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Abstract: We study the characteristic polynomiagU, 6) of matricedJ in the Circular
Unitary Ensemble (CUE) of Random Matrix Theory. Exact expressions for any matrix
size N are derived for the moments af| and Z/Z*, and from these we obtain the
asymptotics of the value distributions and cumulants of the real and imaginary parts of
logZ asN — oc. In the limit, we show that these two distributions are independent and
Gaussian. Costin and Lebowitz [15] previously found the Gaussian limit distribution for
Im log Z using a different approach, and our result for the cumulants proves a conjecture
made by them in this case. We also calculate the leading ofder oo asymptotics

of the moments ofZ| and Z/Z*. These CUE results are then compared with what is
known about the Riemann zeta functio@) on its critical line Re = 1/2, assuming

the Riemann hypothesis. Equating the mean density of the non-trivial zeros of the zeta
function at a heighT” up the critical line with the mean density of the matrix eigenvalues
gives a connection betwedhandT . Invoking this connection, our CUE results coincide
with a theorem of Selberg for the value distribution of ta@/2 + iT) in the limit

T — oo. They are also in close agreement with numerical data computed by Odlyzko
[29] for large but finiteT. This leads us to a conjecture for the momentg ¢f/2 + iz)|.
Finally, we generalize our random matrix results to the Circular Orthogonal (COE) and
Circular Symplectic (CSE) Ensembles.

1. Introduction
We investigate the distribution of values taken by the characteristic polynomials
Z(U,0) =det(I — Ue ') (1)

of N x N unitary matriced/ with respect to the circular unitary ensemble (CUE) of
random matrix theory (RMT). Our motivation is that it has been conjectured that the
limiting distribution of the non-trivial zeros of the Riemann zeta function (and other
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L-functions), on the scale of their mean spacing, is the same as that of the eigenphases
0, of matrices in the CUE in the limit a¥ — oo [28,29, 31]. Hence the distribution of
values taken by the zeta function might be expected to be related to th@sé/ of),
averaged over the CUE.

The Riemann zeta function is defined by

1 1\t
¢(S>=27=H(1—7) )
n:ln p P

for Res > 1, and then by analytic continuation to the rest of the complex plane. It
has infinitely manynon-trivial zeros in thecritical strip 0 < Res < 1. The Riemann
Hypothesis (RH) states that all of these non-trivial zeros lie otriltieal [ineRes = 1/2;
thatis,(1/2 + it) = 0 has non-trivial solutions only when= ¢, € R.

Montgomery [28] has conjectured that the two-point correlations between the heights
t, (assumed real), on the scale of the mean asymptotic spagin®@s,, in the limit
n — oo, are the same as those which exist between the eigenvalues of random complex
hermitian matrices in the limit as the matrix size tends to infinity. Such matrices form
the Gaussian Unitary Ensemble (GUE) of RMT. The GUE correlations are in turn the
same as those of the phaggsof the eigenvalues aV x N unitary matrices, on the
scale of their mean separation 2V, averaged over the CUE, in the linWt — oo. (For
a review of the spectral statistics of random matrices, see [27]).

This conjecture is supported by a theorem, also due to Montgomery [28], which
implies that, in the appropriate limits, the Fourier transform of the two-point correlation
function of the Riemann zeros coincides over a restricted range with the corresponding
CUE result. It is also supported by extensive numerical computations [29].

Both the conjecture and Montgomery’s theorem (again for restricted ranges) extend
to all n-point correlations [30]. There is also strong numerical evidence in support of
this generalization; for example, the distribution of spacings between adjacent zeros,
measured in units of the mean spacing, appears to have the same limit as for the CUE
[29]. Furthermore, heuristic calculations based on a Hardy-Littlewood conjecture for
the pair correlation of the primes imply the validity of the generalized conjecture for all
n, without restriction on the correlation range [24,7,9].

Thus all available evidence suggests that, in the limivas> oo, local (i.e. short-
range) statistics of the scaled (to have unit mean spacing) zgros tn% log ’Z
defined by averaging over the zeros up to %#, coincide with the corresponding
statistics of the similarly scaled eigenphaggs= Hn%, defined by averaging over the
CUE of N x N unitary matrices.

This then implies that locally-determined statistical properties(ef, high up the
critical line, might be modelled by the corresponding properties @, averaged over
the CUE. One of our aims here is to explore this link by comparing certain RMT calcu-
lations with the following theorem and conjecture concerning the value distribution of
c(1/2+ ir).

First, according to a theorem of Selberg [33,29], for any rectafAgheR?,

im ~ {f3T§t<2T,MeE
V(1/2)loglogT
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that is, in the limit as’, the height up the critical line, tends to infinity, the value distri-

butions of the real and imaginary parts of lnd./2+iT)/./(1/2)loglogT each tend

independently to a Gaussian with unit variance and zero mean. Interestingly, Odlyzko’s

computations for these distributions wh&n~ ;20 show systematic deviations from

this limiting form [29]. For example, increasing moments of both the real and imaginary

parts diverge from the Gaussian values. We review this data in more detail in Sect. 3.
Second, itis a long-standing conjecture tliat), defined by

T
. 1 N
I o [, ez i = £0ac, @

where

a@):IT{(1—JJPV2<Z;<_éﬁ%£?> p_m>}’ X

p

exists, and a much-studied problem then to determine the values it takes, in particular for
integer (see, forexample, [33,21]). Obviousfy(0) = 1. ltisalsoknownthaf (1) = 1
[17]andf(2) = 1/12[20]. Based on number-theoretical arguments, Conrey and Ghosh
have conjectured that(3) = 42/9![13], and Conrey and Gonek thAt4) = 24024/16!
[14]. Conrey and Ghosh have obtained a lower boundgfaheni > 0[12], and Heath-
Brown [18] has obtained an upper bound foxQ. < 2.

We now state our main results, all of which hold foe R.

() ForRe > —1,

N

My(s) =(1Z(U, 9)|S>U(N) = l_[
=1

FHrG +s)
e o (6)
TG +s/2)

where the average is over the CUENdk N unitary matrices, thatis over the grolUgN )

with respect to the normalized translation-invariant (Haar) measure [34,27]. Clearly the
result extends by analytic continuation to the rest of the compfaane. It follows from

(6) that, for integerg > 0, My (2k) is a polynomial inN of degreek?.

(i) Fors e C,

| zwe R Y ()2
LN(s)—<<m> > _l_[[‘(j+s/2)F(j—S/2)’ (7)

UNNy j=1

where argZ (U, 0) is defined by continuous variation alofig- i¢, starting at—ie, in

the limite — 0, assuming is not equal to any of the eigenphasggswith log Z (U, 6 —

ie) — 0 ase — oo. Thus ImlogZ(U, #) has a jump discontinuity of size when

0 = 0,.

(iii) The value distributions of the real and imaginary parts offq@/, 6)/./(1/2) log N

each tend independently to a Gaussian with zero mean and unit variance in the limit as
N — oo. This corresponds directly to Selberg’s theorem (3) fordey2 + it) if we
identify the mean density of the eigenangtgs N /2x, with the mean density of the
Riemann zeros at a heigfitup the critical Iine,%Z log %; that is if

T
N =log o (8)
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This is a natural connection to make between matrix size and position on the critical
line, because the mean eigenvalue density is the only parameter in the theory of spectral
statisitics for the circular and Gaussian ensembles of RMT.

The central limit theorem for Im log was first proved by Costin and Lebowitz [15]
for the characteristic polynomials of matrices in the GUE (see also [32] for a review of
related results). Our proof is new, and goes further in that it allows us to compute the
cumulants.

