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Proofs for section 2.2.

Proof of Proposition 1. Under (H2) we have g := infω,xG
ω(x) > 0.

Now consider the sequence of random variables {κωn ;n ≥ 1} defined by

κωn := νQωn−1(1)gε−.

From (2.8) it is straightforward to establish by induction the following semi-
group property: for any ω ∈ Ω, and p, n ≥ 0,

Qωp+n = QωpQ
θpω
n .

Combined with (H2), this gives

κωp+n = νQωpQ
θpω
n−1(1)gε−

= νQωp−1Q
θp−1ωQθ

pω
n−1(1)gε−

≥ κωpκ
θpω
n ,

and so
− log κωp+n ≤ − log κωp − log κθ

pω
n .

Furthermore, under (H2) supω,xG
ω(x) <∞, so there exists a finite constant

c such that ˆ
Ω
− log κωnP(dω) ≥ −cn

for any n ≥ 1. These considerations, combined with (H1), allow application
of Kingman’s sub-additive ergodic theorem to establish that there exists a
constant Λ ∈ (−∞,∞) such that

1

n
log κωn −→ Λ, as n→∞, P− a.s.

Under (H2), for any ω ∈ Ω and µ ∈ P(X),

νQωn(1)

µQωn(1)
=
νQωQθωn−1(1)

µQωQθωn−1(1)
≤ β ε+

ε−
,

1
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2 N. WHITELEY AND A. LEE

and combining this with a lower bound of a similar form we find

sup
ω∈Ω

∣∣∣∣ 1n log κωn+1 −
1

n
logµQωn(1)

∣∣∣∣ ≤ 1

n
log

(
β
ε+
ε−

)
+

1

n

∣∣log(ε−g)
∣∣

so
1

n
logµQωn(1) −→ Λ, as n→∞, P− a.s.

The proof is complete upon noting (2.9).

Before presenting the proof of Proposition 2 it is opportune to observe
that, for any n ≥ 1

(S.1) Φω
n = Φθω

n−1 ◦ Φω.

The formula is validated by noticing that Φω
0 = Id, Φω

1 = Φω, and when
(S.1) holds at rank n, using the definition of Φω

n+1, composing Φθnω on the
left of the objects appearing in (S.1) and then using the definition of Φθω

n

gives the equalities:

Φω
n+1 = Φθnω ◦ Φω

n = Φθnω ◦ Φθω
n−1 ◦ Φω = Φθω

n ◦ Φω,

so that the formula (S.1) holds at rank n+ 1. A simple inductive argument
then shows that for any n,m ≥ 1 and any ω ∈ Ω,

(S.2) Φω
n+m = Φθmω

n ◦ Φω
m.

Proof of Proposition 2. Throughout the proof C is a finite constant
whose value may change on each appearance.

We first address (2.13) and (2.15). Applying (S.2) with θ−n−mω in place
of ω gives

Φθ−n−mω
n+m = Φθ−nω

n ◦ Φθ−n−mω
m ,

so for any µ ∈ P(X), taking µ′ = Φθ−n−mω
m (µ) and applying (2.12) we obtain,

for any n,m ≥ 1,

(S.3) sup
ω∈Ω

sup
µ∈P(X)

∣∣∣[Φθ−nω
n (µ)− Φθ−n−mω

n+m (µ)
]

(ϕ)
∣∣∣ ≤ ‖ϕ‖Cρn.

Taking ϕ = IA for any A ∈ X , (S.3) shows that for some fixed µ and ω,{
Φθ−nω
n (µ)(A);n ≥ 0

}
is a real-valued Cauchy sequence and together with

[5, Theorem 1] this establishes the existence of ηω ∈ P(X) such that (2.13)
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holds. The lack of dependence of ηω on µ follows by another application of
(2.12). Moreover, taking m→∞ in (S.3) we obtain

(S.4) sup
ω∈Ω

sup
µ∈P(X)

∣∣∣[Φθ−nω
n (µ)− ηω

]
(ϕ)
∣∣∣ ≤ ‖ϕ‖Cρn,

and thus Φθ−nω
n (µ) converges in total variation to ηω, uniformly over µ and

ω. This establishes (2.15).
We next address (2.14) and (2.16). We shall establish that

