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Abstract

Multiple change-point models provide a �exible and interpretable framework for
representation of temporal heterogeneity in data. In addition to the locations of change-
points, these models typically involve parameters which specify the distributions of data
between change-points and other quantities. However, the values of these parameters
are usually unknown and need to be inferred from the data. We develop new Markov
chain Monte Carlo algorithms which provide an e�cient means for full Bayesian infer-
ence in the presence of parameter uncertainty. Performance is demonstrated on various
examples.

1 Introduction

Time series data often exhibit temporal heterogeneity. In multiple change-point problems,

the task is to segment a sequence of observations y1, y2, ..., yT by choosing a sequence of

change-point locations 0 < τ1 < τ2 < ... < τk < T such that the observations are, in some

sense, homogeneous within segments and heterogeneous across segments. Statistical analy-

sis of change�point problems has a long history; as of 1992 the literature on this topic was

�enormous� [Carlin et al., 1992]. In terms of application, multiple change-point problems

are common in biology [Fearnhead and Liu, 2007], �nance [Chopin, 2007], signal processing

[Fearnhead and Cli�ord, 2005], and other areas, arising quite naturally when there is increas-

ing availability of long data sequences. A diverse of set of non-, semi- and fully parametric

methods for change-point models has been developed. A full survey is beyond the scope

of the present article, the focus here is on Bayesian methods. In this approach, both the

prior over the number and location of change-points [Barry and Hartigan, 1992, 1993], and

the likelihood function depend on an unknown and typically multi-dimensional parameter θ.

The values taken by this parameter can dramatically in�uence the properties of the model.

However, performing Bayesian inference for multiple change-points and the parameter θ

is a challenging problem. Even when θ is assumed known, exact computation of the posterior

distribution over change-point con�gurations is intractable for large data sets and Markov
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chain Monte Carlo (MCMC) techniques are typically employed. Unfortunately, MCMC

algorithms which update change-point locations in a one-at-a-time manner [Stephens, 1994,

Lavielle and Lebarbier, 2001], or condition on latent variables associated with each segment

[Chib, 1998], can be slow mixing due to the strong correlations between the change-point

locations and latent variables. Alternatives, which sample all the change-points in one block

have a cost per MCMC iteration which is of the order T 2 [Fearnhead, 2006]. For real-world

data sets of several thousand observations, this T 2 method can be prohibitively expensive.

Particle MCMC (PMCMC) algorithms, recently introduced by Andrieu et al. [2010], are

a class of MCMC algorithms which allow sequential Monte Carlo (SMC) [Doucet et al.,

2001], to be used in building high-dimensional proposals within a MCMC scheme. In the

context of change-point models, an e�cient SMC method has been proposed by Fearnhead

and Liu [2007]. However, its structure di�ers very signi�cantly from the SMC algorithms

treated in Andrieu et al. [2010]. The main contribution of this paper is to show how this

SMC algorithm can be used and manipulated within MCMC schemes to obtain e�cient

samplers for multiple-change point models. We derive two original PMCMC algorithms,

whose cost per MCMC iteration is of the order N T , where N is the number of particles in the

SMC approximation, and whose experimental performance compares remarkably well to T 2

algorithms for N � T . This is a further development of a conceptual approach introduced

by Whiteley et al. [2010] in the context of PMCMC algorithms for switching state-space

models. However the multiple change-point models considered in the present paper have a

more speci�c conditional independence structure, which is re�ected and exploited through

the speci�c form of the proposed computational algorithms. Hence the algorithms presented

here are markedly di�erent from those proposed in Whiteley et al. [2010].

Section 2 speci�es the change-point model of interest. Section 3 describes existing MCMC

methods, and the sampling techniques of Fearnhead and Liu [2007]. The new PMCMC

algorithms are introduced in section 4 and their theoretical validity is established in section

5. Performance is demonstrated on two real data sets in section 6.

2 Multiple Change-point Model

2.1 Bayesian Model

The change-point model we consider is essentially the same as that treated by Fearnhead and

Liu [2007] except that the parameter θ, valued in some space Θ, is here assumed unknown
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and is assigned a suitable prior p(θ). In the following model speci�cation, it is important to

note that the parameter θ is global, in the sense that it is common to all segments de�ned

by any change-point con�guration (speci�c examples are given in section 6). From now on,

by convention we �x τ0 = 0, τk+1 = T , where k is the e�ective number of change-points, and

for some generic sequence {zn} we adopt the notation zi:j := (zi, zi+1, ..., zj).

A collection of change-points τ1:k is an increasing sequence of integers 0 < τ1 < τ2 < ... <

τk < T for some integer k ≥ 0 which de�nes k + 1 segments where for j = 1, 2, ..., k + 1,

the jth segment is τj−1 + 1 : τj. The collection τ1:k therefore allows us to partition the data

y1:T into segments yτj−1+1:τj . Similarly to Barry and Hartigan [1992], Fearnhead and Liu

[2007], we assume that given the location of a change-point and θ, the observations before

that change-point are independent of those after; that is the likelihood factorizes

pθ(y1:T |τ1:k) =
k+1∏
j=1

pθ(yτj−1+1:τj |τj−1:j).

As in [Fearnhead and Liu, 2007], this likelihood may arise from summing over a number of

possible models for the data in each segment and/or integrating out local latent variables

associated with each segment under conjugate priors. It is assumed here that we can evaluate

this likelihood exactly. Examples with this structure are given in section 6.

The sequence τ0, τ1, τ2, ... is increasing and is assumed Markov with homogeneous tran-

sition probabilities given for j = 1, 2, ... by pθ(τj|τj−1) = hθ(τj − τj−1). We are concerned

with the space of all change�point con�gurations over {1, ..., T − 1} which we denote by the

disjoint union TT :=
⋃T−1
k=0 TT,k, where TT,k := {τ1:k ∈ {1, ..., T − 1}k; τ1 < ... < τk} for k ≥ 1

and TT,0 is the empty con�guration. The joint prior probability of exactly k change-points

and their locations is then given by

pθ(τ1:k) = [1−Hθ(T − τk)]
k∏
j=2

hθ(τj − τj−1),

where Hθ is the c.d.f. associated with hθ, i.e.

Hθ(n) =
n∑
i=1

hθ(i).