(iv) Let O, (N) be then™ cumulant of the distribution of values of Re I@g defined
with respect to the CUE, and I, (N) be the corresponding cumulant for Im ldg
Then

n—1 _ 1 N
0n(N) = =5 == vV, ©
=
and
M N n—=1):
R,N) =] 271 i PG) n even 10)
0 n odd

wherey is a polygamma function. Thug1(N) = R1(N) = 0. Itis straightforward to
obtain a complete (larg¥’) asymptotic expansion for these cumulants. For example,

02(N) = <(Re IogZ)2> IogN 4z (y P+t f oY, (1)
) 24N2 ’
on— 1_
0,(N) = ()" =+ c(n () + O(N>™), n >3, (12)
and
_ 2 _
Ro(N) = ((mlog2)%) = 02(N)
~Liogn 4k L 4
= 2IogN-|—2(y+1)+24N2+0(N ), (13)
(_1)(k+l) > ok
R (N) = 55— (2k = DT @) + ON*2), k> 1. (14)

The fact that whet > 1 Ry (N) tends to a constant @ — oo proves a conjecture
made by Costin and Lebowitz [15].

(v) It follows from (6) that
G231+

— lim — 2| _Gd+n
feue) = Jim (12,007 = EaTs (15)

whereG denotes the Barnes G-function [3], and hence flagie(0) = 1 (trivial) and

k=1

j!
feuek) = . (16)
]11 (j +5h)!

forintegerst > 1. Thus, for examplefcue(l) = 1, fcue(@) = 1/12, fcue(3) = 42/9!
andfcue(4) = 24024/16.. fcue(k) is the coefficient oN¥in My (2k), which, as noted
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above, is a polynomial iV of degreek?. The coefficients of the lower-order terms can
also be calculated explicitly. Similarly,

im N2 Ly@0) = G —W)GL+ 1), (17)

The results listed above allow us to compute the value distributions of R& log
Imlog Z, and|Z|, for any N, and to derive explicit asymptotics for these distributions
whenN — oo.

In comparing our random-matrix results with what is known about the zeta function,
we find the following. First, the value distributions of Re l6@nd Im logZ coincide with
Odlyzko’s numerical data for the corresponding distributions of the values of the zeta
function at a heigh?" up the critical line if we make the identification (8). This implies
that, with respect to its local statistics, the zeta function behaves like a finite polynomial
of degreeN given by (8). The value distribution ¢&| is similarly in agreement with
our numerical data for that ¢§ (1/2 + it)|.

It is important at this stage to remark that Montgomery's conjecture (and its gener-
alization) refers to thehort range correlations (i.e. correlations on the scale of mean
separation) between the Riemann zeros at a hdiglp the critical line, in the limit
asT — oo. The finiteT correlations take the form of a sum of two contributions, one
being the random-matrix limit and the other representong range deviations which
may be expressed as a sum over the primes [4,25,5]. This is also known to be the case
for the second moment of Imlag1/2 + it). Specifically, Goldston [16] has proved,
under the assumption of RH and Montgomery’s conjecture, that-as oo,

T
lf (Imlog¢(1/2 + it))%dt
T Jo

1 T 1 > 1l-m) 1

= 5loglog=—+ 5(r +1) +mz_:22pj R +o0(1). (18)

Here the first two terms on the right-hand side agree with those in (13) if we again make
the identification (8). The same general behaviour also holds for the higher moments
of log¢. It is plausible then that the moments|gf1/2 + ir) | (which are determined

by long-range correlations between the zeros) asymptotically split into a product of two
terms, one coming from random matrix theory and the other from the primes. Taken
together with the fact thafcye(k) = f (k) fork = 1, 2, and, conjecturally, fot = 3, 4,

this leads us to conjecture that

f) = fcue®) (19)

for all A where the moments are defined. This is further supported by other heuristic
arguments, and by the fact that the produat @f) and our formula (6) for the moments
of |Z(U, 0)| matches Odlyzko’s numerical data for the momentg; ¢1/2 + it)| over
the range O< A < 2, where we can compare them, again making the identification (8).
These results were first announced in lectures at the Erwin Schrodinger Institute
in Vienna, in September 1998 and at the Mathematical Sciences Research Institute in
Berkeley in June 1999.
The structure of this paper is as follows. We derive the CUE results listed above in
Sect. 2, and then compare them with numerical data (almost all taken from [29]) for the
Riemann zeta-function in Sect. 3. Our conjecture (19) is also discussed in more detail
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in this section. In Sect. 4 we state the analogues of the CUE results for the other circular
ensembles of RMT, namely the Circular Orthogonal (COE) and Circular Symplectic
(CSE) Ensembles.

Numerical evidence suggests that the eigenvalues of the laplacian on certain compact
(non-arithmetic) surfaces of constant negative curvature are asymptotically the same as
those of matrices in the COE, and so our results might be expected to describe the
associated Selberg zeta functions. More generally, it has been suggested that in the
semiclassicali{ — 0) limit the quantum eigenvalue statistics of all generic, classically
chaotic systems are related to those of the RMT ensembles (COE for time-reversal
symmetric integer-spin systems, CUE for non-time-reversal integer-spin systems, and
CSE for half-integer-spin systems) [10], and our results might then be expected to apply
to the corresponding quantum spectral determinants. It is worth noting in this respect
that extensive numerical evidence supports the conclusion that for classically chaotic
systems the value distribution of the fluctuating part of the spectral counting function
(which is proportional to the imaginary part of the logarithm of the spectral determinant)
tends to a Gaussian in the semiclassical limit [6, 2].

Finally, it is worth remarking that Montgomery’s conjecture extends to many other
classes of-functions, and hence our results are expected to apply to them too, in the
same way. However, Katz and Sarnak [22, 23] have conjectured that correlations between
the zerodow down on the critical line, defined by averaging overfunctions within
certain particular families, are described not by averages over the CUE, that is, over the
unitary groupU (N), but by averages over other classical compact groups, for example
the orthogonal grou@ (N) or the unitary symplectic groupg Sp(2N). Thus the value
distributions within these families close to the symmetry poiat0 on the critical line
will also be described by averages over the corresponding groups. We shall present our
results in this case in a second paper [26].

2. CUE Random Matrix Polynomials

2.1. Generating functions. All of our CUE random-matrix results follow from the for-
mulae (6) and (7) for the generating functiaWs, (s) and L y (s), and our goal in this
section is to derive these expressions.

Consider firstMy (s). We start with the representation @{U, 6) in terms of the
eigenvalueg’? of U:

Z(U,0) = ﬁ (1 - ei<9n—9>) . (20)

n=1

The CUE average can then be performed using the joint probability density for the
eigenphases,, (2m)"N)™];_, | — e""m|2 [34,27]. Thus

1 2 2
715 - = dor - --de
0ZF) ) (Zn)NN!/(; /0 1 doy

2 N
< 1 [Ja-e@=)
n=1

1<j<m<N

N

o0 _ oifn

. (21)
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This integral can be evaluated exactly using Selberg’s formula (see, for example,
Chapter 17 of [27]):

J(a7bsa718’yaN)

2y
N
/ / x| [J@+ixp™®—ix)Pax, (22)
* 1<]<Z<N j=1
_ @)V 'TA+y+jT@+p—WN+j-Dy -1
- (a + b)@+PN-yN(N-1)-N H

FA+y)le—j»r@—jy)

wherea, b, «, f andy are complex numbers, Re Re b, Re« and Reg are all greater
than zero, Réx + 8) > 1 and

_% <Rey <min (;:e_al, Jse_ﬁl, Reé?NJr_ﬁl; l)> (23)
To see this, note that (21) can be written in the form
2N(N 1)25N 2
(1Z1"vwy = “NIEON / / doy - - (24)

x I |sin®;/2—6u/2)° ]_[ ISin(8, /2 — 6/2)]° .