(S.5) sup
(ω,x)∈Ω×X

sup
µ∈P(X)

∣∣∣∣∣ Qωn+1(1)(x)

Φθ−n−1ω
n+1 (µ)Qωn+1(1)

− Qωn(1)(x)

Φθ−nω
n (µ)Qωn(1)

∣∣∣∣∣ ≤ Cρn.
First note that under (H2),

h̃ωn,µ(x) :=
Qωn(1)(x)

Φθ−nω
n (µ)Qωn(1)

satisfies for any ω, ω′, x, x′, µ,
(S.6)

sup
n,m≥0

h̃ωn+m,µ(x)

h̃ω′n,µ(x′)
= sup

n,m≥0

Qωn+m(1)(x)

Φθ−n−mω
n+m (µ)Qωn+m(1)

Φθ−nω′
n (µ)Qω

′
n (1)

Qω′n (1)(x′)
≤
(
β
ε+
ε−

)2

.

We have∣∣∣∣∣ Qωn+1(1)(x)

Φθ−n−1ω
n+1 (µ)Qωn+1(1)

− Qωn(1)(x)

Φθ−nω
n (µ)Qωn(1)

∣∣∣∣∣
=

∣∣∣∣∣Qωn+1(1)(x)Φθ−nω
n (µ)Qωn(1)−Qωn(1)(x)Φθ−n−1ω

n+1 (µ)Qωn+1(1)

Φθ−n−1ω
n+1 (µ)Qωn+1(1)Φθ−nω

n (µ)Qωn(1)

∣∣∣∣∣
≤

∣∣∣∣∣Qωn+1(1)(x)Φθ−nω
n (µ)Qωn(1)−Qωn(1)(x)Φθ−nω

n (µ)Qωn+1(1)

Φθ−n−1ω
n+1 (µ)Qωn+1(1)Φθ−nω

n (µ)Qωn(1)

∣∣∣∣∣
+

∣∣∣∣∣Qωn(1)(x)Φθ−nω
n (µ)Qωn+1(1)−Qωn(1)(x)Φθ−n−1ω

n+1 (µ)Qωn+1(1)

Φθ−n−1ω
n+1 (µ)Qωn+1(1)Φθ−nω

n (µ)Qωn(1)

∣∣∣∣∣
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4 N. WHITELEY AND A. LEE

=
Qωn(1)(x)

Φθ−n−1ω
n+1 (µ)Qωn+1(1)

×

∣∣∣∣∣Qωn+1(1)(x)Φθ−nω
n (µ)Qωn(1)−Qωn(1)(x)Φθ−nω

n (µ)Qωn+1(1)

Qωn(1)(x)Φθ−nω
n (µ)Qωn(1)

∣∣∣∣∣
+

Qωn(1)(x)

Φθ−nω
n (µ)Qωn(1)

∣∣∣∣∣Φθ−nω
n (µ)Qωn+1(1)− Φθ−n−1ω

n+1 (µ)Qωn+1(1)

Φθ−n−1ω
n+1 (µ)Qωn+1(1)

∣∣∣∣∣
= h̃ωn,µ(x)

Φθ−nω
n (µ)Qωn(1)

Φθ−n−1ω
n+1 (µ)Qωn+1(1)

∣∣∣∣∣Qωn+1(1)(x)

Qωn(1)(x)
−

Φθ−nω
n (µ)Qωn+1(1)

Φθ−nω
n (µ)Qωn(1)

∣∣∣∣∣
+h̃ωn,µ(x)

∣∣∣∣∣ Φθ−nω
n (µ)Qωn+1(1)

Φθ−n−1ω
n+1 (µ)Qωn+1(1)

−
Φθ−n−1ω
n+1 (µ)Qωn+1(1)

Φθ−n−1ω
n+1 (µ)Qωn+1(1)

∣∣∣∣∣
= h̃ωn,µ(x)

Φθ−nω
n (µ)Qωn(1)

Φθ−n−1ω
n+1 (µ)Qωn+1(1)

∣∣∣[Φω
n(δx)−

(
Φω
n ◦ Φθ−nω

n

)
(µ)
]
Qθ

nω(1)
∣∣∣

+h̃ωn,µ(x)
∣∣∣[Φθ−nω

n (µ)−
(

Φθ−nω
n ◦ Φθ−n−1ω

)
(µ)
]

(h̃ωn+1,µ)
∣∣∣

≤ Cρn, ∀x, ω, µ,

where (S.6), (H2) and (2.12) have been applied. Thus (S.5) is proved and
then for any m,n ≥ 1,

(S.7) sup
ω,x,µ

∣∣∣h̃ωn,µ(x)− h̃ωn+m,µ(x)
∣∣∣ ≤ C m−1∑

q=0

ρn+q ≤ ρn C

1− ρ
.

