
Chapter 1

An approximate likelihood method for estimating the static
parameters in multi-target tracking models

Sumeetpal S. Singh1 Nick Whiteley2 and Simon Godsill3

1.1 Introduction

Target–tracking problems involve the on-line estimation of the state vector of an
object under surveillance, called a target, that is changing over time. The state
of the target at time n, denoted Xn, is a vector in E1 ⊂ Rd1 and contains its
kinematic characteristics, e.g. the target’s position and velocity. Typically only
noise corrupted measurements of the state of the object under surveillance are
available. Specifically, the observation at time n, denoted Yn, is a vector in E2 ⊂ Rd2

and is a noisy measurement of the target’s state as acquired by a sensor, e.g. radar.
The statistical model most commonly used for the sequence of random variables
{(Xn, Yn+1)}n≥0 is the hidden Markov model (HMM):

X0 ∼ µθ (·) , Xn|(Xn−1 = xn−1) ∼ fθ(·|xn−1), n ≥ 1, (1.1)

Yn|Xn = xn ∼ gθ(·|xn), n ≥ 1. (1.2)

The superscript θ on these densities (as well as on all densities introduced subse-
quently), denotes the dependency of the model on a vector of parameters θ. We
will assume a parameterization such that θ ∈ Θ ⊂ Rnθ . When the target first
appears in the surveillance region, its initial state is distributed according to the
probability density µθ on E1. The change in its state vector from time n − 1 to
n is determined by the Markov transition density fθ(·|xn−1). Furthermore, the
observation generated at time n is a function of the target’s state at time n and
noise, or equivalently generated according to the probability density gθ(·|xn) on
E2, and is conditionally independent of previously generated observations and state
values. This model is general enough to describe the evolution of the target and
the observations it generates in many applications; see Bar-Shalom and Fortmann
(1964), Mahler (2007).

This chapter is concerned with the more complex and practically significant
problem of tracking multiple targets simultaneously. In this case the state and
observation at each time are random finite sets (Mahler (2007)):

Xn = {Xn,1, Xn,2, . . . , Xn,Kn}, Yn = {Yn,1, Yn,2, . . . , Yn,Mn
}, n ≥ 1. (1.3)
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Each element of Xn is the state of an individual target. The number of targets
Kn under surveillance changes over time due to targets entering and leaving the
surveillance region. Some of the existing targets may not be detected by the sensor
and a set of false measurements of unknown number are also recorded due to non-
target generated measurements. For example, if the sensor is radar, reflections
can be generated by fixed features of the landscape. These processes give rise
to the measurement set Yn. (Note its cardinality Mn changes with time.) An
added complication usually encountered in applications is that it is not known which
observations arise from which targets (if any). The aim in multi-target tracking is
to estimate, at each time step, the time-varying state set from the entire history of
observation sets received until that time. The task of calibrating the multi-target
tracking model is also an important problem faced by the practitioner. In the
multi-target model θ includes both the parameters of the individual target model
(1.1)-(1.2) and parameters related to the surveillance environment. For example, θ
may contain the variance of the noise that corrupts the sensor measurements, the
parameter of the distribution of false measurements, etc. In this chapter, in order to
estimate the model parameters from the data, an approximate likelihood function
is devised and then maximised. Before describing this method, it is necessary to
specify the multi-target tracking problem a little more precisely.

The state Xn evolves to Xn+1 in a Markovian fashion by a process of thinning
(targets leaving the surveillance region), displacement (Markov motion of remain-
ing individual targets) and augmentation of new points which correspond to new
targets entering the surveillance region. The motion of each target that has not
left the surveillance region occurs precisely according to (1.1). When a new target
is introduced, its initial state is drawn according to the probability density µθ in
(1.1). If more than one new target is introduced, then the initial states are sam-
pled from µθ independently. The observed process is generated from the hidden
process through the same mechanisms of thinning, displacement and augmentation
with false measurements. (See Section 1.2 for more details.) Displacement here
implies that the individual targets, if they generate an observation at time n, do so
in accordance with the stated model in (1.2). Mathematically Xn is a spatial Point
Process (PP) on E1 where E1 is the state-space of a single target. Likewise, Yn is
a spatial PP on E2 where E2 is the observation space in the single target tracking
problem. False measurements and birth of new targets are, for example, assumed
to be independent spatial Poisson processes. Let y1:n = (y1, . . . ,yn) denote the
realization of observations received from time 1 to n. (Here yi denotes the realiza-
tion of Yi.) It is possible to estimate the number of targets and their individual
state values from the conditional distribution of Xn given Y1:n = y1:n, denoted
p(xn|y1:n). Due to the need to process the data online, i.e. to update the estimates
every time a new observation is received, the sequence of marginal distributions
{p(xn|y1:n)}n≥0 is often sought after. For each n, p(xn|y1:n) has support on the
disjoint union

⊎
k≥0E

k
1 and does not admit an analytic characterisation in general.

Multi-target tracking has long been a focus of research in the Engineering lit-
erature, primarily driven by surveillance applications, and now a standard set of
tools exist for the analysis of such problems; see for example Blackman and Popoli
(1999), Mahler (2007). The most popular algorithm for target tracking is the Mul-
tiple Hypothesis Tracking (MHT) algorithm of Reid (1979); see also Blackman and
Popoli (1999), Mahler (2007). It is possible to enlarge the model (1.3) to include the
(unobserved) associations of the observations to hidden targets. For simple sensor
and individual target motion models, the posterior distribution of the unobserved
targets and associations admits an analytic characterisation. Furthermore, this pos-
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terior distribution can be marginalized to obtain a posterior distribution over the
associations only. Even so, the support of this marginal distribution is too large
for it to be stored in practice and approximations are made. The most popular
approach to date (in the surveillance literature) is to approximate the posterior
by retaining only its dominant modes. A popular sub-optimal search algorithm to
locate the modes is the MHT algorithm. As more data are gathered over time,
which is characteristic of surveillance, the dimension of the support of the posterior
distribution of associations increases and searching for the modes exhaustively is
not possible. There is a large volume of work dedicated to the computational chal-
lenges of this task, i.e., how to implement the search sequentially in time and direct
it towards “good” candidates, and how to store the result efficiently; see Blackman
and Popoli (1999). It is fair to say that the MHT is complicated to implement, in
fact, far more complicated than the algorithms in this work.

Recently, the MHT algorithm has been extended by Storlie et al. (2009) to
simultaneously estimate the parameters of the multi–target model. A full Bayesian
approach for estimating the model parameters using Markov Chain Monte Carlo
was presented in Yoon and Singh (2008) for a simplified model which assumes the
individual targets have linear Gaussian dynamics and similar Gaussian assumptions
hold for the observations they generate. This Gaussian scenario is highly restrictive
and cannot handle non-linear sensors, e.g. bearings measurements.