1<j<m<N n=1

Clearly this integral is independent 6f(as it must be, since we are averaging over all
unitary matrices) and so we get= 0. Using sir{6; —6,,) = sin6; cosb,, —cosh; sinb,,,
we then have

(ZFom = 2o / / a6y - 1 Icote — cots, |’
1<j<m§N
x 1_[ (smze ) 1_[ Ising;|* . (25)
k=1

Finally, the change of variableg = cot6, gives

s 2N2+AN 2
121w = i |- dx1 [T b=l

1<j<m§N

X]_[((1+zxn)(1—lxn)) N-s/2
n=1
ON?+sN
= yizon /&L N +5/2. N +5/2.1,N)
_ ﬁ C(HCGs + )

(TG +s/2)7 (9)
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provided Re > —1, which is just the result (6). Clearly the product (26) has an analytic
continuation to the rest of the complex plane.

Consider nextL y (s). Note first that, according to the definition given in the Intro-
duction,

~
<;> = exp(i Imlog Z(U, 6))

N oo _.
_ exp<_,~ Ty w> , 27)

n=1m=1

where for each value of, the sum of sines lies iG-, 7 ]. Hence, again using the joint
probability density of the eigenphasgs

7 5 1 2 2 " "
= - - deq ---db || i0j _ oiOm
<Z*> N!(Zﬂ)N/o /0 vodoy ] et e
U(N)

1<j<m<N

N 00 .
np(zﬂ_ﬂd) 8)
n=1

k=1

2

As before, this integral is independenttfand so we set = 0.
The sum in (28) can be evaluated using

. sinkx 7w —x
> =5 for 0<x<2m (29)

Note that this relation keeps the sine sum within the rapge, 7] prescribed by the
definition of the logarithm. Substituting (29) into (28) then yields

Z\2 ON(N-1) 27 .
<(Z_> > TN )N/ f 01 [T [sin;/2—6m/2[°
U(N) T ;

1<j<m§N
x l_[ exp(——(n -0 )) (30)
n=1

Making the transformatiop; = 6;/2 — /2 and using the identity sigh; — ¢,,) =
(tang; — tang,,) x cos¢p; COSp,, gives

7 5 2N2 /2 n/Zd J 31
(%) bl IR IR 5D

N
X l_[ | tang; — tangy, |2 l_[(COSZ ¢n)N_l

1<j<m=<N n=1

U(N)

N
x l_[(cos¢k +isingy)’.

k=1
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Finally, changing variables to; = tan¢;, we have that

(EO I I N | T

l<]<m§N

1 )N . Xk )
X —_— 1
E(1+x3 (\/1+xk \/1+x,§)
N'(Zn)N/ / dxy-- 1_[ |xj_xm|2

l<j<m§N
xl_[ —1 le_[ —1+lx (32)
1+ x2 T—ix;/)
n=1 n k=1

This is in the form of Selberg’s integral (22) with = » = 1,0 = N — 5/2,
B = N +s/2 andy = 1 (the condition (23) is satisfied whey] < 2) and so we have

N

Z )2> I ()2
z ~ LG — (33)
<<Z uNy =t L(j+s/2T( —s/2)

as required.

2.2. Value distribution of RelogZ. All information about the value distribution of
RelogZ can be obtained from the generating functidiy, (s): the moments may be
obtained from the coefficients in the Taylor expansioof abouts = 0,

log|Z|)/
My (s) = Zw gi- (34)
j=0

the corresponding cumulang; (N) are related to the Taylor coefficients of Idgy,
o0
(N) .
|Og Mpy(s) = Z MS]; (35)
— J!
jf

and the probability density for the values taken by Redog

pn(x) =< 8(l0g|Z] — x) >y, (36)
is given by
1 © .
pN(x) = 2—/ e My (iy)dy. (37)
T J—c0

We now analyse these general formulae using the explicit expression (@nfor).
Differentiating logM y (s), we have that

N

rt-1 (n—1), .
Qn(N)ZTzlﬂ ()5 (38)

P
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where

dﬂ+l | r
O (39)

are the polygamma functions. Thus it follows immediately that

Q1(N) = ((log|Z]))un) = 0. (40)

Furthermore, substituting the well-known integral representation for the polygamma
functions [1], whem > 2,

o0 tn—le—jt

11 ¥
On(N) = ?g(—l) fo 1_—e,ldf

2n—1 tn—l -1 —Nt
L 1)”/ ¢ S

Sl l—et 1—e!
on— 1_ [ee) g—t
Tl - l)n/ 1—e
x ((n — D2~ (= D" 2N Nt"_le_N’> dr,  (41)

where the last equality follows from an integration by parts.
Consider first the second cumulag@ib(N). Rearranging the integrand in the final
equality of (41),

1 o (1 _ —Nt —(N+1)t
02(N) = 5/ <;et + Ni& — )dl, (42)
0

1—e! 1—e

and so, re-expanding the terms written as fractions to give geometric series and integrat-
ing these term-by-term, we have that

N o0
1 1 N 1
= ((log|Z))? =) Z+- =. 4
02(N) = ((0g1ZDHuwmy =5 =+ 5 Y. = (43)
n=1 n=N+1
The largeN asymptotics can then be obtained by substituting
"1 R — Ak
- = I — = 44
;k vrlognto ,;n(n+1)-~-(n+k—1)’ (44)

whereA; = %folx(l—x)(Z—x)(3—x) -+ (k—1—x)dx, into the first sum and applying
the Euler—Maclaurin formula to the second. Any number of terms in the expansion in
inverse powers o can be calculated in this way; for example

1 1 1
2
Qo) = {(logl 27wy = logN T2 (V D+ “eona T (F) '

(45)
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Consider next the cumulang3, (N) whenn > 3. We now write

0. =2 Ly / R (O A O AV P

A T} o TV 1 " e —1)"
(46)

The first term, which is independent of, can be integrated explicitly using a well-

known representation of the zeta-function [33]. Changing variables in the second to
y = tN then gives

2}1—1 _
On(N) = W(—l)"
1 oo n—1 n—2y — 1
X (F(H)C(n -D+ N1 /0 O = =1y e ym@’) . (47)

The N-dependent term in this equation clearly vanishes in the limivas> oo. Its
largeN asymptotics can be obtained by expandiatf™ — 1)~ in powers ofy/N and
then integrating term-by-term; for example

n-1_ (n —3)!

0n(N) = 2

1
?(—1)'1 <F(n)§(n -1-

) + 0N, (48)

It follows immediately from the fact tha®,,(N)/(Q2(N))"/? — 0 asN — oo for
all n > 2 that the value distribution of Reldg)//Q2(N) tends to a Gaussian in this
limit. Specifically, we have from (37) and the definition of the cumulants that if

AN (x) = v Q2(N) pn (v/ Q2(N)x) (49)

then

_ 1o Y iQay® | Qay*
- = Ciyx— L o Nay. (50

Hence all terms in the exponential that involve higher powerstbny? vanish in the
limit as N — oo. Evaluating the resulting Gaussian integral then gives

lim gy (x) 1 ex (_xz) (52)
X) = — —_— ).
N—>oopN 2T P 2

The largeN asymptotics describing the approach to this limit can be obtained by
retaining more terms in (50). There are several ways to do this. One is to expand the
exponential of all terms that involve higher powersydhany? as a series in increasing
powers ofy, so that

B 1 —x? 1 [ . 2,033 Qaliy)?
- - — iyx ,—y°/2
= EXp< 2 >+ o /7006 ‘ (31Q§/2 Taer T

L[ @°  eaint Y /2,
307% - 40 |
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3
03(iy)®  Qa(iy)* /
+ + 4o 3+ |d
(3'Q3/2 2103 ) ) Y

1 42 1 00 A 3 An(iv)
= —eXp<_x> _|__/ eIV, y2/2< 3(;372) n 4(y)

V21 2 2n 03 03
\5
N ASQ(é/yZ) p. ) dy, (52)

where the coefficientd,, (N) are defined in terms of combinations of the cumulants
0, (N) with n > 3 (for example A3 = Q3/3!). Integrating term-by-term then gives

- 1
oN(x) = \/2—eXp( ) r;)’ Qm/2
i"P(m—p-—21!", m— peven
XZ( > { m — p odd (53)

from which it follows that the deviation from the Gaussian limit is of the order of
(log N)~%/2 (becauset,, (N) — constant asV — o0).

