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1 Introduction

Consider the following problem in heat conduction: suppose that a compact set
K in R™ is held at temperature one for all positive times t, while R™\ K has
temperature zero at time t = 0; what is the asymptotic behaviour as t | 0 of Eg(1),
the amount of heat which has flowed from K into R™\ K up to time ¢? So far, this
problem has been studied in detail only in the special case in which m = 2, K is
connected and its boundary is polygonal [2]; in contrast, the problem of determin-
ing the asymptotic behaviour of Ex(t) as t — oo has been studied exhaustively
[9, 10, 13].

In this paper, we determine the first and second term in the asymptotic
behaviour as t | 0 of Ex(t) for a compact connected set K in R™ for m = 2,3,. ..
under the condition that the boundary 6K of K is C?. We also obtain an estimate
for the remainder.

There is a second problem in heat conduction which is closely related to the one
we have described. Let D be an open, bounded and connected set in R™ with
boundary 6D and suppose that D has temperature one at time ¢ = 0, while R™\ D is
held at temperature zero for all positive times ¢; what is the asymptotic behaviour
as t | 0 of Qp(¢), the amount of heat in D at time ¢?

In this paper, we determine the first three terms in the asymptotic behaviour
and an estimate for the remainder of Qp(¢) as ¢ | 0 for an open, bounded and
connected set D in R™ for m = 2, 3, . . . under the condition that oD is C?; this
improves a result of [1].

Let 4, be the Dirichlet laplacian for an open set D, and let u: D x [0, o«c) » R be
the unique solution of
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We define for t > 0
Op(t) = Julx; t)ydx . (1.3)
D
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Similarly, v: R™\ K x [0, c0) — R is the unique solution of

A]Rm\szg, t>0, (1.4)
v=1 t=0. (1.5

We define for t = 0
Ex@®= | (1—ov(x;0)dx. (1.6)

R™\K
The main results of this paper are the following:

Theorem 1.1 Let D be an open, bounded and connected set in IR™ (m = 2, 3,. . .) with
a C? boundary oD. Let 0D be oriented with a smooth, inward, unit normal vector field
IN and denote the mean curvature at a point s€ 0D by H(s). Let D have m-dimensional
Lebesgue measure | D], and let 0D have (m — 1)-dimensional Lebesgue |0D)|,,— . Then
there exists a constant C, depending on D such that for all t =2 0

Qp(®) = [D|w + 2(t/m)"|8D|,y—1 — 27" m — Dt | H(s)ds| < Ce*? . (1.7)
D
Theorem 1.1 improves a previous result (Theorem 6.2 of [17), where the first two
terms in the asymptotic expansion of Qp(t) as t | 0 were obtained, with an O(t)
estimate for the remainder. Theorem 1.1 also implies that for a planar, open,
bounded and connected set D with a C3 boundary oD

Op(t) = D[y — 2(t/n)!?|0D; + mty(D) + O(£*?), (1.3)

where y(D) is the Euler—Poincaré characteristic for D (i.e. x(D) = 1 — #(holes in
D)).

Theorem 1.2 Let K be a compact, connected set in R™ (m=2,3,...) witha C?
boundary 0K. Let 0K be oriented with a smooth, inward, unit normal vector field N,
and denote the mean curvature at a point s€ 0K by H(s). Then there exists a constant
C depending on K such that for allt =2 0

Ex(t) — 20/m)"V2|0K |- — 2 Ym — 1)t | H(s)ds| < Ce¥2,  (1.9)
K

where |0K |, is the (m — 1)-dimensional Lebesgue measure of 0K.

Theorem 1.2 implies that for a planar, connected and compact set K with a C*
boundary 0K

Ex(t) = 2(t/m) 2 |0K |, + mtx(K) + O(t*?), (1.10)

where y is the Euler—Poincaré characteristic for K. Formulas (1.8) and (1.10) have
been conjectured in [2] on the basis of a polygonal approximation.

A heuristic derivation of (1.9) (under the additional assumption that K is
convex) has been given in Sect. 2(d) of [12].

These results have a probabilistic interpretation. Let (B(t), t = 0; IP,, xe R™) be

. . . ) 0 .
a brownian motion associated with —4 + P where 4 is the Laplace operator for

IR™. Since the generator of the brownian motion is the Laplace operator, the
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covariance matrix of B(¢) 1s 2tI, where I is the identity matrix. As a consequence,
several formulas below are slightly different from the classical ones valid for
a standard brownian motion with covariance tI. For an openset Din R™, D3 x, we
define the first exit time by

Tp = inf{t > 0: B{t)e R™\D} . (1.11)
Then it is well-known [13] that
u(x; 1) =P, [Tp > t], (1.12)
v(x; ) = P [Trm g > 1] . (1.13)
Moreover, define the Wiener sausage associated with the set K up to time ¢t by
Sy ={xeR™ x=B(s)+k 0<s<t,keK}. (1.14)

Then Sk(t) is Lebesgue measurable for all ¢ > 0, almost surely, and
Eo([Sk(Oln) = | Klm + Ex(t) (1.15)

where the left hand side of (1.15) is the expectation (under ) of the volume of the
Wiener sausage up to time ¢, and |K]|,, is the volume of the compact set K.
The probabilistic interpretation of Qp(t) is given in the following:

Proposition 1.3 Let D be an open, bounded and connected set in R™ with boundary
dD. Let D = D dD. Then for allt >0

Op(t) = Eo(|S5(0)m — [Sep(B)|m) 5 (1.16)

where Si(t) and Sgp(t) are the Wiener sausages up to time t associated to D and 8D,
respectively.

Proof. Since D is bounded, 6D is bounded in R™ But D and 6D are closed sets in
R™ hence they are compact. Consider the heat equation (1.4), (1.5), with K = 6D. Then

IPx[TD§t]a XED!
—p(x:t) = moan <t = _ 1.17
1 U(X’ t) 1Px[T]R \éD = [] {]Px[T]R"‘\ﬁ < l]a XEIRm\D ) ( )
Hence by (1.6), (1.17) and (1.3)
Ep(t)= | dxIP [Tgmop <1]
R™\ 2D
= f dXIPx[TD é [] + j‘ dXIPx[TIR'"\Ij é t:]
D R™\5
= D] — Qplt) + Ep(t) . (1.18)
Then (1.16) follows from (1.15) and (1.18) since
|Dlm = |Dlm + 10D, - (1.19)

While the behaviour for ¢ | 0 of Qp(t) is very similar to the behaviour for ¢ | 0
of Eg(t), they are very different for t — oo. For a compact set K with positive
newtonian capacity Eg(t) — oo as t — oo [9, 137, while for an open set D with finite
volume Qp(t) - 0 as t — oo. More precisely, we have the following:

Proposition 1.4 Let D be an open, bounded and connected set in R™. Let A, denote
the first eigenvalue of — Ay with a corresponding normalized eigenfunction , in
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L*(D). Then

Op(t)=e Mg 1T {1+ 0 ™)}, 1>, (1.20)
and in particular

lim t ' og Eo(1S5(t)lm — [Sop(t)lm) = — 41 - (1.21)

