
Chapter 3

Recent Developments in Auxiliary Particle Filtering

Nick Whiteley1 and Adam M. Johansen2

3.1 Background

3.1.1 State Space Models

State space models (SSMs; sometimes termed hidden Markov models, particularly
in the discrete case) are very popular statistical models for time series. Such models
describe the trajectory of some system of interest as an unobserved E-valued Markov
chain, known as the signal process. Let X1 ∼ ν and Xn|(Xn−1 = xn−1) ∼ f(·|xn−1)
denote this process. Indirect observations are available via an observation process,
{Yn}n∈N. Conditional upon Xn, Yn is independent of the remainder of the obser-
vation and signal processes, with Yn|(Xn = xn) ∼ g(·|xn).

For any sequence {zn}n∈N, we write zi:j = (zi, zi+1, ..., zj). In numerous applica-
tions, we are interested in estimating, recursively in time, an analytically intractable
sequence of posterior distributions {p (x1:n| y1:n)}n∈N, of the form:

p(x1:n|y1:n) ∝ ν(x1)g(y1|x1)
n∏
k=2

f(xk|xk−1)g(yk|xk). (3.1)

A great deal has been written about inference for SSMs — see Cappé et al. (2005);
Doucet et al. (2001); Doucet and Johansen (2009) for example — and their coun-
terparts in continuous time (Bain and Crisan, 2009). Filtering, which corresponds
to computing p(xn|y1:n) for each n, is a task of particular interest. Estimation
problems in a variety of scientific disciplines can naturally be cast as filtering tasks.
A canonical example arises in engineering, where the signal process describes the
location and intrinsic parameters of a physical object, observations arise from a
noisy sensor and the task is to reconstruct the state of the object as accurately
as possible, as observations arrive. Other examples arise from the processing of
biological, chemical, seismic, audio, video and financial data. In all these cases the
SSM provides a flexible and simple framework in which to describe the relationship
between a physically interpretable or abstract hidden process and observed data.

This article is concerned with a class of Monte Carlo algorithms which address
the problem of filtering in SSMs by approximating the distributions of interest with
a set of weighted random samples. Attention is focused on an algorithm known
as the auxiliary particle filter (APF). The APF has seen widespread use in several
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application areas and a number of algorithms employing the same underlying mech-
anism have been developed. Existing applications include filtering in object tracking
and stochastic volatility models, Pitt and Shephard (1999) (in which the APF was
introduced), Carvalho and Lopes (2007); time–varying autoregressive models for
audio processing, Andrieu et al. (2003); exact filtering for diffusions, Fearnhead
et al. (2008); multi-object tracking, Whiteley et al. (2009) and belief propagation
in graphical models Briers et al. (2005).

The remainder of this section introduces a standard approach to the filtering
problem, sequential importance resampling (SIR) and describes the APF. Section
3.2 illustrates the strong connection between these algorithms, and provides some
guidance upon implementation of the APF. Section 3.3 then illustrates a number of
extensions which are suggested by these connections. Section 3.4 describes an ele-
mentary technique for variance reduction when applying the APF to SSMs. Termed
the stratified APF (sAPF), this algorithm uses low variance sampling mechanisms
to assign particles to strata of the state space. The performance of the method is
demonstrated in the context of a switching stochastic volatility model using stock
index returns data.

3.1.2 Particle filtering

As described above, a common objective when performing inference in SSMs is the
recursive approximation of a sequence of posterior distributions (3.1). There are a
small number of situations in which these distributions can be obtained in closed
form (notably the linear–Gaussian case, which leads to the Kalman filter). However,
in general it is necessary to employ approximations. One of the most versatile
approaches is to use Sequential Monte Carlo (SMC) methods. Whilst typically more
computationally demanding than alternative deterministic techniques (for example
see chapter XXXXX), SMC methods are very flexible and have attractive theoretical
properties, some of which are discussed below.

The term particle filtering is often used to describe the approximation of the
optimal filtering equations using SMC techniques. Two common implementations
of such algorithms are described in the next two sections. The objective with all
such methods is to approximate, sequentially in time, the distribution of Xn given
that Y1:n = y1:n.

The unnormalised posterior distribution p(x1:n, y1:n) given in (3.1) satisfies

p(x1:n, y1:n) = p(x1:n−1, y1:n−1)f(xn|xn−1)g(yn|xn). (3.2)

Consequently, the posterior p (x1:n|y1:n) satisfies the following recursion

p(x1:n|y1:n) = p(x1:n−1|y1:n−1)
f(xn|xn−1)g(yn|xn)

p(yn|y1:n−1)
, (3.3)

where

p(yn|y1:n−1) =
∫
p(xn−1|y1:n−1)f(xn|xn−1)g(yn|xn)dxn−1:n. (3.4)

In the literature, the recursion satisfied by the marginal distribution p(xn|y1:n) is
often presented. It is straightforward to check (by integrating out x1:n−1 in (3.3))
that

p(xn|y1:n) =
g(yn|xn)p(xn|y1:n−1)

p(yn|y1:n−1)
, (3.5)
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where

p(xn|y1:n−1) =
∫
f(xn|xn−1)p(xn−1|y1:n−1)dxn−1. (3.6)

Equation (3.6) is known as the prediction step and (3.5) is known as the update
step. However, most particle filtering methods rely on a numerical approximation
of recursion (3.3) and not of (3.5)-(3.6). This is the case for the majority of the
algorithms described in this chapter. One exception, which is described in more
detail in section 3.3.1, is the marginal particle filter (Klass et al., 2005) which
allows the use of an auxiliary variable technique admitting a similar interpretation
to that discussed in the context of the standard APF below.

SMC techniques propagate a collection of weighted samples, termed particles,
from one iteration to the next in such a way that they provide an approximation
of the filtering distribution at each iteration. These collections of particles are used
both to approximate integrals with respect to the distributions of interest (and hence
to provide estimates of statistics of interest) and to approximate those distributions
themselves, thereby allowing inference at the next time step. For a more detailed
explanation of these algorithms and an illustration of how most SMC methods may
be interpreted as SIR, see Doucet and Johansen (2009).

3.1.3 Sequential Importance Resampling

SIR is one of the simplest SMC approaches to the filtering problem. In fact, as
illustrated in algorithm 1, this technique can be used to sample from essentially
any sequence of distributions defined on a sequence of spaces of strictly increasing
dimension. At its nth iteration, algorithm 1 provides an approximation of πn(x1:n).
A crucial step in this algorithm is resampling. This involves duplicating particles
with high weights, discarding particles with low weights and reweighting to preserve
the distribution targeted by the weighted sample. This step prevents a large amount
of computational power being wasted on samples with weights close to zero whilst
retaining the consistency of associated estimators. The simplest scheme, multino-
mial resampling, achieves this by drawing N times from the empirical distribution
of the weighted particle set (lower variance alternatives are summarised in Doucet
et al. (2001) and compared in Douc et al. (2005)).

In a filtering context, πn(x1:n) = p(x1:n|y1:n) and the expectation of some test
function ϕn with respect to the filtering distribution, ϕn =

∫
ϕn(xn)p(xn|y1:n)dxn

can be estimated using

ϕ̂Nn,SIR =
N∑
i=1

W (i)
n ϕn(X(i)

n )

where W (i)
n = wn(X(i)

n−1:n)
/∑N

j=1 wn(X(j)
n−1:n) and

wn(xn−1:n) =
πn(x1:n)

qn(xn|xn−1)πn−1(x1:n−1)
∝ g(yn|xn)f(xn|xn−1)

qn(xn|xn−1)
. (3.7)

Note that (3.7) depends upon only the two most recent components of the particle
trajectory, and thus algorithm 1 can be implemented with storage requirements
which do not increase over time and is suitable for online applications. In fact, SIR
can be regarded as a selection-mutation (genetic-type) algorithm constructed with
a precise probabilistic interpretation. Viewing SIR as a particle approximation
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Algorithm 1 The Generic SIR Algorithm
At time 1

for i = 1 to N do
Sample X(i)

1 ∼ q1(·)
Set W (i)

1 ∝ π1(X
(i)
1 )

q1(X
(i)
1 )

end for
Resample

{
X

(i)
1 ,W

(i)
1

}
to obtain

{
X
′(i)
1 , 1

N

}
At time n ≥ 2

for i = 1 to N do
Set X(i)

1:n−1 = X
′(i)
1:n−1

Sample X(i)
n ∼ qn(·|X(i)

n−1)

Set W (i)
n ∝ πn(X

(i)
1:n)

qn(X
(i)
n |X(i)

n−1)πn−1(X
(i)
1:n−1)

end for
Resample

{
X

(i)
1:n,W

(i)
n

}
to obtain

{
X
′(i)
1:n ,

1
N

}

of a Feynman-Kac flow (Del Moral, 2004) allows many theoretical results to be
established.

This simple SIR algorithm involves resampling at every iteration. In general, this
may not be necessary. Whilst resampling permits stability of the algorithm in the
long run, each act of resampling leads to a short term increase in estimator variance.
A common strategy, dating back at least to Liu and Chen (1998), is to resample only
when the degeneracy of the importance weights, as measured for example by the
coefficient of variation, exceeds some threshold. Theoretical analyses of algorithms
which resample in this manner have been presented in Del Moral et al. (2008) and
Douc and Moulines (2008).

It is commonly accepted that, when designing algorithms for particle filtering,
one should endeavour to ensure that the variance of the importance weights is
made as small as possible. In pursuit of this objective, it is usual to attempt to
employ proposal distributions which are as close as possible to the so-called optimal
form, qn(xn|xn−1) ∝ f(xn|xn−1)g(yn|xn) which makes the incremental importance
weight independent of xn. In practice, it is rarely possible to sample from a dis-
tribution of the optimal form, although a number of techniques for obtaining good
approximations have been developed.