It may be seen from (53) that it is only in the limit 35— oo that o (x) becomes
even inx: when\ is finite it is asymmetric about = 0. This can be traced back to the
fact that the series in the exponential in (50) involves both even and odd powgrs of
Indeed, the dominan¥ — oo asymptotics can also be computed by retaining only the
y3 term in the exponential (and not expanding the exponential as a series itself). Thus

_ 1 (> . 2 Q3
PN (x) ~ 2_/ eXD(—lxy SR 3y/2) dy, (54)
T J_oo 2 310

and this integral can then be computed exactly in terms of the Airy functian Ajiving

_ —2\ Y3 03 x03%\ . [(3xy0; 03
ON(x) ~+/ 02 <@> eXp(?:Q% + 05 Al Q§/3 + 22/3Q§/3 ,
(55)

which itself is manifestly asymmetric in.

Finally, we note that the formulae derived above lead directly to corresponding ex-
pressions for the moments, since these may be related to the cumulants by taking the
exponential of the right-hand side of (35), re-expanding as a Taylor series in powers of
and equating the coefficients with those in (34). Thus, for example, it is straightforward
to see that

n

((log|ZD™") vy = 2o MV () 1=
(2k — 1)!'{(log |Z|)2)’,‘](N) + O((logN)k=2) if n = 2k
k—1 , , (56)
O((logN)*™) ifn=2k+1

where the second moment is given by (45). This again implies that the limiting distribu-
tion is Gaussian.
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2.3. Valuedistribution of Imlog Z. In the same way as for the real part, all information
about the value distribution of Im lag is contained in the generating functidn, (s).
Thus,

Ly(eif) = Z ((Im |09]Z')1>U(N) W (57)
j=0

and similarly for the corresponding cumulais,

log Ly (=it = Y 210
=

i, (58)

whereL y (s) is given by (7). Likewise, the probability density for the values taken by
Imlog Z,
oy(x) =< é8(mlogZ — x) >U(N)» (59)

is given by

1 o0 .
on () = 5 / e Ly (y)dy. (60)

All of the results of the previous section then extend immediately to InZlobhus,
taking the logarithm of (7) and differentiating,

n N
Ry = 5 Z[ DG+ (1 Ry ()]

{o if n odd
(61)

_1yn/2+1 . i .
D SN w D) it neven

The fact that all of the odd cumulants are zero implies that all of the odd moments are
also zero. This is the main difference compared to the case of Re IBgr the even
cumulants we have

(-1 )m+1
Rom(N) = sz—lem(N) (62)

and so the asymptotics computed in the previous section apply immediately in this case
too. Thus

R>(N) = ((Imlog Z)2>U(N)
1 1
= Q2(N) = IogN+ (V+1)+24N2+0<N4> (63)

and form > 1,

—1ym+1 2m — 3)!
Rom(N) = (2% (r(zm);(zm -1 - (;;TZ)) +O(NY2m,  (84)
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The factthat, fom > 2, Rz, /RS — 0asN — ocimplies that the value distribution
of ImlogZ/+/R2(N) tends to a Gaussian in the limit. This was first proved by Costin
and Lebowitz [15] for the GUE of random matrices. Specifically, they proved that the
fluctuating part of the eigenvalue counting function has a limiting value distribution
that is Gaussian. The connection comes because the two functions are the same, up to
multiplication by ; specifically, ifn(U, a, b) denotes the number of eigenvaluedbf
witha < 6, < b, then

_(b-—a)N 1 Z(U,b)
n(U,a,b) = o +”ImlogZ(U’a),

(65)

assuming that none of the eigenphases coincides with the end-points of the range. In
addition, Costin and Lebowitz conjectured that, for> 2, R, (N) — constant when
N — oo. Our asymptotic formula (64) proves this for averages over the CUE, and
provides the value of the constant. Wieand [35] has independently given a proof of the
central limit theorem for (U, a, b) — (b — a)N /(2r) in the CUE case.

The asymptotics of the approach to the Gaussian can be calculated from (58) and
(60). Defining

&n(x) = v/Ra(N)on (v/Ra(N)x), (66)

we have that

5 1 [ oy
oy(x) = oo expl —iyx — )
—0oQ

Ray*  Rey®
XeXp<@—@+"' dy (67)

_ 1 ox —x2 n l/OOeX ) y2
= o O\ ) T ) P I TS

Caoy* Cey® Cgy®
X[4y+ey+sy +oo Ly,

2 3 4
RZ R2 R2

where the coefficent§, (V) are defined in terms of the cumulais, (V) withm > 1;
for exampleC4(N) = R4(N) /4. Thus, integrating term-by-term,

Com —x2

- 1 —x?
MOE mexp< ) FZ (68)

@2m—p-1I if2m — piseven
P
XZ( >( tx) { if 2m — pisodd

In this caséy (x) is an even function of for all N, and not just in the limitad/ — oo.

This is a consequence of the fact that all of the odd cumulants are identically zero. It
follows from (68) that the deviation from the Gaussian limit is of the ordeltagf N )2,

and so is asymptotically smaller than in the case of R&Zlog
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Finally, the expressions derived above for the cumulants may again be used to de-
duce information about the moments. We have already noted that the odd moments are
identically zero. For the even moments we find the usual Gaussian relationship:

((Imlog 2)®)y vy = (2k — H!((IMlog Z)*) [,y + O((log N)*~?),  (69)

where the asymptotics of the second moment are given by (63).

2.4. Independence. We have shown in Sects. 2.2 and 2.3 that the values of both R& log
and Im logZ have a Gaussian limit distribution & — oco. Our purpose in this section
is to show that they are also independent in this limit.

The generating function for the joint distribution is

<|Z|t€is(|mlogz)>U(N) = —1 /Zn . /27{ d91 . d@N 1_[ |ei9_i — €i0k ’2
N!'(2m)N Jo 0

1<j<k<N
N N o0 .
) sin[(6; — 6
% l—[ - el(@n—a)}t Hexp(—is Z [ (0 )m]>
n=1 =1 m=1 mn
2
2;]\,/11.../2715191...6191\, 1_[ |ei9j_ei9k|2
N!(2m) 0 0 1<j<k<N
N N 00 .
: sin(6
< []]1-e* ’Hexp(—is > M) . (70)
n=1 =1 m=1 m
Making the same transformations as in Sect. 2.1,
is(Imlog Z) 2N22[N 2
<|Z|IelS )UN — / / dxl |x._xk|
M= N2V 1<].1:]!<N !

