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Abstract

This paper addresses �nite sample stability properties of sequential Monte Carlo methods for approx-

imating sequences of probability distributions. The results presented herein are applicable in the scenario

where the start and end distributions in the sequence are �xed and the number of intermediate steps is

a parameter of the algorithm. Under assumptions which hold on non-compact spaces, it is shown that

the e�ect of the initial distribution decays exponentially fast in the number of intermediate steps and

the corresponding stochastic error is stable in Lp norm.
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1 Introduction

Sequential Monte Carlo (SMC) methods are a class of stochastic algorithms for approximating sequences of

probability measures using a population of N particles. They have been adopted in a variety of application

domains, including rare event analysis [8], statistical physics [24], optimal �ltering [16, 2] and computational

statistics [3, 11]. Various theoretical properties of SMC methods have been studied, and in various contexts,

see amongst others [4, 20, 13, 25], and the seminal work of Del Moral [6]. Existing stability results for SMC

methods rely on very strong assumptions which typically do not hold on non-compact spaces. This article is

concerned with establishing stability properties for a class of SMC algorithms primarily motivated by those

of Del Moral et al. [11], under assumptions which do hold on non-compact spaces. The following example

indicates a scenario of interest.
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1.1 A motivating example

Let π be a distribution on some space X, admitting a strictly positive and bounded density with respect to

some dominating measure. For ease of presentation, let π also denote this density and let π̄ denote the corre-

sponding unnormalised density, i.e. for some Z > 0, π(x) = π̄(x)/Z. For some γ ∈ (0, 1), let γ : [0, 1]→ [γ, 1]

be a non-decreasing Lipschitz function with γ(0) = γ and γ(1) = 1. For n ∈ N let {Gn,k; 0 ≤ k < n} be the

collection of potential functions on X de�ned by Gn,k(x) = π̄γ((k+1)/n)(x)/π̄γ(k/n)(x). Let {Mn,k; 1 ≤ k ≤ n}

be a collection of ergodic Markov kernels also on X, whereMn,k admits as its invariant distribution the prob-

ability with density proportional to π̄γ(k/n)(x) (denoted by πγ(k/n)). For some initial distribution µ, consider

the sequence of probability distributions {ηn,k; 1 ≤ k ≤ n} de�ned, for a test function f , by

ηn,k (f) :=
Eµ
[∏n−1

k=0 Gn,k(Xn,k)f(Xn,n)
]

Eµ
[∏n−1

k=0 Gn,k(Xn,k)
] , (1)

where Eµ denotes expectation with respect to the law of the inhomogeneous Markov chain {Xn,k; 0 ≤ k ≤ n},

such that X0,0 ∼ µ and Xn,k+1|Xn,k = xn,k ∼ Mn,k+1 (xn,k, ·). The special interest in (1) is that when

µ = πγ , then ηn,n = π, for any n ≥ 1 . Furthermore, in applications Z is unknown, the distributions of

the form (1) cannot be computed exactly, and one aims to obtain an approximation of π by �xing n then

approximating each of the {ηn,k; 0 ≤ k ≤ n} in turn, as follows. Let N ∈ N and let {ζn,k; 0 ≤ k ≤ n} be an

inhomogeneous Markov chain, with each ζn,k =
{
ξin,k; 1 ≤ i ≤ N

}
an N -tuplet and with each ξin,k valued in

X, with
{
ξin,0; 1 ≤ i ≤ N

}
independent and of common distribution µ. Given ζn,k, the

{
ξin,k+1; 1 ≤ i ≤ N

}
are independent, with ξin,k+1 drawn from

∑N
j=1Gn,k

(
ξjn,k

)
Mn,k+1

(
ξjn,k, ·

)
∑N
j=1Gn,k

(
ξjn,k

) . (2)

The particle approximation measure at time step k is ηNn,k := 1
N

∑N
i=1 δξin,k , and one takes ηNn,n(f) :=

1
N

∑N
i=1 f(ξin,n) as an approximation of π(f). The expectation terms in (1) are in the shape of Feynman-Kac

formulae, and adopting the terminology of Del Moral [6] throughout the following, a general collection of

Markov kernels, potential functions, initial distribution and associated {ηn,k} are referred to as constituting

a Feynman-Kac (FK) model.

The FK model described above has a notable structural characteristic: due to fact that γ and π are �xed

and γ(·) is continuous, the potential functions each become �at as n→∞ (note that this is not an essential
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feature of the general FK models considered by Del Moral [6], nor is it the regime usually considered in

the �ltering scenario). One might then conjecture that the sequence of measures {ηn,k; 0 ≤ k ≤ n} inherit

ergodicity properties from the Markov kernels when µ 6= πγ̄ , and ηn,n(f)−π(f) goes to zero at some related

rate as n → ∞. Perhaps more adventurously, one might further conjecture that this stability property is

inherited by the corresponding particle system so that Ēµ
[∣∣ηNn,n(f)− π(f)

∣∣p]1/p is controlled in n, and the

contribution from the stochastic error diminishes at the usual
√
N rate, where Ēµ denotes expectation w.r.t.

the law of the particle process initialised using µ.

The results presented in this paper allow it to be shown that this is indeed the case in the context of

applications such as [11] on non-compact spaces. The contributions are to establish deterministic stability

results for a broad class of FK models, of which the example above is one instance, and to provide Lp bounds

for the corresponding particle errors.

1.2 Summary of results

The present work is built upon generic assumptions about the FK model structure, which can be loosely

summarized as follows:

• the Markov kernels {Mn,k} are geometrically ergodic, with common Foster-Lyapunov drift function V

and associated constants, and with a common minorization condition

• the potential functions {Gn,k} are uniformly bounded above, and are of the formGn,k(x) ∝ exp
[
− 1
nUn,k(x)

]
,

for Un,k positive and bounded uniformly over n and k in V -norm .

• f is bounded in V -norm

Stability properties of general FK semigroups are established in Theorem 1 (section 3). Note here that, in

contrast to the above example, no speci�c form is assumed for {Un,k} or their relations to the invariant

distributions of {Mn,k}. Theorem 2 (section 4) provides Lp error bounds for the corresponding particle

systems, under additional assumptions on the drift properties of the particle process.

For the reader's convenience Theorem 3 is now summarized (for the precise statement see section 5),

which is an application to the example sketched above. Let X = Rd. Then when π has a sub-exponential

density w.r.t. Lebesgue measure with asymptotically regular contours, and when each Mn,k is a random

walk Metropolis kernel of invariant distribution πγ(k/n), under a suitable trade-o� between p ≥ 1, α ∈ [0, 1)

and γ, there exists ρ < 1 and constants C1 and C2 such that for any f with ‖f‖V α := supx
|f(x)|
V α(x)

< +∞,
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any N ≥ 1 and n ≥ 1,

Ēµ
[∣∣πNn (f)− π(f)

∣∣p]1/p ≤ ‖f‖V α
(
C1√
N

(
1− ρn

1− ρ

)
+ ρnC2I

[
µ 6= πγ

])
, (3)

where πNn := ηNn,n, is the particle approximation as in section 1. The �rst term on the r.h.s. of (3) corresponds

to the stochastic errors from the population of size N interacting and mutating over n times steps. The

second term on the r.h.s. is a deterministic bias which arises if the initial distribution is mis-speci�ed, and

this bias decays exponentially quickly in n.

1.3 Existing work

Despite the fact that the focus here is on models with the ��attening� property, existing SMC stability results

cannot be transferred directly to the present scenario under realistic assumptions. They are reviewed below

for completeness.

Del Moral [6, Theorem 7.4.4] proved time-uniform Lp error bounds, under assumptions which in the

present scenario would take the form:

• there exist εM > 0, m ≥ 0 and εG > 0 such for all n, k and x, y ∈ X

Mn,k . . .Mn,k+m(x, ·) ≥ εMMn,k . . .Mn,k+m(y, ·) (4)

Gn,k(x) ≥ εGGn,k(y), (5)

• f is bounded.

Note that these results hold for fully general FK models, not necessarily having the ��attening� property (see

also [10, 9, 7, 21, 20, 5, 12] for various results under the same type of assumption as one or both of (4)-(5)).