For simplicity of presentation, we do not make explicit in the notation pθ(τ1:k) the fact that
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k is a random variable - this does not lead to ambiguities in what follows. We are interested

in the joint posterior distribution

p(θ, τ1:k|y1:T ) ∝ pθ(y1:T |τ1:k)pθ(τ1:k)p(θ). (1)

2.2 A Canonical Reparameterization

As advocated by Chib [1998], Chopin [2007], Fearnhead and Liu [2007], for computational

purposes it is fruitful to consider the following reparameterization of the change-point model.

For each n = 1, 2, ..., T , let Xn be the random variable valued in En := {0, ..., n−1} which is

the location of the latest change-point before time n. More precisely, given τ1:k, for any n =

1, . . . , T we de�ne xn := max{τj : τj ≤ n−1}. Immediate properties of this reparametrization

which will be repeatedly used in what follows are that for any j = 0, . . . , k, xτj+1 = τj, and

xτj+1 = xτj+2 = · · · = xτj+1
. It is straightforward to verify that this de�nition implies a

one-to-one correspondence between paths x1:T ∈
∏T

n=1En and change-point con�gurations

τ1:k ∈ TT . Furthermore, the above prior on τ1:k is equivalent to the sequence X1:T being

Markov with, for 0 ≤ xn−1 ≤ xn < n, transition probabilities f θn(xn|xn−1) given by

f θn(xn|xn−1) =


1−Hθ(n− xn−1 − 1)

1−Hθ(n− xn−1 − 2)
if xn = xn−1,

Hθ(n− xn−1 − 1)−Hθ(n− xn−1 − 2)

1−Hθ(n− xn−1 − 2)
if xn = n− 1,

0 otherwise,

and initial distribution speci�ed by the convention f θ1 (0|0) = 1. For n > xn the predictive

likelihood is denoted

gθn(xn) := pθ(yn|y1:n−1, xn),

with the dependence on the data suppressed for notational convenience. The interest in this

reparameterization is that computing the posterior in (1) is equivalent to computing the

joint posterior over x1:T and θ:

p(x1:T , θ|y1:T ) ∝ f θ1 (x1)g
θ
1(x1)

T∏
n=2

f θn(xn|xn−1)gθn(xn)p(θ), (2)

and the manner in which (2) factorizes makes it particularly amenable to approximation using

SMC methods. More speci�cally, in section 4 we will see that the tasks of approximating
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pθ(y1:T ) and sampling from pθ(x1:T |y1:T ) using SMC are central to the construction of new

MCMC algorithms targeting p(θ, τ1:k|y1:T ).

In order to simplify presentation, throughout this paper we assume that for all θ, n,

xn and xn−1 such that xn = xn−1 or xn = n − 1, f θn(xn|xn−1) > 0 and gθn(xn) > 0. This

assumption is satis�ed for the majority of change�point models of practical interest and

relaxing it requires only cosmetic changes to the proposed algorithms.

We next brie�y review some existing approaches to posterior sampling in multiple-change

point models using standard MCMC methods. This is not just for completeness. As we shall

see, the proposed methods admit some of these existing techniques as special cases.

3 Computational Methods

3.1 Review of MCMC Methods

The design of MCMC algorithms for posterior sampling in change�point models has been a

topic of interest for some years. Carlin et al. [1992] devised a Gibbs sampler for a Bayesian

change�point model in which the number of change�points was �xed to 1. This Gibbs

sampler was extended to models with multiple change�points by Stephens [1994]. The latter

approach involves one-at-a-time sampling of the change-point locations and associated latent

variables from their respective full conditional distributions. It is well known that one-at-

a-time Gibbs samplers can su�er from slow mixing which arises from strong correlations

in the target distribution. Empirical evidence shows that similar algorithms which employ

Metropolis�Hastings steps to sample one-at-a-time in change�point models [Lavielle and

Lebarbier, 2001] su�er from similar problems [Fearnhead, 2006].

For multiple change�point models, Chib [1998] presented a Gibbs sampling algorithm in

which the entire change�point con�guration τ1:k is sampled from its full conditional distri-

bution, given θ and the latent variables associated with each segment. This is an instance of

blocking in a Gibbs sampler: a technique which often improves mixing signi�cantly Liu et al.

[1994]. One step further is to sample τ1:k from pθ(τ1:k|y1:T ), i.e. with the latent variables

associated with each segment integrated out. This can improve mixing even further and is

achievable using the exact forward-backward recursions of Fearnhead and Cli�ord [2005],

Fearnhead [2006], Fearnhead and Liu [2007]. However, these schemes have a computational

cost per MCMC iteration which grows quadratically in T , the length of the data record. In

modern applications, T may be of the order of thousands and so the cost of these methods
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can be prohibitive. In the next section we review the exact forward-backward methods for

sampling from pθ(τ1:k|y1:T ), computing pθ(y1:T ), and the corresponding SMC methods.

3.2 Exact Filtering and Backward Sampling

Fearnhead and Cli�ord [2005], Fearnhead [2006], Fearnhead and Liu [2007], proposed meth-

ods for obtaining exact samples from pθ(τ1:k|y1:T ) and computing pθ(y1:T ). We focus on the

algorithm of Fearnhead and Liu [2007], which involves two steps. In the forward �ltering

pass, for n = 1, ..., T , each �ltering distribution pθ(xn|y1:n) is computed recursively and

stored. The likelihood pθ(y1:T ) can be obtained from quantities computed in this �ltering

pass. In the backward sampling pass, a sequence of change-point locations τ1:k is obtained

by sampling back through the stored �ltering distributions, re-weighted appropriately. We

refer to Fearnhead and Liu [2007] for speci�c details.

In the change-point model of section 2, recall that the support of pθ(xn|y1:n) is En =

{0, ..., n− 1} which obeys the trivial recursion

E1 = {0}, En+1 = En ∪ {n}, n = 1, 2, ... (3)

Hence the support of the �ltering distributions is increasing with time. It follows that the

cost of computing pθ(y1:T ) and the storage requirements of sampling from pθ(τ1:k|y1:T ) grow

quadratically in T . In many practical problems, T may be of the order of thousands and so

these exact methods can be prohibitively expensive. Fearnhead and Cli�ord [2005], Fearn-

head [2006] suggested to reduce computational complexity by performing a deterministic

truncation of certain quantities which arise in the �ltering recursion, but this introduces a

bias which is di�cult to quantify.