3.1.4 Auxiliary Particle Filters

The use of a well-chosen proposal distribution ensures that knowledge of the current
observation is incorporated into the proposal mechanism and so particles are not
moved blindly into regions of the state space which are extremely unlikely in light
of that observation. However it seems wasteful to resample particles at the end
of iteration n − 1 prior to looking at yn. That is, it is natural to ask whether it
is possible to employ knowledge about the next observation before resampling to
ensure that particles which are likely to be compatible with that observation have
a good chance of surviving — is it possible to preserve diversity in the particle set
by taking into account the immediate future as well as the present when carrying
out selection? The APF first proposed by Pitt and Shephard (1999, 2001) invoked
an auxiliary variable construction in answer to this question.

The essence of this APF was that the sampling step could be modified to sample,
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for each particle, an auxiliary variable, corresponding to a particle index, accord-
ing to a distribution which weights each particle in terms of it compatibility with
the coming observation. A suitable weighting is provided by some p̂(yn|xn−1), an
approximation of p(yn|xn−1) =

∫
g(yn|xn)f(xn|xn−1)dxn (if the latter is not avail-

able analytically). Then the new state value is sampled as the offspring of the
particle indicated by this auxiliary variable. It is straightforward to see that this
is equivalent to resampling according to those weights before carrying out a stan-
dard sampling and resampling iteration. In the terminology of Pitt and Shephard
(1999), an APF which employs the exact p(yn|xn−1) and proposes according to
qn(xn|xn−1) ∝ f(xn|xn−1)g(yn|xn) is called “fully adapted”.

A similar approach in which the auxiliary weights are combined with those of
the standard weighting was proposed in Carpenter et al. (1999), which involved a
single resampling during each iteration of the algorithm. See algorithm 2.

Algorithm 2 Auxiliary Particle Filter
At time 1

for i = 1 to N do
Sample X(i)

1 ∼ q1(·)
Set W̃ (i)

1 ∝ g(y1|X(i)
1 )ν(X

(i)
1 )

q1(X
(i)
1 )

end for
At time n ≥ 2

for i = 1 to N do
Set W (i)

n−1 ∝ W̃
(i)
n−1 × p̂(yn|X

(i)
n−1)

end for
Resample

{
X

(i)
n−1,W

(i)
n−1

}
to obtain

{
X
′(i)
n−1,

1
N

}
for i = 1 to N do

Set X(i)
n−1 = X

′(i)
n−1

Sample X(i)
n ∼ qn(·|X(i)

n−1)

Set W̃ (i)
n ∝

g(yn|X(i)
n )f(X(i)

n |X
(i)
n−1)

p̂(yn|X(i)
n−1)qn(X

(i)
n |X(i)

n−1)

end for

3.2 Interpretation and Implementation

Whilst the APF has seen widespread use, remarkably the first asymptotic analyses of
the algorithm have appeared very recently. These analyses provide some significant
insights into the performance of the algorithm and emphasise some requirements
that a successful implementation must meet.

3.2.1 The APF as SIR

When one considers the APF as a sequence of weighting and sampling operations
it becomes apparent that it also has an interpretation as a mutation-selection algo-
rithm. In fact, with a little consideration it is possible to identify the APF as an
example of an SIR algorithm.

It was noted in Johansen and Doucet (2008) that the APF described in Carpen-
ter et al. (1999) corresponds to the SIR algorithm which is obtained by setting

πn(x1:n) = p̂(x1:n|y1:n+1) ∝ p(x1:n|y1:n)p̂(yn+1|xn). (3.8)
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In the SIR interpretation of the APF p(x1:n|y1:n) is not approximated directly, but
rather importance sampling is used to estimate ϕn, with (weighted) samples which
target the importance distribution πn−1(x1:n−1)qn(xn|xn−1) provided by an SIR
algorithm. The resulting estimate is given by

ϕ̂Nn,APF =
N∑
i=1

W̃ (i)
n ϕn(X(i)

n ) (3.9)

where W̃ (i)
n = w̃n(X(i)

n−1:n)
/∑N

j=1 w̃n(X(j)
n−1:n) and

w̃n(xn−1:n) =
p(x1:n|y1:n)

πn−1(x1:n−1)qn(xn|xn−1)
∝ g(yn|xn)f(xn|xn−1)
p̂(yn|xn−1)qn(xn|xn−1)

. (3.10)

Note that for a fully adapted APF, the importance weights by which estimation
are made are uniform. Only the case in which resampling is carried out once per
iteration has been considered here. Empirically this case has been preferred for
many years and one would intuitively expect it to lead to lower variance estimates.
However, it would be straightforward to apply the same reasoning to the scenario
in which resampling is carried out both before and after auxiliary weighting as in
the original implementations (doing this leads to an SIR algorithm with twice as
many distributions as previously but there is no difficulty in constructing such an
algorithm).

Theoretical Consequences

One of the principle advantages of identifying the APF as a particular type of SIR
algorithm is that many detailed theoretical results are available for the latter class
of algorithm. Indeed, many of the results provided in Del Moral (2004), for example,
can be applied directly to the APF via this interpretation. Thus formal convergence
results can be obtained without any additional analysis. Via this route, a central
limit theorem (CLT), for example, was shown to hold in the case of the APF by
Johansen and Doucet (2008). Douc et al. (2009) independently established a CLT
for the APF by other means. The asymptotic variance can be decomposed in the
same form for it and a simple SIR filter:

Proposition. Under the regularity conditions given in (Chopin, 2004, Theorem
1) or (Del Moral, 2004, Section 9.4, pp. 300-306), which prove this result for SIR
algorithms (analysis of SIR and other algorithms can also be found in Douc and
Moulines (2008)), we have

√
N
(
ϕ̂Nn,SIR − ϕn

)
⇒ N

(
0, σ2

SIR (ϕn)
)
,

√
N
(
ϕ̂Nn,APF − ϕn

)
⇒ N

(
0, σ2

APF (ϕn)
)
,

where ‘⇒’ denotes convergence in distribution and N
(
0, σ2

)
is the zero-mean nor-

mal of variance σ2. Moreover, at time n = 1 we have

σ2
SIR (ϕ1) = σ2

APF (ϕ1) =
∫
p (x1| y1)2

q1 (x1)
(ϕ1 (x1)− ϕ1)2

dx1
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whereas for n > 1

σ2
SIR (ϕn) =

∫
p(x1|y1:n)2

q1(x1)
∆ϕ1,n(x1)2dx1 (3.11)

+
n−1∑
k=2

∫
p (x1:k| y1:n)2

p (x1:k−1| y1:k−1) qk (xk|xk−1)
∆ϕk,n(x1:k)2dx1:k

+
∫

p (x1:n| y1:n)2

p (x1:n−1| y1:n−1) qn (xn|xn−1)
(ϕn (x1:n)− ϕn)2

dx1:n,

where

∆ϕk,n(x1:k) =
∫
ϕn(x1:n)p(xk+1:n|yk+1:n, xk)dxk+1:n − ϕn

and

σ2
APF (ϕn) =

∫
p(x1|y1:t)2

q1(x1)
∆ϕ1,n(x1)2dx1 (3.12)

+
n−1∑
k=2

∫
p(x1:k|y1:n)2

p̂(x1:k−1|y1:k)qk(xk|xk−1)
∆ϕk,n(x1:k)2dx1:k

+
∫

p(x1:n|y1:n)2

p̂(x1:n−1|y1:n)qn(xn|xn−1)
(ϕn(x1:n)− ϕ̄n)2

dx1:n.

Obtaining asymptotic variance expressions in the same form for SIR and the APF
allows their comparison on a term-by-term basis. This permits some insight into
their relative performance in simple scenarios such as that considered in the follow-
ing section.

It should, of course, be noted that with a slight change to the conditions (to
account for the fact that using the APF one must importance correct estimates
relative to those provided by the SIR algorithm which it corresponds to — that is,
one integrates a function w̃n × ϕn with respect to an SIR algorithm targeting the
auxiliary distributions in order to approximate the expectation of ϕn) essentially
any of the results obtained for SIR algorithms can be applied to auxiliary particle
filters in the same way. Lastly, we note that by choosing p̂(yn|xn−1) = 1, one
recovers from the APF the SIR algorithm.

3.2.2 Implications for Implementation

It is immediately apparent that, as SIR and the APF are essentially the same algo-
rithm with a different choice of importance weights (in that the the only difference
in their implementation is which importance weights are used for resampling and
which for estimation) very little additional implementation effort is required to de-
velop both variants of an algorithm). Implementation can be simplified further by
employing a generic SMC library such as Johansen (2009).

In real-world settings this may be worthwhile as it may not be straightforward
to assess, theoretically, which will provide better estimates at a given computa-
tional cost (even when the APF does allow significant reductions in variance to
be obtained, it may incur a considerable per-sample cost in the evaluation of a
complicated approximation to the predictive likelihood).

From an implementation point of view, perhaps the most significant feature
of this interpretation is that it makes clear the criticality of choosing a p̂(yn|xn−1)
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which is more diffuse than p(yn|xn−1) (as a function of xn−1). For importance sam-
pling schemes in general, it is well known that a proposal distribution with lighter
tails than the target distribution can lead to an estimator with infinite variance.
In the case of the APF the proposal distribution is defined in terms of p̂(yn|xn−1),
with the importance weight according to which estimates are made being (3.10). It
is therefore clear that the popular choice of approximating the predictive likelihood
by the likelihood evaluated at the mode of the transition density is a dangerous
strategy. This is likely to explain the poor-performance of APF algorithms based
on this idea which have appeared in the literature.