However, these assumptions are very strong. Equation (4) is stronger than uniform ergodicity of the m-step

kernels, and typically is not satis�ed for the kernels of interest in [11], such as Metropolis-Hastings kernels

on Rd. For a toy example which highlights the issue, consider the case that X = R and for some probability

measure ν on X dominated by Lebesgue measure, take Mn,k(x, ·) = aδx(·) + (1− a)ν(·). It is easy to check

that (4) is violated. Similarly (5) is typically not satis�ed in the applications of interest on non-compact

spaces and the assumption that f is bounded is then also rather restrictive. It should be noted however,

that with a ∈ (0, 1) the Dobrushin co-e�cient of this particular Mn,k is in (0, 1), and under appropriate
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assumptions on Gn,k, stability results such as Theorem 2.6 in [9] then do apply to the underlying model.

Oudjane and Rubenthaler [22] and Heine and Crisan [17] used truncation approaches to obtain stability

results for particle �lters in expectation over the observation process, without mixing assumptions, but they

respectively introduce a rejection step into the particle algorithm (making its computational cost random)

and use restrictive assumptions about the state-spaces involved, the hidden Markov model (HMM) and the

particle mutation kernels which are not realistic in the scenario of interest. van Handel [25] proved uniform

time-average consistency of particle �lters under tightness assumptions for a class of bounded functions. Very

recently, Del Moral et al. [12] have studied SMC methods in which the resampling step is applied adaptively

over time.

The stability of SMC methods has also been studied in the asymptotic regime N → ∞. Chopin [4]

established a CLT for a broad class of SMC algorithms, and showed that under the same type of strong

mixing assumptions as in (4)-(5), the asymptotic (in N) variance associated with the rescaled stochastic error

can be bounded uniformly in n. Jasra and Doucet [19] focused on the asymptotic variance corresponding to

the algorithms proposed by Del Moral et al. [11] for unbounded functions. They obtained a bound on the

asymptotic variance under realistic geometric ergodicity assumptions which are the same as those considered

in the present work. They do not consider the ��attening� regime in their assumptions, and their bounds on

the asymptotic variance are not time uniform. Further details of the relationship between the approach of

Jasra and Doucet [19] and some of the ideas in this paper are postponed until section 3.

Finally the particle algorithm considered here is derived from the simplest case of the general transition

form studied in Section 2.5.3. of [6]. Other selection mechanisms, notably that discussed in [6, Section

11.8.1], have advantages in the n→∞ regime, and it would be interesting to extend the analysis presented

here to that context.

The remainder of the paper is structured in the following manner. Section 2 speci�es the general form of

the FK models in question, associated semigroups and particle systems. Section 3 deals with the deterministic

stability of the sequences of measures arising from the FK models. Lp error bounds for the stochastic errors

of the particle approximations are derived in Section 4. Section 5 applies the results to the case where X = Rd

and when the Markov kernels are of the random walk Metropolis variety.
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2 De�nitions

Consider a state space X and an associated countably generated σ-algebra B(X), Let P(X) be the collection

of probability measures on (X,B(X)). For a measure µ on (X,B(X)), an integral kernel M : X × B(X) →

[0,∞) and a function f : X → R, de�ne µf :=
´
X
f(x)µ(dx), Mf(x) :=

´
X
M(x, dy)f(y) and µM(·) =

´
X
µ(dx)P (x, ·) . The function which assigns 1 to every point in X is also denoted by 1, and the indicator

function on a set A is denoted by IA.

Let W : X→ [1,∞) and f : X→ R be two measurable functions, then de�ne the norm

‖ f ‖W= sup
x∈X

|f(x)|
W (x)

.

and let LW = {f :‖ f ‖W<∞}. Let µ be a signed measure on (X,B(X)), then de�ne the norm

‖ µ ‖W = sup
|φ|≤W

|µ(φ)| .

2.1 Feynman-Kac models and associated semigroups

Let µ ∈ P(X) and for each n ∈ N let {Mn,k; 1 ≤ k ≤ n} be a collection of Markov kernels, each kernel acting

X×B(X)→ [0, 1]. Let {Gn,k; 0 ≤ k ≤ n− 1} be a collection of B(X)-measurable, real-valued, strictly positive

and bounded functions on X. The notation employed below is directly inspired by that of Del Moral [6], with

some important modi�cations, primarily to the indexing, re�ecting the scenario of interest in which there is

a di�erent FK model for each n.

Next, for each n ∈ N, let {Qn,k; 1 ≤ k ≤ n} be the collection of integral kernels de�ned by

Qn,k(x, dy) = Gn,k−1(x)Mn,k(x, dy).

For each n and 0 ≤ k ≤ ` ≤ n, let Mn,k:` and Qn,k:` be the semigroups associated with the Markov kernels

{Mn,k} and the kernels {Qn,k}. These semigroups are de�ned by

Mn,k:` = Mn,k+1Mn,k+2 . . .Mn,`, k < ` ≤ n,

Qn,k:` = Qn,k+1Qn,k+2 . . . Qn,`, k < ` ≤ n, (6)

and Mn,k:k = Qn,k:k = Id, 0 ≤ k ≤ n. Next de�ne the collection of probability measures {ηn,k; 0 ≤ k ≤ n}
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by

ηn,k(A) =
µQn,0:k(A)

µQn,0:k(1)
, A ∈ B(X).

Let {Ψn,k; 0 ≤ k < n} and {Φn,k; 1 ≤ k ≤ n} be the collections of mappings, each mapping acting from P (X)

into P (X), de�ned for any η ∈ P (X) by

Ψn,k(η)(dx) =
Gn,k(x)

η(Gn,k)
η(dx), Φn,k(η) = Ψn,k−1(η)Mn,k,

and for 0 ≤ k ≤ ` ≤ n denote by Φn,k:` the semigroup associated with the mappings {Φn,k}, de�ned by

Φn,k:` = Φn,` ◦ Φn,`−1 ◦ . . . ◦ Φn,k+1, k < ` ≤ n,

and with the convention Φn,k:k = Id. It is straightforward to check that under these de�nitions, for any

0 ≤ k ≤ ` ≤ n, η ∈ P (X) and A ∈ B(X),

Φn,k:`(η)(A) =
ηQn,k:`(A)

ηQn,k:`(1)
(7)

and in particular,

Φn,k:`(ηn,k) = ηn,`.

Lastly, let {Sn,k; 1 ≤ k ≤ n} be the collection of Markov kernels, each kernel acting X×B(X)→ [0, 1], de�ned

by

Sn,k(x,A) =
Mn,k(Qn,k:n(1)IA)(x)

Mn,k(Qn,k:n(1))(x)
.

Under these de�nitions it is straightforward to check that, in line with (7), we have the alternative

description of the mapping Φn,k:n in terms of the Markov kernels {Sn,k}: for any 0 ≤ k ≤ n and any

η ∈ P(X)

Φn,k:n(η)(A) =
η (Qn,k:n(1)Sn,k+1 . . . Sn,n(A))

η (Qn,k:n(1))
. (8)

Consider the following assumption.
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(A1) There exists a �nite constant GX such that for all n ∈ N and 0 ≤ k ≤ n− 1,

Gn,k(x) ≤ GX, ∀x ∈ X.

When assumption (A1) holds, for 0 ≤ k ≤ n− 1 de�ne G̃n,k : X→ (0, 1] by

G̃n,k(x) =
Gn,k(x)

GX

,

and correspondingly,

Q̃n,k(x, dy) = G̃n,k−1(x)Mn,k(x, dy).

Also let Q̃n,k:` denote the semigroup associated with the kernels Q̃n,k in the same manner as (6), with the

same convention Q̃n,k:k = Id. Furthermore under (A1), let Un,k : X → [0,∞) be de�ned by Un,k(x) =

−n log G̃n,k(x).

As stated in section 1, the work presented here is primarily motivated by the models and algorithms

considered in [11]. However, the �backward� kernel structure which they consider is not introduced here as

it is not essential for our purposes. A speci�c example is given in section 5 and at that point comment on

how this �ts with the framework of Del Moral et al. [11] is provided.