3.3 SMC

Fearnhead and Liu [2007] also proposed an algorithm which employs SMC ideas in order

to approximate the �ltering distributions. This allows the cost per �ltering iteration to be

upper�bounded uniformly in time and is of order N , where N is an algorithmic parameter.

The storage requirements of obtaining a sample from the corresponding approximation of

pθ(τ1:k|y1:T ) and computing the corresponding approximation of pθ(y1:T ) then grow only

linearly with T .
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SMC methods are a class of stochastic algorithms which allow approximation of a se-

quence of probability distributions [Doucet et al., 2001]. Standard SMC methods yield a

collection of N weighted samples, termed particles {X i,W (X i)}Ni=1 which de�ne a random

probability distribution,
N∑
i=1

W (X i)δXi ,

N∑
i=1

W (X i) = 1, (4)

where in full generality, the weight W (·) is some possibly random function of the particle

location X i. The structure of the change-point model is signi�cantly di�erent from that of

the state-space models to which standard SMC algorithms are usually applied. For each

n, |En| is �nite; in standard state-space models, the �ltering distribution is usually de�ned

on some general state space. The SMC algorithm of Fearnhead and Liu [2007] exploits the

fact that |En| is �nite and avoids the random proposal/importance sampling step present in

standard SMC. Furthermore, it has the desirable property of avoiding particle duplication.

This is a further development of the ingenious optimal resampling particle �lter introduced

in Fearnhead and Cli�ord [2003]. We refer to [Fearnhead and Liu, 2007] for a detailed

discussion of e�ciency and applicability of this method relative to alternative SMC schemes

for sampling change-points; see for example [Chopin, 2007]. For brevity, we treat the variant

of [Fearnhead and Liu, 2007] in which resampling is applied at every iteration, but other

variants can be considered in the same framework.

The remainder of this section is dedicated to a sketch of the SMC �ltering algorithm's

probabilistic operation, followed by a statement of the algorithm itself. In particular we

introduce a non�standard approach to describing the SMC algorithm of [Fearnhead and Liu,

2007] and the random probability distributions it generates. Our system of notation is central

to the understanding of the new MCMC algorithms described in section 4. In this section,

the notational ideas are introduced somewhat incrementally, a more precise probabilistic

formulation is given in section 5.1. The �rst step in this non-standard approach is to move

away from the system of indexing displayed in (4) via the trivial equality

N∑
i=1

W (X i)δXi =
∑
X∈S

W (X)δX , (5)

where S := {X1, X2, ..., XN} is a random support set. In standard SMC algorithms, S is

propagated from one iteration to the next by resampling followed by random proposal of

new support points. In the resampling step, particles with large weights are duplicated and
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those with small weights are discarded, according to some stochastic rule. The stochasticity

of the proposal and resampling steps inevitably contributes to the �uctuations of (5) and

the variance of associated estimators.

In the case of the change�point model outlined above, the state space |En| is �nite and

so the random proposal step can be avoided, and replaced with a systematic exploration.

Empirical studies, see for example [Fearnhead and Cli�ord, 2003], show that this leads to a

dramatic decrease in Monte Carlo error. In expressing the algorithm of Fearnhead and Liu

[2007], for each n, we consider p̂θ(xn|y1:n), an approximation of the �ltering distribution, as

having random support Sn ⊂ En, corresponding to the non-zero members of a collection of

random weights Wθ
n := {W θ

n(xn)}xn∈En , which will be precisely de�ned below. We write the

approximation p̂θ(xn|y1:n) in the form

∑
xn∈Sn

W θ
n(xn)δxn ,

∑
xn∈Sn

W θ
n(xn) = 1, (6)

where now the members of each Sn are not obtained by a random proposal mechanism and

are thus written in lower case. We are aiming for algorithms with upper bounded the cost

per time instant by ensuring that |Sn| = (N+1)∧n for some parameter N . We now describe

how the random support Sn is propagated from one iteration to the next in the algorithm of

Fearnhead and Liu [2007]. In order to do so, for each n we specify a collection of binary-valued

random variables, Sn := {Sn(xn)}xn∈En , which we refer to as survival indicator variables,

and are precisely de�ned below. The propagation of the random support occurs according

to a recursion:

S1 = {0} , Sn+1 = {xn ∈ Sn : Sn(xn) = 1} ∪ {n}, n = 1, 2, ... (7)

Note that from (7), once a support point is lost, it is never subsequently recovered and

the weights associated with it need never be computed. Discarding support points in this

manner implies that the computational cost per SMC �ltering iteration is bounded uniformly

in time. Thus in the SMC forward �ltering algorithm below it is implicit that, for any n and

xn, once Sn(xn) is set to zero, all subsequent survival indicators and weights associated with

this point are also set to zero. We return to this issue in section 5.

The SMC forward �ltering scheme of Fearnhead and Liu [2007] is presented below using

our system of notation. A component of this algorithm is the strati�ed resampling procedure
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[Carpenter et al., 1999], which is described in the appendix. As noted in [Fearnhead and

Liu, 2007], in this context the strati�ed resampling procedure has the property of assigning

either 1 or 0 o�spring to each particle, thus avoiding duplicates.

SMC Forward Filtering

At time n = 1

• Set W θ

1 (0) = gθ1(0), W θ
1 (0) = 1, S1 = {0} and S1(0) = 1.

At time n = 2, 3, ..., T

• If n− 1 ≤ N set Cn−1 =∞, otherwise set Cn−1 to the unique solution of

∑
xn−1∈Sn−1

1 ∧ Cn−1W θ
n−1 (xn−1) = N.

• Set In−1 = {xn−1 ∈ Sn−1 : W θ
n−1(xn−1) ≤ 1/Cn−1}.

• Maintain the Ln−1 := |Sn|− |In−1| support points xn−1 ∈ Sn−1\In−1 by setting Sn−1(xn−1) =

1. If |In−1| > 0 resample N −Ln−1 times from In−1 using the strati�ed resampling mechanism.

• For each xn−1 having survived the previous resampling steps, set Sn−1 (xn−1) = 1 and otherwise

set Sn−1 (xn−1) = 0.