We now introduce the specific technique we use to construct an approximation
of the marginal likelihood of observations. When the unknown number of targets
and their states at time 0 is considered to be a realization of a Poisson PP, then
it follows that for n = 1, 2, ..., the law of Xn is also Poisson (see section 1.2 for
a precise statement of this result including the modeling assumptions). The prob-
lem of estimating the number of targets and their individual state values at time
n given the observations Y1:n is then greatly simplified if Xn given Y1:n can be
closely approximated as a Poisson PP. In the tracking literature this problem was
studied by Mahler (2003). Mahler derived an expression relating the intensity (or
the first moment) of the conditional distribution of X1 given y1 to that of the prior
of X1. The Poisson PP is completely characterised by its first moment and it can
be shown that the problem of finding the best Poisson approximation to the con-
ditional distribution of X1 given y1 is equivalent to the problem of characterising
its intensity; see Mahler (2003). In addition, for the same hidden process dynamic
model stated above, Mahler also derived the intensity of the conditional distribu-
tion of X2 given y1. These results were combined to yield a filter that propagates
the intensity of the sequence of conditional densities {p(xn|y1:n)}n≥0 and is known
in the tracking literature as the Probability Hypothesis Density (PHD) filter. De-
tailed numerical studies using SMC approximations by Vo et al. (2003, 2005) (and
references therein), as well as Gaussian approximations by Vo and Ma (2006) to the
PHD filter have since demonstrated its potential as a new approach to multi-target
tracking. We are not aware of any study that has specifically characterised the error
incurred in approximating Xn given y1:n with a Poisson PP. However, in various
studies, the merit of the approximation has been confirmed by comparing the esti-
mated intensity with the true number of targets in synthetic numerical examples.
In particular, the estimates of the number of targets and their states extracted from
the propagated intensity are reasonably accurate even for difficult tracking scenar-
ios. Recent non-target tracking applications of the PHD filter include map building
in robotics by Mullane et al. (2008) and tracking sinusoidal components in audio
by Clark et al. (2007).

Motivated by this, we explore the use of the same Poisson approximation tech-
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nique to derive an approximation of the marginal likelihood of the observed data,
i.e. p(y1:T ) where T is the length of the data record. The estimate of the model
parameters are then taken to be the maximizing argument (with respect to the
model parameters) of this approximation of the true marginal likelihood. A gra-
dient ascent algorithm is used to find the model parameters that maximise the
likelihood. Although the approximate likelihood function is not computable ex-
actly, it and its gradient may be evaluated using SMC. The approximate likelihood
function is “characterised” by sequence of a non-negative functions on E1, and not
the space

⊎
k≥0E

k
1 , and even a simple SMC implementation can be reasonable ef-

ficient. (See Section 1.4 for details.) We demonstrate in numerical examples that
the approximation to the true likelihood is reasonable as it allows us to learn the
static parameters from the data. Even for initialization values very far from the
true model parameters, the gradient algorithm is able to converge to a vicinity of
the true model parameters.

The remainder of this chapter is structured as follows. The multi-target sta-
tistical model is defined in section 1.2. A review of the PHD filter is presented in
section 1.3 along with several results from Singh et al. (2009) which are needed to
construct the approximation of the likelihood. The approximation of the marginal
likelihood of the multi-target tracking model is detailed in section 1.4. Section 1.5
describes a SMC algorithm to evaluate this approximate likelihood and its gradient
with respect to the model parameters. A simulation study which empirically assess
the performance of the method is presented in section 1.7.3.

1.2 The Multi-target Model

The Poisson PP features prominently in this model and we refer the reader to
Kingman (1993) for an introduction to this process. To simplify the notation, only
the core ingredients of the multi-target statistical model have their the dependence
on θ made explicit. All other derived quantities, while also dependent on θ, have θ
omitted from their symbols.

Consider the process of unobserved points Xn = Xn,1:Kn , where each element of
Xn corresponds to one target and is a random point in the space E1. Xn evolves to
Xn+1 as follows. With probability pθS(x), each point of Xn survives and is displaced
according to the Markov transition density on E1, fθ(xn+1|xn), introduced in (1.1).
The random deletion and Markov motion happens independently for each point in
Xn. In addition to the surviving points of Xn, new points are “born” from a Poisson
process with intensity function γθ(x). Denote by Xn+1 the PP on E1 defined by the
superposition of the surviving and mutated points of Xn and the newly born points.
At initialisation, X0 consists only of “birth” points. Simulation from this Poisson
model can be achieved by first sampling the cardinality according to the discrete
Poisson distribution with parameter value equal to the total mass of the intensity
function. The location of the points themselves are then sampled i.i.d. from the
normalised intensity function. In the context of the model (1.1), the initial state of
each new target will be drawn from the probability density γθ(x)/

∫
γθ(x′)dx′.

The points of Xn+1 are observed through the following model. With probability
pθD(x), each point of Xn+1, e.g. xn+1,j , j ∈ {1, 2, ...,Kn+1}, generates a noisy obser-
vation in the observation space E2 through the density gθ(y|xn+1,j). This happens
independently for each point of Xn+1. Let Ŷn+1 denote the PP of observations
originating from Xn+1. In addition to these detected points, false measurements
(or clutter points) are generated from an independent Poisson process on E2 with
intensity function κθ(y). Denote by Yn+1 the superposition of Ŷn+1 and these false
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measurements, and a realization of Yn+1 = Yn+1,1:Mn+1 by yn+1 = yn+1,1:mn+1 .

1.3 A Review of the PHD Filter

This section presents an alternative derivation of the PHD filter which was proposed
by Singh et al. (2009). The foundation of the PHD filter is a solution to a simplified
inference task, which is to characterise the posterior distribution of a hidden Poisson
PP X given observations Y generated as in the description in Section 1.2. We then
go on to introduce explicit time indexing and make connections to the PHD filtering
recursions of Mahler (2003).

1.3.1 Inference for Partially Observed Poisson Processes

In this subsection we suppress dependence on the parameter θ. Let the realisation of
Y be y = {y1, . . . , ym}. In general it is not possible to characterise the distribution
of X given Y = y, denoted PX|y, in closed form; see Lund and Thonnes (2004) for
a similar problem solved with perfect simulation. In the case of the Poisson prior,
the posterior was characterised only indirectly by Mahler (2003) by providing the
formula for its Probability Generating Functional (p.g.fl.). Mahler arrived at this
formula by differentiating the joint p.g.fl. of the observed and hidden process. Singh
et al. (2009) noted that, while this is a general proof technique, it is a technical ap-
proach that does not exploit the structure of the problem - a Poisson prior and an
observed process constructed via thinning, displacement and augmentation allows
for a considerably stronger result with a simpler proof by calling upon several well
known results concerning the Poisson PP. Exploiting this Singh et al. (2009) were
able to provide a closed-form expression for the posterior which is quite revealing of
the “structure”of the conditional process X given the observed process Y. Corol-
laries of this result include the expression relating the intensity of the posterior and
prior as well as the law of the association of the points of the observed process.
While the result in Mahler (2003) is only for a Poisson prior for X, Singh et al.
(2009) extends the result to a Gauss-Poisson prior which covers the Poisson prior as
a special case. The law PX|y is the foundation of the PHD filter and its derivation
presented below follows the approach of Singh et al. (2009).