2.2 Particle systems

An explicit construction of the probability space for the particle systems is not provided here, but this

can be carried out by canonical methods, see for example [6, Chapter 3] and should be clear from the

following symbolic description. Fix N ∈ N, n ∈ N, and for 0 ≤ k ≤ n let ζ
(N)
n,k :=

{
ξ

(N,i)
n,k ; 1 ≤ i ≤ N

}
, where

each ξ
(N,i)
n,k is valued in X. Denote ηNn,k :=

1

N

∑N
i=1 δξ(N,i)

n,k

. For 1 ≤ i ≤ N and 1 ≤ k ≤ n let F (N,i)
n,k :=

σ(ζ
(N)
n,0 , . . . , ζ

(N)
n,k−1, ξ

(N,1)
n,k , ..., ξ

(N,i)
n,k ) and F (N,i)

n,0 := σ(ξ
(N,1)
n,0 , ..., ξ

(N,i)
n,0 ). The generations of the particle system{

ζ
(N)
n,k ; 0 ≤ k ≤ n

}
form a non-homogeneous Markov chain: for µ ∈ P(X), the law of this chain is denoted
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by Pµ and has transitions given in integral form by:

Pµ
(
ζ

(N)
n,0 ∈ dx

)
=

N∏
i=1

µ(dxi),

Pµ
(
ζ

(N)
n,k ∈ dx

∣∣∣ ζ(N)
n,k−1

)
=

N∏
i=1

Φn,k
(
ηNn,k−1

)
(dxi), 1 ≤ k ≤ n,

where dx = d
(
x1, . . . xN

)
. Denote by Ēµ the expectation corresponding to Pµ. It is easy to check that for

any 0 ≤ k ≤ n and1 ≤ i ≤ N ,

Ēµ
[
IA
(
ξ

(N,i)
n,k

)]
= Ēµ

[
ηNn,k(A)

]
, A ∈ B (X) . (9)

3 Stability of the deterministic measures

This section is concerned with stability properties of the sequences of Markov kernels {Sn,k} and operators

{Φn,k}. The approach is to identify non-homogeneous Foster-Lyapunov drift functions and minorization

conditions which arise quite naturally from the structure of the FK model and then to employ the quantitative

bounds of Douc et al. [14]. Compared to [19], in the present work the general structure of FK models is

exploited more directly and in a way which is fruitful when the models satisfy assumption (A4) below. Douc

et al. [15, Section 5] identi�ed drift functions and coupling sets for related operators in some speci�c HMM's;

the present work is concerned with a general FK model structure. The �rst main idea of this section is

illustrated by the following assumption and lemma.

(A2) There exists λ ∈ [0, 1), a function V : X → [1,∞), ε ∈ (0, 1], b ∈ (0,∞), C ∈ B (X) and a probability

measure ν ∈ P(X), such that

inf
n≥1

inf
1≤k≤n

Mn,k(x,A) ≥ ε · ν(A), ∀A ∈ B(X), ∀x ∈ C, (10)

sup
n≥1

sup
1≤k≤n

Mn,kV (x) ≤ λV (x) + bIC(x), ∀x ∈ X. (11)
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Lemma 1. Assume (A1)-(A2). Then for each n ∈ N and 1 ≤ k ≤ n,

Sn,k(x, ·) ≥ εn,kνn,k(·), ∀x ∈ C, (12)

Sn,kVn,k(x) ≤ λVn,k−1(x) + bn,k−1IC(x), ∀x ∈ X, (13)

where

εn,k := ε · ν
(
Q̃n,k:n(1)

)
, bn,k :=

b

ε · ν
(
Q̃n,k:n(1)

) , (14)

and νn,k ∈ P (X) and Vn,k : X→ [1,∞) are de�ned by

νn,k(A) :=
ν
(
Q̃n,k:n(1)IA

)
ν
(
Q̃n,k:n(1)

) , A ∈ B(X) , (15)

Vn,k(x) :=
V (x)

Mn,k+1

(
Q̃n,k+1:n(1)

)
(x)

, x ∈ X, 0 ≤ k < n, (16)

Vn,n := V , with λ, V , b, ν, ε and C as in (A2).

Proof. Noting that 0 < Q̃n,k:n(1)(x) ≤ 1 for all x ∈ X, we have

Sn,k(x,A) =
Mn,k

(
Q̃n,k:n(1)IA

)
(x)

Mn,k

(
Q̃n,k:n(1)

)
(x)

≥Mn,k

(
Q̃n,k:n(1)IA

)
(x)

≥ ε · ν
(
Q̃n,k:n(1)

) ν (Q̃n,k:n(1)IA
)

ν
(
Q̃n,k:n(1)

) , ∀x ∈ C.

and

Sn,kVn,k(x) =
Mn,k

(
G̃n,kV

)
(x)

Mn,k

(
Q̃n,k:n(1)

)
(x)

≤ λ V (x)

Mn,k

(
Q̃n,k:n(1)

)
(x)

+ b
IC(x)

Mn,k

(
Q̃n,k:n(1)

)
(x)

≤ λVn,k−1(x) + b
IC(x)

ε · ν
(
Q̃n,k:n(1)

) , ∀x ∈ X, (17)

recalling the convention Q̃n,n:n(1) = 1.
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The minorization and drift conditions (12)-(13) pave the way to establishing the stability properties of

the operators {Φn,k}. In order to move further we introduce assumption (A3) below, which is a stricter

version of (A2). The extra structure of (A3) allows the construction in Proposition 1 of bi-variate drift and

minorization conditions. Consideration of the case in which the small set arises as a sub-level set of the

drift function V is a standard and generic approach to constructing bi-variate drift conditions from their

uni-variate counter-parts, see for example [1, 14]. Furthermore, assumption (A3) allows the level in question

to be chosen in a very �exible way, and this property is exploited in Proposition 1 when dealing with the

speci�c structure arising from the kernels {Sn,k}. Veri�cation of (A3) in a particular application is provided

in section 5. Assumption (A4) allows the bounding of non-homogeneous minorization and drift constants.

A generic approach to verifying (A4) is presented at the end of this section, where the connection with

�attening property mentioned in the introduction is made more explicit.

(A3) There exists d0 ≥ 1, λ ∈ [0, 1), a function V : X → [1,∞), and for all d ∈ [d0,+∞), there exists

εd ∈ (0, 1], bd ∈ (0,∞) and νd ∈ P(X) such that νd (Cd) > 0, νd(V ) < +∞,

inf
n≥1

inf
1≤k≤n

Mn,k(x,A) ≥ εd · νd(A), ∀A ∈ B(X), ∀x ∈ Cd, (18)

sup
n≥1

sup
1≤k≤n

Mn,kV (x) ≤ λV (x) + bdICd(x), ∀x ∈ X, (19)

where Cd := {x : V (x) ≤ d}.

(A4) Whenever (A1) and (A3) hold, for any µ ∈ P (X) with µ(V ) < +∞ there exists a positive and �nite

constant K (µ, λ, V, bd0
) such that

inf
n≥1

inf
0≤k≤n

µ
(
Q̃n,k:n(1)

)
≥ K (µ, λ, V, bd0) ,

where λ, V and d0 are as in (A3).

The main result of this section is now presented.

Theorem 1. Assume (A1), (A3) and (A4). Then for any α ∈ (0, 1], there exists ρ ∈ (λ, 1) and a �nite con-

stantM such that for any n ∈ N, any 1 ≤ k ≤ n, and any µ, µ′ ∈ P(X) with µ
(
V αn,k−1

)
< +∞, µ′

(
V αn,k−1

)
<

+∞,

‖µSn,k . . . Sn,n − µ′Sn,k . . . Sn,n‖V α ≤ Mρn−k+1
[
µ
(
V αn,k−1

)
+ µ′

(
V αn,k−1

)]
, (20)
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where Vn,k−1 is as given in equation (16). Consequently, for any µ, µ′ ∈ P(X) with µ (V α) < +∞, µ′ (V α) <

+∞ and 0 ≤ k ≤ n,

‖Φn,k:n (µ)− Φn,k:n (µ′)‖V α ≤ Mρn−k

 µ
(
G̃n,kV

α
)

µ
(
Q̃n,k:n(1)

) +
µ′
(
G̃n,kV

α
)

µ′
(
Q̃n,k:n(1)

)
 . (21)

The proof of Theorem 1 is postponed. It involves the bi-variate drift functions identi�ed in the following

proposition.