• Set for xn = n− 1

W
θ

n (n− 1) = gθn(n− 1)
∑

xn−1∈Sn−1

f θn(n− 1|xn−1)W θ
n−1(xn−1).

• For xn−1 ∈ Sn−1, set W
θ

n (xn−1) = 0 if Sn−1(xn−1) = 0 and otherwise set

W
θ

n (xn−1) = gθn(xn−1)f
θ
n(xn−1|xn−1)

W θ
n−1(xn−1)

1 ∧ Cn−1W θ
n−1(xn−1)

.

• Update the support

Sn = {xn−1 ∈ Sn−1 : Sn−1 (xn−1) = 1} ∪ {n− 1}

• For xn ∈ Sn,
W θ
n(xn) ∝ W

θ

n (xn) ,
∑
xn∈Sn

W θ
n(xn) = 1.
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The computational complexity of the algorithm scales asN×T in contrast with that of the

exact procedure which scales as T 2. This can be recovered by noticing that if n−1 < N = T

in the forward SMC �ltering algorithm, then the resampling operation is never applied, in

which case the SMC �ltering algorithm performs exact �ltering as described in section 3.2.

In any case, the forward SMC �ltering algorithm yields an approximation of the �ltering

distributions {pθ(xn|y1:n)}Tn=1 of the form (6) and an estimate of the likelihood pθ(y1:T ) given

by

p̂θ(y1:T ) :=
T∏
n=1

(∑
xn∈Sn

W
θ

n(xn)

)
. (8)

Given the sequence of approximate �ltering distributions {p̂θ(xn|y1:n)}Tn=1, we can obtain an

approximate sample from pθ(τ1:k|y1:T ) using a backward sampling recursion [Fearnhead and

Liu, 2007] and use the already noticed property xτj+1 = τj. Again, if N = T , the forward

�ltering is exact and the below scheme then yields an exact sample from pθ(τ1:k|y1:T ).

SMC Backward Sampling

• Sample ι1 from the distribution on ST de�ned by {W θ
T (xT )}xT∈ST and set k = 1.

• While ιk > 0, sample ιk+1 from the distribution proportional to f θιk+1(ιk|ιk+1)W
θ
ιk

(ιk+1) on

Sιk and

set k = k + 1.

• Output the sampled sequence τ1:k such that τj = ιk−j+1.

4 Particle MCMC

In this section we introduce two new PMCMC algorithms. Each PMCMC algorithm is the

analogue of a standard MCMC algorithm which uses the exact forward �ltering/backward

sampling methods of section 3.2 to compute pθ(y1:T ) and sample exactly from pθ(τ1:k|y1:T )

at cost T 2 per MCMC iteration. In section 5.1 we establish the validity of the new PM-

CMC algorithms: even though they employ SMC approximations of the exact forward �l-

tering and backward sampling schemes, they are valid MCMC algorithms for sampling from

p(θ, τ1:k|y1:T ).

10



4.1 Particle Marginal Metropolis Hastings

A standard marginal Metropolis-Hastings (MMH) algorithm samples from p(θ, τ1:k|y1:T ) us-

ing the joint proposal given by

q ((θ∗, τ ∗1:k)| (θ, τ1:k)) = q (θ∗| θ) pθ∗ (τ ∗1:k|y1:T ) .

Note that in order to be consistent the notation for the proposed set of change-points should

be (τ1:k)
∗ or τ ∗1:k∗ instead of τ ∗1:k but that we adopt the latter in order to alleviate notation.

This does not lead to possible confusion in what follows. In this scenario τ ∗1:k is proposed

conditionally upon the proposed θ∗, and the resulting acceptance ratio is given by

pθ∗ (y1:T ) p (θ∗)

pθ (y1:T ) p (θ)

q (θ|θ∗)
q (θ∗|θ)

. (9)

If T is large, it is too expensive to compute the likelihood terms appearing in this ratio and

sample from pθ∗ (τ ∗1:k|y1:T ). We propose the following particle MMH (PMMH) sampler.

PMMH Sampler

Initialisation, i = 0

• Set θ(0) arbitrarily.

• Run the SMC forward �ltering and backward sampling algorithms with parameter θ(0), yielding

an approximation p̂θ(0) (y1:T ) and a change�point con�guration τ1:k (0).

For iteration i ≥ 1

• Sample θ∗ ∼ q ( ·| θ(i− 1)).

• Run the SMC forward �ltering and backward sampling algorithms with parameter θ∗, yielding

an approximation p̂θ∗ (y1:T ) and a change�point con�guration τ ∗1:k.

• Set
(
θ(i), τ1:k(i), p̂θ(i)(y1:T )

)
= (θ∗, τ ∗1:k, p̂θ∗(y1:T )) with probability

1 ∧ p̂θ∗ (y1:T ) p (θ∗)

p̂θ(i−1) (y1:T ) p (θ(i− 1))

q (θ(i− 1)|θ∗)
q (θ∗|θ(i− 1))

,

otherwise set
(
θ(i), τ1:k(i), p̂θ(i)(y1:T )

)
=
(
θ(i− 1), τ1:k(i− 1), p̂θ(i−1)(y1:T )

)
.

4.2 Particle Gibbs Sampler

It is possible to implement a block Gibbs algorithm which samples from p(θ, τ1:k|y1:T ) us-

ing draws from pθ(τ1:k|y1:T ) and p(θ|y1:T , τ1:k). If T is large, it is too expensive to sample
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exactly from pθ(τ1:k|y1:T ), so we propose the following particle Gibbs (PG) sampler. The

corresponding conditional resampling algorithm is given in the appendix.

PG Sampler

Initialisation, i = 0

• Set θ (0) , X1:T (0) arbitrarily.

For iteration i ≥ 1

•With parameter θ (i− 1) and given τ1:k (i− 1), run the conditional SMC forward �ltering algo-

rithm and then run the SMC backward sampling algorithm to obtain a change�point con�guration

τ1:k (i).

• Sample θ(i) ∼ p(·|y1:T , τ1:k(i)).

This PG algorithm relies on the conditional forward �ltering algorithm given below and

the conditional strati�ed resampling scheme which is described in the appendix.