N
.
l
\/1+x, \/1+x12
2N22tN 9
- N'(Zn)N/ / dxy-- ]_[ xj — xl

1<j<k§N

N 1 N+t/2 N
XH(l—i—x,%) l_[

n=1

x H(l ixg) N1 )TN /202
n=1
2N22tN
=—JQL L N+1t/2—5/2,N +1/2 2,1, N
N'(ZT[)N (’ ’ + / S/ 5 + / +S/ , 4, )
rHre + )
L +1/2+s/QT(j +1/2—5/2)

(71)

I
~.
L=

The conditions on the validity of Selberg’s integral translate into the restrictjhs
s/2>-1,t/2—s/2 > —1andt > —1.
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Next we expand the logarithm of the generating function as a series in powers of
andt:

N
> logI'(j) +log'(t + j) —logl'(j +1/2+5/2) — logT'(j + /2 — 5/2)
j=1
@20 02 30 21
= apo + o10f + xo15 + 71‘2 + a11ts + 752 + ?13 + ﬁlzs

12 Q03
e T L NPT

211! 3! (72)

where
ano = Qn(N), (73a)
agp = i"R,(N), (73b)

and forn # 0 andm # 0,

am

N
1
— (=1
o = i | L (WG H1/24572
J:

+ ("I G /2 - 5/2))

(0.0
N
11
=Y o [FVOTIG 1/24 5/2)
c 2]1 2"1
j=1
-1 n—14 (n+m—1) - 2_4/2
DTG 252
0 if nodd
= -1 . . 74
W Z;V:l w(n+m—l) (]) if neven ( )
The joint value distribution is then given by
v (x, ) = (8(I0g|Z| — x)3(IMlog Z — y))y () (75)

1 00 poo o i )
— f / e—(ltx+lsy) <ettlog\Z\ets|mlogZ> dt ds
472 J_ oo J_ oo U(N)

1 e’} 00 ) )
— _/ / ef(zterzsy)
42 | oo )0
N

» 1—[ r(Hrae+ j)
JATG+it/2+5/T( +it/2=5/2)

dt ds

1 o o o
=—— / / e~ (irxFisy) exp(aloz‘t + ao1s + -2 (ir)2
74 J_ oo J—o 2

. 02 5 030, .3 Q21 . o
—|—Ol]_11tS+7S +?(ll) +ﬂ(lt) s
@12, o 003 3

+—2!1!lts +—3! s+ )dtds.
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Hence, usingr1p = ap1 = @11 = 0,

1 1 1
= —ap2 = |O N 1 ol —=). 76
a0 = —ao2 = 5 logN + - (7/ D+ o7 “sona T (NG) (76)

anda,,, = 0O(1) form + n > 3, which follows from a comparison with the cumulants
of RelogZ, the scaled joint distribution

v (x, ¥) = vV 02(N)R2(N )ty (v/ Q2(N)x, v/ R2(N) y) (77)

satisfies
1 o roo w2 w2
In(x,y) = m/_w/_weXp<—ivx —iwy — ? — 7
¥30 . .3 2 12 2
+ —5 )"+ ((v)w+ —Fsivw
3oy’ 2 3/ ’ 205
+ ao;’/z S+ .. ) dvdw
3layg
47_[2/ / exp(—lvx—lwy—?—7>
140 (o) v 78
9\ Gogmaz ) ) 404 (78)
Thus
H 1 o [ "2 e PR, 1112
lim Ty (x,y) = —2/ e_“”‘_Tdv/ e W gy (79)
N—oo A4 J_o oo

—1ex 2 ex -
=2 P )P %)

Therefore, as claimed, the limiting value distributions of the real and imaginary parts of
log Z are independent and Gaussiamas> co.

2.5. Asymptotics of the generating functions. Our goal in this section is to derive the
leading-order asymptotics of the generating functidfyg(s) and L y(s) asN — oo.
The results are most easily stated in terms of the Barnes G-function [3], defined by

o0
G+ 2) = (2) /2~ 10+ +21/2 1—[ [(1 +z /n)ne—z+z2/<2n>] 7 (80)
n=1

which has the following important properties:
GO =1 (81)
Giz+1 =T G@),
and

2
log G(1+ z) = (log(2r) — 1)— - (1+ y)— + Z( " e - 1)—, (82)
n=3
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where the sum converges fatt < 1. It follows from the definition (80) thaf (z) is an
entire function of order two and th&t (1 + z) has zeros at the negative integers,
with multiplicity n (n = 1,2,3...).

Consider firstM y (s). Define

i Mi(s)
fcue(s/2) = N'inoo N2

Iy 1 TG +s9)
N lelo N (/22 ]1:11 (T'(j +5/2))2" (83)
We claim that
_ (G(1+5/2)?
fecue(s/2) = W (84)

To prove this, we use the fact that fer < 1,

2 > (2711 i—1
foue(s/2) = exp((%) v +D+Y (=) ( = ) Y ; )) . (@)
j=3

which follows from (35), (40), (45), and (48). Comparing this to

2
log (%) =2logG(1+s/2) —logG(1+ s)

2 00
= 2(log(27) — 1)§1 —201+ y)% +23 (-1 e — 1)
n=3

sn

2'n

2 00 n
Ky s n—1 Ky
—(log(2m) = 5 + A+ )5 — ;<—1) =1
n—1 (_s)n

-~ -1
=(1+V)Z+’;3W§(”—l) pa (86)

which also holds fois| < 1, we see that (84) holds when < 1, and hence, by
analytic continuation, in the rest of the compleplane. It follows thatfcue(s/2) is a
meromorphic function of order two with a pole of order 2 1 at each odd negative
integers = —(2k — 1), fork=1,2,3,....

The value of fcye(n), wheren is an integer, can be calculated directly from (84),
since we have from (81) that

n—1
Gmy=[]rG), n=234.... (87)
j=1
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Thus
fecuen) = (22%22))2
=T W2
12T om)
~ =W
IR TS
n—1

= — (88)

forn = 1,2,.... Inspired by a talk by one of us (JPK) at the Mathematical Sciences
Research Institute, Berkeley, in June 1999, in which this result was discussed, Brézin
and Hikami have since checked that the same formula holds for the integer moments of
a wider class of random-matrix characteristic polynomials, including the GUE [11].

The leading order asymptotics bfy (s) can be obtained in the same way. In this case
we claim that

lim Ly(s)N*/4 = G(L - 5/2)G(L + 5/2). (89)

To prove this we note that

2 20 (T(j))?
H s/4 | s4/4
N Ln@NTE = lim N 1:[1 TG +s/20( —s/2) (%0)

_ 2
oo -0 () - £5252 )

where the second equality follows from (58), (61), (63), and (64). We also have that
log(G (1—5/2)G(1+s/2)) =logG(1— s/2) +10gG(1+5/2)
S2 (— s)n

= —(Iog(zn)—1>——<1+y)§+2< D" -1

+ (log(2r) — 1)— — (1+y)— +Z( 1yt

n=3
2 o 2n
_ S_ _n\2n—-1 _ (=9)
= —A+nT+ 2n§:2( D@0~ 1) s
_ 52 > c(2n — Ds2
= —(1+ ]/)Z - n2=2 —22”}’1 , (91)

when|s/2| < 1. Thus (89) holds fofs/2| < 1, and hence, by analytic continuation, in

the rest of the complex-plane. It follows that limy_ LN(s)NSZ/4 has zeros of order
nats==42nforn=1,2,....
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3. ¢(1/2 +it)

Our aim now is to compare the CUE results #fxitU, 0) derived in the previous sections
with the behaviour of the Riemann zeta function on its critical line. First, we have to
identify the analogue of the matrix si2é, which is the one parameter that appears in
the CUE formulae. With this in mind we note that under the identification

N = log (%) , (92)

the fact that value distributions of Reldy,/4logN and Imlogz/,/3logN tend

independently to Gaussians with zero mean and unit variance in the lirhit-as co
coincides precisely with Selberg’s theorem (3). (Of course, the fact that s zero

mean is a consequence of its definition: we could multiply the determinant in (1) by
any function with no zeros, for example a constant, but this would correspond to a
trivial shift of the mean.) In the random matrix theory of spectral statistics, the natural
parameter is the mean eigenvalue separation. For the eigenpha$és, thisis 2r/N.