The derivation of PX|y will draw upon several facts concerning a Poisson PP. The
first concerns marking. Let X be a Poisson PP on E1 with realisation {x1, . . . , xn}.
Attach to each xi a random mark ζi, valued in M (the mark space) and which is
drawn from the probability density p(·|xi). Additionally, the mark of each point
xi is generated independently. Then {(x1, ζ1), . . . , (xn, ζn)} is Poisson on E1 ×M
with intensity α(x)p(ζ|x)dxdζ (Kingman (1993)). Conversely, for a Poisson PP
on E1 ×M with intensity v(x, ζ), given the realisation of all the first coordinates,
{x1, x2, . . . , xn}, then the following is known about the same PP restricted to M.
There are n points and they are jointly distributed according to the following density
on Mn

p(ζ1, . . . , ζn) =
n∏
i=1

v(xi, ζi)∫
v(xi, ζ)dζ

. (1.4)

According to the multi-target observation model, each point xi in the realisation
of X generates an E2-valued observation with probability pD(xi). Furthermore,
this happens independently for all points in the realisation of X. At this point it is
convenient to introduce the following decomposition of X. Two point processes, X̂
and X̃, are formed from X. X̂ comprises the points of X that generate observations
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while X̃ comprises the remaining unobserved points of X. Since X̂ is obtained
from X by independent marking then both X̂ and X̃ are independent Poisson with
respective intensities α(x)pD(x) and α(x)(1 − pD(x)) (Kingman, 1993, pp. 55).
(The superscript θ on pD has been omitted from the notation.)

By construction, X̃ is unobserved while X̂ is observed in noise through Y, with
noise here referring to the false measurements in Y. This decomposition sheds light
on the structure of the posterior: since X̃ is unobserved, its law is unchanged after
observing Y. As for X̂, let its posterior be PX̂|y. Thus, the desired posterior PX|y
is

PX|y = PX̃ ∗ PX̂|y, (1.5)

where ∗ denotes convolution, which follows since X is the superposition of X̃ and
X̂. All that remains to be done is to characterise PX̂|y

Let {∆} be a one point set with ∆ not belonging to either E1 or E2 and let
E′1 = E1∪ {∆}. A marked PP Z on E2 × E′1 is constructed as follows. Each false
measurement in Y is assigned ∆ as its mark. Each point in Y corresponding to a
real observation is assigned as a mark the corresponding point in X̂ that generated
it. Let Z be this set of points formed by marking Y. It follows that Z is a marked
Poisson PP with intensity

α(x)pD(x)g(y|x)IE2×E1(y, x)dxdy + κ(y)IE2×{∆}(y, x)δ∆(dx)dy, (1.6)

where and IA is the indicator function of the set A and δ∆(dx) is the Dirac measure
concentrated on ∆. Given the realisation y = {y1, . . . , ym} of the first coordinate
of the process then, by (1.4), the second coordinates are jointly distributed on
(E1 ∪ {∆})m with law

p(dx1, . . . , dxm) =
m∏
i=1

α(xi)pD(xi)g(yi|xi)IE1(xi)dxi + κ(yi)I{∆}(x)δ∆(dxi)∫
E1
α(x)pD(x)g(yi|x)dx+ κ(yi)

. (1.7)

Theorem 1. (Singh et al., 2009, Proposition 4.1) Let X be a Poisson PP on E1

with intensity α(x) which is observed indirectly through the PP Y on E2 and Y is
generated according the observation model detailed in Section 1.2. The conditional
distribution of X given the realisation y = {y1, . . . , ym} of Y, PX|y, coincides with
the distribution of the superposition of the following two independent point processes:
– a Poisson PP on E1 with intensity α(x)(1− pD(x))dx and
– the restriction to E1 of the an m-point PP on E1 ∪ {∆} with law given in (1.7).

The theorem may be alternately interpreted as follows. To generate a realisa-
tion with distribution PX|y, the following procedure may be adopted. Generate a
realisation of the m-point PP on E1 ∪ {∆} with law (1.7) by simulating the i-th
point according to the i-th measure in the product (1.7). Discard all the points
with values ∆ and augment this set of remaining points with the realisation of an
independent Poisson PP with intensity α(x)(1− pD(x)).

Since PX|y is the law of the superposition of two independent point processes,
the following corollary is obvious.

Corollary 1. (Singh et al., 2009, Proposition 4.1) For a bounded real-valued mea-
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surable function ϕ on E1,

E

[∑
x∈X

ϕ(x)

∣∣∣∣∣Y = y

]
= E

∑
x∈X̃

ϕ(x)

+ E

∑
x∈X̂

ϕ(x)IE1(x)

∣∣∣∣∣∣Y = y


=
∫
E1

ϕ(x)α(x)(1− pD(x))dx

+
m∑
i=1

∫
E1
ϕ(x)α(x)pD(x)g(yi|x)dx∫

E1
α(x)pD(x)g(yi|x)dx+ κ(yi)

.

When ϕ(x) = IA(x) for some subset A of E1 then the term on the right is
precisely the expected number of points in the set A. The non-negative function
(on E1)

α(x)(1− pD(x)) +
m∑
i=1

α(x)pD(x)g(yi|x)∫
E1
α(x)pD(x)g(yi|x)dx+ κ(yi)

is the intensity (or first moment) of the PP with law PX|y. The intensity of the
superposition of two independent processes is the sum of the two intensities and
hence the two terms that make up the above expression. This result was first
derived, using a different proof technique, in Mahler (2003).