Proposition 1. Assume (A1) and (A3) and let V , d0 and λ be as in (A3). Then for all d ≥ d0, and all

λ̄ ∈ (λ, 1) there exists d̄ ≥ d, and for each n ∈ N, there exist

1) a collection of functions
{
V̄n,k; 0 ≤ k ≤ n

}
, with each V̄n,k : X× X→ [1,∞) and

V̄n,n(x, x′) = 1
2 [V (x) + V (x′)];

2) collections {ε̄n,k; 1 ≤ k ≤ n}, and
{
bn,k; 0 ≤ k ≤ n− 1

}
depending on d and d̄, with each

ε̄n,k ∈ (0, 1] and each b̄n,k ∈ (0,∞);

3) a collection of probability measures {ν̄n,k; 1 ≤ p ≤ n}, depending on d̄, with each

ν̄n,k ∈ P(X);

such that for 1 ≤ k ≤ n,

Sn,k(x, ·) ∧ Sn,k(x′, ·) ≥ ε̄n,kν̄n,k(·), ∀(x, x′) ∈ C̄d̄, (22)

S∗n,kV̄n,k(x, x′) ≤ λ̄V̄n,k−1(x, x′) + bn,k−1IC̄d̄(x, x′), ∀(x, x′) ∈ X× X, (23)

where
{

C̄d̄ := (x, x′) : V (x) ≤ d̄, V (x′) ≤ d̄
}
, S∗n,k : X× X× B(X× X)→ [0, 1] is de�ned by

S∗n,k ((x, x′) , d(y, y′)) =


Sn,k(x, dy)Sn,k(x′, dy′), (x, x′) /∈ C̄d̄,

R̄n,k ((x, x) , d(y, y′)) , (x, x′) ∈ C̄d̄

and R̄n,k : X× X× B(X× X)→ [0, 1] is de�ned by

12



R̄n,k ((x, x) , d(y, y′)) =
1

(1− ε̄n,k)2
(Sn,k(x, dy)− ε̄n,kν̄n,k(dy)) (Sn,k(x′, dy′)− ε̄n,kν̄n,k(dy′)) .

Furthermore,

inf
n≥1

inf
1≤k≤n

ε̄n,k > 0, and sup
n≥1

sup
0≤k≤n−1

b̄n,k < +∞. (24)

Proof. Throughout the proof, expressions featuring indices n and k hold for all n ∈ N and 1 ≤ k ≤ n, unless

stated otherwise.

Fix d ≥ d0 and λ̄ ∈ (λ, 1). Then let εd, bd and νd be the corresponding constants and minorizing measure

from (A3). Let K (νd, λ, V, bd0) be the constant of assumption (A4) corresponding to νd and bd, and set

d̄ :=

[
bd

εd
(
λ̄− λ

)
K (νd, λ, V, bd0

)
− 1

]
∨ d.

Then for equation (22), under assumption (A3), there exists εd̄ and νd̄ such that

Sn,k(x,A) ≥ εd̄ · νd̄
(
Q̃n,k:n(1)IA

)
= εd̄ · νd̄

(
Q̃n,k:n(1)

) νd̄ (Q̃n,k:n(1)IA
)

νd̄

(
Q̃n,k:n(1)

) ,

for all x ∈ Cd̄. Then setting

ε̄n,k := εd̄ · νd̄
(
Q̃n,k:n(1)

)
, ν̄n,k(A) :=

νd̄

(
Q̃n,k:n(1)IA

)
νd̄

(
Q̃n,k:n(1)

) , A ∈ B (X) , (25)

establishes (22). The �rst part of (24) is an immediate consequence of (A4) and (25):

εd̄ · νd̄
(
Q̃n,k:n(1)

)
≥ εd̄K (νd̄, λ, V, bd0

) . (26)

Let {Vn,k} be as de�ned in (16). Consider the collection of bi-variate drift functions
{
V̄n,k; 0 ≤ k ≤ n

}
, with

each V̄n,k : X× X→ [1,∞) de�ned by

V̄n,k(x, x′) :=
1

2
[Vn,k(x) + Vn,k(x′)] . (27)

13



We now proceed to establish the bi-variate drift condition of equation (23). First, following the same

arguments as in the proof of Lemma 1, under (A3),

Sn,kVn,k(x) ≤ λVn,k−1(x) + bd
ICd(x)

εd · νd
(
Q̃n,k:n(1)

) , ∀x ∈ X. (28)

From (28), for (x, x′) /∈ C̄d̄ we have

S∗n,kV̄n,k(x, x′)

≤ λ

2
[Vn,k−1(x) + Vn,k−1(x′)] +

bd
εdK (νd, λ, V, bd0)

1

2
[ICd(x) + ICd(x′)]

≤ λ

2
[Vn,k−1(x) + Vn,k−1(x′)] +

(
λ̄− λ

) (
d̄+ 1

) 1

2

[
ICd̄(x) + ICd̄(x′)

]
≤ λ

2
[Vn,k−1(x) + Vn,k−1(x′)] +

(
λ̄− λ

) 1

2
[V (x) + V (x′)]

[
ICd̄(x) + ICd̄(x′)

]
≤ λ

2
[Vn,k−1(x) + Vn,k−1(x′)] +

(
λ̄− λ

) 1

2
[Vn,k−1(x) + Vn,k−1(x′)]

[
ICd̄(x) + ICd̄(x′)

]
≤ λ̄V̄n,k−1(x, x′),

where for the �rst inequality (A4) has been applied, the second inequality is due to the de�nition of d̄ and

the penultimate inequality is due to the de�nition of V̄n,k−1. For all (x, x′) ∈ C̄d̄,

S∗n,kV̄n,k(x, x′)

= R̄n,kV̄n,k(x, x′)

=
1

2(1− ε̄n,k)
[Sn,kVn,k(x) + Sn,kVn,k(x′)− 2εn,kν̄n,k (Vn,k)]

≤ λ

2(1− ε̄n,k)
[Vn,k−1(x) + Vn,k−1(x′)] +

bd

2(1− ε̄n,k)εdνd

(
Q̃n,k:n(1)

) [ICd(x) + ICd(x′)]

≤ λd̄

(1− ε̄n,k)

1

infx:V (x)≤d̄Mn,k

(
Q̃n,k:n(1)

)
(x)

+
bd

(1− ε̄n,k)εdνd

(
Q̃n,k:n(1)

) =: b̄n,k−1, (29)

where equation (28) has been used. This concludes the proof of equation (23). Applying (A4) to the

denominator terms in (29) and using (25)-(26) establishes the remaining part of equation (24).

Proof. (Theorem 1). Let d0 and λ be as in (A3). Set d ≥ d0, λ̄ ∈ (λ, 1) and let d̄, {ε̄n,k},
{
b̄n,k

}
,{

R̄n,k
}
, and

{
V̄n,k

}
be as in Proposition 1. The latter veri�es conditions (NS1) and (NS2) of Douc et al.