In the same way, the mean spacing between the Riemann zeavs heightT up

the critical line, 2r/ log(T /27), is the only property of the zeta function that appears in
Montgomery'’s conjecture and its generalizations. Equation (92) corresponds to equating
these two parameters.

As already mentioned in the Introduction, Odlyzko's computations of the value dis-
tributions of both the real and imaginary parts of tad/2 + it), for ranges of near
to the 16°t" zero (that is; ~ 1.5202 x 10'9), exhibit striking deviations from the
Gaussian limit guaranteed by Selberg’s theorem [29]. In Figs. 1 and 2 we show some
of Odlyzko’s data, for the real and imaginary parts respectively, normalized as in (3),
together with the Gaussian. It is apparent that the deviations are larger for Relod)
that in this case the value distribution is not symmetric about zero.

This deviation can be quantified by comparing the moments of these distributions
with the corresponding Gaussian values. These moments are listed in Tables 1gRe log
and 2 (Imlogz). Again, it is clear from the size of the odd moments that the distribution
is not symmetric about zero in the case of Redog

We begin by comparing these data with the CUE results derived in Sects. 2.2 and
2.3. The matrix sizev corresponding, via (92), to the height of the?df zero is about
42 (the results we now present are not sensitive to the precise value). In Figs. 1 and
2 we also plot the CUE value distributions for Re Bgand Im logZ corresponding
to N = 42, computed by direct numerical evaluation of the Fourier integrals in (37),
using (6), and (60), using (7). Th® = 42 random matrix curves are clearly much
closer to the data than the limiting GaussiaNs= co). This is even more apparent in
Fig. 3, where we show minus the logarithm of the value distributions plotted in Fig. 1.
Similarly, we also give in Tables 1 and 2 the values of the CUE moments, normalized
in the same way (so that the second moment takes the value one). These confirm the
improved agreement. In this context we recall two relevant facts about the deviations of
the CUE value-distributions from their Gaussian limiting forms: first, these deviations
are larger for Re log than for ImlogZ; and second, in the case of Re l6ghey are
not symmetric (even) about zero far finite, whereas for Im log they are.

As was already pointed out in the Introduction, random matrix theory cannot give a
complete description of the finitg-distribution of values of log(1/2 + it), because
it contains no information about the long-range zero-correlations associated with the
primes. These can be computed separately, using the methods of [4]. For the moments of
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- - CUE

—— Riemann Zeta

----- Gaussian

2 4

Fig. 1. The CUE value distribution for Re lag with N = 42, Odlyzko’s data for the value distribution of
Relogs(1/2 + it) near the 180t zero (taken from [29]), and the standard Gaussian, all scaled to have unit
variance

Table 1. Moments of Relog(1/2 + ir), calculated over two ranges (labelled a and b) near 8" @ero

(T ~ 1.520x 1019) (taken from [29]), compared with the CUE moments of ReZogith N = 42 and the
Gaussian moments, all scaled to have unit variance

Moment ca) ¢ h) CUE Normal
1 0.0 0.0 0.0 0
2 1.0 1.0 1.0 1
3 —0.53625 —0.55069 —0.56544 0
4 3.9233 3.9647 3.89354 3
5 —7.6238 —7.8839 —7.76965 0
6 38.434 39.393 38.0233 15
7 —144.78  —148.77 —145.043 0
8 758.57 765.54 758.036 105
9 —4002.5 —3934.7 —4086.92 0

[y
o

24060.5 22722.9 25347.77 945

Table 2. Moments of Im logt (1/2 + it) near the 18" zero (" = 1.520x 1019) (taken from [29]) compared
with the CUE moments for Im log whenN = 42 and the Gaussian moments, all scaled to have unit variance

Moment Ie CUE Normal
1 —6.3x 1076 0.0 0
2 1.0 1.0 1
3 —47x1074 0.0 0
4 2.831 2.87235 3
5 —9.1x10°3 0.0 0
6 12.71 13.29246 15
7 —0.140 0.0 0
8 76.57 83.76939 105
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- - CUE

— Riemann Zeta

------ Gaussian

2 4
Fig. 2. The CUE value distribution for Im log with N=42, Odlyzko’s data for Imlog(1/2 + it) near the
1029t zero (taken from [29]), and the standard Gaussian, all scaled to have unit variance

- - CUE /
15 p — Zeta /

------ Gaussian /

-6 -4 -2 2 4

Fig. 3. Minus the logarithm of the value distributions plotted in Fig. 1

log¢(1/2+it), the results take the same form as Goldston’s formula (18): the long-range
contributions may be expressed as convergent sums over the primes. These prime-sums
all have the property that, if each pringeis replaced byp”, they vanish in the limit
y — oo. We give explicit formulae below, but first turn to the momentgel/2+it)|.

We expect a relationship between the moments@/2+it)|, defined by averaging
over ¢, and those ofZ(U, 0)|, averaged over the CUE; but clearly the moments of
|(1/2 + it)| are related to those of Relggl/2 + it) by exponentiation, and so it is
natural to anticipate a long-range contribution in the form of a multiplicative factor given
by a convergent product over the primes. We are thus led to a connection resembling the
conjecture (4). The precise form of the prime product in (4) can, in fact, be recovered
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using heuristic arguments similar to those of [8] and [25] (essentially by substituting for
¢(1/2 + ir) the prime product (2), truncated to include only primes with 7/27,

and treating these prime-contributions as being independent). However, our main focus
here is on the CUE component, and so we merely observe that if each pim(8) is
replaced by, thena(1) — linthelimitasy — oo. Thisleads usto conjecture, again
invoking (92), thatf (1), defined by (4), is equal tdcue(2), defined by (15). Based on

the results of Section 2.5, we thus conjecture that

_ (G(141))?
fFo) = A+ 2 (93)
and
n—1 ]'
fn) = ]]1 T (94)

The main evidence in support of this conjecture is, as already noted in the Introduction,
that (94) coincides with the known valuggl) = 1 [17] and f(2) = 1/12 [20], and
agrees with other conjectures (based on number-theoretical calculationg) 3hat
42/9! [13] and f(4) = 24024/16! [14] (this last conjecture and ours were announced
independently at the Erwin Schrédinger Institute in Vienna, in September 1998). In
addition, we can compare with numerical data. Odlyzko has computed

T+H

r(x, H) = 1£(1/2+ it)| % dt (95)

H(logT)* ./T

for T close tory o [29]. It is obviously natural to compare this to

1
rcue(d) = WMN @n)a ), (96)

with N satisfying (92). The results, shown in Table 3, would appear to support the
conjecture.

We can also test our conjecture by returning to the moments of R&1gg8 + i1).
Based on the arguments of the previous paragraph, we expect thataso,

1 /7 d*
= /0 (Relogz (1/2-+ i)t di ~ = [My ()a(s/2],o. (97)

whereN is related tdl’ via (92). The resulting expressions incorporate both the random
matrix and the prime contributions. A comparison with Odlyzko’s data may be made by
computing the moments using (97) with= 42. These values are listed in Table 4 (in
this case, unlike in Table 1, the moments have not been normalized, in order to focus on
the subdominant role played by the primes). They clearly match the data more closely
than the CUE values.