1.3.2 The PHD Filter

The foundations of the PHD filter are the following two facts.
Let Xn−1 be a Poisson PP with intensity αn−1(xn−1). Since Xn−1 evolves to

Xn by a process of independent thinning, displacement and augmentation with an
independent Poisson birth process, it follows that marginal distribution of Xn is
also Poisson with intensity (fact 1)

αn(xn) =
∫
E1

fθ(xn|xn−1)pθS(xn−1)αn−1(xn−1)dxn−1 + γθ(xn) (1.8)

=: (Φαn−1)(xn) + γθ(xn). (1.9)

This fact may be established using the Thinning, Marking and Superposition the-
orems for a Poisson process; see Kingman (1993). Specifically, subjecting the reali-
sation of the Poisson PP with intensity αn−1 to independent thinning and displace-
ment results in a Poisson PP. The intensity of this PP is given the first function on
the right-hand side of (1.9). Combining the realisations of two independent Poisson
point processes still results in a Poisson PP. The intensity of the resulting process
is the sum of the intensities of the processes being combined. This explains the
addition of the term γθ on the right-hand side of (1.9). Thus, it follows that if X0

is Poisson then so is Xn for all n.
It was established in Section 1.3 that the distribution of X1 conditioned on a

realization of observations y1 is not Poisson. However, the best Poisson approxi-
mation to PX1|y, in a Kullback-Leibler sense, is the Poisson PP which has the same
intensity as PX1|y (fact 2); see Mahler (2003), Singh et al. (2009). (This is a gen-
eral result that applies when any PP is approximated by a Poisson PP using the
Kullback-Leibler criterion.) By Corollary 1, the intensity of the best approximating
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Poisson PP is

α1|1(x1) =

[
1− pθD(x1) +

∑
y∈y1

pθD(x1)gθ(y|x1)∫
E1
pθD(x)gθ(y|x)α1|0(x)dx+ κθ(y)

]
α1|0(x1)

(1.10)

=: (Ψ1α1|0)(x1) (1.11)

where α1|0 is the intensity of X1 and is given by (1.9) with n = 1. (Note that no
observation is received at time 0.) For convenience in the following we will also
write, for each n and r = 1, 2, ...,mn,

Zn,r :=
∫
En

pθD(x)gθ(yn,r|x)αn|n−1(x)dx.

The subscript on the update operator Ψ1 indicates the dependence on the specific
realisation of the observations received at time 1. The recursive application of the
above two facts gives rise to the PHD filter. Specifically, the conditional distribution
of Xn at each time is approximated by the best fitting Poisson distribution before
the subsequent Bayes prediction step. This scheme defines a specific approximation
to the optimal filtering recursions for the multi–target model whereby at each time
step, only the first moment of the conditional distribution is propagated:

αn|n−1 = (Φαn−1|n−1) + γθ, (1.12)
αn|n = (Ψnαn|n−1). (1.13)

In the tracking literature these equations are referred to as the PHD filter and
were first derived by Mahler (2003). The double subscripts in (1.12), (1.13) imply
these are conditional intensities as opposed to the intensity in (1.9), which is the
unconditional intensity of the hidden process.

1.4 Approximating the Marginal Likelihood

For a block of realized observations, y1:n, according to the model of section 1.2, we
make use of the following decomposition of the marginal likelihood:

p(y1:n) = p(y1)
n∏
k=2

p(yk|y1:k−1)

=
∫
p(y1|x1)p(x1)dx1

n∏
k=2

∫
p(yk|xk)p(xk|y1:k−1)dxk. (1.14)

Using the Poisson approximation of the conditional density p(xk|y1:k−1) given
by the PHD filter, i.e. αk|k−1, it follows that the predictive likelihood p(yk|y1:k−1)
is also Poisson and easily characterised.

Proposition 1. Let p(xn−1|y1:n−1) be the density of a Poisson process with inten-
sity αn−1|n−1. Then the predictive density of the observation yn,

p(yn|y1:n−1) =
∫
p(yn|xn)p(xn|y1:n−1)dxn,

is the density of a Poisson process with intensity function given by:
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∫
E1

gθ(y|xn)pθD(xn)αn|n−1(xn)dxn + κθ(y). (1.15)

Proof. Recall from the definition of the model that, given xn−1, Xn is formed as
follows. With probability pθS(x), each point of xn−1 survives and mutates accord-
ing the Markov kernel fθ(·|xn−1). This happens independently for each point of
xn−1. Xn then consists of the surviving and mutated points of xn−1, superposed
with points from an independent birth Poisson process with intensity γθ. From
the Thinning, Marking and Superposition theorems for a Poisson processes (see
Kingman (1993)), and under the condition of the proposition, p(xn|y1:n−1) is then
Poisson with intensity αn|n−1 as defined in (1.12). The observation Yn is then
formed as follows. With probability pθD(x), each point of Xn is detected and gen-
erates an observation in E2 through the probability density gθ(·|xn). Yn then
consists of the observations originating from Xn, superposed with an independent
clutter Poisson process of intensity κθ. It follows once again from the Thinning,
Marking and Superposition theorems that, under the condition of the proposition,
p(yn|y1:n−1) is Poisson with intensity given by (1.15).

For a realized Poisson process y = y1:k in E2 with intensity function β(y), the
likelihood is given by:

p(y) =
1
k!

exp
[
−
∫
β(y)dy

] k∏
j=1

β(yj). (1.16)

Combining (1.14), Proposition 1 and (1.16), the log-likelihood of the observed data
may be approximated as follows:

`Po,n(θ) = −
n∑
k=1

∫ [∫
gθ(yk|xk)pθD(xk)αk|k−1(xk)dxk + κθ(yk)

]
dyk

+
n∑
k=1

mk∑
r=1

log
[∫

gθ(yk,r|xk)pθD(xk)αk|k−1(xk)dxk + κθ(yk,r)
]
,

(1.17)

where the subscript Po on ` indicates that this is an approximation based on the
Poisson approximations to p(xn|y1:n−1).

1.5 SMC approximation of the PHD filter and its gradient

In the majority of cases, the Poisson approximation (1.17) of the true log-likelihood
log p(y1:n) cannot be computed exactly and a numerical scheme to approximate
the various integrals therein is needed. It was noted by Vo and Ma (2006) that
under certain conditions on the multi-target model, the predicted and updated
intensities are Gaussian mixtures and the recursion (1.12)–(1.13) is analytically
tractable. However, the number of components in these mixtures explodes over
time and so Vo and Ma (2006) employed a pruning mechanism to allow practical
implementation. Extended Kalman Filter and the Unscented Kalman Filter style
deterministic approximations of the intensity recursions have also been devised to
cope with a more general model. Predating these works is Vo et al. (2005) where
a SMC method to approximate the intensity functions was devised. In this section
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we review this original SMC algorithm and extend it to approximate the gradient
of the intensity functions as well. The SMC approximation of the PMT likelihood
and its gradient is also detailed.