A number of other generic approaches lead to more conservative implementa-
tions. Each of these techniques may be applicable in some circumstances:

• One simple option is to take

p̂(yn|xn−1) ∝
∫
ĝ(yn|xn)f̂(xn|xn−1)dxn

with the approximations to the likelihood and transition densities being chosen
to have heavier tails than the true densities and to permit this integral to
be evaluated. For some models it is possible to compute the moments of
p(xn, yn|xn−1) = g(yn|xn)f(xn|xn−1) up to second order, conditional on xn−1

Saha et al. (2009). These can then be used to form a Gaussian approximation
of p(xn, yn|xn−1) and thus to p(yn|xn−1), with the variance adjusted to ensure
(3.10) is bounded.

• The multivariate t distribution provides a flexible family of approximating
distributions: approximating p(yn|xn−1) with a t distribution centred at the
mode but with heavier tails than the true predictive likelihood provides a
safeguard against excessive concentration whilst remaining similar in spirit to
the simple point-approximation approach.

• In cases in which the underlying dynamic model is ergodic, the tractability of
the multivariate t distribution provides another strategy. If one approximates
the joint distribution of (Xn−1, Xn, Yn) at stationarity with a multivariate
t distribution of approximately the correct mean and correlation with tails
at least as heavy as those of the true distribution, then one can obtain the
marginal distribution of (Xn−1, Yn) under this approximation analytically —
it, too, is a multivariate t distribution. Given a multivariate t distribution for
(Xn−1, Yn), the conditional density (again, under this approximation) of yn
given xn−1 is available in closed form (Nadarajah and Kotz, 2005).

• In the multimodal case, the situation is more complicated. It may be possible
to employ a mixture of multivariate t distributions in order to approximate
complicated distributions. In very complex settings it may not be practical
to approximate the predictive likelihood accurately.

Whilst it remains sensible to attempt to approximate the optimal (in the sense
of minimising the variance of the importance weights) transition density

qn(xn|xn−1) ∝ g(yn|xn)f(xn|xn−1)

and the true predictive likelihood, it is not the case that the APF necessarily out-
performs the SIR algorithm using the same proposal even in this setting. This
phenomenon is related to the fact that the mechanism by which samples are pro-
posed at the current iteration of the algorithm impacts the variance of estimates
made at subsequent time steps.
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There are two issues to consider when assessing the asymptotic variance of es-
timators provided by SIR or APF-type algorithms. Firstly, as the operation per-
formed in both cases is essentially importance sampling, there are likely to be par-
ticular functions which are more accurately estimated by each of the algorithms
(especially if only a few time steps are considered). An illustrative example was
provided Johansen and Doucet (2008) which we discuss in more detail below. The
other issue is that the APF can only be expected to provide better estimates in gen-
eral if, for k < n, p(x1:k|y1:k+1) is closer to p(x1:k|y1:n) than p(x1:k|y1:k) is (consider
the “importance-weight” terms in the variance decompositions (3.11) and (3.12) in
the case where the true predictive likelihood is used). This seems likely to be true
for the vast majority of SSMs encountered in practice and so the APF is likely to
yield more stable estimates provided that a good approximation of the predictive
likelihood is available.

Analysis of Binary State Space Model

In this section we consider the application of SIR and the APF to a very simple SSM.
The performance of the two algorithms is then compared in terms of asymptotic
variance. The simplicity of the model is such that the asymptotic variances can
be evaluated easily in terms of the model parameters, which in this case directly
specify the forgetting properties of the signal process and the amount of information
provided by the observations. The hope is that, by considering such a simple model,
it is possible to gain some insight into the relative performance of SIR and the APF.

The SSM is specified as follows:

E = {0, 1} p(x1 = 0) = 0.5 p(xn = xn−1) = 1− δ
yn ∈ E p(yn = xn) = 1− ε.

The test function ϕ(x1:2) := x2 was used, in the “full adaptation” setting, with
y1:2 = (0, 1):

q1(x1) : = p(x1|y1) qn(xn|xn−1) : = p(xn|xn−1, yn)

p̂(yn|xn) : =
∫
g(yn|xn)f(xn|xn−1)dxn.

Figure 3.1(a) illustrates the difference in variance of these two methods as ob-
tained in Johansen and Doucet (2008). In order to understand this, it’s useful to
consider the asymptotic variance of the two estimators (which follow directly from
3.11 and 3.12):

σ2
SIR (ϕ) =

∫
p (x1| y1:2)2

q1 (x1)

(∫
ϕ (x1:2) p (x2| y2, x1) dx2 − ϕ

)2

dx1

+
∫

p (x1:2| y1:2)2

p (x1| y1) q2 (x2|x1)
(ϕ (x1:2)− ϕ)2

dx1:2,

σ2
APF (ϕ) =

∫
p(x1|y1:2)2

q1(x1)

(∫
ϕ(x1:2)p(x2|y2, x1)dx2 − ϕ

)2

dx1

+
∫

p(x1:2|y1:2)2

p̂(x1|y1:2)q2(x2|x1)
(ϕ(x1:2)− ϕ)2

dx1:2.
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↓ X1|X2 → 0 1
0 (1−δ)(1−ε)ε

2(1−δ)ε(1−ε)+δ((1−ε2)+ε2)
δ(1−ε)2

2(1−δ)ε(1−ε)+δ((1−ε2)+ε2)

1 δε2

2(1−δ)ε(1−ε)+δ((1−ε2)+ε2)
(1−δ)(1−ε)ε

2(1−δ)ε(1−ε)+δ((1−ε2)+ε2)

Table 3.1: Target distribution (and APF proposal)

↓ X1|X2 → 0 1
0 (1−δ)ε(1−ε)

ε(1−δ)+δ(1−ε)
δ(1−ε)2

ε(1−δ)+δ(1−ε)

1 δε2

δε+(1−δ)(1−ε)
(1−δ)ε(1−ε)
δε+(1−δ)(1−ε)

Table 3.2: SIR proposal

The first terms of these expansions are identical; the difference between the two
algorithms is due entirely to the second term. The SIR term corresponds to the
variance of a importance sampling estimate of ϕ using p(x1|y1:2)p(x2|x1, y2) as an
importance distribution and self-normalised weights:∫

p (x1:2| y1:2)2

p (x1| y1) p (x2|x1, y2)
(ϕ (x1:2)− ϕ)2

dx1:2.

The APF term corresponds to the variance of ϕ under the filtering distribution∫
p(x1:2|y1:2)2

p(x1|y1:2)p(x2|x1, y2)
(ϕ(x1:2)− ϕ)2

dx1:2

=
∫
p(x1:2|y1:2) (ϕ(x1:2)− ϕ)2

dx1:2.

The latter can be treated equivalently as the variance of a self-normalised impor-
tance sampling estimate using the target distribution as a proposal. Therefore we
can appeal to existing results on self-normalised importance sampling estimators in
order to compare the two algorithms.

It is well known (Geweke, 1989, Theorem 3) that the optimal proposal dis-
tribution (in the sense of minimising the variance) for self-normalised importance
sampling is ∝ |ϕ(x)−ϕ|π(x) where ϕ is the function of interest and π is the target
distribution. It is immediately apparent that the marginal distribution of X1 under
the APF proposal distribution is optimal for any function which depends only upon
X2. Thus the distribution of X1 in the SIR expression would definitely increase the
variance of any estimate if the distribution of X2 was the same in both cases. How-
ever, the marginal distribution of X2 in the two proposal distributions is different
and there do exist functions for which that provided by the SIR filter leads to a
lower variance.

In the case of interest here, i.e. ϕ(x1:2) = x2, we know that the APF has
the optimal marginal distribution for X1 and that the SIR algorithm will produce
samples with an inferior distribution for X1. Therefore, any instances in which the
SIR algorithm produces lower variance estimates are due to the distribution of X2.
For simplicity, we consider the marginal distribution of this variable in what follows
noting that in the real scenario, the distribution of X1 will improve the APF’s
performance.

The joint distribution of X1, X2 in the target (and APF proposal is given in
table) 3.1 and that for SIR in table 3.2

It aids interpretation to notice that that ϕ =
∑
x2
x2p(x2|y1:2) = p(x2 = 1|y1:2).

Consequently, the optimal proposal distribution, qopt(x2) ∝ p(x2|y1:2)|ϕ(x2)−ϕ| is
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uniform over x2:

qopt(0) ∝ p(x2 = 0|y1:2)|ϕ(0)− ϕ| =(1− ϕ)ϕ
qopt(1) ∝ p(x2 = 1|y1:2)|ϕ(1)− ϕ| =ϕ(1− ϕ)

This tells us that the marginal distribution for x2 which minimises the variance of
the estimate of this particular integral will be uniform over its possible values. The
APF generally places more mass on the state supported by the observation than
the SIR filter. Consequently, the APF only produces a marginal distribution for
X2 closer to this optimal form when the prior would place the majority of it’s mass
on the state which is not supported by the observation. Even in this setting, the
APF can improve things when we obtain unlikely observations, but may increase
the variance when the observation agrees with the prior.

Figure 3.1 illustrates that this mechanism is consistent with what is observed.
Figure 3.1(a) shows the difference in estimator variance over a range of values of
(δ, ε); figures 3.1(b) and 3.1(c) show the marginal probability that X2 = 1 under
the proposal distribution associated with the APF and SIR algorithm, respectively
and figure 3.1(d) show the difference in L1 distance to the optimal value for the two
approaches. It is clear that the regions in which the SIR algorithm performs well are
those in which it provides a much closer to uniform distribution over X2. Careful
inspection reveals that the APF outperforms SIR slightly outside of the regions in
which it more closely approximates the uniform distribution over X2. This is due
to the distribution of X1 (which influences the importance weight) as noted early.
It should also be noted that it is when δ and ε are both small that one would expect
the sub-optimal nature of the SIR distribution over X1 to have the greatest effect
and this is, indeed, where the APF performance is most obviously better.

