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1. Introduction

Let D be an open set in R™ and let H= H* >0 be the operator —A4,, on I*(D)
subject to Dirichlet boundary conditions, and defined by the method of quadratic
forms [8, 97, so that Quad (H)=Dom(H?)= W} 2(D). The heat kernel pp(x, y; 1)
of e H' is a positive C*® function on (0, ) x D x D. It is well-known that if
DcE, E open, then

0=pp(x, y; )=pe(x, y; 1). (1.1)
In particular putting E=IR"™ yields
0= pp(x, y; )S(4my) 2™ Ix oD, (1.2)

In previous papers [1, 2, 7] we have been interested in finding necessary and
sufficient conditions for

Zp(t)=trace(e )= [ dxpp(x, x; 1) (1.3)
D

to be finite for some t>0. While Z,(¢) is always finite for >0 if the volume
|D| of D is finite this is not necessarily the case for regions with infinite volume.
One reason for the importance of the function Z,(t) is the fact that if Z,(t)<co
for t>0 and the asymptotic behaviour of Z,(¢) as ¢ [0 is known, then the spec-
trum of H is discrete: 4; <A, £4;<...<4;=... and its asymptotic distribution
(7T o) can be obtained via Karamata’s tauberian theorem. See [1, 2, 13, 17,
18, 21, 22, 23].

In this paper we will be interested in necessary and sufficient conditions
on D for a closely related function Q,(¢) to be finite for some 1 =>0. Here Q (1)
is defined by

Qp(®)= [ dx [ dypp(x, y; 1). (1.4)
D D
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For regions D with finite volume one has in view of (1.2)

Qp()< [dx | dypp(x, y; )<IDI, tz0. (1.5)

D Rm™

Op (t) represents the amount of heat contained in D at time £ when D has tempera-
ture 1 at t=0 and the boundary D of D is kept at temperature 0 for all
t>0.

This paper is organized as follows. In Sect. 2 we will prove some clementary
estimates for Qp(t) and Z,(¢). In Sect. 3 and 4 we prove supercontractive esti-
mates and gaussian upper bounds for the heat kernel p,(x, y; t) under conditions
on D which imply compactness of the resolvent of H. These bounds on pp(x, y; t)
imply bounds on @ (). All the results which we obtain support the following.

Conjecture. If 0<t < co and D is open in R™ then the following are equivalent.
(i) @p(s)< oo for all s>,
(1) Zp(s)< oo for all s>t.

If D is a horn-shaped region in IR? we prove that the conjecture holds
(Theorem 5.11) and that one cannot sharpen it to the case where s=t (Theo-
rem 5.5). Finally in Sect. 6 we obtain the first two terms in the asymptotic expan-
sion of Qp(t) as t|0 for bounded regions D in IR™ with a smooth boundary.
(See [3, 5] for the asymptotic behaviour in some special cases).

The techniques rely on the representation (see [19]) of [ dypp(x, y;t) as

’ D

a Wiener probability P.[T,>t] that a brownian motion x(-) with x(0)=x does
not leave D until ¢:

B[Tp>t]= [ dypp(x, y; ). (1.6)
D
A crucial ingredient of our calculations is the quadratic form inequality
() 2
————dx=< 1.7
M [ iy 35 T IPTGIPdx )

for all fe CX (D). Here the mean distance function m(x) is defined on D by

1 dS(u)
——= ——, (1.8)
m?(x) Null=1 d; (x)
where dS is the normalized surface measure on the unit sphere of R™ and
d,(x)=min{|t]: teR, x+tu¢D}, (1.9)

with d,(x)= + oo if the set is empty. The bound (1.7) may be found in [6, 7,
9] where it is also shown that m(x)=d(x)=min{|x—y|: y¢D}. We say D is
regular if there exists a constant ¢=1 such that d(x)<m(x)<cd(x) for all xeD,
and refer to [6, 7, 9] for conditions on 0D which imply regularity. We also
note that if D is regular, then H has compact resolvent if and only if d(x) -0
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as |x|—o0. (H has compact resolvent if and only if the embedding of W§-2(D)
into I?(D) is compact. More complicated necessary and sufficient conditions
for this, which do not require D to be regular may be found in [12, 15]).

2. Elementary Estimates

Lemma 2.1, For D open in R™

Po(x, X3 )2 (4m) M2 I, @1

Proof. A cube C, with centre x and edge length 2d(x)/m'/* is contained in
D. Since the heat kernel for a cube is the product of m one-dimensional heat
kernels we obtain (2.1) by using Lemma 8 of [4].