SMC methods have become a standard tool for computation in non-linear opti-
mal filtering problems and in this context have been termed particle filters. We do
not give explicit details of standard particle filtering algorithms here but refer the
reader to Doucet et al. (2001) and Cappé et al. (2007) for a variety of algorithms,
theoretical details and applications, and Del Moral et al. (2006) for a general frame-
work. SMC algorithms may be viewed as being constructed from ideas of Sequential
Importance Sampling (SIS) and resampling. They recursively propagate a set of
weighted random samples called particles, which are used to approximate a se-
quence of probability distributions. The algorithms are such that, as the number of
particles tends to infinity and under weak assumptions, an integral with respect to
the random distribution defined by the particle set converges to the integral with
respect to the corresponding true distribution.

A particle implementation of the PHD filter (equations (1.12)-(1.13)) was pro-
posed simultaneously in several works; Vo et al. (2003), Siddenblath (2003), Zajic
and Mahler (2003). These implementations may be likened to the Bootstrap Par-
ticle filter in the sense that their “proposal” steps ignore the new observations. An
auxiliary SMC implementation that takes into account the new observations at each
time was recently proposed by Whiteley, Singh, and Godsill (Whiteley et al.) to
minimise the variance of the incremental weight. The particle algorithm of Vo et al.
(2005) will be the building block for the particle approximation of (1.17) and its
gradient.

Given the particle set from the previous iteration, {X(i)
n−1,W

(i)
n−1}Ni=1, N samples,

{X(i)
n }Ni=1 are each drawn from a proposal distribution qn(·|X(i)

n−1) and the predicted
importance weights {W (i)

n|n−1}
N
i=1 are computed as follows:

X(i)
n ∼ qn(·|X(i)

n−1), W
(i)
n|n−1 =

fθ(X(i)
n |X(i)

n−1)pθS(X(i)
n−1)

qn(X(i)
n |X(i)

n−1)
W

(i)
n−1, 1 ≤ i ≤ N.

(1.18)

This proposal distribution can depend on θ, e.g. set qn to be the transition density
for the individual targets fθ, which was implemented in the numerical examples in
Section 1.7. A collection of L additional samples, {X(i)

n }N+L
i=N+1, dedicated to the

birth term are then drawn from a proposal distribution pn(·) and the corresponding
importance weights {W (i)

n|n−1}
N+L
i=N+1 are computed:

X(i)
n ∼ pn(·), W

(i)
n|n−1 =

1
L

γθ(X(i)
n )

pn(X(i)
n )

, N + 1 ≤ i ≤ N + L. (1.19)

pn can also depend on θ and the default choice would be proportional to γθ (provided
the corresponding normalised density exists and can be sampled from easily). The
approximation to the predicted intensity αn|n−1 is

α̂n|n−1(dxn) =
N+L∑
i=1

W
(i)
n|n−1δX(i)

n
(dxn).
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α̂n|n−1 may be used to approximate integrals of the form
∫
E
ψ(x)αn|n−1(x)dx which

appear in the denominator of (1.13). For r ∈ {1, 2, ...,mn}, this approximation is
given by:

Ẑn,r =
N+L∑
i=1

ψn,r(X(i)
n )W (i)

n|n−1 + κθ(yn,r), (1.20)

where

ψn,r(x) = pθD(x)gθ(yn,r|x). (1.21)

The particles are then re-weighted according to the update operator yielding a
second collection of importance weights {W (i)

n }N+L
i=1 defined as follows:

W (i)
n =

[
1− pθD(X(i)

n ) +
mn∑
r=1

ψn,r(X
(i)
n )

Ẑn,r

]
W

(i)
n|n−1. (1.22)

The empirical measure defined by the particle set {X(i)
n ,W

(i)
n }N+L

i=1 then approxi-
mates the updated intensity αn|n:

α̂n|n(dxn) :=
N+L∑
i=1

W (i)
n δ

X
(i)
n

(dxn). (1.23)

The importance weights, with total mass
∑N+L
i=1 W

(i)
n , are then normalised so that

they sum to 1, and after resampling N times to obtain {X ′(i)n }Ni=1, the importance
weights are set to the constant (

∑N+L
i=1 W

(i)
n )/N . Vo et al. (2005) also noted that

the total number of particles may be varied across iterations, perhaps guided by the
total mass of the updated intensity. Convergence results establishing the theoretical
validity of the particle PHD filter have been obtained. Convergence of expected
error was established in Vo et al. (2005), almost sure convergence and convergence
of mean-square error were established in Clark and Bell (2006) and Lp error bounds,
almost sure convergence and a Central Limit Theorem were established in Johansen
et al. (2006).

Because of the low dimension of αn|n (e.g. four when the state descriptor of
individual targets contains position and velocity only) even a simple SMC imple-
mentation like the one outlined above may suffice. In the case when the observations
are informative, and the likelihood functions are concentrated, weight degeneracy
can occur with the above implementation and the auxiliary version of Whiteley,
Singh, and Godsill (Whiteley et al.) has been shown to be more efficient.

For the gradient of the PHD filter, we will use the method proposed in Poyiadjis
et al. (2005), Poyiadjis et al. (2009) for the closely related problem of computing the
gradient of the log-likelihood for a HMM. Let∇(Φαn−1|n−1) be a pointwise approxi-
mation of∇(Φαn−1|n−1), that is∇(Φαn−1|n−1)(xn) ≈ ∇(Φαn−1|n−1)(xn), xn ∈ E1.
(This pointwise approximation is constructed in a sequential manner as detailed be-
low.) One possible construction of a particle approximation to ∇αn|n−1(xn)dxn is
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the following:

∇̂αn|n−1(dxn) =
1
N

N∑
i=1

∇(Φαn−1|n−1)(X(i)
n )

Qn(X(i)
n )

δ
X

(i)
n

(xn)

+
1
L

N+L∑
i=N+1

∇γθ(X(i)
n )

pn(X(i)
n )

δ
X

(i)
n

(xn) (1.24)

where

Qn(xn) =
1∑N+L

j=1 W
(j)
n−1

N+L∑
i=1

qn(xn|X(i)
n−1)W (i)

n−1.

Note that the particle set {X(i)
n }Ni=1 in (1.18) was obtained by sampling Qn N times.

(Assuming (1.23) is resampled at every time n.) Re-write the particle approximation
to ∇αn|n−1 as

∇̂αn|n−1 =
N+L∑
i=1

δ
X

(i)
n

(xn)A(i)
n|n−1W

(i)
n|n−1

where

A
(i)
n|n−1 =

1
N

∇(Φαn−1|n−1)(X(i)
n )

Qn(X(i)
n )

1

W
(i)
n|n−1

, 1 ≤ i ≤ N,

A
(i)
n|n−1 =

∇γθ(X(i)
n )

γθ(X(i)
n )

, N + 1 ≤ i ≤ N + L.