Proof. Since D is bounded, |D|, < cc. Hence the spectrum of — A4, is discrete:
Ay < 23 £.. ., with a corresponding orthonormal set of eigenfunctions y,, ¥,, . .
in L2(D). The heat kernel pp(x,y;t) of e¢4» is a positive C* function on
D x D x(0,00) and has an eigenfunction expansion

o

o,y )= Y e "yix)y(y) . (1.22)

i=1

The solution u of (1.3) and (1.4) is (by Fubini’s theorem) given by

u(xir) =Y e M) [ dyyi(y) (1.23)
i=1 D

and hence by Fubini’s theorem

™ 8

0= e~ %{j dx x//j(x)} . (1.24)

J

Op() Z e {j dx (X)}

=e” "yl (1.25)

since ¥, does not change sign on D. On the other hand, by Cauchy-Schwarz’s
inequality and (1.24)

Then

OpM e MYy |7+ Y e "Dl . (1.26)

j=2

Since D is connected, A, has multiplicity 1, so that 4, — A; > 0. Hence

i e~ th— o~ th Z e~ W= 4)

ji=2
<e t),ze tlhy — A)A, /A,
—t trace(er(Az — A )AD//'.Z)
T dxpole x: 102 = )/da) (127)
But
polx, v; 1) < (dnt)"™2e ~1x—340  xep yeD, >0, (1.28)

so that by (1.26), (1.27) and (1.28)
Qo(®) S e M {1 |1 + {A2/(@nt(Ay — 21))}™2+Dla} - (1.29)
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Then (1.20) follows by (1.25) and (1.29). Finally (1.21) follows by (1.20) and
Proposition 1.3.

We conclude this introduction with a sketch of the proof of Theorem 1.1, and
refer to the remainder of this paper (Sect. 2,. . ., 8) for the details. We omit the
proof of Theorem 1.2 since it follows similar lines. For any ¢ > 0 we define the open
set D, by

Dsz{xeD: min |y—x\<8}. (1.30)
yeR™\D

Since ¢D is C* and compact, there exists a 6 > 0 such that for each x € D,, there
exists a unique point se ¢D for which
[s—x|= min |y-— x]. (L.31)
yeR™\D

By the principle of not feeling the boundary [8]

[ dxP.[Tp > 1] = D]y — | Dyl + Oe =278 . (132)
D\D;
Let x € Dy,
BUW(z) = B(r)-?s - x)], 120, (1.33)
§— X

and let 7, be the unique time (almost surely) such that

BM(r)= sup BW(1). (1.34)
01t
Then
P.[T, > ] < P,[B(z,)eD] . (1.35)

In Sect. 3 we will obtain a good approximation for the right hand side of (1.35).
Using this approximation we prove in Sect. 5 that

§ dxP.[B(t,)€ D] = |Dylyy — 2(t/m)"*|0D |y -
b,
+27Ym— 1t | H(s)ds + O(t*?). (1.36)
)

It turns out that the right hand side of (1.35) is also a very good approximation for
P, [T, > t]. To verify this we need to bound

P.[B(t)eD] — P [Ty >t]=P.[r,< Tp<t]+ P[Tp <t <t B(r)eD].

(1.37)
In Sect. 6 we will show that, using the strong Markov property at Tp,
[ dxP.[Tp <t =t B(r)eD]=0(?). (1.38)
Dy
The proof that
[ dxP.r, < Tp £t]=0(¥?), (1.39)

D,
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(Sect. 7) relies on properties of brownian meanders; these will be given in Sect. 4.
Finally in Sect. 8, we combine all the estimates, and complete the proof of
Theorem 1.1.

2 Geometric preliminaries

We recall the following from p. 395 of [5].

Definition 2.1 A boundary dD of an open set D in R™ (m = 2,3,. . .) is of class C*
(k=0,1,2,...)if (a) D is the interior of its closure, and (b) given any point s oD
there exists an open set U(s) containing s, local cartesian coordinates
Dise s Vm) = (Vs Ym), where v = (y1,..., Vm—1), With y =0 at x = s, an open
ball G(s) in R™~ !, and a function h{-;s)e C*(G) such that aD n U(s) has repres-
entation y,, = h(y’; s), y' € G(s).

Remark 2.2 If D is an open, bounded and connected set in R™ (m=2,3,...),
condition (a) is implied by condition (b); sece Remark 1 on p. 396 of [5].

Let D be an open, bounded and connected set in R™ (m = 2,3,...) with
boundary 0D of class C?, oriented with an inward unit normal vector field
IN: 6D - R™ We denote the tangent space at se dD by T;. It is possible to choose
the local cartesian coordinates (yq,. .., y,) at s such that N(s) =(0,...,0,1).
Then the Weingarten map is the self-adjoint linear map L,: T, — T, defined by

L) = — (V,N)(s), veT;, 21

where V, is the derivative with respect to v. We denote the m — 1 eigenvalues of
L, (the principal curvatures at s) by k,(s),. . ., kp—1(5), k1 (8) £ - - £ k1 (5), and
a corresponding orthonormal set of eigenvectors (the principal curvature
directions) by v,(s),. . . , v, —(s) (See Chap. 9 in [14]). The mean curvature at s is
defined by

H(s) =

1 1 m-—1
t L)=—— ki(s) . 22
el =2 ¥ k() (22)

Finally we define for non empty sets 4 and B in R™
d(A,B)= inf |x —y}, (2.3)

xeA,yeB

so that for a point x in a non empty proper subset D of R™
d(x) = d({x}, R™\D). 24

Since D is bounded éD is compact, and it is possible to choose a family
{U(s), G(s), h(+; s); s€ dD} and a constant do > 0 (independently of s) such that
G2 {yeR™ |y <o}, Uls) 2 {yeR™ |y —s| < o }.

Lemma 2.3 Let D be an open, bounded and connected set in R™ (m = 2, 3,...) with
a boundary 0D of class C?, oriented by an inward unit normal vector field N. Then
there exists a constant d €(0, &y ) such that (a) for all x € D there exists a unique point
s = 5(x)€ 0D with |s(x) — x| = d(x), and (b) for all y’eIR™™ ! with |y'| <

m-1
h(y'59) = L k($)yl/2] S 072y'13, (2.5)
i=1
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where
vi=yuls), i=1...,m—1. (2.6)

Proof. See Theorem 3.5 in [5] and the standard theory of focal points in Chap. 16
of [14].

Lemma 2.4 Let D and 6 be as in Lemma 2.3. The map Q: D;— [0, 8) x 3D given by
Q(x) = (s, r) where s = s(x), r = d(x) is C' and has jacobian

J(s, r) = (detdQ)(s, r) = H (1 — ki(s)r) > 2.7)

Proof. See 3.1-3.4 and 10.1-10.4 in [7].