More generally, one would expect much of the intuition obtained from this simple
scenario to apply reasonably directly in more general settings. The APF leads to
samples distributed in a way which is closer to the target distribution; it is possible
that for some test functions the final step of the APF does not lead to an optimal
marginal distribution but this distribution is not intended to operate solely as a
device for estimating an integral: it is also used to obtain subsequent distributions
and as-such, tracking the sequence of target distributions is of vital importance.

For this reason, minimising incremental variance and otherwise attempting to
track these distributions as faithfully as possible remains our preferred method for
designing APF algorithms. We also feel that, on average (with respect to observa-
tion sequences generated with respect to the true filter, say), the APF is likely to
outperform SIR whenever a good approximation to the predictive likelihood is avail-
able — especially if a broad class of functions are to be integrated. Note, in partic-
ular, the form of the general variance decomposition: it shows that asymptotically,
the APF uses distributions of the form p̂(x1:k−1|y1:k) to approximate p(x1:k−1|y1:n)
where the SIR algorithm uses p(x1:k−1|y1:k−1). It’s approximating the distribution
well which will minimise the additional variance which results from these terms
and the APF will do this better than SIR (assuming that, at least on average,
p(xk−1,k|y1:k) is a better proxy for p(xk−1:k|y1:n) than p(xk−1|y1:k−1)p(xk|xk−1, yk)
which it will be for any reasonable situation).

3.2.3 Other Interpretations and Developments

Much has been written about the APF in the decade since it was first proposed.
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Figure 3.1: Properties of the APF and SIR in the binary, perfect-adaptation setting.
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Some work based upon the similarity between it and other algorithms precedes
that described above. One of the first works to discuss the connections between
SIR and the APF was Godsill and Clapp (2001). Closer in spirit to the unified
view presented above was Heine (2005) which showed how a number of algorithms
could be interpreted within a common framework. This framework differed slightly
from that presented above and one of the principle motivations of that approach
was the elimination of an explicit resampling step (which is often viewed as being a
rather unnatural operation in the discrete-time setting). This seems to be the first
paper to observe that “the APF can be considered as an alternative formulation
of the general SIR algorithm or vice versa.” However, the slightly less standard
formulation employed prevents the easy transferal of results from SIR to the APF
which was the primary purpose of Johansen and Doucet (2008).

A direct analysis of the particle system underlying the APF was performed re-
cently (Douc et al., 2009) using results obtained in Douc and Moulines (2008). This
confirmed the intuitive and empirical results that resampling once per iteration
leads to a lower variance estimate than resampling twice. One principle compo-
nent of this work was the determination of the auxiliary weighting function which
minimises the variance of estimates of a particular test function obtained one step
ahead of the current iterations. The “second stage weights” of (Douc et al., 2009)
specify the auxiliary sequence of distributions associated with the auxiliary particle
filter. The form which they suggest is optimal for these weights is the following
replacement for p̂(yn+1|xn):

t̂ϕ(xn, yn+1) =

√∫
f(xk+1|xk)2g(yk+1|xk+1)2

q(xk+1|xk)
(ϕk+1(x1:k+1)− ϕk+1)2dxk+1.

Whilst this is of theoretical interest, it requires the computation of a predictive
integral which is likely to be even more difficult than that required to obtain the
predictive likelihood. In addition to the practical difficulties, it is not clear that it
will always be wise to employ the proposed strategy. When performing any Monte
Carlo filtering, the particle set is used for two purposes at each time instant: to
approximate integrals of interest and to provide an approximation of the distribution
required at the next time step. Using this form of weighting is intended to optimise
the estimate of the integral at the next time step. However, it need not lead to a
good approximation of the distribution itself. Consequently, one may be left with
a poorer approximation to the filtering distribution when this weighting function
is used than with simpler approaches based upon matching only the distribution
and not particular test functions. In such cases, use of this approach may lead
to poorer estimation in the future. It is for precisely the same reason that the
use of customised proposal distributions tuned for a specific test function are not
generally used in particle filtering and thus a more conservative approach, with less
adaptation in the proposal mechanism remains sensible.

In subsequent work, a criterion independent of the functions of interest was
employed to develop methods for designing adaptive algorithms based upon the
auxiliary particle filter in Cornebise et al. (2008). This strategy seeks to minimise
the Kullback-Liebler divergence or χ2-distance between the proposal and target
distributions in an adaptive manner (and is similar in spirit to attempting to get
as close to the optimal proposal as possible).
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3.3 Applications and Extensions

We argue that the innovation of the APF is essentially that, in sampling from a se-
quence of distributions using a SIR strategy, it can be advantageous to take account
of one-step-ahead knowledge about the distributions of interest (more general infor-
mation could, in principle, be used but it is not easy to envisage realistic scenarios
in which this will be practical). This section summarises some other applications
of this principle outside of the standard particle filtering domain in which it has
previously been applied.

3.3.1 Marginal Particle Filters

As noted above, most particle filtering methods rely on a numerical approximation
of (3.3) and not of (3.5)-(3.6) even when only the final time marginal is of interest.
This is due to the difficulty associated with evaluating the integral which appears
in (3.6) explicitly. One possible solution to this approach, proposed in Klass et al.
(2005), is the approximate these integrals using the particle set itself. Doing this in-
creases the computational cost considerably but allows the algorithm to be defined
directly on a smaller space than would otherwise be the case. This is of impor-
tance when approximating the derivative of the optimal filter in online parameter
estimation and optimal control applications Poyiadjis et al. (2005); Kantas (2009).

It is also possible to implement an auxiliary particle filter variant of the marginal
particle filter, taking the following form (the standard marginal particle filter is
obtained by setting the auxiliary weighting function p̂(yn+1|xn) to a constant func-
tion):

Algorithm 3 Auxiliary Marginal Particle Filter
At time 1

for i = 1 to N do
Sample X(i)

1 ∼ q(·).

Set W̃ (i)
1 ∝

ν
(
X

(i)
1

)
g
(
y1|X(i)

1

)
q(X

(i)
1 )

.

end for
At time n ≥ 2

for i = 1 to N do
Set W (i)

n−1 ∝ W̃
(i)
n−1p̂(yn|X

(i)
n−1).

end for
Resample

{
X

(i)
n−1,W

(i)
n−1

}
to obtain

{
X
′(i)
n−1,

1
N

}
for i = 1 to N do

Sample X(i)
n ∼ q(xn| yn, X ′(i)n−1).

Set W̃ (i)
n ∝

g(yn|X(i)
n )∑N

j=1W
(j)
n−1f

(
X(i)

n |X′(j)
n−1

)
∑N

j=1W
(j)
n−1q

(
X

(i)
n

∣∣∣yn,X
′(j)
n−1

)
p̂(yn|X′(j)

n−1)
.

end for

We have presented this algorithm in a form as close as possible to that of the
other algorithms described here. It differs in some details from the original formu-
lation. In particular, we do not assume that the predictive likelihood is obtained
by approximating the predictive distribution with an atom at its mode — it is not
necessary to do this and as discussed in the context of the APF there are some
difficulties which may arise as a result of such an approach. As with the APF, it
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is necessary to use an importance correction when using this filter to approximate
the filtering distributions.

This approach leads to algorithms with a computational complexity which is
O(N2) in contrast to most particle filters, which are O(N) algorithms. This would
ordinarily be prohibitive, but it was noted in Klass et al. (2005) that techniques
widely used for the approximate solution of N -body problems in computational
physics and recently applied to statistical learning (Gray and Moore, 2000) can be
applied to this problem for a broad class of likelihood functions, thereby reducing the
complexity to O(N logN) at the cost of a small (and controllable) approximation.

3.3.2 Sequential Monte Carlo Samplers

SMC Samplers are a class of algorithms for sampling iteratively from a sequence
of distributions, denoted by {πn(xn)}n∈N, defined upon a sequence of potentially
arbitrary spaces, {En}n∈N, Del Moral et al. (2006a,b). The approach involves the
application of SIR to a cleverly constructed sequence of synthetic distributions which
admit the distributions of interest as marginals. It is consequently straightforward
to employ the same strategy as that used by the APF — see Johansen and Doucet
(2007) which also illustrates that convergence results for this class of algorithms
follow directly. In this context it is not always clear that there is a good choice of
auxiliary distributions, although it is relatively natural in some settings.

The synthetic distributions, {π̃n(x1:n)}n∈N, employed by standard SMC sam-
plers are defined to be

π̃n(x1:n) = πn(xn)
n−1∏
p=1

Lp (xp+1, xp) ,

where {Ln}n∈N is a sequence of ‘backward’ Markov kernels from En into En−1.
With this structure, an importance sample from π̃n is obtained by taking the path
x1:n−1, a sample from π̃n−1, and extending it with a Markov kernel, Kn, which
acts from En−1 into En, providing samples from π̃n−1 × Kn and leading to the
importance weight:

wn(xn−1:n) =
π̃n(x1:n)

π̃n−1(x1:n−1)Kn(xn−1, xn)
=

πn(xn)Ln−1(xn, xn−1)
πn−1(xn−1)Kn(xn−1, xn)

. (3.13)

In many applications, each πn(xn) can only be evaluated pointwise, up to a nor-
malizing constant and the importance weights defined by (3.13) are normalised in
the same manner as in the SIR algorithm. Resampling may then be performed.

The optimal (in the sense of minimising the variance of the asymptotic impor-
tance weights if resampling is performed at each iteration) choice of Ln−1 is

Ln−1(xn, xn−1) =
πn−1(xn−1)K(xn−1, xn)∫

πn−1(x′n−1)K(x′n−1, xn)dx′n−1

which produces a sampler equivalent to one defined only on the marginal spaces
of interest. In practice, it is not generally possible to use the optimal auxiliary
kernels and good approximations to this optimal form are required in order to
obtain samplers with good variance properties.