The moments of Im log(1/2+it) can be treated inthe same way. These are obviously
related to derivatives of the generating functibg (s). Applying the same heuristic
method which underpins (4) leads us to conjecture that

1 T k
= / (Imlogz(1/2 + it))* dt ~ (—i)kd—k [Ly(s)b(s/2)]s—0> (98)
T Jo ds
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where

_ EPPRNSTE - T(1+ ML - 2) i
b(’\)_l:[[(l /p) ;F(1+A—n)r(1—x—n)n!n!p } (99)

Moments calculated using (98) witki = 42 are listed in Table 5 (again, unlike in
Table 2, these have not been scaled), together with Odlyzko’s data. In this case too, the
prime contribution leads to a noticeable improvement compared to the CUE values. It
is also simple to check that far= 2 (98) coincides with (18), and that fér= 3 and
k = 4 it agrees with heuristic calculations based on the methods of [4,7] and [9]. The
conjecture corresponding to (4) is then that

. 2l (Treae+iny:
Tlinoo(logT) 7/(; (W) dt =G —1)GA+ 1)b(A), (100)

where we have used (89).
Finally, it is also instructive to examine the distribution of value$Aif

Py (w) = (6(w — |ZD)) ) - (101)

Table 3. Comparison of- (A, H), calculated numerically for the Riemann zeta function near 8" @ero
(taken from [29]), the corresponding CUE quantity & 42), with and without the prime produgti), and
the lower bound on the leading order coefficient [X2{(A)

A CUE with r(r, H) C1(n) CUE % error CUE % error CUE
prime product (lower bound) with primes

0.1 1.011 1.004 1.0042 1.0129 0.741 0.886
0.2 1.038 1.034 1.0172 1.0430 0.395 0.870
0.3 1.071 1.067 1.0381 1.0803 0.423 1.25
0.4 1.105 1.098 1.064 1.1171 0.649 1.74
0.5 1.133 1.123 1.0904 1.1466 0.914 2.10
0.6 1.151 1.135 1.1113 1.1631 1.37 2.25
0.7 1.152 1.132 1.1195 1.1616 1.77 2.26
0.8 1.133 1.107 1.1076 1.1386 2.38 2.85
0.9 1.091 1.06 1.069 1.0925 2.92 3.07
1. 1.024 0.989 1. 1.0238 3.52 3.52
11 0.933 0.896 0.901 0.9350 4.16 4.35
1.2 0.822 0.787 0.776 0.8307 4.48 5.55
1.3 0.699 0.667 0.637 0.7167 4.89 7.45
1.4 0.571 0.544 0.494 0.5996 4.99 10.2
15 0.446 0.426 0.36 0.4858 4.65 14.0
1.6 0.333 0.319 0.246 0.3806 4.27 19.3
1.7 0.237 0.229 0.157 0.2880 3.37 25.8
1.8 0.158 0.156 0.092 0.2103 141 34.8
1.9 0.100 0.101 0.05 0.1480 0.542 46.5

2. 0.0602 0.0624 0.025 0.1003 3.53 60.7
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Table4. Moments of Re log (1/2 + it) near the 18" zero ' ~ 1.520x 10%) (averages in a) and b) taken
over different intervals) compared with Re ldgvhen N = 42 with and without the prime contributions

Moment ¢ a) ¢ b) CUE + primes CUE
1 —0.001595 0.000549 0.0 0.0
2 2.5736 2.51778 2.56939 2.65747
3 —2.2263 —2.19591 —2.21609 —2.44955
4 25.998 25.1283 26.017 27.4967
5 —81.2144  —79.2332 —81.2922 —89.4481
6 655.921 628.48 663.493 713.597
7 —3966.46  —3765.29 —4052.98 —4437.47
8 33328.6 30385.5 34808.2 37806
9 —282163 —250744 —304267 —332278

10 227110  2.298¢10°  3.082«10°  3.359x10°

Table 5. Moments of Im log; (1/2 + if) near the 189t zero " ~ 1.520 x 109 compared with Im logZ
whenN = 42, with and without the prime contributions

Moment 14 CUE + primes  CUE
1 —1.0x 1075 0.0 0.0
2 2573 2.569 2.657
3 —19x10°3 0.0 0.0
4 18.74 18.69 20.28
5 —0.097 0.0 0.0
6 216.5 215.6 249.5
7 -3.8 0.0 0.0
8 3355 3321 4178

Obviously
1 .
Py(w) = —— e 18100W A7 (is)ds. (102)
2rw J_o

We can approximate this for largeé in the same manner as for Re ldg

1 o0
Py(w) = ﬂ/ exp(—is logw — Q252/2! — i Qa53/3! + Qas*/4! + - .)ds

—00

1 /‘OO exp —islogw s2  iQ3s® n J
— - —_— e — e s
27w/ 02 J -0 V02 2 ¥z
1 o —islogw sz>
~ expl ——— — — | ds 103
210V 02 L. p( Vo2 2 (103
1 —Ingw)
-~ _exp( 2 ), 104
w27 Q2 p( 20> (104)

which is valid wherw is fixed andV — oo, and more generally if log >> —% logN,
the lower bound being determined by the first pol@6f (s).
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0.6
0.5 CUE
04 Zeta
0.3
0.2
0.1
0 5I 10 15 2.0

Fig. 4. The CUE value distribution ofZ|, corresponding tav = 12, with numerical data for the value
distribution of|¢ (1/2 + it)| nearr = 10°

For any finiteN we can plotPy (w) numerically by direct evaluation of (102). This is
done in Fig. 4 together with data for the value distributioftel,/2+i7)| whenr ~ 106,
which corresponds via (92) t¥ = 12.

As w — 0, Py(w) tends to a constant for a giveW, the value of which can be
calculated by noting that the contribution to the integral is dominated by the pole of
My (is) (ats = i) closest to the real axis. Hence

im Py — — = TT(-T9 Y’ (105)
o N = r<N>j1:[1(r<j—1/2>> |

If N is large, this is asymptotic to [19]

NY4(G1/2)% = exp(li2 log2+3¢'(—1) — % Iogn) N4, (106)

Based on the previous discussion of its moments, it is natural to expect that as
the way in which the primes contribute to the value distributioft ¢f/2+it)| is given

by
Py(w) = L /OO e 8109v 4 (5 /2) My (is)ds. (107)
2rw J_o

Consequently,

Py (0) = a(—1/2) Py (0). (108)
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We find thata(—1/2) ~ 0.919, P12(0) =~ 0.671, and sa(—1/2) P12(0) ~ 0.617,
which is indeed close to the numerically computed value of the probability density at
zero, 0.613.

Away fromw = 0, in the region where (104) is valid, the stationary point of (107) is at
s* = —ilogw/Q2, soa(is*/2) = a(logw/(2Q>)). Sincea(0) = 1, when|logw| <<
02,a(logw/(20Q>)) is close to 1 and so the contribution from the prime product recedes
to the extremes of the distribution whahis large.

4. COE and CSE Results

Our main focus in this paper has been on the CUE of random matrix theory. However,
the methods and results of Sect. 2 extend immediately to the other circular ensembles —
the Circular Orthogonal Ensemble (COE) and the Circular Symplectic Ensemble (CSE)
[27] — and for completeness we outline the form these generalizations take.