5 Validity of the Algorithms

5.1 SMC and Target Distributions

To establish the validity of the PMCMC algorithms, we need to express precisely the proba-

bility law of the SMC approximation, which turns out to take a simple form when expressed

in terms of the survival variables {Sn}T−1n=1 introduced in section 3.3. Before proceeding we

note that the SMC forward �ltering algorithm has the following key properties, which can

be veri�ed by inspection of the algorithm:

1. under functional relationships between {Sn}Tn=1, {Sn}T−1n=1 and {Wθ
n}Tn=1 implicitly spec-

i�ed by the algorithm, all information relevant to the random measures as in (5) for

n = 1, ..., T , is carried by {Sn}T−1n=1 ,

2. under the probability law implicitly speci�ed by the algorithm, for each n, Sn is con-

ditionally independent of the history of the algorithm, given Wθ
n, and

3. for n ≤ N , |Sn| = n, and for n > N , |Sn| = N + 1 with probability (w.p.) 1 (c.f.

the support of the exact �ltering distributions which grows deterministically over time

(3)).
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Conditional SMC Forward Filtering

Input: change-point locations τ1:k, and θ.

At time n = 1

• Set W θ

1 (0) = gθ1(0), W θ
1 (0) = 1, S1 = {0}, S1(0) = 1 and κ = 0.

At time n = 2, ..., T

• If n− 1 ≤ N set Cn−1 =∞, otherwise set Cn−1 to the unique solution of∑
xn−1∈Sn−1

1 ∧ Cn−1W θ
n−1 (xn−1) = N.

• If τκ+1 < n− 1 set κ = κ+ 1.

• Set In−1 = {xn−1 ∈ Sn−1 : W θ
n−1(xn−1) ≤ 1/Cn−1}.

• If τκ /∈ In−1, maintain the Ln−1 = |Sn−1| − |In−1| support points xn−1 ∈ Sn−1\In−1 (which

includes τκ) by setting Sn−1(xn−1) = 1. Then if |In−1| > 0 resample N −Ln−1 times from In−1
using the strati�ed resampling mechanism.

• If τκ ∈ In−1, maintain the Ln−1 = n − 1 − |In−1| support points xn−1 ∈ Sn−1\In−1 (which

does not include τκ) by setting Sn−1(xn−1) = 1. Then resample N−Ln−1 times from In−1 using
the conditional strati�ed resampling mechanism.

• For each xn−1 having survived the previous resampling steps, set Sn−1 (xn−1) = 1 otherwise

Sn−1 (xn−1) = 0.

• Set
W

θ

n (n− 1) = gθn(n− 1)
∑

xn−1∈Sn−1

f θn(n− 1|xn−1)W θ
n−1(xn−1).

• For xn−1 ∈ Sn−1, set W
θ

n (xn−1) = 0 if Sn−1 (xn−1) = 0 and otherwise

W
θ

n (xn−1) = gθn(xn−1)f
θ
n(xn−1|xn−1)

W θ
n−1(xn−1)

1 ∧ Cn−1W θ
n−1(xn−1)

.

• Update the support

Sn = {xn−1 ∈ Sn−1 : Sn−1 (xn−1) = 1} ∪ {n− 1}.

• For xn ∈ Sn, set
W θ
n(xn) ∝ W

θ

n (xn) ,
∑
xn∈Sn

W θ
n(xn) = 1.
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We �rst write an expression for the distribution of the random variables S1,S2, ...,ST−1

generated through the SMC forward �ltering algorithm. By construction, we have

Sn|
(
Wθ

n = wθ
n

)
∼ rNn,θ(·|wθ

n). (10)

This density is parameterized by N and for all n ≥ N ,

∑
xn∈Sn

Sn (xn) = N, w.p. 1.

We will not need an explicit expression for the density (10), but from the de�nition of the

strati�ed resampling mechanism [Fearnhead and Cli�ord, 2003], we know that it has the

following marginal property: for all xn ∈ {0, 1, ..., n− 1},

rNn,θ(Sn (xn) = 1|wθ
n) = 1 ∧ cnwθn (xn) , (11)

(where cn is the value counterpart of Cn used in the SMC forward �ltering algorithm) which

implies that

rNn,θ(Sn (xn) = 1|wθn (xn) = 0) = 0,

so combined with Eq. (10) we see that for any n > 0 and x ∈ {1, ..., n − 1}, conditional
on the event that, W θ

n−1 (x) = 0, at any subsequent k ≥ n, W θ
k (x) = 0 w.p. 1. Thus the

corresponding subsequent survival indicators and weights need never be simulated or stored.

To summarize the law of the SMC forward �ltering algorithm, we can write the distribution

of S1,S2, ...,ST−1 on
∏T−1

n=1 [{0, 1}n] as

ψNθ (s1, s2, ..., sT−1) =
T−1∏
n=1

rNn,θ(sn|wθ
n). (12)

The weights Wθ
n being just a deterministic function of S1, . . . ,Sn−1, it is not necessary to

introduce them as arguments of ψNθ .

The key to establishing the validity of the PMCMC algorithms is to de�ne the arti�cial

joint probability density for θ, τ1:k and S1, ...,ST−1 on Θ×TT ×
∏T−1

n=1{0, 1}n in 13, with the

convention that the products are equal to unity when k = 0. By construction (13) admits

14



p(θ, τ1:k| y1:T ) as a marginal.

πN(θ, τ1:k, s1, s2, ..., sT−1) := p(θ, τ1:k|y1:T )ψNθ (s1, s2, ..., sT−1)

·
∏k

j=1

∏τj
n=τj−1+1 I[sn(τj−1) = 1]∏k

j=1

∏τj
n=τj−1+1 r

N
n,θ(sn(τj−1) = 1|wθ

n)

·
∏T−1

n=τk+1 I[sn(τk) = 1]∏T−1
n=τk+1 r

N
n,θ(sn(τk) = 1|wθ

n)
, (13)

5.2 Convergence Results

We show in the following theorems that the PMMH and PG algorithms are just standard

MCMC updating schemes targeting (13). Furthermore, the convergence to p(θ, τ1:k|y1:T ) of

the distribution of the samples of θ, τ1:k they generate is inherited from the corresponding

standard MCMC schemes. Proofs are given in the appendix.

We �rst deal with the PMMH algorithm and consider the following assumption.

(A1) The MMH sampler of target density p (θ, τ1:k| y1:T ) and proposal density q (θ∗| θ) pθ∗ (τ ∗1:k|y1:T )

is irreducible and aperiodic (and hence converges for almost all starting points).