If one wishes to sample from a sequence of distributions {πn}n∈N then an al-
ternative to directly implementing an SMC sampler which targets this sequence of
distributions, is to employ an auxiliary sequence of distributions, {µn}n∈N and an
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importance sampling correction (with weights w̃n(xn) = πn(xn)/µn(xn)) to pro-
vide estimates. This is very much in the spirit of the APF. Such a strategy was
termed auxiliary SMC (ASMC) in Johansen and Doucet (2007). Like the APF, the
objective is to maintain a more diverse particle set by using as much information
as possible before, rather than after, resampling.

Resample-Move: Inverting Sampling and Resampling

As has been previously noted (Del Moral et al., 2006b) in a setting in which every
iteration shares a common state space, En = E and in which an MCMC kernel of
invariant distribution πn is employed as the proposal, making use of the auxiliary
kernel:

Ln−1(xn, xn−1) =
πn(xn−1)Kn(xn−1, xn)

πn(xn)
,

the importance weights are simply wn(xn−1, xn) = πn(xn−1)/πn−1(xn−1). In addi-
tion to its simplicity, this expression has the interesting property that the weight is
independent of the proposed state, xn.

It is possible to interpret this approach as correcting for the discrepancy between
the previous and present distributions entirely by importance weighting with the
application of an MCMC kernel of the appropriate distribution simply serving to
improve the diversity of the sample. It is intuitively clear that one should apply the
importance weighting and resample before proposing new states in the interests of
maximising sample diversity. This has been observed previously. Indeed doing so
leads to algorithms with the same structure as the Resample-Move (RM) particle
filtering algorithm (Gilks and Berzuini, 2001). By making the following identifica-
tions, it is possible to cast this approach into the form of an ASMC sampler.

µn(xn) = πn+1(xn)

Ln−1(xn, xn−1) =
µn−1(xn−1)Kn(xn−1, xn)

µn−1(xn)
=
πn(xn−1)Kn(xn−1, xn)

πn(xn)

wn(xn−1:n) =
µn(xn)
µn−1(xn)

=
πn+1(xn)
πn(xn)

w̃n(xn) = µn−1(xn)/µn(xn) = πn(xn)/πn+1(xn).

This formal representation allows existing theoretical results to be applied to both
RM and its generalisations.

Filtering Piecewise-Deterministic Processes

The SMC Samplers framework was employed by Whiteley et al. (2009) to provide
filtering estimates for a class of continuous-time processes. In addition to providing
an example of the class of algorithms which are described above, this approach also
illustrates that SMC samplers and their auxiliary counterparts can provide useful
extensions of SIR-type algorithms in time-series analysis.

Piecewise-Deterministic Processes (PDPs) are a class of stochastic processes
whose sample paths, {ζt}t≥0 evolve deterministically in continuous time between a
sequence of random times {τj}j∈N, at which the path jumps to new, random values
{θj}j∈N. The prior law of the (τj , θj) is typically specified by a Markov kernel with
density f(θn,j , τn,j |θn,j−1, τn,j−1).

Filtering for partially observed PDP models involves computing a sequence of
posterior distributions given observations {Yn}n∈N. In object tracking applications,
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Godsill et al. (2007), the observations may be related to the PDP trajectory by
Yn = H(ζtn , Un), where Un is a noise disturbance, H is some non–linear function
and {tn}n∈N is an increasing sequence of observation times. In financial applications
such as the pricing of reinsurance Dassios and Jang (2005) and options Centanni
and Minozzo (2006), each Yn is the restriction to the interval (tn−1, tn] of a Cox
process with conditional intensity (ζt)t∈(tn−1,tn]. In general, the observation model
is specified by a likelihood function g(yn|ζ(tn−1,tn]).

The nth posterior πn(kn, θn,0:kn , τn,1;kn |y1:n), is a distribution over

En =
∞⊎
k=0

{k} ×Θk+1 × Tn,k,

where Θ ⊂ Rd is a parameter space, Tn,k = {τn,1:kn
: 0 ≤ τn,1 < ... < τn,kn

≤ tn}
and

⊎
indicates disjoint union. The posterior distribution is specified by

πn(kn, θn,0:kn
, τn,1;kn

|y1:n) ∝

ν(θn,0)S(tn, τn,kn
)
kn∏
j=1

f(θn,j , τn,j |θn,j−1, τn,j−1)
n∏
p=1

g(yn|ζ(tn−1,tn]),

with the convention τn,0 = 0 and where S(tn, τn,kn
) is the survivor function associ-

ated with the prior distribution over inter-jump times for the interval [0, tn]. The
SMC Samplers framework is applied to approximate the distributions of interest,
using a proposal kernel consisting of a mixture of moves which extend each particle
from En−1 to En by adjusting recent jump-time/parameter pairs and adding new
ones. An auxiliary scheme for filtering can be obtained by selecting the auxiliary
distribution µn to be:

µn(kn, θn,0:kn
, τn,1;kn

) ∝ Vn(θn,kn
, τn,kn

)πn(kn, θn,0:kn
, τn,1;kn

|y1:n),

where Vn(θn,kn
, τn,kn

) is a non-negative potential function which provides informa-
tion about yn+1. This can be done by approximating the predictive likelihood in the
same manner as in the discrete-time case, although some care is required as there
may be one or more jumps between observations and these must be considered when
approximating that predictive likelihood. This strategy was seen to perform well in
Whiteley et al. (2009).

3.3.3 The Probability Hypothesis Density Filter

An unusual application of ideas from the APF can be found in the area of multiple-
object tracking. This is an inference task in which one seeks to estimate, in an online
manner, the time-varying number and positions of a collection of hidden objects,
given a sequence of noisy observations. What makes this task especially difficult
is that it is not known which (if any) of the observations arise from which hidden
objects. In many applications, the hidden objects are vehicles and the observations
arise from sensor measurements, but many other problems in diverse application
areas such as communications engineering, biology, audio and music processing can
be cast in the same framework. Some examples are noted in Whiteley et al. (2009).
See also section XXXXX of this book.

In this scenario, one option is to represent the collection of hidden objects at
a single time step as a spatial Poisson process with some inhomogeneous intensity
measure. The intensity measure determines the expected number of objects within
any region of the state space. Given this representation, the problem of tracking



18

a large collection of objects is reduced to the problem of approximating, sequen-
tially in time, this intensity measure. The use of SMC methods to approximate
this measure has been suggested several times and an auxiliary-particle-filter-type
implementation has recently been developed.

In principle, filtering for a multi-object tracking model involves computing a
sequence of distributions with essentially the same form as (3.1). Here, E is E =⊎∞
k=0 X k, where X ⊂ Rd is the state-space of an individual object: each Xn =

Xn,1:kn comprises a random number, kn, of points, each in X , and can be regarded
as a spatial point process see Mahler (2007); Singh et al. (2008); Daley and Vere-
Jones (2003) for background theory. We refer the reader to section XXXX of this
book for further information, but essential to the discussion below is the following
concept. The first moment of the distribution of a point process may be specified
in terms of an intensity function, α : E → R+, so that

E[N(A)] =
∫
A

αn(x)dx, A ∈ B(X ),

where N(A) is the number of points of X which are in the set A and B(X ) is the
Borel σ-algebra on X .

A simple multi-object model has the following structure. The hidden objects
present at time n − 1 each survive to time n with location dependent probability
pS(xn−1). The surviving objects each evolve independently according to a Markov
kernel with density f(xn|xn−1). New objects appear according to a Poisson process
with intensity function γ(xn). Each of the surviving and new objects produces
an observation with distribution g(y|x). In addition to these detections, spurious
observations, termed “clutter”, arise from an independent Poisson process with
intensity κ(y). The observation set at time n therefore consists of a random number
of points, Yn = Yn,1:Mn

. Crucially, it is not known which of the points of Yn arise
from hidden objects and which are clutter.

Performing filtering when E =
⊎∞
k=0 X k is practically very difficult due to the

high and variable dimensionality of this space. The Probability Hypothesis Density
(PHD) Filter, Mahler (2003), approximates the optimal filter for this problem by
assuming that the state process is a-posteriori Poisson (and hence fully characterized
by its first moment) and characterising the intensity of that process.

For the model described above, the PHD filtering scheme yields the following
prediction/update recursion for intensity functions

αn(xn) =
∫
X
f(xn|xn−1)pS(xn−1)ᾰn−1(xn−1)dxn−1 + γ(xn), (3.14)

ᾰn(xn) =
mn∑
r=1

g(yn,r|xn)
Zn,r

αn(xn), (3.15)

where for r = 1, 2, ...,mn, Zn,r =
∫
E
g(yn,r|x)αn(x)dx + κ(yn,r). In this notation,

αn(x) and ᾰn(x) are respectively termed the predicted and updated intensities at
time n. The problem is then to compute the recursion (3.14)-(3.15) for a given
observation sequence, with estimates of kn and xn,1:kn

made from characteristics of
ᾰn. For many models this is intractable, due to the integrals involved and because
ᾰn is typically of mixture form with a number of components which is increasing in
n. Some degree of approximation is therefore required.

SMC methods may be employed to approximate the sequence of intensity func-
tions {ᾰn(xn)}n∈N, (Zajic and Mahler, 2003; Sidenbladh, 2003; Vo et al., 2005;
Johansen et al., 2006; Clark and Bell, 2006). In contrast to the case of particle fil-
ters which approximate probability distributions, it is necessary for the collection of
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weighted samples used here to characterise the total mass of the intensity function
in addition to its form. Akin to the APF, an auxiliary SMC implementation has re-
cently been proposed in Whiteley et al. (2009). Empirical results demonstrate that
the PHD recursion is particularly well suited to an auxiliary SMC approach. As in
the APF, this involves resampling from a particle set which has been re-weighted
by a potential function.