Then
{
h̃ωn,µ(x);n ≥ 1

}
is Cauchy and real-valued, which is enough to estab-

lish the existence of a pointwise limit hµ : Ω × X → R+. Taking m → ∞ in
(S.7) yields

(S.8) sup
ω,x,µ

∣∣∣h̃ωn,µ(x)− hωµ(x)
∣∣∣ ≤ Cρn.

For the lack of dependence of hµ on µ, consider some µ′ ∈ P(X) possibly
different from µ, and let hµ′ be the pointwise limit of

{
h̃ωn,µ′(x);n ≥ 1

}
. Then

for any n ≥ 1 ∣∣hωµ(x)− hωµ′(x)
∣∣ ≤ ∣∣∣h̃ωn,µ(x)− hωµ(x)

∣∣∣
+
∣∣∣h̃ωn,µ′(x)− hωµ′(x)

∣∣∣
+
∣∣∣h̃ωn,µ(x)− h̃ωn,µ′(x)

∣∣∣ .(S.9)
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SUPPLEMENTARY MATERIAL FOR: TWISTED PARTICLE FILTERS 5

Due to (S.8), the first two terms on the r.h.s. of (S.9) can be made arbitrarily
small by taking n large enough. For the third term,∣∣∣h̃ωn,µ(x)− h̃ωn,µ′(x)

∣∣∣
= h̃ωn,µ(x)

∣∣∣[Φθ−nω
n (µ′)− Φθ−nω

n (µ)
]

(h̃ωn,µ′)
∣∣∣ .(S.10)

Due to (2.12), (S.6) and (S.8), the term in (S.10) can be made arbitrarily
small by taking n large enough. Thus the l.h.s. of (S.9) must be zero, hence
h := hµ is independent of µ, and (2.16) is proved. The measurability of h
stated in part 1) holds as it is the point-wise limit of a sequence of F ⊗ X -
measurable functions.

Turning now to prove part 3) of the Proposition, note that by (S.4), λω =
ηω(Gω) = limn→∞Φθ−nω

n (µ)(Gω), i.e. λ is the point-wise limit of a sequence
of measurable functions, and is therefore measurable. The λ part of (2.17)
holds immediately under (H2), and the h part holds due to (S.6), a similar
lower bound, and (S.8).

We now turn to the proof of part 4), firstly establishing that the triple
(η, h, λ) does indeed satisfy (2.18). For the measure equation, we have

(S.11)
Φθ−nω
n (µ)Qω(A)

Φθ−nω
n (µ)(Gω)

= Φω(Φθ−nω
n (µ))(A) = Φθ−n−1θω

n+1 (µ)(A).

By the strong convergence in (S.4), and the fact that under (H2), we have
the bound supxQ

ω(A)(x) ≤ supxG
ω(x) < ∞, the left hand side of (S.11)

converges to ηωQω(A)/λω and the right hand side of (S.11) converges to
ηθω(A). Thus η satisfies the first equation in (2.18).
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6 N. WHITELEY AND A. LEE

For the second equation in (2.18), choose n ≥ 1 arbitrarily and notice that

Qω
(
h̃θωn,µ

)
(x)(S.12)

=
QωQθωn (1)(x)

Φθ−n+1ω
n (µ)Qθωn (1)

=
Qωn+1(1)(x)

Φθ−n+1ω
n (µ)Qθωn (1)

= h̃ωn+1,µ(x)
Φθ−n−1ω
n+1 (µ)Qωn+1(1)

Φθ−n+1ω
n (µ)Qθωn (1)

= h̃ωn+1,µ(x)
Φθ−n−1ω
n+1 (µ)Qωn+1(1)

Φθ−n+1ω
n−1 (µ)QωQθωn (1)

.Φθ−n+1ω
n−1 (µ)Qω(1)