With ‖ · ‖tv the total variation distance, we have the following results.

Theorem 1.

1. For any N ≥ 1, the PMMH algorithm is a Metropolis-Hastings (MH) sampler on

the space

Θ×TT ×
∏T−1

n=1 [{0, 1}n] with target density πN(θ, τ1:k, s1, s2, ..., sT−1) de�ned in Eq. (13) and

using the proposal:

q(θ∗|θ) · ψNθ∗(s∗1, ..., s∗T−1) · wθ
∗

T (τ ∗k )
k∗∏
j=1

 f θ
∗

τ∗j +1(τ
∗
j |τ ∗j−1)wθ

∗

τ∗j
(τ ∗j−1)∑

x∈Sτ∗
j

f θ
∗
τ∗j +1(τ

∗
j |x)wθ

∗
τ∗j

(x)

 . (14)

2. If additionally (A1) holds, the PMMH sampler generates a sequence {θ(i), τ1:k(i)}
whose marginal distributions LN((θ(i), τ1:k(i)) ∈ ·) satis�es

‖LN((θ(i), τ1:k(i)) ∈ ·)− p(·|y1:T )‖tv → 0 as i→∞.
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We now turn to the PG sampler and consider the following assumption on the corre-

sponding standard Gibbs sampler.

(A2) The block Gibbs sampler which samples from pθ (τ1:k| y1:T ) and p(θ|τ1:k, y1:T ) is irre-

ducible and aperiodic (and hence converges for almost all starting points).

We can establish the following result.

Theorem 2.

1. For any N ≥ 2, the PG sampler de�nes a transition kernel on the space Θ ×
TT ×

∏T−1
n=1 [{0, 1}n] of invariant density πN(θ, τ1:k, s1, s2, ..., sT−1). One PG iteration is

equivalent to sampling from the sequence of conditional distributions πN(s1, ..., sT−1|θ, τ1:k),
πN(τ1:k|θ, s1, ..., sT−1) and πN(θ|τ1:k).

2. If additionally (A2) holds, then the PG sampler generates a sequence {θ(i), τ1:k(i)}
whose marginal distributions LN((θ(i), τ1:k(i)) ∈ ·) satis�es

‖LN((θ(i), τ1:k(i)) ∈ ·)− p(·|y1:T )‖tv → 0 as i→∞.

6 Examples

6.1 Well-Log Data

We consider a piecewise constant model which was used in [Fearnhead, 2006] to analyze well-

log data. The prior distribution hθ is geometric with unknown success probability p, over

which a �at Beta hyper-prior is placed. Given change-points τj−1:j the observations yτj−1+1:τj

in the jth segment are i.i.d. N (µj, σ
2), where µj is the mean associated with segment j.

Given τ1:k and hyper parameters η and α, the segment means, {µj}k+1
j=1 are i.i.d. N (η, σ2α2).

Finally, uninformative, improper priors are placed over the hyper-parameters: p(η) ∝ 1,

p(σ) ∝ 1/σ and p(α) ∝ 1/α. The parameter vector is then θ = [η p σ α]T. We refer to

[Fearnhead, 2006] for the expression for the likelihood of observations in one segment, given

values of η, α and σ, with the corresponding value of µj integrated out.

The data, originating from [Ó Ruanaidh and Fitzgerald, 1996], are shown in �gure 1

and consist of T = 4050 measurements of the nuclear magnetic response of underground

rocks. As in [Fearnhead, 2006], a small number of outlying observations were manually

removed from the data set. For comparison with PMCMC, we considered the block Gibbs

sampler which samples from pθ(τ1:k|y1:T ) (using the exact method of Fearnhead and Liu
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[2007]), p(σ, p, {µj}k+1
j=1 |y1:T , τ1:k, η, α) and p(η, α|y1:T , τ1:k, σ, p, {µj}k+1

j=1). In Fearnhead [2006]

it was shown that for the same data set and model, an algorithm of this form signi�cantly

outperformed the MCMC scheme of Lavielle and Lebarbier [2001].

The above block Gibbs sampler was compared with the PG algorithm obtained by substi-

tuting in place of the draw from pθ(τ1:k|y1:T ) a conditional SMC forward �ltering/backward

sampling step. Figure 2 shows autocorrelation plots for each component of θ, for the block

Gibbs and PG algorithm with N = 50. For this data record T = 4050, so the computational

cost of the PG algorithm is an order of magnitude less than that of the block Gibbs sam-

pler. Again the complexity of the SMC forward �ltering algorithm scales as N × T while

the exact algorithm scales as T 2. The auto-correlation plots indicate that the block Gibbs

sampler is extremely e�cient for this model, with the autocorrelation dropping to zero well

before lag 10. The performance of the PG algorithm is almost identical to that of the block

Gibbs. Using other values of N resulted in auto-correlation curves which were too similar

to be displayed clearly on the same axes. For N < 50 it was found that there was a small

di�erence in the corresponding approximations of the posterior marginal for the parameter

p as the PG scheme did not fully explore its support (not shown).

Figure 1 shows estimated marginal posterior probabilities of change-point occurrences,

from the block Gibbs and the PG algorithm with N = 50. These posterior probabilities are

indistinguishable to the eye and the results are very similar to those reported in [Fearnhead,

2006] with any discrepancies likely to be attributable to which outlying observations were

removed (Fearnhead [2006] does not state how this was performed).

Figure 2 also shows approximations of the marginal posterior distributions for each of the

four parameters obtained with the PG algorithm. Identical histograms were obtained from

the block Gibbs output. The modes of these posterior marginals coincide with the results

reported in Fearnhead [2006].

6.2 Coal Mining Disasters

We consider a piecewise constant Poisson intensity model for the classic Coal Mining Disaster

data set of Jarrett [1979]. This data set consists of the dates of 191 disasters between 1851

and 1962. The data were analysed by Green [1995] via a reversible�jump MCMC algorithm

for a continuous-time model and in [Fearnhead, 2006] using the exact sampling methods.