In outline, this approach introduces an extended state space X ′ = X ∪ {s},
where s is an isolated “source” point which does not belong to X , then defines an
intensity function denoted βn(xn−1:n, r) on X × X ′ × {1, ...,mn} as follows:

βn(xn−1:n, r) = (3.16)

g(yn,r|xn)
Zn,r

[
f(xn|xn−1)pS(xn−1)ᾰn−1(xn−1)IX (xn−1) + γ(xn)δs(xn−1)

]
.

Note that

ᾰn(xn) =
mn∑
r=1

∫
X ′
βn(xn−1:n, r)dxn−1. (3.17)

The algorithm of Whiteley et al. (2009) uses IS to target (3.16) and thus yields a
particle approximation of ᾰn(xn) due to (3.17).

Assume that there is available a particle approximation of ᾰn−1(xn−1), de-
noted by ᾰNn−1(xn−1). N samples are drawn from some distribution qn(r) over
{1, 2, ...,mn}, yielding {R(i)

n }Ni=1. For each i, X(i)
n−1 is then drawn from

πNn−1,R(i)(xn−1) ∝ p̂(yn,R(i) |xn−1)
[
ᾰNn−1(xn−1)IX (xn−1) + δs(xn−1)

]
, (3.18)

p̂(yn,r|xn−1) being an approximation of p(yn,r|xn−1), which is itself defined by

p(yn,r|xn−1) = IX (xn−1)pS(xn−1)
∫
X
g(yn,r|xn)f(xn|xn−1)dxn

+ I{s}(xn−1)
∫
X
g(yn,r|xn)γ(xn)dxn.

For each i, X(i)
n is then drawn from a kernel qn(·|X(i)

n−1, R
(i)
n ). The importance

weight which targets (3.16) is given by:

w̃n(xn−1:n, r) ∝
g(yn,r|xn)[f(xn|xn−1)pS(xn−1)IX (xn−1) + γ(xn)I{s}(xn−1)]

qn,r(xn|xn−1)πn−1,r(xn−1)qn(r)
,

with each normalizing constant Zn,r also estimated by IS, much as in SMC algo-
rithms for SSMs. The result is a particle approximation of ᾰn(xn). Whiteley et al.
(2009) also shows how to choose qn(r) in an optimal fashion.

The connection with the APF is evident from the form of (3.18): drawing from
this auxiliary distribution involves resampling from the existing particle set re-
weighted by a potential function incorporating knowledge of the next observation.
As demonstrated empirically in Whiteley et al. (2009), compared to non-auxiliary
SMC implementations, this method can result in importance weights of lower vari-
ance and more reliable estimates.



20

3.4 Further Stratifying the APF

It is common knowledge that the use of multinomial resampling in a particle filter
unnecessarily increases the Monte Carlo variance of the associated estimators and
that the use of residual, systematic or stratified approaches can significantly reduce
that variance (Douc et al., 2005). This is also true in the case of the APF and
one should always employ minimum variance resampling strategies. Under some
circumstances it may be possible to a achieve a further variance reduction in the
APF.

Consider again the SSM from section 3.1.1. Let (Ej)Mj=1 denote a partition
of E. Introducing an auxiliary stratum-indicator variable, sn =

∑M
j=1 jIEj (xn),

we redefine the SSM on a higher dimensional space, with the signal process being
E × {1, 2, ...,M}-valued, with transition kernel

r(xn, sn|xn−1, sn−1) = r(xn|sn, xn−1)r(sn|xn−1),

where

r(xn|sn, xn−1) ∝ IEsn
(xn)f(xn|xn−1), r(sn|xn−1) =

∫
Esn

f(xn|xn−1)dxn.

The initial distribution of the extended chain is defined in a similar manner and the
likelihood function remains unchanged. The posterior distributions for the extended
model then obey the following recursion:

p(x1:n, s1:n|y1:n) ∝ g(yn|xn)r(xn|sn, xn−1)r(sn|xn−1)p(x1:n−1, s1:n−1|y1:n−1).
(3.19)

Note that the marginal distribution of x1:n in (3.19) coincides with the original
model.

As in the SIR interpretation of the APF, we then construct an auxiliary sequence
of distributions, {π(x1:n−1, s1:n)}n∈N, which will be targeted with an SIR algorithm,
where:

π(x1:n−1, s1:n) ∝ p̂(yn|sn, xn−1)r̂(sn|xn−1)p(x1:n−1, s1:n−1|y1:n−1). (3.20)

The key feature of (3.20) is that the resampling step of the corresponding SIR
algorithm will select pairs of previous state values xn−1 and current strata sn.
This assignment can be performed with a low variance resampling mechanism. The
corresponding algorithm, which we refer to as the stratified Auxiliary Particle Filter
(sAPF) is given below.

For each i, we first draw each X(i)
n |x(i)

n−1, s
(i)
n ∼ qn(·|x(i)

n−1, s
(i)
n ). Then, instead of

randomly sampling a value s(i)
n+1, we evaluate one importance weight for every pos-

sible value of sn+1, resulting in a collection of N ×M weighted sample points. The
resampling step of the SIR algorithm then draws N times from the resulting distri-
bution on {1, 2, ..., N}×{1, 2, ...,M}. The method of Karlsson and Bergman (2000),
proposed in the context of a particular class of tracking problems can be viewed as
a special case of the proposed algorithm. However, Karlsson and Bergman (2000)
did not employ low–variance resampling schemes, which is, as will be shown below,
the key to obtaining both a variance reduction and a decrease in computational
cost.
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Algorithm 4 Stratified Auxiliary Particle Filter
At time 1

for i = 1 to N do
Sample X(i)

1 ∼ q1(·)
Set W̃ (i)

1 ∝ g(y1|X(i)
1 )ν(X

(i)
1 )

q1(X
(i)
1 )

end for
At time n ≥ 2

for i = 1 to N do
for j = 1 to M do

Set W (i,j)
n−1 ∝ W̃

(i)
n−1 × p̂(yn|X

(i)
n−1, sn = j)r̂(sn = j|X(i)

n−1)
end for

end for
Resample

{
X

(i)
n−1, j,W

(i,j)
n−1

}
(i,j)∈{1,...,N}×{1,...,M}

to obtain
{
X
′(i)
n−1, S

(i)
n , 1

N

}
for i = 1 to N do

Set X(i)
n−1 = X

′(i)
n−1

Sample X(i)
n ∼ qn(·|X(i)

n−1, S
(i)
n )

Set W̃ (i)
n ∝

g(yn|X(i)
n )f(X(i)

n |X
(i)
n−1)

p̂(yn|X(i)
n−1,S

(i)
n )r̂(S

(i)
n |X(i)

n−1)qn(X
(i)
n |X(i)

n−1,S
(i)
n )

end for

The importance weight which targets p(x1:n, s1:n|y1:n) (i.e. the analogue of
(3.10)) is then:

w̃n(xn−1:n, sn) ∝ g(yn|xn)f(xn|xn−1)
p̂(yn|sn, xn−1)r̂(sn|xn−1)qn(xn|sn, xn−1)

.

This effectively assigns both a parent particle and a stratum to each offspring. Cru-
cially, this assignment can be performed with a low variance resampling mechanism.
This approach is especially of interest in the context of switching SSMs, where the
state space has a natural partition structure by definition. We consider the appli-
cation to such models below. First, we consider the effect of the above sampling
scheme on the conditional variance of the resulting estimates.

3.4.1 Reduction in Conditional Variance

The following section illustrates the principal benefit of the proposed approach:
a significant reduction in computational cost in those situations in which a natu-
ral stratification exists. This section illustrates that incorporating this additional
stratification cannot make things worse in the sense that the variance of resulting
estimators will be at most the same as those obtained with a non-stratified variant
of those estimators. For simplicity we compare the performance of the sAPF to
that of the APF in terms of the conditional variance arising from a single act of
resampling and assigning particles to strata.

There are several ways in which one might go about using a low–variance mecha-
nism in the resampling step of algorithm 4. All the methods described in Douc et al.
(2005) are applicable and in this section we consider one way of using the stratified
resampling mechanism, see Kitagawa (1996); Fearnhead (1998). This method uses
a form of inversion sampling to draw N samples the distribution defined by the
particle set. Inversion sampling itself involves generating U [0, 1] random variates
and passing them through the generalised inverse of the target distribution function
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Robert and Casella (2004). The stratified resampling scheme is so-named because
it involves partitioning [0, 1] into N strata of length 1/N . A single uniform variate
is then drawn on each sub–interval and passed through the inverse of the CDF, see
Douc et al. (2005) for further details.

We next consider how the stratified resampling mechanism could be used in the
sAPF and how it would be used in the regular APF. It should be noted that the
scheme described below is not the only way in which stratified resampling can be
applied within the sAPF. Indeed there are alternatives which may be of even lower
variance. However, the scheme described below is simple enough to permit direct
analysis, providing some insight into how variance reduction can be achieved.

As part of the discussion which follows, we need some notation to indicate
when the stratified resampling scheme is used and to specify the resulting random
variables.

For a collection of random variables {X(i)}Ni=1, and a probability distribution µ,
we use the notation {X(i)}Ni=1

ss∼ µ to indicate that the samples {X(i)}Ni=1 are gen-
erated using the stratified resampling mechanism targeting µ. Consider a collection
of weighted samples {X(i),W (i)}Ni=1 such that

∑N
i=1W

(i) = 1 and the associated
empirical probability distribution

N∑
i=1

W (i)δX(i)(dx).