Lemma 2.5 Let D and 6 be as in Lemma 2.3. Then for all se 6D and re[0, §)
[J(s, 1) — 1] £ (m— WK1 + 6K)™" 2, (2.8)
JJsr =14+ m—OrH()| <27 m —2)(m — DriK2(1 + 6K)" 73,  (29)

where

K= max |ki(s)]| (2.10)
iefl,..., m—1},sedD
Proof. By (2.7)
ki(s)r <1, (2.11)

for se dD and r€[0, 6). Hence
Jis,r) = ﬂ -k z1—- 3  klor

{i: k,(s) > 0} {ik,(s) > 0}
>1—rK #{itk(s) >0} 21— (m— K. (2.12)
Moreover
JEe NSl +rK)" <1+ m—1D)rK(1 + 8K)™ 2, (2.13)

and (2.8) follows from (2.12) and (2.13) By expanding the product in (2.7) we have

J(s,r)=1—(m— OrH(s) + Z (—n? Y ki(s). .. ky(s), (2.14)
(=2 (i1,..., i )ellt,m)

where the index set I(£; m) is given by
I¢;m) = {(iy,. .., i)e{l,...,m—1}":

pxinp=1,....0,q=1,...,¢,p*q}. (2.15)
Then
m—1
Y=t Y k() k()
£=2 Uy, igyel(t; m)
" reefm—1 -1
<) r‘K =(1+rK)" ' —1—~(@m—1yK
£=2 1
<27%m — 2}(m — D)riK2(1 + 6K)"~3 (2.16)

which proves (2.9).
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Lemma 2.6 Let D and d be as in Lemma 2.3. Then there exists a constant 8, €(0, §/2)
such that x = (s,r)eD;, 6€0D, o — x| < 8¢, |w — o] < d; with

og=s+ mil A;vi(s) + A,N(s) , (2.17)
-
w=s+ Y w(s) + waN(s), (2.18)
i=1
and
Wy S A+ VR(A;5)-(W — ) — K|w' — A'|%, (2.19)
implies (i) 6 > |A'], (i) 4, = h(2'; s), (iii) w¢D, and (iv)
[Vh(A';5)] < 2K|A"] . (2.20)

Proof. We first establish (i), (i1), (iii) and (iv) for s fixed and a constant 8, (s) € (0, 9/2).
For any 6,(s)€(0, 6/2)

0>20,(8) >2lc—x|Z|o~x|+|s—x|=|oc—s|=]1]. (221

This proves (i). By Definition 2.1 there exists an open set U (s) containing s such that
D N U(s) is represented by y,, = h(y’; s), where h(-;s) is of class C>. By (2.21)
o — 5| < 204(5) < & < dg and A,, = h(1’; 5) by the choice of §,. This proves (ii). By
Taylor’s expansion about 4’

Ym = h(y';8) = h(4"; ) + VR(A';5)-(y" ~ 4')
1Mo tm 1l 52h(1; 5)

+§Z

1S vl (yi = Ay = 2) + R(s, 2% y7), - (222)
where

R(s, 2,y") = 0(ly" = 1) (2.23)
Note that
m=1m-1 52h(0; s)
T T 0vi0y;

Therefore if {1'] < |6 — s is sufficiently small we have

YiyVj

< max [k(s)|1y']* < K|y'|*. (2.24)

moim-L 52p(4;s) ' 3
———— (= Ay — )| SSKly = V), 2.25)
i=1 j=1 0y; 0y; ! 2 2 Y | (
and provided that |y’ — 4’| is also small
1
IR(s, 2, ') éZKly’—i’lz- (2.26)
It follows that
h(y';s) = h('5s) + VR(A';5)-(y' — 4) = K|y’ — A2, (2.27)
and (2.19) implies w,, < h(w'; 5). For §,(s) sufficiently small we U(s), and hence

h(-;
w¢ D. This proves (iii). Since h(-;s)eC?3, 0—%’—S)EC2 fori=1,...,m— 1 where

i
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vy, .-, Um—1 are the principal curvature directions. Hence
oh(d’;
S k) + 0021, (228)
and

\Vh(i'; s)| z A2KE(s) + O 1) < K212+ O(1/ 1) < 4K 21012, (2.29)

if 8, (s) is sufficiently small. This proves (iv). A compactness argument completes the
proof of the existence of a constant J, €(0, §/2) independent of s.

3 Bounds for P, [B(zr,)e D]

[n this section we obtain upper and lower bounds for IP, [ B(z,) € D]. First we recall
¢

some elementary lemmas for a brownian motion associated with — 4 + o

Lemma 3.1 Let (B(t), t = 0; IP,, xe R™) be a brownian motion associated with

0
—A +a. Then for any 6 >0

P.[IB(H) — x| 2 6] < 2m2e /60 3.1
Proof. For any Borel set D in R™
P [B(t)e D] = (4rt)™ ™2 [ e~ = yF/n gy (3.2)
D

Hence

P[IB() ~ x| 2] = (@n) ™2 [ ety

{Ix—y{zd}

< (dmt) M2 OB [ gmixTyIHs0 gy
{Ix—ylzd}

< 22 UGN (3.3)

Lemma 3.2 Let (BW(1), 12 0; Py) be a brownian motion associated with
62

Tl + — wzth BM(0) = 0. Let t > 0 be fixed and let T, be the unique time (almost

surely) such that

B (1) = sup BW(1). (34)
0=t
Then the density of (BY(1,), ) is given by
fe~ £2/(41)
o(&vt)= W Yo, 0(7) Lio,0)(S) - (3.5)

Proof. See p. 510 in [6]. Formula (3.5) also follows from Lemma 4 in [11].



446 M. van den Berg, J.F. Le Gall

Lemma 3.3 Let (B(t), t =2 0; IP,, xe R™) be a brownian motion associated with

0 ,
— A+ = Then for any open set D containing x

P [Ty <t] <202Hmi2=d?0/En (3.6)
and
]Px|: sup |B(t)— x| >5]§2(2+”’”2e“’2”8’). (3.7)
0=ttt

Proof. See the proof of Lemma 4 in [2].

Lemma 3.4 Let D and 6 be as in Lemma 2.3, let x = (s, r) € D;, and let 1, be as in
(1.34). Then

20 t
P.[B(z)e D] — [d¢ [di (¢, 7; 1) (4nr) ~Im - VI2 f dy e 21D
0 o]

{h(y9)<r—2¢, y't<é}

é 2(m+2)/2e*152/(8!) . (38)

Proof. Let x € Ds be arbitrary, let

m-—1
B(t)=x+ Y. Bit)vi(s) — Bu(t)N(s), (3.9)

i=1

and put

Bl:(Bla'-'aBm—l)a (310)
where By, ..., B, are independent one dimensional brownian motions, with
B,(0}= ... B,(0)=0. Note that B = B,, by (1.33). We will consider the
brownian motion B under the probability measure IP,. It should be understood
that By, . . ., B, or 1, are defined with x as a reference point. Then by Lemma 3.1

P, [B(t,)eD] = IPX{:B(r,)e D, sup |B(7)] < 5]

O0stst

+ Exl:B(Tt)ED’ sup [B(t)| 2 5}

Ottt
< ]PxI:B(r,) eD, sup |B(1)] < 5:l 4 2mF 202 =B (3 11)
0ttt
Furthermore

]PX[B(r,)eD, sup |B(1)] < 5]