Lemma 2.2. For D open in IR™

[ dypplx, y; )22 me mmHaE), 2.2)
D

Proof. By positivity and monotonicity of heat kernels

[dypp(x, y;02 [ dypp(x, y; 02 | dype(x, y; 1)
D Cx

Cx

By the eigenfunction expansion of p¢_(x, y; 1):

o i 4 ; m
J dype s, yi0={ T emmmes ety
Cx Jj=0

n(2j+1)
> ) o~ min2i(4d>(x) i_ e ~MIm? /(44> (x)) i "
= T 3 T
> MR (4R (), (2.3)

By combining the above lemmas we obtain the following.

Corollary 2.3. If either Z,,(t)< oo or Qp(t)< oo then

[ dx e mmHAEE) < o, 2.4)
D

The following lemma gives an upper bound on Q(t) in terms of pp(x, x; t)
and the normalized eigenfunction in I?*(D) corresponding to /.

Lemma 2.4. Suppose the spectrum of — Ay is discrete and ¢, is the normalized
eigenfunction in I?(D) corresponding to A,. Then

Op() e { [ pp(x, x; (1 (x)) " dx}2 (2.5
D



466 M. van den Berg and E.B. Davies

Proof. Since pp(x, y; t) is of positive type

Po(x, ¥ )= (Pp(x, X; ) pp(y, ¥; )Y (2.6)
Hence
0p(M={ [ dx(pp(x, x; )17} (2.7)
D

Using the eigenfunction expansion and the positivity of ¢,

w 12
o330 ={ T e~ (9502}

ze M2, (x), (2.8)

so that
Op()<{{ dxpp(x, x; )€/ (dy (x) ™1} 2.9
D

The following proposition was proved in [7]. However, the first part follows
more directly from Lemma 2.1.

Proposition 2.5. If D is an arbitrary open set in R™ then the first of the following
conditions implies the second. If D is regular then the two conditions are equivalent.
1) Zpt)< oo for all t>0,
(i) [e "™@dx<oo for all t>0.
D .
Much of our analysis is motivated by the attempt to find something close
to a converse of the following result.

Lemma 2.6. If D is open in R™ and Qp(t)< oo for some t>0, then Z,(s)< oo
for all s>1.

Proof. If £>0 then
Zp(t+e)= | pp(x, x;1+6)dx
D
= [ dx { dypp(x, y; &) pp(y, x; 1)
D D

<(@ne)™"2Qp(0). (2.10)

3. Supercontractive Estimates

Throughout this section we shall take ¢ to be the function

p(x)=(1+x*"" (3.1)
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on an open set D in IR™, where a>m/2. Our key assumption in this section,
that

1
m(x)2 =0 (lo_g(ITx—Z)) (32)

as |x|—o0, xeD, should be compared with (2.4). Lemma 3.1 and Theorem 3.4
are fairly close to being converses to Corollary 2.3.
Lemma 3.1. If D is open and regular and (3.2) holds then Z,(t)< oo for all t>0.

Proof. Since m(x) and d(x) are of the same order of magnitude, (3.2) implies
that for any #> 0 there exists v>0 such that

1
dz—(x)gu log(1+x?*—v, xeD. (3.3)
Therefore
j‘ e—t/dz(x)dX§ j‘ e—tulog(1+x2)+tvdx§etv j' (1+x2)vtudx<oo (34)
D D Rm

provided u>m/(2t). The proof is completed by applying Proposition 2.5.
Lemma 3.2. The function ¢ defined in (3.1) satisfies

fot)dx<oo, (3.5)

l[dol=ci o, (3.6)

Sfor some ¢, < oo and all xeD. Furthermore for all ¢>0 there exists y>0 such
that for all xeD

—loge= (3.7)

g
“mz(x) +7.

Proof. Inequality (3.5) follows from the assumption that «>m/2. Inequality (3.6)
is a direct computation using the formula

d>¢ m—1do
Ap= 72 + T (3.8)
Finally (3.7) follows immediately from (3.1) and (3.2).

We now follow the standard procedure [9] of transferring the problem to
the weighted space I?(D, p?dx). If we put V=A4¢/¢p then V is bounded and
(— A4+ V)@ =0. We define the unitary operator U from I*(D, ¢2dx) to I*(D, dx)
by Uf=¢f and consider the quadratic form @, defined on the subspace C*(D)
of I?(D, p*dx) by

Qp(f)=[ IVf I @*dx. (3.9)
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This form is closable and its closure is associated with the self-adjoint operator
0<H,=U"'(—4+WV)U (3.10)

on I*(D, p?>dx). The condition pel?(D, dx) often imposed in this argument
is actually irrelevant.

Theorem 3.3. The operator e~ "' is bounded from the weighted space I? (D, ¢ dx)

to the weighted space I14(D, ¢*dx) for all 1<p<q< oo and all 0<t < c0.

