1b) has been given in [2]. Here we will prove (6.1a). In 
Lemma 6.3 and Corollary 6.4 we will use Levy's maximal inequality for brow- 
nian motion to obtain estimates for P~[Ts>t] where B is an open ball in HI". 
In Lemmas 6.5 and 6.6 we obtain a lower bound and upper bound respectively 
for x near the boundary ~D. In Lemma 6.7 we recall a result on areas of parallel 
surfaces. Then we complete the proof of (6.1 a). 

Lemma 6.3. Let B be an open ball in IR" with radius R and centre O. Then 

2 ~ y("-z)/2e-Ydy. (6.2) 1 > Po [TB > t] >_ 1. r(m/2) R~/(40 

Proof By Levy's maximal inequality (Theorem 3.6.5 of [19]) 

Po [TB < t] = Po [ max Ix (z)[> R] < 2 Po [Ix (t) l> R] 
O<_z<_t 

2 
S dxe-1~l~/(4~ (6.3) 

(47rt) m/2 I~I>R 

Corollary 6.4. Let B be as in Lemma 6.3. Then 

Po [TB < t] < 21 + m/2 e- R2/(S t). (6.4) 

Lemma 6.5. Let D be open in IR" with R-smooth boundary OD. Let x6D such 
that d(x) < R. Then 

P~[TD>t]> ~ e  -~2/(4~ 1 F((m_l)/2)R(e(x)_~)/(4 ~ 

F(m/2) d y e-Y y("- 2)/z 
Rd(x)/(4t) 

1 
d y e- y y(m - 3)/2} 

(6.5) 

Proof Since 0D is R-smooth and d(x)<R there exists a ball B with radius 
R and centre 0 such that O = ( - ( R - d ( x ) ) ,  0) and x=(0,  0) in a cartesian frame 
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(X1, y), (x leR,  yelR"-l) .  Let 81B={z~SBlxl(z)~O}, 82B=SB\81B. Then by 
monotonicity 

P~ [ To > t] > P~ [TB > t] > P(o, o) [x (') does not hit 81 B up to time t] 

-P(o,o)[X(') does hit 82B in [0, t]]. (6.6) 

Since the distance from (0, 0) to 82B is bounded from below by (Rd(x)) 1/2 we 
have by Lemma 6.3 

P(o,o)[X(') does hit 82B in [0, t]] =<P(o,o) [max [x('c)12>Rd(x)] 
0_<z_<t 

2 ; dy e-Yy(m- 2)/2. (6.7) 
<- r(m/2) Rd(x)/(4t) 

Let x( ' )=(xl( ' ) ,  y(')) where xl( ' )  is a brownian motion along the X 1 axis with 
Xl(O)=O and y(') is an independent brownian motion in IR "-1 with y(O)=O. 
The probability density p(~; t) of the random variable max Xl(Z) is given by 

O<_z<_t 
(5.24). Hence by mononicity and Lemma 6.3 

P(o,o)[X(') does not hit 81B up to time t] 
d (x) 

> ~ d~p(~; t)Po[max [y(z)12<R2--(R--d(x)+~) 2] 
0 O<~<-t 

d(x) 
> ~ d~p(~; t)Po[max ly(r)12<R(d(x)-O] 

0 O<--z<--t 

d(x) ( 2 [dye_Yy(,n_3)/2}.  
> o ~ d~p(~; t) 1 C((m-1)/2) R(a(.)-r (6.8) 

Lemma 6.6. Let D be open in ]R m with R-smooth boundary 8D. Let xeD such 
that d(x) < R. Then 

d(x) d Y f ~ e-~Z/(4t)q 4(m-1)t~/2 e-aZ(x)/(g~ (6.9) 
P~ETo>t]<- ~o ~ Tcl/2R 

Proof Since 8D is R-smooth there exists a closed ball B with radius R in the 
complement of D such that the distance from x to 8B is equal to d(x). Define 
a cartesian frame (xa, y), (xle]R, y e R  "-1) such that x=(0,0) and the centre 
of B is given by (d(x)+R, 0). Then by monotonicity and the decomposition 
of the brownian motion (as in the proof of Lemma 6.5) 

d(x) 

P~[To>t]<P~[Trt~\R>t]< ~ p(~;tldS+ p(~;t)d~ 
0 d(x)+R 

d(x)+ R 

+ S p(~; t)d~Po[max [y(z)[2>R2-(R-~+d(x))2]. 
d(x) O<-z<--t 

(6.10) 
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By Lemma 6.3 

d ( x ) + R  

p(~; t)d~ Po[ max ly(z)]2> n 2 - ( R - ~  +d(x)) 2] 
d(x) O<-r<-t 

d ( x ) + R  

<= ~ P(~;t)d~Po[max ly(z)12>g(~-d(x))] 
d(x) O<-z<-t 

d(~)+R d~ 2 ~ dye_Yytm73)/2 
<= d(x)~ (nt) 1/2 e-a~(x)/(4t) r((m--1)/2) R(r 

2 e-~(=)/('~ ~ d { ; dy e -yy("- a,/2. 
< (nt) */2 F((m- 1)/2) o g~/(40 

(6.11) 