0=t

= IPx[h(B’(T:); §) < r — Bu(1), sup |B(7)| < (5}

0=t

S P.[h(B'(1);8) < — Bu(t,),|B(z,)| < 4] . (3.12)
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By Lemma 3.1 we also have

P.[B(u)eD] 2 IPX[B(TI) €D, sup |B(7)[ < 5]

05t

= IPx[h(B’(n); s)<r— Bu(t), sup |B(1)[ < 5}

Ot

=P [A{B'(t); s) < r— Bu(t,),|B'(1)} < 0]

- Px[h(B’(T:); s)<r—By(t), sup |B(1)] 2 0,{B(1)| < 5]

o=t
2 P, [h(B'(1,);5) < r— By(t,),| B (1) < ]
— QmE 22 o= 82BN (3.13)
By the independence of B’ and B,,, and by (3.1), (3.5) we have
P.[A(B(7);s) < r— Bu(1:),|B' ()] < 8]
= Tdﬁidr@(é,r;t)(4nr)'(""”/2 ] dy' e” VG0 (3 14)
0 0

{h(y ) <r—&,1y'|<d}

and the lemma follows from (3.11)—(3.14).

4 Some estimates for the brownian meander

In this section we obtain some estimates for the brownian meander that will be
used in Sect. 7 to complete the proof of (1.39). We denote by (Z(7), 0=t 1)
a brownian meander on the time interval [0, 1], with Z(0) = 0. We refer to [3] and
the references in that paper for a precise definition and the main properties of the
brownian meander. We recall the following.

Lemma 4.1 The transition density of the brownian meander Z is given by

-z N -4y (n+ (4L~ 47)
. — ~m—&2/(4r—4r) _ ,—(n 2 — 4t
pe.tiEn) <4n(t—r)(1—t)> (e e )
m o -v2)(4—4)
e dv .
.}TOETU—Z/M-—‘W. 110,00y (&) 10,00y (11) 4.1)
0

where 0 <t <t <1, and
n e M40 n

e [dve M4 4.2)
(4n3 (1 — z))”z(j,

p(0,£,0,) =
Proof. Note that Z is a time inhomogeneous Markov process, such that for every
ue (0,17, Z(u) > 0 almost surely, and such that the conditional distribution of
(Z(u+ 1),0 <7 <1 —u), given Z(u) coincides with the distribution of a linear
brownian motion (B,(1),0 < 1 < 1 — u), with B;(0) = Z(u), and conditioned by
the event infy <,<;-,B(7) = 0. Formula (4.1) follows by an application of the
reflection principle. Formula (4.2) follows by taking the limit ¢ | 0 in (4.1).
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Lemma 4.2 There exists a constant My €(0, c0) such that for all ¢ >0 and all
0e(0,1]

IP[ inf Z(u)és]ngsé'“z. 4.3)

dfuxgl

Proof. We first assume 6 < 1/2. Then

]Pl: inf Z(u)gs:izlP[Z(é)gs]+IP|:Z((5)>8, inf Z(u)§£:|

ssux<l dsus1

IPél:0< inf  B,(u) < C:I

Osu<gl1-s

=fd5p(0,5;0, &) + [ dép(0,6;0,8) (44)
0 £

IP:[0< lnf Bl(u)}

O<ugt-é

where B, is a one dimensional brownian motion starting at £ under the probability
IP,. We have

€ C E .
[dzp(0.5;0,¢) < g fdEgen e
> Ny

(@ns3(1 —
&

= G gy ¢ ) = /) (4.3)

by our assumption on ¢. On the other hand using the formula for the distribution
of the supremum of a one dimensional brownian motion gives

o ]PéliO < inf  By(u) < s:|
§ d&p(0,050,¢) eErEl —
¢ ]P:[O < inf Bl(u)}

Ozusgl-46

© 55 dv e & HE~48)
. 0

= j d‘fp(oﬁ 55 07 é)j‘é dve—-(g*v)l/(4_45)

£ 0

= (4nd3(1 — §))" /2 Tdéég“iz/’(“-é)}due“(i“v)z/MAM)
£ 0

< £(2/(rd))'"? . (4.6)

Hence (4.3) holds for 8 < 1/2 with M, = (8/n)1/2 If we take M, = (16/r)*/?, we
obtain the bound for any 6 €(0, 1] after replacing § by §/2. (Note that it is also
possible to prove Lemma 4.2 by using the relationship between the brownian
meander and the brownian bridge [3, Théoréme 8].)

Letd = m — 1l and let R = (R(7), r = 0) be a d-dimensional Bessel process with
R(0) = 0, independent of the brownian meander Z. Since R is distributed as the
euclidean norm of a d-dimensional brownian motion starting at 0 we have by (3.7)

IP[ sup R(1)= f:l < 2@F2 o= 8B (4.7)

0Lt=5u
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Let h: R — R be defined by
h(&) =7y + af + b&?, (4.8)

where y < 0, a >0 and b >0 are constants, and denote the positive root of
h(£) =0 by &,. Then

Co=(2b)" 1 (—a+(a® —4yb)'1?), (4.9)
and we have the following.

Lemma 4.3 There exist two constants M, € (0, 00), M € (0, o), that do not depend
on a, b, y such that

P[3te[0,1]:Z(1) £ h(R(1))] £ My(a + b)(1 + log* (1/&))e M3%0 . (4.10)
where the + ( — ) denotes the positive (negative) part.
Proof. By Lemma 4.2 and (4.7) we have
Pl3re[1/2,17:Z(7) < h(R(1))]

= ilP|: sup R(t)=2"&,, inf Z(r)§h(2”“éo):|
n=0

01 1/2<t51
§ Z 2(2+d)/26f22"§%)/8.21/2 ]\/I1 h(2n+léo) . (411)
n=0
Since
h(2"T 1) S a2" e + b 22TV (4.12)
we obtain

P[3te[1/2,1]:Z(z) = h(R(7))]
< 27 +d)/2 M, Z (aZ"fo + bzzné(z))e—zh:f,/s
n=0
< Mjy(a + b)e %016 (4.13)
with
MYy = 32052 01 4.19)

Similarly, for any integer p = 1,

P[Are[277 1,277]:Z(1) £ h(R(1))]

IIA

iIP[ sup  R(1)22"¢, inf Z(r)éh(Z““éo)]
n=0

O0gt<2-P 2-p-l<t<1

lIA

o0
Z 2(2+d)/?.e—'22" Pg%/s_z(pﬂ)/z M, h(2n+1€0)

n=0

< 2T Y (@2(272E) + b2 ) 2 0
n=0

< M'Z(a + b)e—n{%)/m (4.15)
as before (&, is replaced by 27/2&,).
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Finally, since h(R(0)) = h(0) < 0,

P[37e[0,1]:Z(z) £ h(R(1))] £ M4(a + b) ie—zpé%/ls

< Mj(a+ b)e¢b/3? Z e~ 2132
p=0
10g+(32/68) 6‘520/32
log2 ’
which gives the bound of Lemma 4.3, with M, = TM} and M; = 1/32.