Proof. Inequality (3.7) implies that if ¢ >0 then
—~logoZe(—A+V)+p (3.11)

as a quadratic form inequality on I*(D, dx) for some u>0. Rosen’s lemma
[9, 161 now establishes that for all >0 there exists f(g) < oo such that

J(f?logf)e?*dx=eQ,(N)+BE I3+ 113 loglfll (3.12)

for all 0<feQuad(H,)n L' nL™. It follows by [16] or by a simplified version
of Theorem 2.2.7 of [9] that e~ H¢' is bounded from I?(D, ¢?dx) to I4(D, ¢*dx)
for all 2<g< o0 and t>0. The result now follows by duality and the fact that
e He' is a self-adjoint semigroup.

Theorem 3.4. For D open in R™ satisfying (3.2) one has Qp(t)< oo for all t>0.
Proof. If p’ is the integral kernel of e~ (74*V)!
of e He! then

and p, is the integral kernel

0<pp(x, y; )<eWl=p/(x, y; 1)

=e'Wllep (x, y; 1) o(x) 0 (y). (3.13)
Therefore

Qp=eWl= [ dx [ dyp,(x, y; D(@(x) ™ (o)™ (@x)*(e()*

D
:etHV|\w<e—HQ,t(P—1’(p—1>
etV e ot g lo ™ 2n (3.14)

provided 1<p<2and p~'4+g~!'=1. But
lo™ 5= f o Pp?dx

< [(Q+x2)7C P dx< oo, (3.15)

Uee, ©

provided p—1>0 is small enough.
It is clear that if we replace (3.2) by a stronger hypotheses, it will be possible
to obtain sharper information about the heat kernel p, and in particular to
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estimate the rate at which Qp(t) diverges as t]0. One such specialization of

the above calculations is given in Sect. 4, but we emphasize that many intermedi-
ate situations may also be considered.

4. Gaussian Upper Bounds on the Heat Kernel

In this section we obtain further upper bounds on the heat kernel under stronger
hypotheses. Throughout this section we assume that

m(x)* <c(l+x%)"¢ 4.1
for some ¢>0, >0 and all x in an open set D. We also put

o(x)=(1+x*)"% (4.2)
for some f>0.

Lemma 4.1. For D open in R™ and assuming hypotheses (4.1), (4.2), we have

0=pp(x, y; )=co(x) ()t ", (4.3)
forall 0<t<1 and x, yeD, where

y=m+4p/o 4.4)

Proof. Direct calculations lead to the bounds

[4o(x)|=c;30(x), (4.5)
—40g¢ﬁj§;i%7+c¢—§logs (4.6)

for all xeD and 0 <e<oo. Applying Rosen’s lemma as in the proof of Theo-
rem 3.3 we see that (3.12) holds for all 0 <e < 1, with

ﬁ@=%—§my. 4.7)
By [9, 117 we deduce that
Oépq:(xs ys t)§a3t_y/27 (48)

for all 0<t<1. This implies the claimed result as in the proof of Theorem 3.3.

Theorem 4.2. Let D be open and (4.1), (4.2) hold, let E=0 be the bottom of the
spectrum of H acting on I?(D) and let 0< &< 1. Then

0<pp(x, y; Syt~ 2T RITIENETL0 4 (x) o y), (4.9)
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Jor all xeD, yeD, 0<t<<oo where

d(x, y)=sup {|y (x)—y(y)|: y€E}, (4.10)
E={y: D->R suchthat |Vi|,<1}. 4.11)

and

Proof. This is a straightforward application of Theorem 4 of [10]. The replace-
ment of the dimension of D in that paper by y causes no difficulties. The quantity
d in that paper is called the riemannian distance between x and y in D, but
(4.10) is the more precise definition.

For gaussian lower bounds on the heat kernel we refer to Theorem 3 of
[4].

It is always the case that d(x, y)=|x-y|. The example of the region S,
in Theorem 5.10 shows that d(x, y) may be much larger than the euclidean

. . 1

distance. We note that in that example (4.1) holds with a=1—1>0 so that
Theorem 4.2 is applicable to this region. Note also that d(x, 0)~|x|** as |x|—> o0
since any curve from O to x in S; must follow the spiral.

5. Horn-shaped Regions

In previous papers [1, 2] we have obtained a theorem for Zp(t), where F is
a horn-shaped region in R™, In this section we prove a corresponding theorem
for Qr(t). First we recall the notation and definitions of [1].

Notation. A point in R™ (m=2, 3 ...) is denoted by (x, y) where yeR™ ! (orthog-
onal to the x-axis). Let P, be the plane through (x, 0) orthogonal to the x
axis and let F(x) be the orthogonal projection of P~ F onto B, where F is
an open set in R™.