Following [Fearnhead, 2006] we discretize time and form observations by counting the
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Figure 1: Well-log example. Top: well-log data. Approximate marginal posterior probabili-
ties of a change-point at each time index obtained from PG sampler with N = 50 (middle)
and the Block Gibbs sampler (bottom).
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Figure 2: Well-log example. The left pane shows auto-correlation plots. Solid: Block Gibbs.
Dashed: PG with N = 50. The right pane shows approximate posterior marginals obtained
from the PG algorithm. Identical histograms were obtained using the Block Gibbs sampler.

number of disasters each week. This yields T = 5844 observations. Given change-points

τj−1:j the observations yτj−1+1:τj in the jth segment are i.i.d. Po(λj), where λj is the intensity
associated with segment j. Given τ1:k the segment intensities, {λj}k+1

j=1 are i.i.d. G(1, 200/7).

As opposed to choosing the prior distribution on inter-change-point times, in [Fearnhead,

2006] a Poisson prior was placed over the number of change-points. The intensity parameter

of this Poisson prior was treated as �xed and chosen to give a mean of 3 change-points over

the duration of the observation record. Given the number of change�points k, the change�

point locations were a priori given by the even order statistics of 2k + 1 uniform draws on

{1, ..., T − 1}. We investigate a di�erent approach via the distribution on inter-change-point
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times, with parameters to be inferred from the data. In our model the prior density hθ is

negative binomial with parameters r and p, over which gamma and beta hyper-priors were

placed, respectively. The parameters of the hyper-priors were chosen so as to provide some

penalisation of very short segments whilst still allowing �exibility: for the gamma hyper-

prior on r the shape parameter was 10 and the scale parameter 1; for the beta prior on p

the parameters were (1, 10). In this model the parameter is θ = [r p]T.

We compared the PMMH algorithm with a standard MMH algorithm employing exact

computation of pθ(y1:T ) over 30, 000 MCMC iterations. Random walk proposals were made

over r and p with standard deviations of 1 and 0.005, respectively. These values were chosen

after a preliminary run and resulted in an average acceptance probability of 0.48 for the MH

algorithm.

Figure 3 shows approximations of the marginal and joint posterior distributions of the two

parameters from the output of the PMMH algorithm with N = 200. Identical histograms

were obtained using the standard MMH algorithm. The �gure also shows auto�correlation

plots for the two parameters. In these plots, the solid line corresponds to the exact MMH

algorithm. The dashed and dash�dot lines correspond to the PMMH algorithm withN = 200

and N = 50, respectively. In terms of auto-correlation, there is very little di�erence between

the exact MMH and PMMH with N = 200. For the parameter r, the di�erence between the

dash-dot, dashed and solid lines is more noticeable, but still not very large. Figure 4 shows

the acceptance rate in the PMMH algorithm against N . Only as the number of particles

falls below 200 does the acceptance rate fall signi�cantly. For this data set, N = T = 5844,

corresponds to the exact MMH algorithm; with N an order of magnitude less than this value

the performance of the PMMH algorithm is very good.

Figure 4 also shows the approximate marginal posterior distributions over the number

of change�points and over the location of change�points, given that there are 2, obtained

from the PMMH algorithm with N = 200. Again, identical results were obtained with

the MMH algorithm. There are some similarities and interesting di�erences between these

results and those obtained in [Fearnhead, 2006] under the Poisson change�point prior with

�xed parameter. Firstly, the marginal over the number of change�points shown in �gure

4 exhibits a stronger mode at 2 than that obtained in [Fearnhead, 2006], but is otherwise

similar. Secondly, the conditional posterior for the change�point locations, given there are

2, exhibits two strong modes in the same locations as found in [Fearnhead, 2006]. However

the results in �gure 4, obtained using the PMMH algorithm with the negative binomial
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inter-change-point prior, exhibit a third, weaker mode around time 4900. This third mode

was not reported in [Fearnhead, 2006]. In [Fearnhead, 2006] it was not reported what kernel

bandwidth was used, so precise comparisons are di�cult. However, even with a relatively

large bandwidth the third mode shown in �gure 4 was evident. This shows how the values

of parameters can a�ect inferences drawn about change�point locations.
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Figure 3: Coal Mining disasters example. Left: Approximate posterior marginals using
PMMH and auto�correlation plots for the two parameters. In auto-correlation plots, solid:
Exact MMH. dashed: PMMH with N = 200, dash-dot: PMMH with N = 50.
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Figure 4: Coal Mining Disasters example. Left: Acceptance rate vs. N . Right top: Approx-
imate posterior over number of change�points from PMMH algorithm. Right bottom: kernel
smoothed posterior marginal for change�point locations conditional on 2 change�points.

7 Discussion

We have proposed PMCMC algorithms for multiple change-point models which rely on the

e�cient SMC method proposed by Fearnhead and Liu [2007] to approximate the �ltering

distributions and likelihood. These PMCMC algorithms have a cost per MCMC iteration of

the order N T , where N is the number of particles in the SMC algorithm, compared to T 2
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for the �exact� MCMC algorithms relying on the exact �ltering distributions and likelihood.

We have demonstrated experimentally that these PMCMC algorithms perform remarkably

well compared to the �exact� algorithms even for N an order of magnitude smaller than

T . This is an attractive feature for performing Bayesian inference in multiple change�point

models with long data records.

8 Appendix

8.1 Resampling algorithms

Strati�ed Resampling

Input: In−1 and the corresponding weights.

• Normalise the weights by setting for xn−1 ∈ In−1

Ŵ θ
n−1(xn−1) ∝ W θ

n−1(xn−1),
∑

xn−1∈In−1

Ŵ θ
n−1(xn−1) = 1

and construct the corresponding c.d.f,

Qθ
n−1(xn−1) =

∑
{x′n−1∈In−1:x′n−1≤xn−1}

Ŵ θ
n−1(x

′
n−1).

• Sample U1 uniformly on [0, 1/ (N − Ln−1)], then set Up = Up−1 +
1

N − Ln−1
for p =

2, .., N − Ln−1.
• Each particle in In−1 is assigned Oxn−1 ∈ {0, 1} o�spring where

Oxn−1 = #
{
Up : Qθ

n−1(xn−1 − 1) ≤ Up ≤ Qθ
n−1(xn−1)

}
.
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Conditional Strati�ed Resampling

Input: In−1, the corresponding weights and τκ.