Let Z now represent the characteristic polynomial ofdarx N matrix U in either
the CUE 8 = 2), the COE 8 = 1), or the CSER = 4). The generalization of (21) is
that

s B2 2 i0; _ iow|P
W2l R = (Nﬁ/Z)'(Zﬂ)N/ o], o 1<.H<N‘e ¢
j<m<
N
x H(l_e“@p—@) : (109)
p=1

where the average is over the appropriate ensemble. Exactly the same method as was
applied in Sect. 2.1 leads to

(110)

N-1 . .
ra 2ra 2
MyB.9) = (1Z" rur = [ | 1+ jB/AT A+ s + jB/2)

o (TA+s/24 JB/2))?
It follows from expanding lod/y (8, s) as a series in powers othat the cumulants
of the distribution of values taken by Re l@gare given by

on—1_1 N-1 1
QN(N) = === > v A+ jB/D. (111)
j=0
As in the CUE caseQ’f(N) = 0. Replacing the polygamma functions by their
integral representations and interchanging the integral and the sumin (111) provides the
leading-order asymptotics

p N-1 1
N) = — 4+ 01
05 (N) ;}HWZ D

=~ NI

logN + O(1). (112)
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For Qf(N), n > 3, the sumin (111) converges As— oo. Its value in the limit is

; - 5 on—1_ . ) —tyn—1
On(ee) = im On(N) = —Zg— o /o A=enia—em"

e —— ( 1)”22'/ 7(1+S+ﬂr/2)l n— ldt

r=0s=0

2Ly Z Z L(n)(s + Br/2)7". (113)

r=0s=1

2n—1

When g = 4, the number of ways in which+ 2r = k is k/2 if k is even, and
(k+1)/2if kis odd. Thus

n-1_1 e k Sk
4 _ 1\ o~
Qn(00) = =5~ (DT ) <; 2 — 1" +k§ (2k)">
n-1_1 1<°° %-1 & 1 > 2k>
= —r 1 D' T )3 o T2 o T n
on-1 2 ];(Zk—l) ];(21{—1) kzzl(Zk)
on-1_1 1
= T(—l)"l“(n) (;“(n -+ <1 - —) s“(n)) (114)
Similarly,
1
0too) = 21— D(-D"T(n) <f:(n -1 - (1 ~ —) ;(n)) (115)

The asymptotic convergence of these cumulants ensures that the distribution of values
taken by Relog is Gaussian in the limitv — oo (with unit variance if normalized
with respect thg (N))when the zeros are distributed with COE or CSE statistics, justas
it was for the CUE. All of the calculations carried out for the CUE transfer immediately
to the other two ensembles by replaci@g with 05,
A similar equivalence holds for Im log. We have

Lar) = (X0 sy = Ijij: L ]
(116)
from which it follows that
RN =10 s oy modd g
> =0 ¥" "1+ jp/2) if neven

1=

Comparison with (111) then shows thai(N) = Qg (N), and that the value distribution
of Imlog Z has a Gaussian limitin all three cases.
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In order to generalize the results of Sect. 2.5, we need the next term in the asymp-

totic expansion (112) foQg(N). Applying the recurrence formula for the polygamma
function,

Pz +1) =yP) - Ziz (118)

we have in the CSE case that

N-1
Q3(N) = % v DA +2))
j=0
1 p 1 &l 1
- w”<1)+§ v - mZ:lW

1= 1INk
_ @ - = -
- 1/’ @ - 2 g (2k 1)2 2 Z (2k)?

= imgzv + = (1+ y)+ = Iog 2+ —;(2) + 0N, (119)

As Q‘Z‘(N) = Rg(N), this also gives us the second cumulant for ImZog

In the COE case we follow a very similar procedure, except that as we now have
polygamma functions of half-integers, we need to consider the case of even aid odd
seperately. We start witN even, relating the polygamma functions of integers back to
v (1) and those with half-integer argumentyé? (1/2), and find that

1Nfl
03(N) =5 Y vV +j/2)
j=0
N/2 (N=2)/2
1(nN N A4N/2—k+1) N/2—k
N IR CY) 2@ _ A Sl e
_2(2w W+5vPW2 =Y =S Y T )
k=1 k=1
=logN +1+y — 2{(2)+0(N‘1). (120)

The calculation for oddV is very similar and the resultis the same. Once aggitV) =
RI(N).
The procedure for calculating the leading-order coefficiertof) or ((Z/Z*)*/2)
for averages over the CSE and COE ensemblesis also very similar to that already detailed
for the CUE. In these cases we need

logF(1+z) = —zy—i—Z( 1)";(n)— (121)
n=2

valid for |z] < 1, as well as the expansion (82) for the Barnes G-function.
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Using (114) and (119), we have that

My (4, s)

Sfese(s) = Nlinoo N52/8

2 0 1
= exp(( A+y)+ - IogZ+ —{(2)) % + Z(—l)” <§§(n -1

1 1 1 s"
—ﬁi(n -+ éi(n) - z—né“(n) 2,,+1§( n) + 4“(”)) ;) . (122)
and from (121) and (82) we see that
logG(1+s/2) + = Iog C'l+s)+logl'(A+s/4)

——IogG(1+s)——IogF(1+s/2)—IogF(1+s/2)
=< (1+y)+—c(2)>—+2( "

1 1 1
X (—é“(n—l)——nC(n—l)JréC(n)—z—n{(n)

s}’l
. O g(n)) - (123)

Thus

28G(L+5/2T(1+5/HVT (A +5)
VGA+ I +s/2T(1+s/2)’

for |s| < 1. It then follows by analytic continuation that the equality holds fos all
The above combination of gamma and G-functions also has the correct poles and
zeros, namely a pole of ordemat negative integers of the form(2k — 1) and a zero of
order 1 at—(4k — 2), wherek =1,2,3....
The coefficients which reduce to rational numbers, as for tfeoments in the
CUE case, are those where= 4k for positive integers. With the help of (87) we see
that

fese(s) =2 (124)

2k

Jese(dk) = _
> (H?l;_ll(Zj — 1)!!) 2k — )N

(125)

This can also been checked directly by writifg, (4, s) as a polynomial of orderiZ
in N.
For the imaginary part of the log &f we have, in the CSE case, that

2
Jim Ly, s) NS/8 — exp(— ( A+y)+ = Iogz+ —;“(2)) (126)

X /1 1 1 s
—; (ﬁazfa — D+ 55820 — E“Z’”> E) ,
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and the expansions of the gamma and G-functions allow us to show that

lim Ly, s) x N*/8
N—o0

:2_32/8\/6(1+s/2)G(1—S/Z)F(1+S/4)F(1_s/4), (127)

F(1+s5/2T(1—s/2)

which has zeros of ordérat+(4k — 2) and alsd” order zeros at4k, k = 1, 2, 3.. .,
just as an examination dfy (4, s) indicates it should.
Moving on to the COE, we have in this case that

N—o00 N52/2

. My, s) _ 3 52 = n (on—1
im ———— = exp(<1—|— y — Z;(Z)) > + ;(—1) (2 tn—1
3 1 n
— ¢ =1 = 2" ) + e — z—nc(m) s—) . (128)
n
Comparing this to

logG(1+s) + g logI'(1+ )

1 1
-3 logG(1+ 2s) — > logT'(1+ 2s) — logT'(1+ s/2)

3 o
- (1+ y - Z“Z)) S+ Y (27— — e =1 = 2Ry
n=3

3 1 s"
+ 560 - 2—nc(n)> — (129)
when|s| < 1/2, it follows that
feoe(s) = lim My@s)  GA4+9TA+5)vIA+5s) (130)

NLOO Ns?2  T(A+s/2vGA+ 29T A+ 25)

in this range, and hence, by analytic continuation, fos allhis expression has a simple
poles att = —(2k — 1) and a pole of ordetr ats = —(2k +1)/2, withk = 1,2, 3, ....
We find rational values of this coefficient whenr= 2k:

2j — 1!

k
fcoe(2k) = l_[ @2 D

j=1

(131)

Again, this can be verified by computing the leading order termgf(1, 2k), which
turns out to be a polynomial of ordek2in N.
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Finally,
2

5 = 2 @@ -1 —¢(@m

lim Ly, s) x N“Z/2 =exp| — (1+ y — §C(2)>
N—o0 4 n=2

1 S2n
+ 2Wé’(zn)) z)

_ [GA+ G-I (A+ )L —ys)
o F(l+s/2T(1—5/2) ’ (132)

with the correct zeros of ordérat+2k and ordek at+(2k + 1), wherek = 1,2, 3, .. ..
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