Resampling N times from this distribution can be interpreted as generating, via
some mechanism, a set of N ancestors, with A(i) denoting the ancestor of the ith

particle so that the resulting empirical distribution can be written as

1
N

N∑
i=1

δ
X(A(i))(dx),

i.e. in relation to the notation of algorithm 4, X ′(i) ≡ X(A(i)). It will also be conve-
nient to specify the number of replicates of each existing sample and a cumulative
count of these replicates, so for i ∈ {1, ..., N} we define

Ni =
N∑
j=1

I[A(j)=i], N∗i =
i∑

j=1

Nj .

Finally, to connect with the notation of algorithm 4 we also set

W (i) =
M∑
j=1

W (i,j), W (j|i) =
W (i,j)∑M
j=1W

(i,j)
, (3.21)

where the time index has been suppressed (as it is throughout this section) for
clarity.

With these conventions in hand, we consider a set, {X(i),W (i)}Ni=1, of weighted
samples resulting from some iteration of an SMC algorithm and conditional upon
this weighted sample set, analyze the variance arising from resampling the particles
and assigning particles to strata.

Table 3.3 shows how an algorithm which employs the stratified sampling mech-
anism in both the resampling and strata-selection steps can be compared with the
standard algorithm. Figure 3.2 shows a graphical representation of the procedures.
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APF sAPF

{A(i)}Ni=1
ss∼
∑N
i=1W

(i)δi(da) {A(i)}Ni=1
ss∼
∑N
i=1W

(i)δi(da)

for i = 1 to N for i = 1 to N
S(i) ∼

∑M
j=1W

(j|A(i))δj(ds) if Ni > 0
end for {S(j)}N

∗
i

j=N∗i−1+1
ss∼
∑M
j=1W

(j|i)δj(ds)
end if

end for

Table 3.3: Resampling and assignment to strata for the APF and sAPF algorithms, both employ-
ing stratified sampling. Here, the APF uses the low-variance sampling mechanism in assigning
ancestors. By contrast, the sAPF uses the low-variance mechanism in both assiging ancestors and
strata.

W (1)

W (2)

W (3)

W (4)

W (5)

W (1,1)

W (2,1)

W (3,1)

W (4,1)

W (5,1)

W (1,2)

W (2,2)

W (3,2)

W (4,2)

W (5,2)

Figure 3.2: An illustration of stratified resampling within the APF (left) and the sAPF (right)
with N = 5 particles and M = 2 strata. For the APF, each box corresponds to an existing particle;
for the sAPF, each box corresponds to an existing particle/stratum pair. In both cases, the area
of each box is proportional to the corresponding weight and a number of particles proportional
to the area of each box is sampled with the appropriate parameters. In the case of the APF the
boxes have heights proportional to the weights of the particles and constant width: only the parent
particle is assigned by the low–variance sampling mechanism. In the case of the sAPF the height
of the boxes remains proportional to the weight of the particle, W (i) =

∑
j W (i,j), but now the

assignment of both parent and stratum is performed using the low–variance sampling mechanism.

Given the weighted sample set {X(i),W (i)}Ni=1, procedures of table 3.3 both
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result in a set of ancestor and strata indicators. For a function ϕ : {1, ...,M}×E →
R we write ϕ̂NsAPF and ϕ̂NAPF for the estimators of the form

1
N

N∑
i=1

ϕ(S(i), X(A(i)))

which arise from the sAPF and the APF, respectively. The following proposition
establishes that the sAPF scheme of table 3.3 does indeed yield a reduction in
conditional variance over the APF scheme.

Proposition 1. For an integrable function ϕ : {1, ...,M} × E → R and for all N ,

V(ϕ̂NsAPF|F) ≤ V(ϕ̂NAPF|F).

where F = σ({X(i),W (i)}Ni=1).

Proof. The variances are first decomposed in the following manner

V(ϕ̂NsAPF|F) = E(V(ϕ̂NsAPF|G)|F) + V(E(ϕ̂NsAPF|G)|F) (3.22)

V(ϕ̂NAPF|F) = E(V(ϕ̂NAPF|G)|F) + V(E(ϕ̂NAPF|G)|F), (3.23)

where G = F ∨ σ({A(i)}Ni=1). Comparison is then performed term-by-term. First
consider the conditional expectations:

E(ϕ̂NsAPF|G) =
1
N

∑
{i:Ni>0}

Ni∑
j=1

∫ j
Ni

j−1
Ni

Niϕ(Dinv
i (u), X(i))du

=
1
N

N∑
{i:Ni>0}

Ni

∫ 1

0

ϕ(Dinv
i (u), X(i))du = E(ϕ̂NAPF|G). (3.24)

where Dinv
i is the generalised inverse CDF associated with

∑M
j=1W

(j|i)δj .
Next consider the conditional variances. First note that for both the sAPF and

APF the {S(i)}Ni=1 are conditionally independent given {A(i)}Ni=1. Hence:

V(ϕ̂NsAPF|G) =
1
N2

N∑
i=1

E([ϕ(S(i), X(A(i)))]2|G)

− 1
N2

N∑
i=1

[E(ϕ(S(i), X(A(i)))|G)]2

=
1
N2

N∑
i=1

Ni

∫ 1

0

[ϕ(Dinv
i (u), X(i))]2du

− 1
N2

∑
{i:Ni>0}

Ni∑
j=1

[∫ j
Ni

j−1
Ni

Niϕ(Dinv
i (u), X(i))du

]2

, (3.25)

whereas for the APF,

V(ϕ̂NAPF|G) =
1
N2

N∑
i=1

Ni

∫ 1

0

[ϕ(Dinv
i (u), X(i))]2du

− 1
N2

N∑
i=1

Ni

[∫ 1

0

ϕ(Dinv
i (u), X(i))du

]2

. (3.26)
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Applying Jensen’s inequality to the second term in (3.25) and (3.26) shows that

V(ϕ̂NsAPF|G) ≤ V(ϕ̂NAPF|G). (3.27)

The result follows upon combining (3.22), (3.23), (3.24) and (3.27).

It is stressed that Proposition 1 deals with the conditional variance, given
{X(i),W (i)}Ni=1. This gives some insight into the performance of the algorithm, but
ideally one would like to confirm a reduction in the unconditional variance. In the
case that residual resampling is used it may be possible to apply similar techniques
to those used in Chopin (2004) in order to establish a reduction in unconditional
asymptotic variance.

3.4.2 Application to Switching State Space Models

Switching SSMs are a particular class of models in which the state of the unobserved
process can be expressed in terms of two components, Xn = (Sn, θn), with sn
valued in {1, 2, ...,M} and θn valued in some space Θ, typically a subset of Rd. The
corresponding state space is of the form

E = {1, . . . ,M} ×Θ =
M⊎
j=1

{j} ×Θ,

so the state space has a natural partition structure. Note that Ej = {j} × Θ so
automatically we have sn =

∑M
j=1 jIEj

(xn) as before.
We will focus on models of the form:

p(θ1:n, s1:n|y1:n) ∝ g(yn|θn)r(θn|θn−1, sn)r(sn|sn−1)p(θ1:n−1, s1:n−1|y1:n−1), (3.28)

which arise in a wide variety of applications, including target tracking, Doucet et al.
(2001); audio signal processing, Andrieu et al. (2003); and econometrics Carvalho
and Lopes (2007). Note that due to the structure of the model we have r(sn|xn−1) =
r(sn|sn−1).

In this model sn is a latent state, which is not observed. The model of the hid-
den process (θn)n∈N can be interpreted as switching between M distinct dynamic
regimes, with transitions between these regimes governed a-priori by the transition
kernel r(sn|sn−1). This allows a larger degree of flexibility than in standard SSMs
and is especially useful for modelling time–series which exhibit temporal hetero-
geneity.

In the conditionally linear–Gaussian case, given a trajectory s1:n it is possible
to compute p(θ1:n|y1:n, s1:n) using the Kalman filter and thus SMC algorithms for
filtering can be devised in which the θ components of the state are integrated out
analytically, see Doucet et al. (2001). We do not assume such structure, although
the methods described above are applicable in that case. The sAPF algorithm for
the specific case of switching state space models is given below.

We next consider application of the sAPF to a Markov–switching stochastic
volatility (SV) model, as studied in Carvalho and Lopes (2007). SV models with
switching regime allow occasional discrete shifts in the parameter determining the
level of the log volatility of financial returns. They have been advocated as a means
by which to avoid overestimation of volatility persistence, see So et al. (1998) and
references therein.
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Algorithm 5 sAPF for Switching State Space Models
At time 1

for i = 1 to N do
Sample (θ(i)

1 , S
(i)
1 ) ∼ q1(·)

Set W̃ (i)
1 ∝ g(y1|θ(i)

1 )ν(θ
(i)
1 ,S

(i)
1 )

q1(θ
(i)
1 ,S

(i)
1 )

end for
At time n ≥ 2

for i = 1 to N do
for j = 1 to M do

Set W (i,j)
n−1 ∝ W̃

(i)
n−1 × p̂(yn|θ

(i)
n−1, sn = j)r(sn = j|S(i)

n−1)
end for

end for
Resample

{
θ

(i)
n−1, j,W

(i,j)
n−1

}
(i,j)∈{1,...,N}×{1,...,M}

to obtain
{
θ
′(i)
n−1, S

(i)
n , 1

N

}
for i = 1 to N do

Set θ(i)
n−1 = θ

′(i)
n−1

Sample θ(i)
n ∼ qn(·|θ(i)

n−1, S
(i)
n )

Set W̃ (i)
n ∝

g(yn|θ(i)
n )r(θ(i)

n |θ
(i)
n−1,S

(i)
n )

p̂(yn|θ(i)
n−1,S

(i)
n )qn(θ

(i)
n |θ(i)

n−1,S
(i)
n )

end for

The log–volatility process {θn}n∈N and observations {Yn}n∈N obey the following
equations

θn = φθn−1 + αsn
+ ζn,

Yn = εn exp(θn/2),

where ζn is an independent N (0, σ2
θ) random variable and εn is an independent

N (0, 1) random variable. The parameter φ is the persistence of volatility shocks,
{αj}Mj=1 are the log-volatility levels and sn is the latent regime indicator so that

αsn
= γ1 +

M∑
j=2

γjI[sn≥j],

where {γj}Mj=1 are log–volatility increments. The prior transition kernel r(sn|sn−1)
is specified by a stochastic matrix with entry pkl being the probability of a transition
from state k to state l.