= h̃ωn+1,µ(x)
Φθ−n+1ω
n−1

[
Φθ−n−1ω

2 (µ)
]
Qωn+1(1)

Φθ−n+1ω
n−1 (µ)Qωn+1(1)

.Φθ−n+1ω
n−1 (µ)Qω(1)

−→ hω(x) · 1 · λω, as n→∞.(S.13)

where the convergence in (S.13) is due to (S.8); (2.12) applied in conjunction
with the property

sup
n≥1

sup
x,x′

Qωn+1(1)(x)

Qωn+1(1)(x′)
<∞,

which holds under (H2); and (2.15). Furthermore the l.h.s. of (S.12) con-
verges to Qω(hθω)(x), because by (S.8), for any x ∈ X,∣∣∣Qω(hθω − h̃θωn,µ)(x)

∣∣∣ ≤ Gω(x) sup
z

∣∣∣hθω(z)− h̃θωn,µ(z)
∣∣∣→ 0, as n→∞.

This verifies that the second equation of (2.18) is satisfied. For the third
equation, we have, for any n ≥ 1,

|ηω(hω)− 1| =
∣∣∣ηω(hω)− Φθ−nω

n (µ)(h̃ωn,µ)
∣∣∣

≤
∣∣∣[ηω − Φθ−nω

n (µ)
]

(hω)
∣∣∣+ sup

x

∣∣∣hω(x)− h̃ωn,µ(x)
∣∣∣

and since we have already proved part 3), which implies supx h
ω(x) < ∞,

the convergence in (S.4) and (S.8) show it must be the case that ηω(hω) = 1.
Now for the uniqueness element of part 4). Suppose that there exists a

triple
(
η̄, h̄, λ̄

)
of the desired nature and such that

(S.14) η̄ωQω = λ̄ωη̄
θω, Qω(h̄θω) = λ̄ωh̄

ω, η̄ω(h̄ω) = 1, for all ω ∈ Ω.
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Then integrating the first equation in (S.14), we have λ̄ω = η̄ω(Gω), because
η̄ω is, by hypothesis, a probability measure. Thus Φω(η̄ω) = η̄θω for any ω,
so via iteration we find Φθ−nω

n (η̄θ
−nω) = η̄ω, and strong convergence of (S.4)

then demands that η̄ω = ηω. Thus η̄ = η and therefore λ̄ = λ. It remains
to show that h̄ = h. To this end, first note that for any ϕn ∈ L(X), with
supn ‖ϕn‖ <∞,∣∣∣∣∣Qωn(ϕn)(x)∏n−1

p=0 λθpω
− hω(x)ηθ

nω(ϕn)

∣∣∣∣∣ ≤
∣∣∣∣Qωn(ϕn)(x)

Qωn(1)(x)
− ηθnω(ϕn)

∣∣∣∣β ε+ε−
+ ‖ϕn‖

∣∣∣∣ Qωn(1)(x)

Φθ−nω
n (ηθ−nω)Qωn(1)

− hω(x)

∣∣∣∣
→ 0, as n→∞(S.15)

where the identity
∏n−1
p=0 λθpω = ηωQωn(1) = Φθ−nω

n (ηθ
−nω)Qωn(1), which holds

due to the measure equation in (2.18), then (H2), and then (S.4) and (S.8)
have been applied. But, under the hypotheses that Qω(h̄θω) = λ̄ωh̄

ω and
η̄ω(h̄ω) = 1 for all ω, using the already proved η̄ = η, we have the equality

Qωn(h̄θ
nω)(x)∏n−1

p=0 λθpω
− hω(x)ηθ

nω(h̄θ
nω) = h̄ω(x)− hω(x),

so taking ϕn = h̄θ
nω/η̄θ

nω(h̄θ
nω) in (S.15), and noting that under (H2),

∥∥h̄ω∥∥
η̄ω(h̄ω)

≤ sup
ω,x,x′

h̄ω(x)

h̄ω(x′)
= sup

ω,x,x′

Q
(
h̄θ
−1ω
)

(x)

Q
(
h̄θ−1ω

)
(x′)

≤ β ε+
ε−
,

we find h̄ω(x) = hω(x). This completes the proof of part 4), and therefore
the proposition.

Proof of Proposition 3.