We finally recall without proof a theorem of Denisov [4] which relates the
brownian meander to the one dimensional brownian motion.

§M’2(a+b)<2+ (4.16)

Theorem 4.4 Let = (fi(t),71=0) be a one dimensional brownian motion with
B(0) = 0andlet t > 0. Let 7, be the almost surely unique time such that 7, € [0, t ] and

B(t) = sup B(z). (4.17)
Ost=t
Define for ue [0, 1]
Z(w)=(t — 1) " (B(z) ~ Bz, + ult — 1)) , (4.18)
Z'(u) = () 2 (B(z,) — Bz, — um)). (4.19)

Then the processes Z, Z' are two independent brownian meanders on the time interval
[0, 17, and the pair (Z,Z') is independent of t,.

Remark 4.5 Since B(t,) = (1,)"? Z' (1), Theorem 4.4 implies in particular that Z is
independent of the pair (z,, f(z,)).

5 Bounds for de dxP,[B(z,) € D]

In this section we prove the following.
Lemma 5.1 Let D and 6 be as in Lemma 2.3. Then there exists a constant C; € (0, c¢)
depending on K, |0D|,,_ 1, |D|m, and 6 such that for all t >0

{ dxP.[B(t,) € D] — |Dslm + 2(t/n)"*[0D| -1 — 27 (m — 1)t { H(s)ds

D; aD
SC 3%, (5.1)
Proof. By Lemma 3.4 and Lemma 2.4

] © t
—fdr [ dsJ(s,r) | dEfdrD(& ;1) (4nT)t ~™2 f dy e V1240
0 oD 0 ]

{h(yisy<r—¢&,1y'|<8}
< 2(m+2)/2 evéz/(St) |D61m =<= 2(m+8)/2 (3/@)3/2 IDa

8731372 (5.2)
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Moreover
a o t
fdr § dsJ(s,r) [ défded(& 1;1)(4nt)t ~m™2
0 oD 4] 0
8
X j dy’e‘ly'lz/(‘tr) _ Z A1),
{B(y9)<r—&,[y'|<d} i=1
where

t

A ()= j'dr ] dsJ(s,r)jr"déjdﬂD(f,r;t) ,

0 éD

Aty = — aj?dr ) ds}déj'dr ®(¢, 15 t)(dnr)t—mi2

0 éb 0 4]

X ] dy e @0
(h(yss)>r—¢&,|y'|<8}
r

As(t) = Td?‘ f dsjdéid‘c &(¢, 73 t) (dnr ) ™2
4 0

[ 0

o — |y |2
X { dy eV P
{h(yss)>r=2, |y |<d}

Aty = — Edr | dsJ(s,r)jdfjdr ®(&, 1, t) (dnr) L ™2
0 0

0 [

x | dye e
{y'> 0}
t

As(t) = j"dr fds(1 —J(s, r))jr'difdr B(E, 13 t) (dr)t N2
o o 0 0o

—ty’ |2
X | dy e™¥P14D
{(h(yis)y>r—¢&, 1y 1<é}

Ag(t) = Oj?dr j ds ]? déjd”[ P(¢, T t)(47”)(1~m)/2
0

D r 0

— |y 2
b ] dy e~ 1V'P140
{h{ys)<r—¢&,|y'I<é}

Aq(t)y= — ?dr f ds}odéjdr B(E, ;1) (4nr) L ™2

5 D r O

roo—1y 12
X | dy e~ 1P
{h(ys8)<r=¢&,|y'1<d}

Ag(t) = ?dr {ds(J(s,r)— I)Tdéidr (&, 1; 1) (dnr)t ™2
0

0 b ,

X § dy e~V P1é0
{h(y';s)<r=2&,{y'|<d}

451

(5.6)

(5.7)

(5.8)

(5.10)

(5.11)
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Since
s
fdr | dsJ(s,r)=|Ds|, . (5.12)
0 &b
and

jdiidr P&t t)=1—(mt) 2 Te"fz/“”) ¢, (5.13)
o o

r

we have for A4, (¢)

A1 (t) = |Dslm — 2(t/m)'/? 0D}, -1 + (m — Dt [ H(s)ds + C(t) + C5(t), (5.14)

aD

where
Ci(t) = (mt) 12 0jS)dr fds(l —(m— l)rH(s))Te‘gz/“”dcf , (5.15)
5 v
C,y(t) = (m)‘”zfdr fds(1 —(m— 1)rH(s) — J(s, r))ofe“fz/(‘“)dé . (5.16)
[¥] ép r
But forr = 6
11— (m— )rH(s)| < (62 + (m— )K5~ 1), (5.17)
so that

(CL(O] S (r) 12 Tdr [ dsr?(32 + (m — K5~ 1) e~ g

0 aD r
= 8(97)" 2 |0D -1 (62 + (m — 1)K~ )32 | (5.18)

Furthermore by Lemma 2.5
|Ca()] S (me)~ V2 [ dr [ ds27 (m — 2)(m — 1)(1 + SK)"~3K2s? [dee a0
4] éD r

= 491) 218D, 1 (m — 2)(m — 1)(1 + SK)" 3K2(32 | (5.19)

The integrand in the right hand side of (5.5) as a function of r is a convolution.
Hence by using the formula for the integral (with respect to r on [0, «c)) of
a convolution in r we obtain

t
Ax(t) = — [dsfdrn 11 V2(t — 1)~ V2 (4pr)t —m02 | dyht(y;s)e e

aD 0 {1y']<d}
(5.20)
We obtain an upper bound for | 43(z)| if we replace |, dr in (5.6) by fo (r/8)drand
note that

[drrf()g0r — )de = | rf(r)dr | g(&)dE + [ F(r)dr | Eg(e)de . (521)
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for fe L'[0,0), g€ L'[0, 0) and

frf(r)dr< oo, [rlg(r)ldr< oo. (5.22)

0 4]
Hence

4] =67 fdéjdfjdff‘p(c,r,t)(%rr - "')/zjdr

éD

x f dy'e 1P/ G0
{h(yss)>r, |y (<3}

oG

+6 1fdsfdr§d£¢(€,f,l)(47tf)” W [ rdr

¢D

=]

x | dy'e™ ¥ 0
{h(y:8)>r,{y'|<d}

=5 " [dsfdra 12t — 1) 12 (4re) A2 dy hT(y;s)e Ve

i 0 tyi<a)

+(20)7 1 dsjdrn L 2(p  g)" 12 (4pg )L —mi2

éD

x [ dy(h(y;s)e e (5.23)

ty'i<é}

By (2.5) we have for |y'| < o

h™(y;s) < >|y’|2 ; (5.24)

K N 1
2 6
e K 1V .,
WP s(5+3) oye . (5.25)
Replacing {|y'| < 6} in (5.23) by R™ ™, gives together with (5.24) and (5.25)