The pointwise approximation to ∇(Φαn−1|n−1) is

∇(Φαn−1|n−1)(xn)

=
∫
E1

[
∇ log fθ(xn|xn−1)

]
fθ(xn|xn−1)pθS(xn−1)α̂n−1|n−1(dxn−1)

=
∫
E1

[
∇ log pθS(xn−1)

]
fθ(xn|xn−1)pθS(xn−1)α̂n−1|n−1(dxn−1)

+
∫
E1

fθ(xn|xn−1)pθS(xn−1)∇̂αn−1|n−1(dxn−1). (1.25)

Using (1.24), the particle approximation to ∇
∫
ψn,r(xn)αn|n−1(xn)dxn +∇κθ(yr),

for r = 1, 2, . . . ,mn, is

∇̂Zn,r =
∫
∇ψn,r(xn)α̂n|n−1(dxn)

+
∫
ψn,r(xn)∇̂αn|n−1(dxn) +∇κθ(yr)

=
N+L∑
i=1

(
∇ψn,r(X(i)

n ) + ψn,r(X(i)
n )A(i)

n|n−1

)
W

(i)
n|n−1 +∇κθ(yr).

The particle approximation of ∇αn|n is constructed by re-weighting the particle
approximations of ∇αn|n−1 and αn|n−1:
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∇̂αn|n(dxn) = −∇pθD(xn)α̂n|n−1(dxn)

+

[
mn∑
r=1

ψn,r(xn)

Ẑn,r

(
∇ logψn,r(xn)− ∇̂Zn,r

Ẑn,r

)]
α̂n|n−1(dxn)

+

[
1− pθD(xn) +

mn∑
r=1

ψn,r(xn)

Ẑn,r

]
∇̂αn|n−1(dxn)

=
N+L∑
i=1

A(i)
n W (i)

n δ
X

(i)
n

(dxn) (1.26)

where

A(i)
n = A

(i)
n|n−1

+

[
−∇pθD(X(i)

n ) +
mn∑
r=1

ψn,r(X
(i)
n )

Ẑn,r

(
∇ logψn,r(X(i)

n )− ∇̂Zn,r
Ẑn,r

)]

×
W

(i)
n|n−1

W
(i)
n

.

The SMC estimate of `Po (for the same θ used in the weight calculation above
and proposal distributions above) is given by:

̂̀
Po,n(θ) = −

n∑
k=1

[∫
pθD(xk)α̂k|k−1(dxk) +

∫
κθ(yk)dyk

]
+

n∑
k=1

mk∑
r=1

log Ẑk,r (1.27)

And the estimate of ∇`Po,n is

∇̂`Po,n(θ)

= −
n∑
k=1

∫ [N+L∑
i=1

(
∇pθD(X(i)

k ) + pθD(X(i)
k )A(i)

k|k−1

)
W

(i)
k|k−1 +

∫
∇κθ(yk)dyk

]

+
n∑
k=1

mk∑
r=1

∇̂Zk,r
Ẑk,r

.

Algorithm 1 summarises the proposed SMC method for computing ̂̀Po,n and ∇̂`Po,n.
The computational cost of this algorithm, unlike a conventional particle filter, grows
quadratically in the number of particles N .

1.6 Parameter Estimation

1.6.1 Pointwise Gradient Approximation

Equipped with an approximation of the true likelihood p(y1:n) and its gradient,
the parameters of the model may be estimated with a gradient ascent algorithm.
This may be done in an off-line fashion once a batch of observations, say y1:T , has
been received, or in an online manner. This section discusses both these methods
of estimation.

Let the true static parameter generating the sequence of observations be θ∗

and it is to be estimated from the observed data {yn}n≥1. Given the a record
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Algorithm 1 Particle Approximation of the Intensity and its Sensitivity
At time 0

for i = 1 to N do
X

(i)
0 ∼ q0(·)

W
(i)
0 = 1

N

A
(i)
0 = 0

end for
Set `Po,0 = 0, ∇̂`Po = [0, . . . , 0] (∈ Rd)

At time n ≥ 1
Prediction Step:
for i = 1 to N do
X

(i)
n ∼ qn(·|X(i)

n−1)

Set W (i)
n|n−1 =

fθ(X(i)
n |X(i)

n−1)pθS(X(i)
n−1)

qn(X(i)
n |X(i)

n−1)
W

(i)
n−1|n−1

Set A(i)
n|n−1W

(i)
n|n−1 =

1
N

∇(Φαn−1|n−1)(X(i)
n )

Qn(X(i)
n )

end for
for i = N + 1 to N + L do
X

(i)
n ∼ pn(·)

Set W (i)
n|n−1 =

1
L

γθ(X(i)
n )

pn(X(i)
n )

, A
(i)
n|n−1W

(i)
n|n−1 =

∇γθ(X(i)
n )

pn(X(i)
n )

end for
for r = 1 to mn do

Set Ẑn,r =
∑N+L
i=1 ψn,r(X

(i)
n )W (i)

n|n−1 + κθ(yn,r)

Set ∇̂Zn,r =
∑N+L
i=1

(
∇ψn,r(X(i)

n ) + ψn,r(X
(i)
n )A(i)

n|n−1

)
W

(i)
n|n−1 +∇κθ(yr)

end for

Weight Step:
for i = 1 to N + L do

Set W (i)
n =

[
1− pθD(X(i)

n ) +
∑mn
r=1

ψn,r(X
(i)
n )

Ẑn,r

]
W

(i)
n|n−1

Set A(i)
n = A

(i)
n|n−1+[

−∇pθD(X(i)
n ) +

∑mn
r=1

ψn,r(X
(i)
n )

Ẑn,r

(
∇ logψn,r(X

(i)
n )− ∇̂Zn,r

Ẑn,r

)]
W

(i)
n|n−1

W
(i)
n

end for

Resample

{
X

(i)
n ,

W
(i)
n∑N+L

j=1 W
(j)
n

}N+L

i=1

to obtain

{
X

(i)
n ,

∑N+L
j=1 W

(j)
n

N

}N
i=1

Compute Likelihood and Likelihood Gradient:̂̀
Po,n = ̂̀

Po,n−1 −
∫ ∑N+L

i=1 pθD(X(i)
n )W (i)

n|n−1 −
∫
κθ(yn)dyn +

∑mn
r=1 log Ẑn,r

∇̂`Po,n = ∇̂`Po,n−1 −
∑N+L
i=1

(
∇pθD(X(i)

n ) + pθD(X(i)
n )A(i)

n|n−1

)
W

(i)
n|n−1 −∫

∇κθ(yn)dyn +
∑mn
r=1

∇̂Zn,r
Ẑn,r

.
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of observations {yn}Tn=1, the log-likelihood may be maximized with the following
steepest ascent algorithm. For a discrete time index, k = 1, 2, ..., which does not
coincide with the time index of the observation sequence,

θk+1 = θk + ak+1 ∇`Po,T (θ)|θ=θk , k ≥ 1, (1.28)

where {ak}k≥1 is a sequence of small positive real numbers, called the step-size
sequence, that should satisfy the following constraints:

∑
k ak =∞ and

∑
k a

2
k <∞.