Furthermore by Corollary 6.4 for m = 1 

~o p(~; t)d~<=23/Ze-R2/(st)<=29/zt/(eR2). (6.12) 
d(x)+R 

Lemma 6.7. Let D be an open, bounded and connected set in NY, m=2,  3, ... 
with R-smooth boundary 8D. Let ODq denote the boundary of the set {x~DId(x) 
>q} and let IODq[ denote its area. Then 

10DI <ISD.I <lc~DI , O < q < R .  (6.13) 

Proof. See Lemma 5 of [2]. 

Proof of Theorem 6.2. By Lemmas 6.6 and 6.7 we have 

QD(t)= IDI- S dxPxETD<t]  
D 

<=ID[- ~ dxP=[TD<t] 
{x~ D: d(x) < R/2} 

R/2 ~ d 4(m-- 1) t 1/2 

o n ~12 R 

d~ <ID[- ISDI 1 - -  d q o  e -~2/(40 
= 0 q 0 zt) l /2  

4 ( m -  1) p/2 
+2m-llSDI ~ dq 7cl/2R e-qZl(4t)+[D129/2t/(eR 2) 

0 

<IDI- dqI~DI(1-2(m-1)q/R) 
0 q 

+ 2"+ ~(m - I) ISDI t/R+2~/21DI t/(eR 2) 
_ 2t 1/2 , IODI t 

= D -- ~ [SD[ -e ~ -  2 (m -- 1) (1 + 2 m) + 29/2 I DI t/(en2). 

e - q z / ( g t )  - -  29/2 t ' (  

eR 2 J 

(6.14) 
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From Lemma 6.7 we obtain by integrating with respect to q 

mrDt 
[ 0 D I < - -  (gAs) 

R 

The upper bound in Theorem 6.2 follows from (6.14) and (6.15). 
To prove the lower bound in Theorem 6.2 we use Corollary 6.4 and Lem- 

mas 6.5 and 6.7. We obtain 

QD(t)> ~ dx(1--21+m/Ze-R2/(a2t))+ ~ dxP~[To>t] 
{x~D: d (x) > R/2} {xeD: d(x) < R/2} 

oo 

>[Ol-lOlt26+m/2/(eR2) - ~ dx ~ d~ e_r 
{x~D:d(x)<__R/2} d(x) ( x t)1/2 

d(x) d e-  r ; d y e-r y(,.- 3)/2 2 

F((m - 1)/2) {x~D: d(x)6 R/2} R (d(x) - r 

2 ~ ; dye_Yy(m_2)/2 
F(m/2) ~x~D: d(x) < R/2} Rd(x)/(4t) 

> [DI - I D] t 26 + m/Z/(eR2)-- f dq [0D I(1 + ( m -  1) 2 ~- i q/R) f d ~ ,,- r 
= o 1 /2 -  

2 2"-*10D[ ~ o t , [  de e_42/(4o ~ dye_ry(m_3)/2 
r((m-1)/2) o ~ -'~o J (~t) 1/= R<q-r 

2 . 2m- l [ a D[ ~dq  ; dye-Yy ~m-2)/2 
r(m/2) o Rq/(4t) 

2 t 1/2 ~ t _  
= I D [ - ~  [~DI-ID[ t26+m/2/(eR2) - ( 9 m -  5) 2 ' '-~. (6.16) 

The lower bound in Theorem 6.2 follows from (6.15) and (6.16). 

Corollary 6.8. Let D be an open, bounded and connected set in N m, m = 2, 3, ... 
with R-smooth boundary OD. Let h: [0, oo)~R be C ~ and h(0)=0. Let q:D 
x [-0, oo)--* R be the (classical) solution of 

Oq 
A q = ~ {  on Dx(0,  oe), (6.17) 

q(x; t)=h(t), x ~ D ,  t >O, (6.18) 

q(x; 0)=0, xeD, (6.19) 

where A is the laplacian. Then for t > 0  

~ t h ( z ) ( t - z ) - l / 2 d z  <10  m ~ q ( x ; t ) d x -  ~ IDl flh'(~)l(t-r)dr. (6.20) 
0 --  R 2  

Proof The solution of (6.17)-(6.19) is given by 

q(x; t )= i h'(z)P~[To<t-z] dz. (6.21) 
0 
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Hence by Fubini's theorem 
t ( ) 

j q(x; t)dx= ~ h'(~) [Dl-Qo(t-z) dr. (6.22) 
D 0 

Corollary 6.8 follows from (6.22) and Theorem 6.2. 
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