PROE 5(’2< + ;>|amm1-8(m — 1)(9m)7 V22

+ <§ + %)2 10D, (- 16T ((m + 2)/2)(3rl((m — 1)/2)) 1 132 (5.26)

Replacing {;)y>4,dy’ by [rm- 1|§ I
|A4(0)] £ 672 Dslw 320 ((m + 2)/2) - B [ ((m — 1)/2))" 122 . (5.27)

In order to estimate | As(f)| we first use (2.8), and we subsequently replace jg dr in
(5.8) by [ dr. Hence

dy and — [, d¢ by [ d& in (5.7) gives

|A5(0)] < }Odr { ds(m— DrK (1 + 51()""2}(15}41 B 1 1)
(4] oD 0 0

* ()t mmi2 f dy e 1y 12160 (5.28)
{h(ys) >r =&yl < 8}
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The integrand in the right hand side of (5.28) (as a function of r) is of the type (5.21).
We obtain as in (5.23)-(5.26)

1As(@)] < (m— 12K(1 + 5K)" 2 <§ + %) 16D, 8(9m) /217

(K 1} 16 T ((m + 2)/2)
+ (m — 1)6K(1 + 6K) 2(*2"4'5) 'aD|m,1—~—-—————3nr((m_ 1)/2)t3/2

(5.29)

Applying Fubini’s theorem in (5.9) with respect to the integrals over r and & gives

Aet) = Tdé | ds } dt ®(E, ;1) (dnr)t ™2 [ dy'min{&h (y;s)}e PIPE
0 o {1y’ <8}
= C5(t) + Cu(1), (5.30)

where
t
Cy(t)= [dsfdin 't 2 (t — )" 2@rn)t ™2 [ dy' h™ (y';s)e IPIPIEO
aD 0 {ly'| < &}
(5.31)

t
Ca)= [ ds[de(@n)™™2 [ dy [ dEE—hT(y39) P& T
a0 {ly'l <8} [0.h(¥;5)

LA IC N (5.32)
In order to estimate |C,(t)| we note that for £ € [0, h(y'; 5))
IE=h"(y ;9 £h (¥59), (5.33)
and
(h”(ys))?
dEPE S —=7 13> (5.34)
[O,h’{y’; 5) ( : At (t — 1)
and for |y'| < ¢
- ’ 3 K 1 } 715
5y s | 5+5) oE. (5.35)
Hence
t K 1 3 -
[Ca)| S [ dsfdr(@n)y o732 (1 — 1)~ 12 <—. + —> 5 [ dy'|y)Pe vt
oD 4] 2 5 RrR™1!
K 1\ 32I((m + 4)/2)
= =+<] 8|0D]p_ 1 o t312 5.36
<2 +5> 9Pt 3 T = 1)) (5.36)

Moreover, by (5.20) and (5.31)

t
A0+ C3(0)= — [ds[dra~t e V2t — o)~ 112 (4pr) 2 ™12
0

[ ay'h(y;s) e 1V'12/(40)
{ty'l <}

= — 27 (m~ 1)t | H(s)ds + Cs(2) + Co(t) , (5.37)
oD
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where
t

Cs(t)= [ ds[drQm)y 'v 2 (t — 1) 12 (dnr)* ~m/2
0
m—1

x Y ki(s)yle IIGn (5.38)

{Iv >0} i=1

t
Colt) = j ds j drm YtV (0 — 1) V2 (drr)t M2
0

m—1
x j. }dy/{ Z k,(s)y,z/z—h(y” s)}e‘b"lz/(h)‘

{ly't<é i=1

(5.39)

Replacing Zi":ll ki(s)y? by 6 ' K|y'|> and {|y’| >} by R™ ! in (5.38) gives the
following bound:

160 ((m +2)/2) .,

|CsOl 210Dk s K677 3 e 5

(5.40)
Replacing {Z ki$)yE/2 = h(y' s)} by 67%|y'* and {|y’| <6} by R™"" in
(5.39) gives

32r((m + 2)/2) £302
3l ((m — 1)2)

Replacing — [°dr by [; (r/8)dr in (5.10) and replacing J(s,r)—1 by
(m— 1)rK(1 + sK)"~ % and jg dr by [ dr in (5.11) gives

[A(0)] + [Ag()] < {07 + (m — DK(1 + 6K)" "2}

|Ce(t)] £|0D]p-1 072 (5.41)

© 0 '
« [ ds | rdr {d¢ | dr @, v 1)(4r) ™2
oD 0 , 0
x § dy’ e~ v 120

{h(y s)<r—¢&ly'l<é}
={6"' 4+ (m— DK(1 + 5K)" "2}

© ¢ t
- [ ds | dE [ rdr [ dt D&, T 0)(dnr)t ™2
0

oD 0 0

x f dy/e—ly’lz/(ttr)
{h(yss)<r—2<&ly'l <8}
<{67 +(m— DKQA + K" ?}

@ & t
< ds | de { dr[dv®, t)(4nr)tt ~m/2
a0 “w 0
N i dy’ =1 1140

{h(ys)<r—¢&ly'1<é}
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={6"'+(m— 1)K + SK)""?}

t
[ dsfdrn 2t — 1) VP (dm)t T mi2

oD 0
x | dy hT(y;s)e e (5.42)
{lyt<a}
By (2.5) we have for |y'| < o

K 1
RO (-2—+5>1y'x2 . (543)
Hence
4701 + | 450 £ {87 + (m— DK(1 + 6K)" 2} {%é}wmm-l
-8(m — 1)(9m)” V232, (5.44)

This concludes the proof of Lemma 5.1 with a constant C, which follows from (5.2},
(5.18), (5.19), (5.26), (5.27), (5.29), {(5.36), (5.40), (5.41) and (5.44)

6 An upper bound for ID,; dx P.[Tp < 1,51, B(r)eD]

In this section we will prove the following.

Lemma 6.1 Let D and & be as in Lemma 2.3. Then there exists a constant C, €
(0, o) depending on K, |0D|,,— 1, |D|n, and & such that for all t > 0

{ dxP [Ty <7, <t,B(z,)e D] < C,t¥2 . (6.1)

Ds -
Proof. Let x = (s, r) € Ds be arbitrary and let B(t), t = 0 be given by (3.9). For every
u = 0 we define

Ty = inf{r: B,(t) = sup Bm(v)} . (6.2)

0gv=u

We will consider the brownian motion B under the probability measure IP, (as in
Lemma 3.4), but also under P, for ¢ & x. It should be understood that By,. . ., B,
or 1, are in all cases defined with x as a reference point. Let §; be as in Lemma 2.6.
Then

P.[Tp st <t,B(r)e D] S P [|B(Tp) — x| 2 64]
+P,[Tp<t st|B(Tp)— x| <&y, B(x)eD] . (6.3)

By Lemma 3.3

P, [IB(Tp) — x[ 2 0:] = IPx[ sup |B(s) — x| 2 51]

0<s<t

é 22+m/2 e 52/(81) é 2(8+m)/2 (3/8)3/2 51—3[,3/2 . (64)
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Moreover, by the strong Markov property at 7
P.[Tp =71, =1,|B(Tp) — x| <6, B(t,) e D]