[14]. Consequently [14, Theorem 8] may be applied. For α = 1, the uniform bounds in equation (24) of

14



Proposition 1, combined with standard manipulations of the bounds of Douc et al. [14, Theorem 8] (details

omitted for brevity) show that there exists a �nite constant M and ρ < 1 such that

‖µSn,k . . . Sn,n − µ′Sn,k . . . Sn,n‖V ≤ Mρn−k+1 [µ (Vn,k−1) + µ′ (Vn,k−1)] , (30)

Noting that from equation (8),

Φn,k:n(µ)(A) =
µ
(
G̃n,kMn,k+1

(
Q̃n,k+1:n(1)

)
Sn,k+1 . . . Sn,n(A)

)
µ
(
Q̃n,k:n(1)

) ,

equation (21) holds due to (30) and the de�nition of Vn,k−1 given in equation (16). For the case α ∈ (0, 1), due

to Jensen's inequality and the fact that for any two non-negative reals a, b and α ∈ [0, 1], (a+ b)α ≤ aα + bα,

we have that whenever equation (23) of Proposition 1 holds,

S∗n,k
(
V̄ αn,k

)
(x, x′) ≤

(
λ̄V̄n,k−1(x, x′) + b̄n,k−1IC̄(x, x′)

)α
≤ λ̄αV̄ αn,k−1(x, x′) + b̄αn,k−1IC̄(x, x′), ∀(x, x′) ∈ X× X.

and for V̄n,k−1 given in equation (27),

V̄ αn,k−1(x, x′) ≤ 1

2α
[
V αn,k(x) + V αn,k(x′)

]
.

The arguments as for the case α = 1 are then repeated essentially replacing V̄n,k, λ̄, bn,k−1 by V̄ αn,k, λ̄
α and

b
α

n,k−1 respectively, in order to establish equation (20) and thus (21). The details are omitted for brevity.

3.1 Verifying assumption (A4)

The following lemma illustrates that (A4) can be veri�ed under a generic condition on the decay in x of the

potential functions {Gn,k} speci�ed via {Un,k}, relative to the drift function V of assumption (A3).

Lemma 2. Assume (A1) and (A3). Let V , d0 and λ be as in (A3) and assume

sup
n≥1

sup
0≤k≤n−1

sup
x∈X

Un,k(x)

V (x)
< +∞.

Then there exists a positive, �nite constant C depending only on λ and bd0
such that for any µ ∈ P(X) with
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µ(V ) < +∞,

inf
n≥1

inf
0≤k≤n

µ
(
Q̃n,k:n(1)

)
≥ exp [−Cµ(V )] . (31)

Proof. Firstly, µ
(
Q̃n,n:n(1)

)
= µ(1) and by Jensen's inequality,

µ
(
Q̃n,n−1:n(1)

)
= µ

(
G̃n,n−1

)
≥ exp

[
− 1

n
µ(Un,n−1)

]
≥ exp

[
−µ(V ) ‖Un,n−1‖V

]
.

For 1 ≤ k < n− 1, by Jensen's inequality,

µ
(
Q̃n,k:n(1)

)
=

ˆ
Xn−k+1

exp

(
− 1

n

n−1∑
`=k

Un,`(x`)

)
µ(dxk)

n∏
`=k+1

Mn,`(x`−1, dx`)

≥ exp

[
− 1

n

ˆ
Xn−k+1

(
n−1∑
`=k

Un,`(x`)

)
µ(dxk)

n∏
`=k+1

Mn,`(x`−1, dx`)

]

= exp

[
− 1

n
µ(Un,k)− 1

n

n−1∑
`=k+1

ˆ
X

Un,`(x`)µMn,k:`(dx`)

]
. (32)

Iteration of the drift inequality in (A3) shows that for any 1 ≤ k < ` < n,

ˆ
X

V (x`)Mn,k:`(xk, dx`) ≤ λ`−kV (x) + bd0

`−k−1∑
j=0

λj . (33)

It follows from (33) that

ˆ
X

Un,`(x`)µMn,k−1:`(dx`) ≤ ‖Un,`‖V
ˆ
X

V (x`)µMn,k−1:`(dx`) ≤ µ(V ) + bd0

1

1− λ

which combined with (32) implies the desired result.

4 Lp error bounds for the particle measures

Making use of the results of section 3, the following theorem presents an Lp bound on the error ηNn,n(f) −

ηn,n(f), for some possibly unbounded f . This theorem rests on assumptions about the moments of the

mean particle drift, ηNn,k(V ), and a related normalization quantity, which are used in the proof to bound the

moments of Martingale increments associated with the particle approximation. Veri�cation of (35) is given

in the application of section 5.
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Theorem 2. Assume (A1), (A3) and (A4). Let V be as in (A3) and for s > 0 an independent parameter

let t := 1+s
s . Let p ≥ 1 and α ∈ [0, 1] be such that αtp ≤ 1 and (1 + s)p ≤ 1, and for µ ∈ P(X) assume

sup
N≥1

sup
n≥1

sup
1≤k≤n

Ēµ
[
ηNn,k

(
Q̃n,k:n(1)

)−(1+s)p
]

< +∞, (34)

sup
N≥1

sup
n≥1

sup
1≤k≤n

Ēµ
[
ηNn,k

(
V αtp

)]
< +∞. (35)

Then there exists ρ < 1 and a �nite constant C depending on α, µ, V , and the constants in (A1), (A3), and

(A4) such that for any f ∈ LV α , n ∈ N and N ∈ N,

Ēµ
[∣∣(ηNn,n − ηn,n) (f)

∣∣p]1/p ≤ C ‖f‖V α
(

1− ρn

1− ρ

)
1√
N
. (36)

Proof. Throughout the proof C denotes a constant whose value may change on each appearance. Consider

the telescoping decomposition

(
ηNn,n − ηn,n

)
(f) =

n∑
k=0

[
Φn,k:n

(
ηNn,k

)
− Φn,k:n

(
Φn,k

(
ηNn,k−1

))]
(f), (37)

with the convention Φn,0
(
ηNn,−1

)
:= µ. For any of the terms in the summation of equation (37), following

the approach of Del Moral [6, page 245], we have

[
Φn,k:n

(
ηNn,k

)
− Φn,k:n

(
Φn,k

(
ηNn,k−1

))]
(f)

=

 ηNn,kQ̃n,k:n

ηNn,kQ̃n,k:n(1)
−

Φn,k

(
ηNn,k−1

)
Q̃n,k:n

Φn,k

(
ηNn,k−1

)
Q̃n,k:n(1)

 (f)

=
1

ηNn,kQ̃n,k:n(1)

ηNn,kQ̃n,k:n − ηNn,kQ̃n,k:n(1)
Φn,k

(
ηNn,k−1

)
Q̃n,k:n

Φn,k

(
ηNn,k−1

)
Q̃n,k:n(1)

 (f)

=
1

ηNn,kQ̃n,k:n(1)

[
ηNn,k − Φn,k

(
ηNn,k−1

)]
Q̃Nn,k:n(f), (38)

where

Q̃Nn,k:n(f)(x) := Q̃n,k:n(f)(x)− Q̃n,k:n(1)(x)
Φn,k

(
ηNn,k−1

)
Q̃n,k:n(f)

Φn,k

(
ηNn,k−1

)
Q̃n,k:n(1)

.
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From equations (37) and (38), for p ≥ 1,

Ēµ
[∣∣(ηNn,n − ηn,n) (f)

∣∣p]1/p
≤

n∑
k=0

Ēµ

[∣∣∣∣∣ 1

ηNn,kQ̃n,k:n(1)

[
ηNn,k − Φn,k

(
ηNn,k−1

)]
Q̃Nn,k:n(f)

∣∣∣∣∣
p]1/p

≤
n∑
k=0

Ēµ

∣∣∣∣∣ 1

ηNn,kQ̃n,k:n(1)

∣∣∣∣∣
(1+s)p

1/[(1+s)p]

Ēµ
[∣∣∣[ηNn,k − Φn,k

(
ηNn,k−1

)]
Q̃Nn,k:n(f)

∣∣∣pt]1/(tp)

, (39)

where Minkowski's and Hölder's inequalities have been applied. We next proceed to bound each of the

factors in the summands of equation (39).