Definition 5.1. An open sct F in R™ is (one-sided) horn-shaped if
(1) F is connected,
(2) F(x)cF(x') for all x=x'>0, F(x) is empty for x <0,
[

() [IF(x)|dx<co for §€[0, o).

(|F(x)| is the (m— 1)-dimensional volume of F(x)).

0
Definition 5.2. Let pp((x1, y1), (X2, y,); 1) be the heat kernel for —4 F+E and
0 .
let prey(y1, ¥2; t) be the heat kernel for —AF(xyI—E, where —Ap, is the (m
—1)-dimensional Dirichlet laplacian for F(x), y;, y,€F(x). Let B, ,,[Tr>1] be
the probability with respect to Wiener measure that a brownian motion (x(*),
y(+)) in R™ with (x(0), y(0))= (x, y)e F does not leave F up to time t. We define
B, [T >t] for a brownian motion y(-) with y(0)=yeF(x) in R™ ™! similarly.
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By Definition 5.2, (1.4) and (1.9) we have

ID(x,y)[T}*’>t]= j dxl j’ dylpF((xn y)a (xla yl): t)5 (51)
0 F(x1)
Py[’l}‘(x)>t]: jl d)hl’F(x)()’: yla t): (52)
F(x)
Qr(t)= j dyB[Tpy>t]. (5.3)
F(x)

Theorem 5.3. Let F be (one-sided) horn-shaped in R™(m=2, 3, ...). Then for all

t for which | dx Qg (t) is finite one has
0

¢ o]

o 2 oC 5 o0
f dx QF(x)(t)_—‘(nt)l/z I dx QF(x)(t) j dge™® /(4’)§QF(t)§ f dx QF(x)(t)' (5.4)
0 0 X 0

The proof of this theorem starts at Lemma 5.7. For horn-shaped regions in
R? it implies the following.

Theorem 5.4. Let 1, f> be positive, continuous and decreasing on (0, o0) such that

[ (fi)+fo(x)dx<oo, 5e(0, o), (5.5)
Fdx(ﬁ () +f2(x) eI+ 20D < oo, (5.6)

and let
F={(x, p)|x>0, —fi(x) <y <f2(x)}. (5.7)

Then
QF(t)——gz— j?dxf(x) Y kTZeTmRIPMI<4 lj dxf(x), (5.8)
" k=1,3,... 0
where

F)=f1()+12(x). (5.9)

Proof. Since f,, f, are positive, continuous and decreasing and satisfy (5.5) H
is horn-shaped. Furthermore F(x)=(—f1(x), f2(x)) and pp (¥4, y2; ?) is the one-
dimensional heat kernel with eigenfunction expansion

o0

28
pF(x)(ylayz;t):mZe tn2k2(f2( )(S
k

=1

. wk(f1)+YON . mk(fi(x)+ )
T )(Sm 1) )

(5.10)
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Hence by (5.3) and (5.10)

Qm)(t)—m Y keI, (5.11)

k=1,3,...

Finally Qr )= f(x) by (1.5) so that

2 o
)1/2 5 deF(x)(t) j dqe q /(4)§

(nt J dxf(x) | dge v

1/2
(m)'? 5

/2

Gy 1 5/ ] dgemeions

j dx (') j dge /4D

( )1/2 /2

St

1172 (172

=2 j dxf(x)+4n”1/2t1/2f(t1/2)quq_ze‘42/4<4 j dxf(x). (5.12)

Theorem 5.5. Let F be as in Theorem 5.4 with f, (x)=0 and
f)=f(x)=n{log3+x)+ploglog3+x)} "%, >0, x>0. (5.13)

Then

Or()<oo ifandonlyif t>1, >0 or t=1, f>4%, (5.14)
and

Ze(t)<oo ifandonlyif t>1, >0 or t=1, f>1. (5.15)

Proof. The term f(x)e™**//*™) behaves like (3+x) *(log(3+x)) " #*~2(1 +0(1))

for x —+ 0. Hence f(x)e™*""/*® is integrable on [0, oo) if and only if t>1,

B>0 or t=1 and f>%. The remainder series Y. f(x)e "™ ¥/ ®)/k? is inte-
k=3,5,...

grable for all t>4. To prove (5.15) we use Theorem 3 and (43) from [2]

z e 112 (x) <_‘&__ (5.16)