SE. [lir,<0iry) - x| <oy @x(B(Tp) t — Tp)], (6.5)
where for e e 0D and u = 0
¢.(0,u) =P, [B(r,)e D] (6.6)
(we write ¢, to emphasize the choice of x as a reference point, the definition of
7, depends on N(s) and thus also on x).
For ¢ € éD with |6 — x| < §,, we have by Lemma 2.6
m—1
o=x+ Y Avls)+ (h(i;s)— r)N(s), (6.7)
i=1
for a unique A’ = (Aq,. .., An—1) € R™ ! with | 2’| < §,. Let w e IR™ be such that
lw— o] < é, and

m—1
w=x+ Y wuis) — N(s) . (6.8)
i=1
By Lemma 2.6
Ezr—h(s)— Vh(A;s) (v — A+ K|y — 22 (6.9)
implics w ¢D. Furthermore by Lemma 2.6 and (6.7)
IVh(4;5)] £ 2K |V | £ 2K|g — x| . (6.10)

It follows that

¢x(o—% Ll) g ]Pr7|: sup IB(S) - G' g 51:|

0s<u
+ P, [B,,(t,) < r— h(A;s) — Vh(Z; s) (B (t,) — 2)
+ K|B'(z,) — 2]*]. 6.11)

By Lemma 3.3

nz,[ sup |B(s) — o] 2 4, ] < 20z g - oS0
0<s=<u
< 2EEmMI2(3/6)312 §3312 6.12)
Moreover, we note that by Lemma 3.2 the joint distribution of
(r — h(X;s) — B, (t,), B'(r,) — 4, t,) under P, has a density given by
pu(& Y1) = @& T u)(dnr)t T2 e IO 15 () 10,n() . (6.13)
Hence the second term in the right hand side of (6.11} is equal to

u

fdr | dy fde D&, T u)(dnr)t M2 g 111G
0 R (0<&<Ky|>— VA s)y)
=[dvd-(@m) D22y )T U2 [ gy e yIP/GY
0 R™1

. (1 —exp — %((Vh(/l’; sy — K|y’|2)_)2> . (6.14)
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Since

1 - 1
I —exp— o= ((Vh(F:9)y = KIy') P < o

(VR )1y + K2y,
(6.15)
we obtain the following upper bound for (6.14):
(m — 1)|VR(Z; s)> + (m? — DK?u £ 4(m — )K?|o — x)* + (m* — 1)Kt .
(6.16)
Hence by (6.3), (6.4), (6.5), (6.12) and (6.16)
P.[Tp St =t B(t)eD]
< U0FmI2(3/g)312 573312
+ E, [ 17, < 01Bry) - 1< 6,) (40m — DK?|B(Tp) — x|* + (m* — DK?*1)]
< QU0HmI2 (370)312 5734312

+ IE, [I{T,,gt} (4(m — 1)K? sup {B(s) — x|* + (m* — 1)K2t>:|

O0ssst
§ 2(10+m)/2 (3/8)3/25;3[3/2 + (mZ . 1)K2tIPx[TD é t]
12
+ 4(m — DK (E.[ 17, <" (mx[ sup |B(s)—xl"’]> . (6.17)
0<s=t

By Doob’s inequality we have

mx[ sup |B(s) — xl‘*} < (%)4 E.[|B() ~ x[*]=453"*m(m + 2)1* .

0<sst
(6.18)
By Lemma 3.3, (6.17) and (6.18) we obtain
P,[Tp <1, <t,B(r,)e D] < 2U0+mI2(3/e)32 5731312
+2@FmI2 (2 (YK /Y
4 200tm/4 372 — 1)(m? + 2m)'/2 Kt
x g TdrEen 6.19)

Finally for « > 0

s
[ dxe ) = [ gr [ dsJ(s,r)e "/

D, 0 éD
6
< (1 + 8K)" 1 |@D|p-, dre riien
0

< (1 + 8K)" 18D\, (na/4)M2 112 . (6.20)
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This completes the proof of Lemma 6.1 with C, given by
Cz — 2(10+m)/2 (3/8)3/2 51_3|D|m + 2(3+m),/2 ﬂ1/2(m2 _ 1)K2(1 + 6K)m41 |5D|m—1
+ 2@4FmI4 372 712 1y — )(m? + 2m) 2 KE(1 + SKY" Y OD |-y . (6.21)

7 An upper bound for jD,, de P [1, < Tp £ t]

In this section we will use the estimates of Sect. 4 to prove the following.

Lemma 7.1 Let D and 6 be as in Lemma 2.3. Then there exists a constant C3 € (0, o)
depending on K, |0D|,,—, and 9 such that for all t >0

fdxP [1,< Tp < t] < Cyt? . (7.1)
D;
Proof. Using the parametrization of Lemma 2.3 we have

5
[dxP[r,< Tp<t]l={dr [ dsJ(s, NPy, [1,< Tp £t]

D; 0 @D
8
<1+ 0K fdr | dsP,[r< Tp<t]. (1.2)
0 8D

In what follows we fix s € D and we will bound
j drPg ,[1, < Tp=t]
0
independently of s. Let B(z), T = 0 be given by (3.9) and let X € R™ be given by
X=x+ mil yivi(s) — EIN(s) . (7.3)
i=1
Then, provided that |[X — x| < J, Lemma 2.3 implies that if ¢ <r— H(s,y')

— 672y’ then feDandif ¢ =r— H(s,y') + 6 2|y’|?, then X¢ D, where

m-—1

H(s,y) = Y ki(s)yi/2. (7.4)

i=1
[t follows that

Pl < Tp<i]< IPX[ sup |B(v) — x| 2 6}

O<vgt
+ P, [Bu(z,) <r— H(s, B'(t,)) + 5_2|B’(Tl)|3 >
Juelt,]: Buw) 2 r— His, B'(1))— 0 2B @)P]1. (7.9
By Lemma 3.3,
IPXI: sup |B(U) . X| g 5:| é 2(2+m)/2 e*()z/(St) é 2(8+m)/2 (3/6)3/25*3 t3/2 .

O<vst

(7.6)
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It remains to bound the second term in the right hand side of (7.5). First we
introduce some notation. For u € [0, 1],

X(w)y=(t— 1) Y2 (Bu(t) — Bu(t, + ult — v,))) , (7.7)

Yy = (Yy),..., Y, (u) (7.8)
where,fori=1,... m—1

Yiu)=(t — 1) V* (Bilzr, + ult — 1,)) — Bi(t))) . (7.9)

Next we apply Theorem 4.4 with f = B,, and infer that X is a brownian meander
starting at 0, independent of (z,, B,,(z;)). By the independence of B,, . .., B, and
the fact that 7, is a measurable functional of B,,, we also get that Y,,. .., ¥,_, are
independent brownian motions, independent of B,,, and hence independent of X.
Moreover, (X, Y, ..., Y1) is independent of (z,, B(t,)).