µQωn(1) = µQω0 (1)

n∏
p=1

µQωp (1)

µQωp−1(1)

= 1 ·
n∏
p=1

µQωp−1Q
θp−1ω(1)

µQωp−1(1)

=

n−1∏
p=0

Φω
p (µ)Qθ

pω(1) =

n−1∏
p=0

Φω
p (µ)(Gθ

pω),
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8 N. WHITELEY AND A. LEE

and so

1

n
logµQωn(1) =

1

n

n−1∑
p=0

log λθpω

+
1

n

n−1∑
p=0

[
log
[
Φω
p (µ)(Gθ

pω)
]
− log λθpω

]
.(S.16)

Now the λ part of (2.17) ensures that E [|log λ|] < ∞, so by the ergodic
theorem, the first term on the right of (S.16) converges:

1

n

n−1∑
p=0

log λθpω → E [log λ] , P− a.s.

For the other term, replacing ω with θnω in (2.15) gives∣∣∣Φω
n(µ)(Gθ

nω)− λθnω
∣∣∣→ 0, as n→∞,

and under (H2), 0 < infω,xG
ω(x) ≤ supω,xG

ω(x) <∞, so∣∣∣log
[
Φω
n(µ)(Gθ

nω)
]
− log λθnω

∣∣∣→ 0, as n→∞.

The second term on the right of (S.16) converges to zero by Cesaro averaging.
The proof is complete upon recalling from Proposition 1 that n−1 logµQωn(1)→
Λ, P− a.s., and noting that by Proposition 2, Qω(hθω) = λωh

ω.

Remark 8. In the case that Y consists of a single point, |Y| = 1, then
|Ω| = 1, and (H1) holds automatically. In this situation, dropping ω from the
notation, (η, h, λ) are the Perron-Frobenius eigen-measure/function/value
of Q, and λ = eΛ. The twisted Markov kernel Q(x, dx′)h(x′)/λh(x) =
M(x, dx′)h(x′)/M(h)(x) is of interest when importance sampling for cer-
tain Markov chain rare events [1]. A time-homogeneous Markov chain with
this transition is known as the h-process associated with Q: for a discus-
sion of this and related matters, see [3, Section 2.7.1], references therein and
Remark 10, below.

Proofs for section 2.4. Throughout this section we assume N ≥ 1 is
fixed arbitrarily.

For M̃ ∈M, define

(S.17) R̃(ω, x, dx′) := G(ω, x)2φω(x, x′)2M̃(ω, x, dx′).
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SUPPLEMENTARY MATERIAL FOR: TWISTED PARTICLE FILTERS 9

The proofs of Proposition 4 and Theorem 1 involve a generalized eigen-
value and eigen-function for R̃, and our first objective is to verify that such
quantities exist. In order to do so, we now check that when (H2) holds, R̃
satisfies a regularity condition of a similar form. Define

J(ω, x) :=

ˆ
XN

G(ω, x)2φω(x, x′)2M̃(ω, x, dx′)

and

L(ω, x, dx′) :=
G(ω, x)2φω(x, x′)2M̃(ω, x, dx′)

J(ω, x)
,

so clearly
R̃(ω, x, dx′) = J(ω, x)L(ω, x, dx′).

Lemma 5. Assume (H2), let M̃ be any member of M and let ν̃ be the
accompanying measure in (2.26). Then there exist constants α ∈ [1,∞),
(δ−, δ+) ∈ (0,∞)2 and µ ∈ P(XN ), such that

(S.18)
J(ω, x)

J(ω′, x′)
≤ α, ∀

(
ω, ω′, x, x′

)
∈ Ω2 × X2N ,

(S.19) µ(dx) ∝
[
dν⊗N

dν̃
(x)

]2

ν̃(dx)

and

(S.20) δ−µ(·) ≤ L(ω, x, ·) ≤ δ+µ(·), ∀ (ω, x) ∈ Ω× XN .