Denoting

[
ηNn,k − Φn,k

(
ηNn,k−1

)]
Q̃Nn,k:n(f) =

1

N

N∑
i=1

T
(i)
n,k,

where

T
(i)
n,k := Q̃Nn,k:n(f)(ξ

(N,i)
n,k )− Φn,k

(
ηNn,k−1

)
Q̃Nn,k:n(f),

(with the dependence of T
(i)
n,k on N suppressed) we have that for any n ∈ N, 1 ≤ k ≤ n and 1 ≤ i ≤ N ,

Ēµ
[
T

(i)
n,k

∣∣∣F (N,i−1)
n,k

]
= 0,
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with the convention that F (N,0)
n,k = F (N,N)

n,k−1 . Next, there exists a constant C such that for any p ≥ 1,

Ēµ
[∣∣∣T (i)

n,k

∣∣∣p]1/p
= Ēµ

[∣∣∣∣∣Q̃n,k:n(1)
(
ξ

(N,i)
n,k

)[
Sn,k+1 . . . Sn,n(f)

(
ξ

(N,i)
n,k

)

−
Φn,k

(
ηNn,k−1

)(
Q̃n,k:n(1)Sn,k+1 . . . Sn,n(f)

)
Φn,k

(
ηNn,k−1

)(
Q̃n,k:n(1)

)
∣∣∣∣∣∣
p1/p

≤ ρn−kM ‖f‖V α Ēµ

∣∣∣∣∣∣Q̃n,k:n(1)
(
ξ

(N,i)
n,k

)V αn,k (ξ(N,i)
n,k

)
+

Φn,k

(
ηNn,k−1

)(
Q̃n,k:n(1)V αn,k

)
Φn,k

(
ηNn,k−1

)(
Q̃n,k:n(1)

)
∣∣∣∣∣∣
p1/p

≤ ρn−kM ‖f‖V α Ēµ
[
V αp

(
ξ

(N,i)
n,k

)]1/p
+ρn−kM ‖f‖V α Ēµ

∣∣∣∣∣∣Q̃n,k:n(1)
(
ξ

(N,i)
n,k

) Φn,k

(
ηNn,k−1

)(
Q̃n,k:n(1)V αn,k

)
Φn,k

(
ηNn,k−1

)(
Q̃n,k:n(1)

)
∣∣∣∣∣∣
p1/p

≤ ρn−kM ‖f‖V α Ēµ
[
V αp

(
ξ

(N,i)
n,k

)]1/p
+ρn−kM ‖f‖V α Ēµ

Φn,k

(
ηNn,k−1

)(
Q̃n,k:n(1)V αpn,k

)
Φn,k

(
ηNn,k−1

)(
Q̃n,k:n(1)

) Ēµ
[
Q̃n,k:n(1)

(
ξ

(N,i)
n,k

)∣∣∣F (N,i−1)
n,k

]1/p

≤ ρn−kM ‖f‖V α
(
Ēµ
[
ηNn,k (V αp)

]1/p
+ Ēµ

[
Φn,k

(
ηNn,k−1

)
(V αp)

]1/p)
≤ ρn−kC ‖f‖V α , (40)

where Theorem 1, followed by Minkowski's inequality, Jensen's inequality, the exchangeability property of

equation (9), Jensen's inequality again and the assumption of equation (35) have been applied. Thus for

�xed N ,
{(∑i

j=1 T
(j)
n,k,F

(N,i)
n,k

)
; 1 ≤ i ≤ N

}
is a Martingale sequence with increments bounded in Lp. It

follows that when tp ≥ 2, by the Burkholder-Davis inequality and Minkowski's inequality, there exists a

constant C such that

Ēµ
[∣∣∣[ηNn,k − Φn,k

(
ηNn,k−1

)]
Q̃Nn,k:n(f)

∣∣∣tp]1/(tp)

≤ CN−1Ēµ

∣∣∣∣∣
N∑
i=1

(
T

(i)
n,k

)2
∣∣∣∣∣
tp/2
1/(tp)

≤ CN−1

(
N∑
i=1

Ēµ
[∣∣∣T (i)

n,k

∣∣∣tp]2/(tp)
)1/2

,

19



and when 1 < tp < 2, using the fact that for any a, b ≥ 0 and 0 ≤ r ≤ 1, (a+ b)r ≤ ar + br,

Ēµ
[∣∣∣[ηNn,k − Φn,k

(
ηNn,k−1

)]
Q̃Nn,k:n(f)

∣∣∣tp]1/(tp)

≤ CN−1Ēµ

∣∣∣∣∣
N∑
i=1

(
T

(i)
n,k

)2
∣∣∣∣∣
tp/2
1/(tp)

≤ CN−1

(
N∑
i=1

Ēµ
[(
T

(i)
n,k

)tp])1/(tp)

.

Combining with (40), we conclude that there exists a constant C such that

Ēµ
[∣∣∣[ηNn,k − Φn,k

(
ηNn,k−1

)]
Q̃Nn,k:n(f)

∣∣∣tp]1/(tp)

≤ ρn−kC ‖f‖V α N
−{tp/2∧(tp−1)}/(tp)

,

for all n ≥ 1 and 1 ≤ k ≤ n.

The remaining terms in (39) are treated directly by the assumption of equation (34), and therefore upon

returning to (39) we conclude that there exists a constant C such that

Ēµ
[∣∣(ηNn,n − ηn,n) (f)

∣∣p]1/p ≤ C ‖f‖V α
1√
N

n∑
k=0

ρn−k < C ‖f‖V α
(

1− ρn

1− ρ

)
1√
N
,

and the result holds.

5 Application

This section is concerned with the case in which X = Rd, B(Rd) is the corresponding Borel σ-algebra and

throughout we consider the following structural de�nitions and assumptions.

• Let π ∈ P(X) be a target distribution admitting a density with respect to Lebesgue measure. Also

denote by π its density. In applications of interest, this density will only be known up to a multiplicative

constant, Z, and denote by π̄ the unnormalised density, i.e. π(x) = π̄(x)/Z, x ∈ Rd.

• For γ ∈ (0, 1] a constant, let γ : [0, 1]→ [γ, 1] be a non-decreasing, Lipschitz function.

• Let
{
πγ ; γ ∈ [γ, 1]

}
be the family of probability measures de�ned by

πγ(A) :=

´
A
π̄γ(x)dx´

X
π̄γ(x)dx

, A ∈ B(X).
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• Let q ∈ P(X) be an increment distribution admitting a density with respect to Lebesgue measure, also

denoted by q. For each n ≥ 1 and 1 ≤ k ≤ n, let Mn,k be a random walk Metropolis (RWM) kernel of

invariant distribution πγ(k/n) and proposal kernel q , i.e.

Mn,k(x,A) =

ˆ
A−x

[
1 ∧ π̄

γ(k/n)(x+ y)

π̄γ(k/n)(x)

]
q(y)λLeb(dy)

+δx(A)

ˆ
X−x

[
1−

[
1 ∧ π̄

γ(k/n)(x+ y)

π̄γ(k/n)(x)

]]
q(y)λLeb(dy), A ∈ B(X).

where for any set C, C − x := {z ∈ X; z + x ∈ C} (note that in applications it may be of interest to

allow q to depend on n and k, for example via γ(k/n), but for simplicity this issue is not pursued

further here).

• Let {Gn,k;n ≥ 1, 0 ≤ k ≤ n− 1} be a collection of potential functions de�ned by

Gn,k(x) = exp

[
1

n
log π̄(x)

(
γ((k + 1)/n)− γ(k/n)

1/n

)]
.

Consider the following assumptions on the target density π and increment density q.

• The density π is strictly positive, bounded and has continuous �rst derivatives such that

lim
r→∞

sup
|x|≥r

n(x) · ∇ log π(x) = −∞, lim
r→∞

sup
|x|≥r

n(x) · ∇π(x)

|∇π(x)|
< 0, (41)

where n(x) := x/ |x|.

• For all r > 0 there exists εr > 0 such that

|x| ≤ r ⇒ q(x) ≥ εr. (42)

The assumptions of equations (41)-(42) are standard types of assumptions ensuring geometric ergodicity of

RWM kernels [23, 18]. The assumption of equation (42) is stronger than the standard one in [18], but is

�exible enough to verify (A3) which involves a family of minorization measures/constants, indexed over a

range of levels of V .

The interest in the speci�c FK models of this section arises from the choice of the initial distribution

µ addressed in the following lemma. This FK model corresponds to a particular choice of the �backwards�
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kernels in [11], and in the corresponding SMC algorithm the order of the weighting and resampling steps is

reversed.