In order to construct the potential function p̂(yn|θn−1, sn) and the proposal dis-
tribution qn(θn|θn−1, sn) we employ a slight modification of the technique proposed
in Pitt and Shephard (1999) for standard SV models. The idea is to exploit the
log–concavity of the likelihood function and form an approximation of g(yn|θn) by
taking a first order Taylor expansion of the log–likelihood about the conditional
mean of θn. With an abuse of notation we write θ̄n := φθn−1 + αsn

. The approxi-
mation of the likelihood is then specified by

log ĝ(yn|θn; θn−1, sn) = log g(yn|θ̄n)

+ (θn − θ̄n) · ∂
∂θ

log g(yn|θ)
∣∣∣∣
θ̄n

. (3.29)



27

We then choose

qn(θn|sn, θn−1) ∝ ĝ(yn|θn; θn−1, sn)r(θn|θn−1, sn),

which is a Gaussian density, N (µqn
, σ2
qn

), with parameters

µqn
= φθn−1 + αsn

+
σ2
θ

2
[
y2
n exp(−φθn−1 − αsn

)− 1
]
,

σ2
qn

= σ2
θ .

Furthermore, we employ the following approximation of the predictive likelihood

p̂(yn|θn−1, sn) ∝
∫
ĝ(yn|θn; θn−1, sn)r(θn|θn−1, sn)dθn

∝ exp
(

1
2σ2

θ

(µ2
qn
− (φθn−1 + αsn

)2)
)

× exp
(
−y

2
n

2
exp(−φθn−1 − αsn

)(1 + φθn−1 + αsn
)
)
.

The importance weight is given by

w̃n(θn−1:n, sn) ∝ g(yn|θn)
ĝ(yn|θn; θn−1, sn)

∝ exp
{
−y

2
n

2
[
exp(−θn)− exp(−θ̄n)[1− (θn − θ̄n)]

]}
.

Due to the fact that log g(yn|θ) is concave as a function of θ and from the definition
(3.29), the importance weight w̃n(θn−1:n, sn) is bounded above.

The Bovespa Index (IBOVESPA) is an index of approximately 50 stocks traded
on the São Paulo Stock Exchange. Figure 3.3 shows weekday returns on the
IBOVESPA index for the period 1/2/97–1/15/01. As highlighted in Carvalho and
Lopes (2007), during this period there occurred several international currency events
which affected Latin American markets, generating higher levels of uncertainty and
consequently higher levels of volatility. These events are listed in table 3.4 and are
indicated by the vertical dotted lines in figure 3.3. This data set was analysed in
Lopes and Carvalho (2007), where an SMC algorithm was used to perform filtering
whilst simultaneously estimating static parameters. We concentrate on the filtering
problem and set static parameters to pre-determined values.

The sAPF was compared to a standard APF for this model, with the latter
employing the same approximation of the likelihood in the proposal distributions,
i.e.

qn(θn, sn|θn−1, sn−1) ∝ ĝ(yn|θn; θn−1, sn)r(θn|θn−1, sn)r(sn|sn−1),

p̂(yn|θn−1, sn−1) ∝
M∑
j=1

{
r(sn = j|sn−1)

×
∫
ĝ(yn|θn; θn−1, sn = j)r(θn|θn−1, sn = j)dθn

}
.

Systematic resampling was used in both algorithms3. Based on the parameter
estimates made in Carvalho and Lopes (2007), we set M = 2, p11 = 0.993, p22 =
0.973, α1 = −1.2, α2 = −0.9, φ = 0.85, σ2

θ = 0.1.
3Although systematic resampling does not uniformly outperform other approaches it is ex-

tremely widely used in the applied filtering literature. Although it is computationally attractive,
care is required when using this approach for the reasons documented in Douc et al. (2005).
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07/02/1997 Thailand devalues the Baht by as much as 20%

08/11/1997 IMF and Thailand set a rescue agreement

10/23/1997 Hong Kong’s stock index falls 10.4%

South Korean Won starts to weaken

12/02/1997 IMF and South Korea set a bailout agreement

06/01/1998 Russia’s stock market crashes

06/20/1998 IMF gives final approval to a loan package to Russia

08/19/1998 Russia officially falls into default

10/09/1998 IMF and World Bank joint meeting to discuss the economic crisis

The Federal Reserve cuts interest rates

01/15/1999 The Brazilian government allows its currency, the Real,

to float freely by lifting exchange controls

02/02/1999 Arminio Fraga is named President of Brazil’s Central Bank

Table 3.4: Events which impacted Latin American markets (Carvalho and Lopes, 2007)

1/2/97 7/2/97 12/2/97 6/1/98 1/15/99 1/15/01
−0.2

−0.1

0

0.1

0.2

1/2/97 7/2/97 12/2/97 6/1/98 1/15/99 1/15/01

1

2

Figure 3.3: Stochastic Volatility Model. Top: Daily returns on the IBOVESPA index from Febru-
ary 1997 to January 2001. Bottom: MAP one–step–ahead prediction of the switching state sn.
State 2 is the high–volatility regime.

For each algorithm, the variance of the minimum means square error (MMSE)
filtering estimate of the log volatility was computed at each iteration, over 500
independent runs. These variances were then summarised by taking their arithmetic
mean and are shown in table 3.5.

APF sAPF
N σ2 CPU / s σ2 CPU / s
10 0.0906 0.8394 0.0850 0.2526
20 0.0544 1.5397 0.0492 0.3558
50 0.0325 3.6665 0.0290 0.6648
100 0.0274 10.7095 0.0230 1.1801
200 0.0195 17.7621 0.0189 2.7231
500 0.0195 35.4686 0.0185 5.3206

Table 3.5: Stochastic Volatility Model: variance of filtering estimate and average CPU time per
run over 500 runs for the IBOVESPA data.
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Figure 3.4: Stochastic Volatility Model: variance of filtering estimate vs average CPU time in secs.
over 500 runs for the IBOVESPA data. Solid: sAPF, dash-dot: APF.

This shows how the variance of filtering estimates of the log–volatility and mean
CPU time per run for the two algorithms relate to the number of particles used.
For the same number of particles, the sAPF algorithm exhibits lower variance of
filtering estimates. The results also show that, for the same number of particles,
the sAPF can be computationally cheaper than the APF. This can be explained as
follows. The algorithms involve precisely the same arithmetic operations in order
to compute both the auxiliary importance weights and the importance weights by
which estimation is performed. However, in terms of random number generation,
the APF is more expensive: it uses one random variate to perform systematic
resampling, then for each particle draws S(i)

n from a distribution on {1, ...,M} and
samples θ(i)

n from qn(·|θn−1, sn). By contrast, the sAPF uses one random variate to
perform systematic resampling (which assigns values of both X

(i)
n−1 and S

(i)
n ) and

then for each particle samples θ(i)
n from qn(·|θn−1, sn).

Although the cost–saving will be dependent on the programming language em-
ployed, the results indicate that the savings can be significant. In this case both
algorithms were implemented in MatLab, and the code was made common to both
algorithms in all places possible. The performance benefit in terms of estimator
variance versus CPU time is illustrated in figure 3.4.
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Figure 3.5: Stochastic Volatility Model. Boxplots, over 100 runs of each algorithm, of the number
of particles in the high–volatility regime at iterations corresponding to the dates 1/13/99 (left),
1/14/99 (middle) and 1/15/99 (right). N = 100.

Figure 3.5 shows boxplots of the number of particles in the high–volatility regime
over 100 independent runs of each algorithm. The pairs of boxplots correspond
to the dates 1/13/99 (left), 1/14/99 (middle) and 1/15/99 (right). During this
period, it can be seen from figure 3.3 that an increase in volatility occurs. N = 100
particles were used in both algorithms. The count of number of particles in the high–
volatility regime was made immediately after resampling in the case of the sAPF
and immediately after making proposals in the case of the APF, i.e. at equivalent
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steps of the algorithms. Across the three dates the sAPF exhibits lower variability
than the APF and the mean number of particles in the high–volatility regime is
lower for the APF. That is, the sAPF shows less variability in its approximation
of the distribution over strata: this improved distributional approximation is the
underlying mechanism which leads to improved variance properties.

Figure 3.3 shows the one-step-ahead MAP prediction of the switching state sn,
using the sAPF algorithm with N = 500 particles. Recall that sn = 2 is the high
volatility regime. The results show that the model is able to recognise changes in
the level of volatility and these changes roughly coincide with the currency crisis
events listed in table 3.4. The results are very similar to those obtained in Carvalho
and Lopes (2007).

3.5 Conclusions

This article has attempted to summarise the state of the art of the auxiliary particle
filter. Our intention is to provide some insight into the behaviour of the APF and
its relationship with other particle-filtering algorithms, in addition to summarising
a number of recent methodological extensions. One of the most significant points is
perhaps this: the APF is simply an example of a sequential estimation procedure in
which one can benefit from the early introduction of information about subsequent
distributions, combined with an importance sampling correction. In the context of
time series analysis, this approach is useful when performing filtering in SSMs and
the same approach can be exploited elsewhere.
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