Proof. For any A ∈ X⊗N ,ˆ
A
φω(x, x′)2M̃ω(x, dx′)

=

ˆ
A

[
dMω(x, ·)
dν⊗N

(x′)
dν⊗N

dν̃
(x′)

dν̃

dM̃ω(x, ·)
(x′)

]2

M̃ω(x, dx′)

≤
ε2N+ ε̃+

ε̃2−

ˆ
A

[
dν⊗N

dν̃
(x′)

]2

ν̃(dx′) <∞,(S.21)

where Lemma1, (H2) and the definition of M have been used. By a similar
argument, ˆ

A
φω(x, x′)2M̃ω(x, dx′)

≥
ε2N− ε̃−

ε̃2+

ˆ
A

[
dν⊗N

dν̃
(x′)

]2

ν̃(dx′).(S.22)

imsart-aos ver. 2012/08/31 file: suppmaterials_aos.tex date: May 28, 2013



10 N. WHITELEY AND A. LEE

By Lemma 1 and taking A = XN in (S.21) and (S.22), the bound of (S.18)
holds with

α = β2 ε
2N
+

ε2N−

ε̃3+
ε̃3−
.

The bound of (S.20) holds with δ− =
(
ε2N− ε̃3−

)
/
(
ε2N+ ε̃3+

)
and δ+ = 1/δ−.

Remark 9. Having established the regularity properties (S.18)-(S.20),
we notice that R̃ will have properties which are exactly similar to those
properties of Q established in Propositions 1, 2 and 3, which we shall now
summarize (we will not write a proof explicitly, since the arguments fol-
low precisely the same programme as in the proofs of the afore-mentioned
Propositions). We shall write

R̃ω
0 := Id, R̃ω

n := R̃ω
n−1R̃

θn−1ω, n ≥ 1.

For any N ≥ 1 and M̃ ∈M,

• there exists a constant ΞN ∈ (−∞,∞) such that for any µ ∈ P(XN ),

(S.23)
1

n
logµR̃ω

n(1)→ ΞN , as n→∞, for P− a.a. ω.

• there exists a random variable ξ : Ω → R+ (depending on N) and a
function ` : Ω× XN → R+, measurable w.r.t. F ⊗ X⊗N , such that

(S.24) sup
ω,ω′

ξω
ξω′

<∞, sup
ω,ω′,x,x′

`(ω, x)

`(ω, x′)
<∞,

and

(S.25) R̃ω
(
`θω
)

= ξω`
ω

• for any x ∈ XN ,

(S.26) ΞN = E [log ξ] =

ˆ
Ω

log
R̃ω

(
`θω
)

(x)

`ω(x)
P(dω).

Note that in the above displays, the dependence of various quantities on M̃
is suppressed from the notation.

We can now deal with the proof of Proposition 4 and then a collection of
Lemmas which prove Theorem 1.

imsart-aos ver. 2012/08/31 file: suppmaterials_aos.tex date: May 28, 2013



SUPPLEMENTARY MATERIAL FOR: TWISTED PARTICLE FILTERS 11

Proof of Proposition 4. By Proposition 1, for any µ0 ∈ P(X),

2

n
logµ0Q

ω
n(1) → 2Λ, for P− a.a. ω,

and by (S.23),

(S.27)
1

n
logµ⊗N0 R̃ω

n(1)→ ΞN , for P− a.a. ω.

Then as

Ṽωn,N =
µ⊗N0 R̃ω

n(1)

[µ0Qωn(1)]2
,

the proof is complete, with ΥN (M̃) = ΞN − 2Λ.

Remark 10. Further to Remark 8, if |Y| = 1 and additionally N = 1,
then we have (again dropping ω from the notation)

M(x, dx′)h(x′)

M (h) (x)
=
M(x, dx′)h(x′)

M (h) (x)
,

so that the Markov kernel addressed in Theorem 1 is exactly that of the
h-process associated with Q.

The proof of Theorem 1 is now given in Lemmas 6-8. The first can be
viewed as generalizing the necessity part of the proof of [1, Theorem 3] to
the case of non-negative kernels driven by an ergodic shift.

Lemma 6. [1)⇒2)] If ΥN (M̃) = 0, then for P-almost all ω ∈ Ω there
exists Aω ∈ X⊗N such that ν⊗N (Acω) = 0 and for any x ∈ Aω,

M̃ω(x,B) =

´
BMω(x, dx′)hθω(x′)´
XN Mω(x, dz)hθω(z)

, for all B ∈ X⊗N .