Lemma 3. Consider the operators {Φn,k} associated with {Gn,k} and {Mn,k} of section 5. Then for all

n ≥ 1 and 0 ≤ k ≤ n, Φn,0:k

(
πγ

)
= πγ(k/n).

Proof. Fix n arbitrarily and suppose the result holds at rank 0 < k < n. Then

Φn,0:k+1

(
πγ

)
(A) = Φn,k+1 ◦ Φn,0:k

(
πγ

)
(A)

=

´ π̄γ((k+1)/n)(x)

π̄γ(k/n)(x)
Mn,k+1(A)(x)πγ(k/n)(dx)

´ π̄γ((k+1)/n)(x)

π̄γ(k/n)(x)
πγ(k/n)(dx)

= πγ((k+1)/n)(A), A ∈ B(X),

due to the property that Mn,k is invariant for πγ(k/n)(dx). The proof is complete upon noting that for all

n, Φn,0:0 = Id by convention.

We have the following result.

Theorem 3. Consider the collection of FK models speci�ed in section 5. Let s > 0 be an independent

parameter and set t = 1+s
s . Let α ∈ [0, 1], and p ≥ 1 be such that αpt ≤ 1 and (1 + s)p(1− γ)/γ < 1. Then

there exist �nite constants C1(p, µ), and C2

(
µ, πγ

)
(depending implicitly on π and γ(·)), and constants

β ∈ (0, 1) and ρ ∈ [0, 1), such that for any f ∈ LV α , n ≥ 1 and N ≥ 1,

Ēµ
[∣∣(πNn − π) (f)

∣∣p]1/p ≤ ‖f‖V α
(
C1(p, µ)√

N
+ ρnC2

(
µ, πγ

)
I
[
µ 6= πγ

])
,

where V (x) ∝ π−βγ(x) and for each n, πNn := ηNn,n.

The proof of Theorem 3 is postponed until after the following proposition regarding the veri�cation of

assumptions.

Proposition 2. Consider the setting of section 5. Then (A1), (A3) and (A4) hold.

Proof. As the density π is bounded and γ(·) is Lipschitz, (A1) holds by the mean value theorem. We now

turn to the veri�cation of (A3). Various arguments are adopted from Andrieu et al. [1] and the manipulations

are fairly standard, but are included here for completeness. The main di�erence is that we need to explicitly
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verify the drift and minorization conditions of (A3) which hold over a range of sub-levels for V and the proof

below involves veri�cation of some assumptions taken as given in [1, Lemma 4].

Firstly, due to the de�nition of πγ we have that ∇ log πγ(x) = γ∇ log π̄(x) = γ∇ log π(x) and
∇π(x)

|∇π(x)|
=

π̄(x)∇ log π̄(x)

|π̄(x)∇ log π̄(x)|
γ

γ

π̄γ−1(x)

π̄γ−1(x)
=
∇πγ(x)∣∣∣∇πγ(x)

∣∣∣ and so

lim
r→∞

sup
|x|≥r

n(x) · ∇ log πγ(x) = −∞, lim
r→∞

sup
|x|≥r

n(x) ·
∇πγ(x)∣∣∣∇πγ(x)

∣∣∣ < 0. (43)

In order to verify (A3) we �rst verify a drift condition for M0(x, dy), de�ned to be the RWM kernel

reversible w.r.t. πγ(x) with increment density q as above, i.e.

M0(x,A) =

ˆ
A−x

[
1 ∧ π̄

γ(x+ y)

π̄γ(x)

]
q(y)λLeb(dy)

+δx(A)

ˆ
X−x

[
1−

[
1 ∧ π̄

γ(x+ y)

π̄γ(x)

]]
q(y)λLeb(dy), A ∈ B(X).

Let β ∈ (0, 1) and de�ne V : X→ [1,+∞) by

V (x) :=
π−γβ(x)

infx π
−γβ(x)

. (44)

The results of Jarner and Hansen [18] show that when (43) holds, then for M0 with increment density q

satisfying equation (42), it holds that limr→∞ sup|x|≥r
M0V (x)

V (x)
< 1. Thus there exist λ < 1 and ρλ < +∞

such that

|x| ≥ ρλ ⇒
M0V (x)

V (x)
≤ λ. (45)

Due to (41), there exists ε > 0 and ρε > 0 such that

|x| ≥ ρε ⇒ n(x) · ∇ log πγ(x) ≤ −ε.

Now set r0 = ρλ ∨ ρε and d0 := sup|x|≤r0 V (x). Note that d0 < +∞ due to the de�nition of V and as the

density π is continuous and positive. We now proceed to verify the drift part of (A3).
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For any d ≥ d0 let Cd := {x : V (x) ≤ d}. We then have

sup
x∈Cd

M0V (x) ≤ d supx∈Cd
M0V (x)

V (x)
= d sup

x∈Cd

{ˆ
A(x)

π̄−γβ(x+ y)

π̄−γβ(x)
q(y)λLeb(dy)

+

ˆ
R(x)

[
1− π̄γ(x+ y)

π̄γ(x)
+
π̄γ(1−β)(x+ y)

π̄γ(1−β)(x)

]
q(y)λLeb(dy)

}
(46)

where A(x) := {y ∈ X : π(x+ y) ≥ π(x)}, R(x) := {y ∈ X : π(x+ y) < π(x)}. As each of the ratios in (46)

is less than or equal to 1, then we conclude that there exists a constant Cb < +∞ such that

sup
x∈Cd

M0V (x) ≤ dCb =: bd. (47)

Noting the de�nition of d0, and combining (45) and (47) we obtain

M0V (x) = M0V (x)I[|x| > r0] +M0V (x)I[|x| ≤ r0]

≤ λV (x) +M0V (x)I[V (x) ≤ d]

≤ λV (x) + bdICd(x), (48)

for any d ≥ d0 and x ∈ X. The arguments of Andrieu et al. [1, Lemma 5] then give Mn,kV (x) ≤ M0V (x)

and from this, (48) and (47), we obtain for any d ≥ d0,

sup
n≥1

sup
1≤k≤n

Mn,kV (x) ≤ λV (x) + bdICd(x),

which establishes the drift part of (A3). It remains to show the minorization part. To this end we �rst

show that for any d ≥ d0, Cd is bounded. Recalling the de�nition of r0, we have that for any x such that

|x| − r0 ≥ 0,

V (x)

V (n(x)r0)
=

(
π(x)

π(n(x)r0)

)−γβ
= exp

[
−γβ (|x| − r0)

ˆ 1

0

n(x) · ∇ log π(tx+ (1− t)n(x)r0)dt

]
≥ exp

[
γβ (|x| − r0) ε

]
from which we see that limr→∞ inf |x|≥r V (x) = +∞, which in turn implies that for all d ≥ d0 there exists

rd ≥ 0 such that V (x) ≤ d⇒ |x| ≤ rd. Then for any n ≥ 1, 0 ≤ k ≤ n and rd ≥ 0, whenever x ∈ Cd
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Mn,k(x,A) ≥
ˆ
A−x

[
1 ∧ π(x+ y)

π(x)

]
q(y)λLeb (dy)

≥
ˆ

(A∩B(0,rd)−x)

[
1 ∧ π(x+ y)

π(x)

]
q(y)λLeb (dy)

≥ ε2rd
infy∈B(0,rd) π(y)

supy∈B(0,rd) π(y)

ˆ
(A∩B(0,rd)−x)

λLeb (dy)

= ε2rd
infy∈B(0,rd) π(y)

supy∈B(0,rd) π(y)

(ˆ
B(0,rd)

λLeb (dy)

) ´
A∩B(0,rd)

λLeb (dy)´
B(0,rd)

λLeb (dy)

=: εd · νd(A),

where the third inequality holds due to the properties of q in (42). As π is strictly positive and continuous,

V is bounded on compact sets and therefore νd(V ) < +∞. Also, Cd ⊇ Cd0 and then due to the de�nition of

d0, νd(Cd) ≥ νd(Cd0
) ≥ νd(B(0, r0)) > 0. This concludes the veri�cation of (A3).