Let x(& y,u), £€[0, ), y e R™ ', ue[0,t] denote the density of (B,(z,),
By(t),. .., Bu—1(1), t — 7,). Then the second term in the right hand side of (7.5)
can be written as

oC t
D(s,r,t)= [ ds[dy' [duy &y, ) Lecr - s yre o720
0 R™' 0

P [Icel0,1] & — w2 X@) 2 r— H(s,y +u"2 Y'(0)
-7y +utr Y (m)P]. (7.10)
Then, using the bound (a + b)* < 8(a® + b3) for a, b = 0, we have
H(s, y' + u'2Y' (1)) + 072y + ' Y'(9)?

SHE )+ 82y P+ u'? W(y', u 1)
where

Wiy u =Ky | Y (@) + gu”z Y (D)2 + 887 2ul Y'(0)]? . {711
1t follows that:

K t
D(S> r, t)é j dé j dy,jdl/l Xt(é:’ yr7 ll) 1{§—r+H(S,y')<(5_2|y'13}
0 R™! 0

‘P[31el0, 1} X(@) Lu Y2 (& —r+ H(s,y)
+ 83y )+ W(y,u1)] . (7.12)

Before we use Lemma 4.3 we make two preliminary reductions. First we have

] K t
Pdr[de [ dy' [duy &y, u)ly so2yrse rensyse iyr)
1] 8]

0 R™ !

=

D 8

d¢ | dy' [duy &y, w952y}
1 [¢]

o
=93 2E[|Y'(z)1*]
=957 2E[| Y'()]P]E[:2?]

= %F((m + 2)/2) (T ((m — 1)/2))" 182632 (7.13)
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independently of s. Secondly we have by Lemma 3.3

]P[ sup |Y’(’E)| g 514_1/2] é 2(1+m)/2 esz/(Su)

051
S2TTMR3leP TR (1.14)

Note that, on the set {supo<.<;|Y'(z)] < du™ "2}, we can bound
K
Wy w1 = Kly'IY' (@0 + <3 + 8541)'11/21 Y0P =V(y,ut. (715
It follows from (7.5), (7.6), (7.12), (7.13), (7.14) and (7.15) that

1

‘ 96 I’ 2)/2
[drPy, [0 < Tp < 1] < <z”+m’/2(1 21730 + M) 57709
0 A

I'((m—~1)/2)
8 el
+jdrjdé | dyjdux,(g,y U die s sy < — 86 21y
0 R™ !

‘P[3te[0,1]: X(t)Su V(& —r+ Hs,y)
+ 85 2y M)+ V(y,u 1] . (7.16)

Note that X is a brownian meander starting at 0, and that | Y'| is a d-dimensional
Bessel process, also starting at 0, and independent of X. Put

y=u @ = His y) + 8072y, (7.17)

a=Ky'l, (7.18)
K

b:<5+85”‘)u”2, (7.19)

and note that y < 0 on the set of integration. Hence by Lemma 4.3
P31 [0, 1] X(1) £y +al V() + b|Y'(0)*]
< M,(a+ b)(1 + log™ (1/x)) e ~ Msxd (7.20)

with
X = (2b) 1 —a + (a® — 4yb)'1?) . (7.21)

Denote the multiple integral in the right hand side of (7.16) by F(t}). Then by (7.18)
and (7.20)

é s3] t
Fsfdrfac | dy f du 3 (&Y w Ve v b His vy < — 8872y F)
0 0 R
M, (

a+ b)(1 + log* (1/x0)) e~ Max3 | (7.22)

Note that a and b do not depend on r. The change of variables r — y results into

0 t 0
Fi()) S My [ de [ dy'fduy &y, w | dy(a+b)(1+log*(1/xo)) e~ Mexs,
0 0 — o0

R™ !

(7.23)
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using the trivial bound u'/? < tV2. Note that
y = (4b) "1 (a® — (a + 2bx,)?) ,

so that the change of variables y — x, gives

(t)<Mzt”2J"dé [ dy’ Idut(é y', u)

R™ !

X j dxo(a + b)(a + 2bxo)(1 + log* (1/x0))e ~ Ms%3

M, tl/z”g [ dy jduxt (& v, u)(Nia(a + b) + 2N,b(a + b)),

R™ !

where

Ny = [ dv(1+log" (/) ",
0

= [ dvu(l + log" (1/v))e M>** .
0

By (7.18) and (7.19) we have

0

o r
= K*(m — 1)t

o)

0 R™!

II/\

< + 86" 1)(m— 1)\ ¢

© t
fac | dy’jdux,(é,y',u)b2:<K+86 1> t,
0o R 0 2 .

and by (7.26) and (7.27) we have

1
Ny <2 Yn/M3)V? — jdvlogv <7,

N, 2(2M;)” —fdvvlogv<17

since M3 = 1/32. From (7.25), (7.28)—(7.32) we obtain
F)<41m(K+ 85 1)2M,13?

— 3.7.41.n*1/22(18+m)/2 m(K + 85*1)2 t3/2 .

[de | dy j'duxt(éy uyab = K < + 857 Jt2E[ Y (r,)|]

(7.24)

(7.25)

(7.26)

(7.27)

fde | dy'[dug(y,wa* = KE[[Y ()] = KE[|Y(DP1E[x]
0

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)
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This completes the proof of Lemma 7.1 with C; given by

96 I'((m+2)2) .,

Cs = {2‘”'"”2(1 2O T E =)

+ 30741 V22082 (K 4 85T 1Y } (1 + K&)" '[0Dlw—y . (7.34)

8 Proof of Theorem 1.1

Let D and 6 be as in Lemma 2.3. Then

o) = [ dxP, [Ty >t]+ | dxP,[Tp > (]
Dy

DD,

< |D\Dyl + | dx P, [B(r) € D]
Ds

<Dl — 2(t/m) 20Dy + 2 "(m— V)t [ H(s)ds + C, 22, (8.1

D

by Lemma 5.1. On the other hand by Lemma 3.3

[ dxP[Tp>112 [ dx[1—207m2 g d?i60]

DAD, DiD,
> |D\ Dy [1 — 22 Tmi2e=32/1807
2 |D\Djlp — | D, 6320872 (3/e)32 132 (8.2)

By (1.37) and Lemmas 5.1, 7.1 and 8.1
j Adx P, [T, >t] = j dx [P [B(r,)e D]
Dy D,
~ P [T <7 <t Br)e D] — Pylr,< Tp < 1]

2 [Dslm — 2(t/m)"? 10D |-y + 27 (m — 1)t | H(s)ds
oD

—(Cy + Cy + C3)13% . (8.3)
This completes the proof of Theorem 1.1 with a constant
C=C;+ Cy+ Cy +28+™2(3/)32573|D|,, . 8.4)
In fact, using various elementary inequalities such as
é
|Dg| = [dr | dsJ(s,r) £ 6|0D|,_(1 + K)""1, (8.5)
0 oD

together with the bounds for C,, C, and C; from the Sects. 5, 6 and 7 respectively,
we obtain

C < 2190 m[(1 4 SKY"* 1(372 + 872 + K?){@Dlp-y + 63Dln] . (86)
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