1 o
ZF(t)—Wéf dx =4(7{t)1/2‘

k=1
The leading term e ***/*® behaves like (3+x) *(log(3+x)) #*(1+0(1)) for x
—c0. Hence e™***//*® is integrable on [0, o) if and only if t>1, >0 or t=1,

oC
B> 1. The remaining series Y e *™*//*® ig integrable for all t> 4.
k=2



Heat Flow out of Regions in R™ 473
Suppose F is horn-shaped as in Theorem 5.4 and f is integrable on [0, ©).
Then

[e9)

lim Qp ()= | dx f(x). (5.17)
t10 o
In this case Theorem 5.4 provides the leading term of

Or(t)— }Ode(x) as 0.
4]

Example 5.6. Let F={(x, y)|x>0,0<y<e ™ *}. Then

2¢112
Qr()—1— - logt|<141'2, 0<t<1, (5.18)

Proof. Note that y —(e~**—1)/y? is strictly increasing on [0, o) for a>0. By
Theorems 5.3 and 5.4

8

2 k?

©
J‘ dx e*x—tnzkzezx
0

Q)= X

k=1,3,...

[e2]

j‘ dxe*x(e~t1r2klezx_ 1)
0

1+ Z nzkz

k=1,

w

4 ° 252 x
e [dxe *(e"mke 1)
0

s

lIA

1+

k

o0

4 * 222X
S+ [dk—75 [ dxe (e ™ e 1), (5.19)
1 nik*
Integration by parts with respect to k gives
0r()<1-8t [ dk | dxeximk*e
1 0
=1-8t [dxx~* [ dke ™"
1 X

=1—8t | dx(logx)e™"™*’
1

<1-8t | dx(logx)e "™*
0

<1+@t/m)'2(C +log(4n?1)), (5.20)
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by 4.333 of [14]. C is Euler’s constant. By Theorem 5.4

0,1+ Z 2 jdxe"“(e""z"zézx—1)—4t1/2
£=1,3,.. % 0
g Z 2k2 j‘dxe~x(e—tn2k2e2x_1)__4t1/2
=2
8 < —-x —trle2x
?g (7" 1)

° 4 ° 22 02x
gl‘i' j dk.-ﬂ y dxeﬂx(e_”' kze _1)—4t1/2
1 ke
8 @ —_ p— 2,52x
+— [dxe e "™ —1)
n? 5
=1+ (dt/m)"*(C +log(4n*t))—4t'/?

12 @ - : 22
+ [dxe (™™ —1)+8¢ [ dx(logx)e™ ™. (5.21)
0 0

Moreover by 3.464 of [14]

12 © 2 2% ]-2 @ —_ — 252
= fdxe (e ™ —)=—5 [ dxx7 (e "™ 1)
0 T
12 2 2/ —rm2x? ~1/241/2
;n—jdxx (7™ —1)=12n" 121112,
o

and for 0<t<1

1
8t [ dx(logx)e ™ = —81'/2
0

Combining these inequalities with (5.21) we obtain
0r ()= 1+ @4t/m)' 2 (C+log@n*n)— 672 —6), O0<t=1, (5.22)

which completes the proof.
Lemma 5.7. Let F be horn-shaped in R™ and (x, y)eF. Then

Ry [Tp>1S [ dEp(E: D B[ Tr-o> 1], (5.23)
o]

where p(&; t) is given by

<=0

0 s
p(&; t)={(m)_1/2e_52/(4,,’ £ (5.24)
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Proof. Let w=(x(+), y(*)) be a brownian path in R™ with (x(0), y(0))=(x, y).
Then since F is horn-shaped

{w: (x(1), y(1))eF, 0=1=1}
c Y Ao min x(©)>x—¢ y(t)eF(x—&), 0= t<t}.

gos¢sxy  0zcst

Since x(-) and y(-) are independent and the random variable min x(t) has

probability density p(¢; ¢) the lemma follows. oS!
Lemma 5.8. Let F be horn-shaped in R™, (x, y)e F. Then
BeylTp>t]2 ] d¢B[Trig>1t] =7 FE P[T(o xte>1], (5.25)
{£:220,peF (x+&))
where
BT, x+>t]1=B[0<x(r)<x+¢ 057<1] (5.26)

Proof. Let w be as in the proof of Lemma 5.7. Then since F is horn-shaped

{o: (x(z), y()eF, 0=t}
> (J {@: min x(7)=0, max x(t)Ex+& y(n)eF(x+&), 05151} (5.27)

20 0=<t=t 0=ttt

Since x(*), y(+) are independent and the random variable max x(t) conditioned
0=t

to min x(z)>0 has probability density ;E P.[To,x+5>1t] on [x, co) the lemma

O0<t=t

follows.