• Normalise the weights by setting for xn−1 ∈ In−1

Ŵ θ
n−1(xn−1) =

W θ
n−1(xn−1)∑

x′n−1∈In−1
W θ
n−1(x

′
n−1)

and construct the corresponding c.d.f,

Qθ
n−1(xn−1) =

∑
{x′n−1∈In−1:x′n−1≤xn−1}

Ŵ θ
n−1(x

′
n−1).

• Sample U∗ uniformly on
[
Qθ
n−1(τκ − 1), Qθ

n−1(τκ)
]
, set U1 = U∗ − b(N − Ln−1)U

∗c
N − Ln−1

and

Up = Up−1 +
1

N − Ln−1
for p = 2, .., N − Ln−1.

• Each particle is assigned Oxn−1 ∈ {0, 1} o�spring where

Oxn−1 = #
{
Up : Qθ

n−1(xn−1 − 1) ≤ Up ≤ Qθ
n−1(xn−1)

}
.

8.2 Proofs

Proof of Theorem 1.

1. The PMMH algorithm makes proposals from (14): the left-hand term is the proposal

distribution for the new parameter θ∗; the middle term is the law of the SMC for-

ward �ltering algorithm with this parameter; the right-hand term is the conditional

probability of obtaining a sequence of change-points from the SMC backward sam-

pling algorithm. Furthermore (14) is a distribution over the same space as (13). From

the de�nition of the change-point model in section 2, we may write equation (15)

with, whenever τj > τj−1 + 1, φ(τj−1, τj) :=
∏τj

n=τj−1+2 g
θ
n(τj−1)f

θ
n(τj−1|τj−1). From the

de�nition of the SMC forward �ltering algorithm, for two consecutive change-point

locations τj > τj−1 > 0, on the event
∏τj

n=τj−1+1 Sn(τj−1) = 1, we have the expansion
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of the weight wθτj(τj−1) in equation (16).

pθ(τ1:k, y1:T )

=

{[
I [T > τk + 1]

(
T∏

n=τk+2

gθn(τk)f
θ
n(τk|τk)

)
+ I[T = τk + 1]

]
gθτk+1(τk)f

θ
τk+1(τk|τk−1)

}

·
k∏
j=2

{[
I [τj > τj−1 + 1]φ(τj−1, τj) + I [τj = τj−1 + 1]

]
gθτj−1+1(τj−1)f

θ
τj−1+1(τj−1|τj−2)

}

·

{[
I [τ1 > 1]

(
τ1∏
n=2

gθn(0)f θn(0|0)

)
+ I [τ1 = 1]

]
gθ1(0)f θ1 (0|0)

}
. (15)

wθτj(τj−1)

=

I [τj > τj−1 + 1]

 τj∏
n=τj−1+2

gθn(τj−1)f
θ
n(τj−1|τj−1)

1 ∧ cn−1wθn−1(τj−1)
1∑

x∈Sn w
θ
n(x)

+ I [τj = τj−1 + 1]


·

gθτj−1+1(τj−1)
∑

x∈Sτj−1

f θτj−1+1(τj−1|x)wθτj−1
(x)

( 1∑
x∈Sτj−1+1

wθτj−1+1(x)

)
. (16)

By using completely analogous expansions of wθT (τk) and wθτ1(0) on the corresponding events

and by using (15), (8) and (11) it follows by elementary manipulations that the acceptance

probability given in the PMMH algorithm is precisely that of an MH sampler targeting the

extended target distribution (13) and proposing from (14).

2. Proof of the second component of the theorem is a direct consequence of the arguments

in Theorem 1 in [Andrieu and Roberts, 2009] and (A1).

Proof of Theorem 2.

1. For the �rst sampling step stated in the theorem, it is straightforward to check that

running the conditional SMC forward �ltering algorithm is equivalent to sampling from

πN(s1, ..., sT−1|θ, τ1:k). Now consider the second step. Recalling the de�nition of the

extended target distribution (13), using again on the event
∏τj

n=τj−1+1 Sn(τj−1) = 1,

the expansion (16), and using (15) and (11) we conclude that

πN(τ1:k|θ, s1, ..., sT−1) = wθT (τk)
k∏
j=1

f θτj+1(τj|τj−1)wθτj(τj−1)∑
x∈Sτj

f θτj+1(τj|x)wθτj(x)
,
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where the right-hand term is the conditional probability of sampling the change�point

con�guration τ1:k using the SMC backward sampling algorithm, given the outcome of

the forward sampling. For the third sampling step it is direct that p(θ|y1:T , τ1:k) =

πN(θ|τ1:k).

2. We establish irreducibility and aperiodicity of the transition probability of the PG al-

gorithm. We denote by LG the law of the standard Gibbs sampler to which assumption

(A2) applies and LNPG the law of the PG sampler using N particles.

Let A × B × C ∈ B(Θ) × B(TT ) × B
(∏T−1

n=1{0, 1}n
)
be such that πN(θ ∈ A, τ1:k ∈

B,S1, ...,ST−1 ∈ C) > 0. It follows from (13) that p((θ, τ1:k) ∈ A × B|y1:T ) > 0 and

then from irreducibility of the corresponding block Gibbs sampler (assumption (A2))

there exists a �nite i such that LG((θ(i), τ1:k(i)) ∈ A×B) > 0.

From the speci�cation of the conditional SMC forward �ltering scheme, for any θ ∈ Θ,

N ≥ 2, given any τ1:k and for any time step, any particle which has positive weight

immediately before resampling has a positive probability of surviving that resampling

step. It follows that for any n = 1, ..., T −1, any point in the support of pθ(xn|y1:n) has

positive probability of being assigned a positive weight at time n. It follows from the

de�nition of X1:T that any point in the support of pθ(τ1:k|y1:n) has positive probability

of being selected in the backward sampling. Then the A×B from above is marginally an

accessible set of the PG sampler for the same i: i.e. LNPG((θ(i), X1:T (i)) ∈ A×B) > 0.

Furthermore, as the conditional forward SMC �ltering corresponds to drawing from

πN(s1, ..., sT−1|θ, τ1:k),

LNPG ((θ(i+ 1), τ1:k(i+ 1),S1(i+ 1), ...,ST−1(i+ 1)) ∈ A×B × C) > 0

and irreducibility follows. Furthermore, aperiodicity of the PG sampler holds by con-

tradiction: if the PG sampler were periodic, then the Gibbs sampler would be too; this

violates (A2).
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