One possible choice would be ak = k−ζ , 0.5 < ζ < 1 (e.g. ak = k−2/3); see Pflug
(1996) for background theory on steepest ascent.

For a long observation sequence the computation of the gradient in (1.28) can
be prohibitively expensive. A more attractive alternative would be a recursive
procedure in which the data is run through once sequentially. For example, consider
the following update scheme:

θn+1 = θn + an+1 ∇ log pPo(yn|y1:n−1)|θ=θn . (1.29)

Upon receiving yn, θn is updated in the direction of ascent of the conditional density
of this new observation. The algorithm in the present form is not suitable for online
implementation due to the need to evaluate the gradient of log pPo(yn|y1:n−1) at the
current parameter estimate. Doing so would require browsing through the entire his-
tory of observations. This limitation is removed by computing ∇ log pPo(yn|y1:n−1)|θ=θn
recursively using the previous values of the parameter as well. This modification
is straightforward; see Poyiadjis et al. (2009) for the closely related problem of
recursive maximum likelihood estimation in HMMs.

In practice, it may be beneficial to start with a constant but small step-size,
an = a for some initial period n < n∗. If the step-size decreases too quickly the
algorithm might get stuck at an early stage and fail to come close to a global
maximum of the likelihood.

1.6.2 Simultaneous Perturbation Stochastic Approximation (SPSA)

It is also possible to maximise `Po without explicit computation of the gradient
using SMC. In particular, a finite difference (FD) approximation of the gradient
may be constructed from the noisy evaluations of `Po obtained using SMC. Such
approaches are often termed “gradient-free”; see Spall (2003).

Consider the problem of maximizing a real valued function θ ∈ Θ→ `(θ) where
Θ is an open subset of R. The first steepest ascent algorithm based on FD ap-
proximation of the likelihood gradient is due to Kiefer and Wolfowitz (1952). This
involves, for example in the two-sided case, noisy evaluation of ` at perturbed pa-
rameter values θ ± ∆ and the subsequent approximation of the gradient at this
parameter value, ∇`(θ), as follows:

∇̂`(θ) =
̂̀(θ + ∆)− ̂̀(θ −∆)

2∆
,

The method can be generalized to the case in which Θ ⊂ Rd, d ≥ 1, by carrying
out two noisy evaluations of ` for each dimension of Θ, but this can become com-
putationally expensive when the dimension is high. An alternative is the SPSA
method of Spall (1992), which requires only two noisy evaluations of `, regardless
of the dimension of Θ. This method takes its name from the fact that it involves
perturbing the multiple components of the vector θ at the same time. In the case
of SPSA, the estimate of the gradient at the k-th iteration of the gradient ascent
algorithm (i.e. the recursion (1.28)) is:
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∇̂p`Po,T (θk) =
̂̀
Po,T (θk + ck∆k)− ̂̀Po,T (θk − ck∆k)

2ck∆k,p
, p = 1, . . . , d,

where ∆k = [∆k,1 ∆k,2 ... ∆k,d]T is a random perturbation vector, {ck}k≥0 is a
decreasing sequence of small positive numbers and ∇p`Po,T is the partial derivative
of `Po,T w.r.t. the p-th component of the parameter θ. The elements of ∆k are
i.i.d., non-zero, symmetrically distributed random variables. In this case we take
them to be Bernoulli ±1 distributed, but it should be noted that some alternative
choices, such as zero-mean Gaussian distributed are theoretically invalid, see (Spall,
1992, Chapter 7) for further background details. The objective function `Po,T (θ) is
estimated using the SMC implementation of Section 5. Theoretical results guaran-
teeing convergence of SPSA require the following conditions on the gain sequences
(Spall (2003)):

∀ k, ak > 0 and ck > 0; ak and ck → 0;
∞∑
k=0

ak =∞;
∞∑
k=0

a2
k

c2k
<∞. (1.30)

Practical choices of these sequences can be based around the following expres-
sions, advocated and related to theoretical properties of SPSA in Spall (2003). For
non-negative coefficients a, c, A, ς, τ :

ak =
a

(k + 1 +A)ς
, ck =

c

(k + 1)τ
.

The recommendation is to set ς = 0.6 and τ = 0.1 and, as a rule of thumb, to choose
A to be 10% or less of the maximum number of allowed iterations of the steepest
ascent recursion.

Throughout the simulation study in section 1.7.3, common random numbers
were used for each pair of noisy evaluations of the objective function. It has been
shown by Kleinman et al. (1999) that using common random numbers in this way
leads to faster convergence of the steepest ascent algorithm. It should be noted
that a number of other strategies, such as iterate averaging and adaptive schemes
involving estimation of the Hessian matrix, can improve the performance of SPSA.
These techniques are beyond the scope of this chapter and are discussed in Spall
(2003).

SPSA for maximising `Po,T is summarized in Algorithm 2 below.

Algorithm 2 SPSA Parameter Estimation
At time 1

Initialize θ1

At time k ≥ 1
Generate Perturbation vector ∆k

Run SMC PHD Filter with θ = θk + ck∆k

Compute ̂̀Po,T (θk + ck∆k) according to (1.27)
Run SMC PHD Filter with θ = θk − ck∆k

Compute ̂̀Po,T (θk − ck∆k) according to (1.27)

Set ∇̂`Po,T (θk) =
̂̀Po,T (θk+ck∆k)−̂̀Po,T (θk−ck∆k)

2ck
[ 1
∆k,1

1
∆k,2

... 1
∆k,d

]T

Set θk+1 = θk + ak∇̂`Po,T (θk)
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1.7 Simulation Study

1.7.1 Model

The proposed parameter estimation methods are evaluated on a multi-target model
with the following characteristics.