Lemma 5.9. For x>0, £>0
%[ﬂmw@p>ﬂzl—-Fp@%ﬂdi“—jp@%ﬂdéC (528)
Proof.
BTy x+5>t]=PR[0<x(t)<x+¢ 0= 1=1]

=P [max x(1)<x+E&]—P, [ mm x(r)<0]

01t

4 ©
=[p(E:0dE— [ p(&;nae. (5.29)
0 x
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Proof of Theorem 5.3. By Lemma 5.7 and Fubini’s theorem

[ dy (xy)[TF>t]<Id~fpé 1) | dyB[Tru-5>1]

F(x) F(x)

s j dép&;t) | dyB[Tru-5>t]
0 F(x—&

={p(*; )% Qp» (1)} (), (5.30)

where * denotes convolution (with respect to x). Hence
Q)= [ dxp(:; )% Qry(O(X)= [ dx Qpx(2). (5.31)
0 0

We define B[ Tp(+5>1] to be zero if y¢ F(x +¢&). Then by Lemma 5.8, Fubini’s
theorem and integration by parts we have

{ dyR,y[Tp>612 § dy | dép[q}(x+f)>t] B[ T, x+5>1]

F(x) F(x) [0, o) é
> | dy | dEB[Tpury>t] ip[T(o x+g>1]
F(x+§) [0, %)
— _f dS B[ T, x+§)>t] f Or+5(0) (5.32)

. . 0 , .\
Since F is horn-shaped _5EQF(H g(t) is positive. Hence by Lemma 5.9 and

further integrations by parts

L ARz | dé{l— [ p@;0de— | p(e; t)dé'}. égwam
—QF(x)(t)‘l' E AdE{Qrx+ 5 —Qr(t)} p(E5 1)

[0, )
—Qr (1) fp(é )de. (5.33)

Hence

e 4
j. dx § dyR, ylTr>t]2 j- dx Qpe(t)— I dép(&; I)deQF(x)(t)
0 0

0 F(x)
— f dx Qpe(®) | p(&51)dE. (5.34)
0 x

A further integration by parts completes the proof.

It is possible to obtain the precise asymptotic behaviour of Z(¢), Q(t) as
t10 for other unbounded regions. In particular we have the following.
Theorem 5.10. Let S; cIR? be the complement of the range of the curve y: [0, o0)
—IR? defined by

p(s)=(s*coss, s*sins), O<i<l. (5.35)
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Then S, is open and dense in R? and has infinite volume. Furthermore

lim Qg (£) t*4 -”=% JRHA=DHA=H 1) P /(1= D) L2/1—2), (5.36)
tl0
ltllrg Zsl(t) /A= =—7.C_1W11_:5 Ja+a/a —A92(Bi-1)/ N}‘)F((l —+ /1)/(2——2),))

LA+ AL =2), (5.37)

where {, I are the Riemann function, gamma function respectively.

Sketch of Proof. By “unrolling” the spiral one obtains a (one-sided) horn-shaped
region of the form (5.7) with f(x)~(s+2n)*—s*~2nis*~! as stoo and dx
~(s2* 4+ 22524 )Y2 g~ s*ds as sToo. Formulas (5.8) and (5.16) yield (5.36) and
(5.37) respectively.

Theorem 5.11. Let F be horn-shaped in R?. Then for 0<t< oo the following are
equivalent. (i) Qp(s)< oo for all s>t, (ii) Zg(s)< oo for all s>t.

Proof. Because of Lemma 2.6 we only have to prove that Qg(s)<co for s>t
implies Zz(s)< oo for s>t. From (5.8) and [2] we obtain (for one-sided horn-
shaped regions in IR?)

1 < i 2E27F2
ZF(S)§(4 )1/2 I d'x Z e_sn K

k=1

IS 1 22y p2
éﬁ f dxf(x)+(4 )1/2 f dx Z e~ SRS ()

k=1

1 t1/z

< dx (X)—I— e——sn:zkz/fz(X)
dns I f (4 )1/2 tf!.z k= 1,23,

1 £/ 252 2 252 2
ér I dxf(x)+ 173 f x Z e‘(S‘\"l)” k2[(2 f2(x))—(s—)m*k2/(2 f2(x))

s ) t1/2 k=1,3,...
SL t}/zdxf(x) T 4 1 F dxfix) T k-2emCrORICE)
Tdns g ms)'/? =07 5 k=1,3,...

1 f(tllz) * 8 252/(2 2
< - A S A, —(s+0)n2k2/(2 f2(x))
“dns j dxf(x)+(1677:s)1/2(s——t) ! dxf(x)kzéw k¢

o £

< j dx f(x)+

“4ns

(1675) 2 (5—1) {Qp((s+t)/2)+4 6[ dxf(x)}. (5.38)

This is finite since f is integrable at 0 and Qp((s+1)/2) is finite by (s+1)/2>t.