For (A4), from the de�nition of Gn,k in this situation, we observe that Un,k may be taken as

Un,k(x) = − log π̄(x)

(
γ((k + 1) /n)− γ(k/n)

1/n

)
+ Cγ sup

y
log π̄(y)

where Cγ is the Lipschitz constant for γ(·) and we observe that supn≥1 sup0≤k≤n−1 supx∈X
Un,k(x)

V (x)
< +∞ .

Assumption (A4) is then satis�ed upon application of Lemma 2.

Proof. (Theorem 3)

Throughout the proof, we denote by C a constant whose value may change upon each appearance.

Consider the error decomposition

Ēµ
[∣∣(πNn − π) (f)

∣∣p]1/p = Ēµ
[∣∣(ηNn,n − ηn,n) (f)

∣∣p]1/p + |(ηn,n − π) (f)| . (49)

Choose β such that (1+s)p(1−γ)/
(
γβ
)
≤ 1 and take V to be de�ned as in equation (44). By proposition

2, the FK model of section 5 satis�es assumptions (A1), (A3) and (A4). The second term on the r.h.s. of

(49) is treated by application of Theorem 1. Noting that by de�nition, ηn,n = Φn,0:n (µ) and by Lemma 3,
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π = Φn,0:n

(
πγ

)
we obtain from Theorem 1 that there exist constants ρ, M and C2 such that

‖ηn,n − π‖V α ≤ Mρn

 µ
(
G̃n,kV

α
)

µ
(
Q̃n,k:n(1)

) +
πγ

(
G̃n,kV

α
)

πγ

(
Q̃n,k:n(1)

)
 I
[
µ 6= πγ

]
≤ ρnC2

(
µ, πγ

)
I
[
µ 6= πγ

]
.

where the constant C2 arises from assumption (A4) applied to the denominator terms and implicitly depends

on πγ , V , and the constants in (A3).

In order to apply Theorem 2 to the �rst term on the r.h.s. of (49) it remains to verify the assumptions of

equations (34)-(35). We start by addressing the latter. From the de�nition of V and due to the assumption

that γ(·) is non-decreasing we observe that for all x, x′ ∈ X,

[Gn,k(x)−Gn,k(x′)] [V (x)− V (x′)] ≤ 0

and therefore as Gn,k and V are positive, Lemma 4 (in the appendix) shows that for all (possibly random)

η ∈ P (X), we have η (Gn,kV ) ≤ η (Gn,k) η (V ). Then for any n ≥ 1 and 1 ≤ k ≤ n.

Ēµ
[
ηNn,k(V )

∣∣∣F (N,N)
n,k−1

]
≤ λ

ηNn,k−1 (Gn,k−1V )

ηNn,k−1 (Gn,k−1)
+ bd0

≤ ληNn,k−1 (V ) + bd0
, (50)

where (A3) has been applied with d0 is de�ned below equation (45) in the proof of proposition 2. Stan-

dard iteration of the particle drift inequality (50) (details omitted for brevity) combined with the fact that{
ξ

(N,i)
n,0 ; i = 1, ..., N

}
are independent and each distributed according to µ shows that

sup
N≥1

sup
n≥1

sup
1≤k≤n

Ēµ
[
ηNn,k (V )

]
< +∞, (51)

and noting that αpt ≤ 1, equation (35) then holds by two applications of Jensen's inequality .

We now turn to the veri�cation of equation (34). From previous considerations we notice that for some

�nite constant C,

Un,k(x) =
1

βγ

(
γ((k + 1) /n)− γ(k/n)

1/n

)
log V (x) + C
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and therefore

ηNn,k

(
Q̃n,k:n(1)

)−1

=

ˆ exp

− 1

n

n−1∑
j=k

Un,j(xj)

 ηNn,k(dxk)

n∏
j=k+1

Mn,j(xj−1,dxj)

−1

≤ exp

 1

n

n−1∑
j=k

ˆ
Un,j(xj)η

N
n,kMn,k:j(dxj)


= exp

C +
1

n

1

βγ

n−1∑
j=k

(
γ((j + 1) /n)− γ(j/n)

1/n

)ˆ
log V (xj)η

N
n,kMn,k:j(dxj)


≤ exp

C +
1

n

1

βγ

n−1∑
j=k

(
γ((j + 1) /n)− γ(j/n)

1/n

)
log

[ˆ
V (xj)η

N
n,kMn,k:j(dxj)

]
≤ exp

(
C +

1− γ(k/n)

βγ
log
[
ηNn,k (V )

])
≤ exp(C)

[
ηNn,k (V )

] 1−γ
βγ

where the penultimate inequality holds due to standard iteration of the drift inequality in (A3). Therefore

Ēµ
[
ηNn,k

(
Q̃n,k:n(1)

)−(1+s)p
]
≤ CĒµ

[
ηNn,k (V )

]q

due to Jensen's inequality and where q :=
(1−γ)
βγ (1 + s)p ≤ 1 by assumption of the theorem. Equation (34)

then follows upon combining this with equation (51). This completes the proof.
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6 Appendix

Lemma 4. Let f : X → (0,∞), g : X → (0,∞) be two measurable functions such that |η (fg)| <

+∞, |η (f)| < +∞, |η (g)| < +∞, for any η ∈ P(X). Then for any δ ∈ [0,∞),
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η (fg) ≤ (1 + δ) η(f)η (g)

if

[f(x)− f(x′)] [g(x)− g(x′)]

[f(x) + f(x′)] [g(x) + g(x′)]
≤ δ

2 + δ
, ∀(x, x′) ∈ X2, (52)

and only if

[f(x)− f(x′)] [g(x)− g(x′)]

[f(x) + f(x′)] [g(x) + g(x′)]
≤ 3δ

2 + δ
, ∀(x, x′) ∈ X2.

Proof. For any η, f , g as speci�ed in the statement and ε ∈ (0, 1), consider the identity:

(1− ε)η (fg)− (1 + ε)η(f)η (g)

=
1

2

ˆ
X

ˆ
X

([f(x)− f(x′)] [g(x)− g(x′)]− ε [f(x) + f(x′)] [g(x) + g(x′)]) η(dx)η(dx′)

=
1

2

ˆ
X2

([f(x)− f(x′)] [g(x)− g(x′)]− ε [f(x) + f(x′)] [g(x) + g(x′)]) η(dx)⊗ η(dx′),

where the �nal inequality is due to Fubini's theorem, which is applicable under the hypotheses of the lemma.

The su�ciency part then follows directly upon setting

ε =
δ

2 + δ
⇔ (1 + δ) =

1 + ε

1− ε
.

For the necessity part, suppose on the contrary that there exists (y, y′) ∈ X2 such that

[f(y)− f(y′)] [g(y)− g(y′)] >
3δ

2 + δ
[f(y) + f(y′)] [g(y) + g(y′)] ,

then setting η = 1
2 [δy + δy′ ] and ε = δ

2+δ ≥ 0, we obtain
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ˆ
X

ˆ
X

([f(x)− f(x′)] [g(x)− g(x′)]− ε [f(x) + f(x′)] [g(x) + g(x′)]) η(dx)η(dx′)

=

ˆ
X2

([f(x)− f(x′)] [g(x)− g(x′)]− ε [f(x) + f(x′)] [g(x) + g(x′)])
1

4
[δy(dx)⊗ δy(dx′) + δy′(dx)⊗ δy′(dx′)]

+

ˆ
X2

([f(x)− f(x′)] [g(x)− g(x′)]− ε [f(x) + f(x′)] [g(x) + g(x′)])
1

4
[δy(dx)⊗ δy′(dx′) + δy′(dx)⊗ δy(dx′)]

= −ε [f(y)g(y) + f(y′)g(y′)]

+
1

2
([f(y)− f(y′)] [g(y)− g(y′)]− ε [f(y) + f(y′)] [g(y) + g(y′)])

≥ 1

2
([f(y)− f(y′)] [g(y)− g(y′)]− 3ε [f(y) + f(y′)] [g(y) + g(y′)]) > 0,

which completes the proof.

Remark 1. Note that the su�cient condition is always met, for example, when g = ϕ ◦ f for some positive,

strictly decreasing and invertible function ϕ.
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