A constant velocity model is assumed for individual targets. The position of a
target is specified in two dimensions, restricted to the window [0, 100] × [0, 100].
The state of a single target is thus specified by a 4 dimensional vector Xn =
[Xn(1), Xn(2), Xn(3), Xn(4)]T ; the variables (Xn(1), Xn(3)) specify position and
(Xn(2), Xn(4)) specify velocity. The state of the single target evolves over time as
follows:

Xn =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

Xn−1 +


Vn(1)
Vn(2)
Vn(3)
Vn(4)


where Vn(1) and Vn(3) are independent Gaussian random variables with mean 0
and standard deviation σxs = 0.01. Vn(2) and Vn(4) are also independent Gaussian
random variables with mean 0 and standard deviation σxv = 0.25. The state of
individual targets is a vector in E1 = [0, 100]×R×[0, 100]×R. The birth intensity
is defined as

γθ(·) = ΓN (·;µb,Σb), (1.31)

where N (x;µb,Σb) denotes the multivariate normal density with mean µb and co-
variance Σb, evaluated at x. For the numerical example,

µb =


µbx
0
µby
0

 , Σb =


σ2
bs 0 0 0
0 σ2

bv 0 0
0 0 σ2

bs 0
0 0 0 σ2

bv

 . (1.32)

The x–y position of the target is observed in additive, isotropic Gaussian noise
with standard deviation σy. The clutter intensity is κ(y) is uniform on [0, 100] ×
[0, 100]:

κ(y) = κI[0,100]×[0,100](y). (1.33)

The probability of detection pD(x) and survival pS(x) is assumed constant over E1.
The measurements from individual targets and clutter are vectors in E2 = R2.The
parameters of the model to be inferred from the data in the numerical studies below
are

θ = [σy, κ, Γ, µbx, µby, σbs, σbv, pD]T

with (σxs, σxv, pS) assumed known.

1.7.2 Pointwise Gradient Approximation

The performance of gradient ascent, (see (1.28)) with Algorithm 1 to estimate the
derivative of the likelihood, was evaluated using the following set of parameters:
θ∗ = [5, 4 × 10−4, 1, 50, 50, 5, 2, 0.9]T , i.e. the observation record was generated
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using these parameter values. For an observation time of length 50, these values
for the model would generate, on average, 9 observations per time instant with 4 of
them being false, and a total of 50 targets for all the 50 time points. The number
of particles used were N = 400 and L = 400.

Figure 1.1 shows the sequence of iterates generated by (1.28) for a constant step-
size sequence, i.e. ak = a, and for an initial value chosen to be reasonably distant
from θ∗ (consult the figure for the initial values). The estimated model parameters
converge to a vicinity of the true parameters but with some notable discrepancies.
(Further details in the discussion to follow.) The smoothness of the traces also
indicate the that estimate of the gradient with Algorithm 1 has low variance.
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Figure 1.1: Evolution of the parameter estimates generated by steepest ascent with the gradient
computed using Algorithm 1 (dashed) and SPSA (solid). Observation record length was 25 gen-
erated with the model outlined at the start of Section 1.7. Only the values after every 50–th step
are displayed. True value of parameters are indicated by the horizontal lines and the estimated
values of the gradient based method are marked on the y-axis. Notable discrepancies for µbx and
µby would be outliers for a longer observation record; see box plots in Figure 1.2.

To characterise the distribution of the estimated parameters, the experiment
was repeated a total of 50 times for observation records of length 15, 50 and 125. In
each repetition of the experiment, the targets and observation record were generated
again from the model. The distribution of the converged value for the parameters
are shown in Figure 1.2 when the gradient is approximated using Algorithm 1 along
with their true values as horizontal lines. As can be seen from the box plots,
the estimated model parameters do improve with longer observation records. The
results are encouraging and are a further verification of the merit of the Poisson
approximation of the posterior in Proposition 1; thus far the approximation has only
been verified by comparing the estimated intensity with the true number of targets
in synthetic numerical examples. It is evident from the box plots in Figure 1.2 that
there are small biases for some of the parameters. It is unclear if these are due to
the insufficient number of particles used to approximate the intensity function or is
inherent to the approximate likelihood itself (see (1.17)). For example, the box plots
indicate a bias in the estimation of the clutter intensity; it is being over estimated.
This may be explained by the small number of particles used in the simulation. On
average, for an observation of length 50, there were 9 targets at any particular time
instant. 400 particles are not sufficient to follow the all the modes of the intensity
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function (1.13) induced by these targets. Hence the observations generated by the
targets are perhaps being accounted for by a higher clutter intensity estimate. We
also remark that the converged values of the estimates for µbx and in µby in Figure
1.1 would be outliers for an observation record of length 50. This can be seen from
the corresponding box plots in Figure 1.2.
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Figure 1.2: Box plots of the converged value of parameter estimates for different observation record
lengths. Dashed horizontal lines indicate the true value of the parameters.

1.7.3 SPSA

The SPSA scheme, algorithm 2, with algorithm 1 used to obtain a noisy evaluation
of the Poisson likelihood, was run on the same data record as the pointwise gradient
method, with the same initial conditions. A constant step size of ak = a = 1×10−5

and ck = c = 0.025 were chosen after a few pilot runs.

A fixed step size was chosen so as to avoid premature convergence of the algo-
rithm. After 20, 000 iterations, and having reached equilibrium, the SPSA scheme
resulted in the following parameter values: µbx = 45.2, µby = 53.6, σbs = 5.22,
σbv = 1.62, κ = 3.95 × 10−4, pD = 0.746, Γ = 1.01, σy = 4.44. These values com-
pare well with those obtained using the pointwise method and small discrepancies
are attributable to the bias arising from the finite difference gradient approximation
with ck held constant. Algorithm 1 used N = 1000 and L = 1000 particles.

The SPSA scheme is simpler to implement than the pointwise gradient method,
but it requires choice of both the sequences (an) and (cn) and therefore may require
more manual tuning in pilot runs. Also, the computational cost grows linearly with
the number of particles.
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1.8 Conclusion

The problem of estimating the number of targets and their states, and calibrat-
ing the multi–target statistical model is difficult and only approximate inference
techniques are feasible (Mahler (2007)). The focus of this work was the problem
of calibrating the model. For this purpose an approximation of the true marginal
likelihood of the observed data, i.e. p(y1:T ) where T is the final time of the recorded
data, was proposed. The estimate of the model parameters was then taken to be
the maximizing argument, with respect to the model parameters, of this approxi-
mation of the true marginal likelihood. A gradient ascent algorithm was used to
find the model parameters that maximise the likelihood. Although the approximate
likelihood function was not computable exactly, it and its gradient was estimated
using SMC. The approximate likelihood function was “characterised” by sequence
of a non-negative functions on E1, and not the space

⊎
k≥0E

k
1 , and even a simple

SMC implementation can be reasonably efficient. However, compared to “standard”
SMC applications in Doucet et al. (2001), the SMC implementation was expensive.
In particular the computational cost grew quadratically with the number of parti-
cles and this limited both the number of particles and the size of the data records
in the numerical examples. It was demonstrated in numerical examples that the
approximation to the true likelihood was reasonable as the model parameters could
be inferred by maximising it. While the results are encouraging, an important issue
remains to be addressed. We have not (even empirically) characterised the bias
introduced by the likelihood approximation because the exact likelihood cannot be
computed. A characterization of this bias appears to be a challenging problem.
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