6. Bounded Regions with R-smooth Boundaries

Before we state the main theorem of this section we make the following definition.

Definition 6.1. A boundary dD of an open set D in R™, m=2, 3, ... is R-smooth
if for each point x,€0D there exist two open balls By, B, with radius R such
that B, D, B,cIR"™\(DudD), dB;ndB,=x,.
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Theorem 6.2. Let D be an open, bounded and connected set in R™, m=2,3, ...
with R-smooth boundary éD. Then for all t >0

2
0o(0—IDI+ 7 t1/2|6D|l§10"‘|D|tR_2, (6.12)
7.1:1/2
‘(4nt)m/ZZD(t)—|D| gt |aD|‘ <2"m*|D|tR"2, (6.1b)

where |0D| is the area of the boundary oD.

The proof of (6.1b) has been given in [2]. Here we will prove (6.1a). In
Lemma 6.3 and Corollary 6.4 we will use Levy’s maximal inequality for brow-
nian motion to obtain estimates for P.[T;>t] where B is an open ball in IR™,
In Lemmas 6.5 and 6.6 we obtain a lower bound and upper bound respectively
for x near the boundary dD. In Lemma 6.7 we recall a result on areas of parallel
surfaces. Then we complete the proof of (6.1a).

Lemma 6.3. Let B be an open ball in R™ with radius R and centre 0. Then

[ oymeBemygy. (6.2)

12P[T>t]21————
0 5 F(m/z) R2j(41)

Proof. By Levy’s maximal inequality (Theorem 3.6.5 of [19])

B[Ty<t]=FkK[max |x(7)| > R]Z2R[[x ()| > R]
0zttt
2

=W j‘ dx €_‘x|2/(4t). (63)

|x|>R
Corollary 6.4. Let B be as in Lemma 6.3. Then
B [Ty<t] <21 Tmi2 g REY, (6.4)

Lemma 6.5. Let D be open in R™ with R-smooth boundary 0D. Let xeD such
that d(x)<R. Then

d(x) df 2 E)
B>}z ———e‘fz/““){l————— dye—yy(m—3)/2}
[To>t] g (me)' 2 T(m—1)/2) g i osn
2 [°s]
_ dye=?ym=2)12, 65)
I'(m/2) Rd(x)f/(m)

Proof. Since 8D is R-smooth and d(x)<R there exists a ball B with radius
R and centre 0 such that 0=(—(R—d(x)), 0) and x=(0,0) in a cartesian frame
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(x1, ), (x;eR, yeR™ ™ 1). Let 3, B={z€dB|x,(z)=0}, §,B=0B\J, B. Then by
monotonicity

PIT,>t]=B[T3>t]= Ry, 0)[x(+) does not hit 3, B up to time ¢]
— I, 0) [x(') dOCS hlt azB ln [0, t:l:l (66)

Since the distance from (0, 0) to 8, B is bounded from below by (Rd(x))*/* we
have by Lemma 6.3

Py, 0)[x(*) does hit 0, B in [0, t]1 = Ry, ) [max [x()[* > Rd(x)]

2 [¢o)
dye ?ym=22 (6.7)
I'(m/2) Rd(x‘)‘;(4t)

=

Let x(-)=(x,(*), y(*)) where x(-) is a brownian motion along the x, axis with
x,(0)=0 and y(*) is an independent brownian motion in R™™! with y(0)=0.
The probability density p(¢;¢) of the random variable max x,(7) is given by

0=t=t

(5.24). Hence by mononicity and Lemma 6.3

Ry, 0y[x(+) does not hit 0, B up to time ¢]
d(x)

= f dCp(C; )by [ max ly@)I* <R*—(R—d(x)+¢)*]

_TA

d (x)

> f dép(é;t)Po[Onslagtly(f)!%R(d(X)—f)]
zd}x)da:p(.f-t){1————2— { dye—Yy(m—3>/2}. (6.8)
o ’ I(m—=1)/2) raw - oyan

Lemma 6.6. Let D be open in R™ with R-smooth boundary 0D. Let xeD such
that d(x)<R. Then

d(x)
BITp> s | 45 o-eusn A D"
Q

(nt)l/z 1/2R

e~ P4 L2921/, R?). (6.9)

Proof. Since 0D is R-smooth there exists a closed ball B with radius R in the
complement of D such that the distance from x to B is equal to d(x). Define
a cartesian frame (x,, y), (x;€R, yeR™™ ') such that x=(0,0) and the centre
of B is given by (d(x)+ R, 0). Then by monotonicity and the decomposition
of the brownian motion (as in the proof of Lemma 6.5)

d(x)
B[Tp>t]=R[Trmp>t]< j p(&;)dE+ J p(&;0de
d(x)+R
d(x)+R
+ § e t)défb[max |y@)*>R*—(R—&+d(x))*]. (6.10)

d(x)
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By Lemma 6.3
d(x)+R
Ioe& t)déPo[Omaxtly(f)lz>R2—(R—€+d(X))Z]
d(x) st
d(x)+R

< | p t)déPo[Orrslg;ly(r)|2>R(é—d(x))]

d{(x)

‘”"FR ¢ poyan 2 }O o
< e PO — dye™>y™.
iy @) F(m=1)/2) - aimnan
) e BWid) @ @
< [de | dyevym a2 (6.11)

(7”)1/2 I(m—1)/2) 0 RE/(At)

Furthermore by Corollary 6.4 for m=1
§ p(E0dEs232e FIEI <292 1/(eR?). (6.12)
d(x)+R

Lemma 6.7. Let D be an open, bounded and connected set in R™, m=2,3, ...
with R-smooth boundary éD. Let 0D, denote the boundary of the set {xeD|d(x)
>q} and let |0D,| denote its area. Then

R_q m—1 R m=—1
—4) < <|0D||(—— < . .
|6D|( R) <|oD =10 l(R—q) , 0=g<R (6.13)

Proof. See Lemma 5 of [2].
Proof of Theorem 6.2. By Lemmas 6.6 and 6.7 we have

Op(t)=1D|— [ dx B.[Tp<1]

<|D|— § dxE[Ty<(]
{xeD:d(x)<R/2}
R/2 © dﬁ 4(m_1)t1/2 29/2t
B S A A [ N
=IP| o“wadq{f o T arg e eRz}

R/ m— )
élDl— §2|5D|(1_i) ldq5 d(:;/z o~ &4
N R , =)

©  Am—1)£Y?

+2"7110D] { dq 7R e~ 14N 41D 2% t/(eR?)
0

0 © d s ;
<|D|~ | dq|éD|(1—2(m—1)q/R) | @fwe e
0 q

+2m* Y (m—1)|0D|t/R+2°?|D|t/(eR?)

24112 |oD|t

=|D|— 7z |0D|+ 2(m—1)(1+2™+2%2|D|t/(eR?). (6.14)
T R
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From Lemma 6.7 we obtain by integrating with respect to g
m|D|
R

The upper bound in Theorem 6.2 follows from (6.14) and (6.15).
To prove the lower bound in Theorem 6.2 we use Corollary 6.4 and Lem-
mas 6.5 and 6.7. We obtain

0p(t)= | dx(1—21Fm2 g~ R¥G20) 4 f dx P.[Ty>t]

|oD| <L (6.15)

{xeD:d(x)> R/2} {xeD:d(x)<R/2}
@0
— g2
2|D|—|D[£2° " feRY)~ | dx | o t)l,z e
{xeD:d(x)<R/2} d(x)
d{x) 0
___2_ f dfm -&2/(41) { dye?ym=3)2
F(m=10/2) epayzrizy o @0 R~ &/(41)
2 o0

f dye—yy(m~2)/2
I(m/2) {(xeD: d(x) < R/2} Rd(x)/(41)

Z|D|—[D|t2°"™*/(eR?)— jdq[apl(1+(m 12t /R” dC  -puan

t)1/2
2 - [ q ‘ e 84D F dye Vym=32

I'(m—1)/2) 0o 0 (7”)1/2 R(a- /(40

2 ¢ o} o0

— 2"~ 19D] | dq dye 7 ym-2/2

I'(m/2) g Rq/{m

2¢4/2 oD

=PI~ 10D] - 1DI 125 7(eRY) RV (9 —5) 2771, (6.16)

The lower bound in Theorem 6.2 follows from (6.15) and (6.16).

Corollary 6.8. Let D be an open, bounded and connected set in R™, m=2,3, ...
with R-smooth boundary 0D. Let h:[0,0)—R be C' and h(0)=0. Let q: D
x [0, c0) = R be the (classical ) solution of

Aq:%— on D x (0, ), (6.17)
q(x;t)=h(), xedD, =0, (6.18)
q(x;0)=0, xeD, (6.19)
where A is the laplacian. Then for t >0
: —1/2 m IDI H ’
)t—1) dz| <10 F“h (D] (t—1)dr. (6.20)
0 0

Proof. The solution of (6.17)-(6.19) is given by

g(x; t)= fh’(r)}}[TD<t——r]dr. (6.21)
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Hence by Fubini’s theorem
fa(x;)dx= [N () (IDI—QD(t—r)) dt. (6.22)
D 0

Corollary 6.8 follows from (6.22) and Theorem 6.2.
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