Proof. We need to introduce a notational convention before proceeding
with the main body of the proof. For any ϕ : Ω × XN → R a function
measurable w.r.t. F ⊗ X⊗N , let the P-essential supremum of the collection
of functions

{
ϕ(·, x);x ∈ XN

}
(in the sense of [4, V, 18.]) be χ, i.e. χ is a

random variable on (Ω,F ,P). In a slight abuse of our ω-section notation we
shall write, for any ω in Ω,

(S.28) ess supxϕ
ω(x) := χω.
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12 N. WHITELEY AND A. LEE

Let γ(ω, x) = h(ω, x)2/`(ω, x), and ρ be the P-essential supremum of
the collection of functions

{
γ(·, x) ; x ∈ XN

}
. Then in accordance with the

convention (S.28) we shall write:

ess supx
hω(x)2

`ω(x)
:= ρω.

From (S.24), the definition of h in (S.24) and (2.17),

(S.29) sup
ω,ω′,x,x′

γ(ω, x)

γ(ω′, x′)
= sup

ω,ω′,x,x′

hω(x)2

`ω(x)

`ω
′
(x′)

hω′(x′)2
<∞

and therefore, at least up to a set of P-measure zero, ρω is uniformly bounded
above and below away from zero in ω. This observation, the bound (S.29) and
Lemma 5 will ensure that various expectations appearing below are finite.

We now proceed with the proof. Since by Proposition 2 and (S.24), λ and
ξ are uniformly bounded above and below away from zero in ω, we may
write ΥN (M̃) = ΞN − 2Λ = E

[
log ξ

λ2

]
(where the first equality is as in

the above proof of Proposition 4). We are going to prove that the condition
E
[
log ξ

λ2

]
= 0 implies that for P-almost all ω ∈ Ω, there exists Aω ∈ X⊗N

such that ν⊗N (Acω) = 0 and for any x ∈ Aω,

(S.30) M̃ω(x,B) =

´
BMω(x, dx′)hθω(x′)´
XN Mω(x, dz)hθω(z)

, for all B ∈ X⊗N .

For any x ∈ XN ,

ξω =
R̃ω(`θω)(x)

`ω(x)

≥ 1

ρθω`ω(x)

ˆ
Gω(x)2φω(x, x′)2M̃ω(x, dx′)hθω(x′)2

≥ 1

ρθω`ω(x)

[ˆ
Gω(x)φω(x, x′)M̃ω(x, dx′)hθω(x′)

]2

(S.31)

=
1

ρθω`ω(x)

[ˆ
Qω(x, dx′)hθω(x′)

]2

=
hω(x)2

ρθω`ω(x)
λ2
ω, P− a.s.,(S.32)

where the first equality is just (S.25), the inequality (S.31) is due to Jensen’s
inequality and the equality in (S.32) holds due to Lemma 2. Here and sim-
ilarly elsewhere in the proof, the existence of the set of full P-measure on
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which the equations hold is deduced using the definition of the essential
supremum of a collection of functions, Tonelli’s theorem and the fact that
R̃ω(x, ·) is equivalent to the probability measure µ in Lemma 5. The following
inequalities then hold for P-almost all ω:

ξω

≥ 1

ρθω
ess supx

1

`ω(x)

ˆ
Gω(x)2φω(x, x′)2M̃ω(x, dx′)hθω(x′)2(S.33)

≥ λ2
ω

ρθω
ess supx

hω(x)2

`ω(x)
.(S.34)

We then have

E [log ξ]

≥
ˆ

Ω
log

[
1

ρθω
ess supx

1

`ω(x)

ˆ
R̃ω(x, dx′)hθω(x′)2

]
P(dω)

=

ˆ
Ω

[
log

[
ess supx

1

`ω(x)

ˆ
R̃ω(x, dx′)hθω(x′)2

]
− log ρθω

]
P(dω)

=

ˆ
Ω

log

[
ess supx

1

`ω(x)

ˆ
R̃ω(x, dx′)hθω(x′)2

]
P(dω)− E [log ρ](S.35)

=

ˆ
Ω

log

[
1

ρω
ess supx

1

`ω(x)

ˆ
R̃ω(x, dx′)hθω(x′)2

]
P(dω)

≥
ˆ

Ω
log

[
λ2
ω

ρω
ess supx

hω(x)2

`ω(x)

]
P(dω)(S.36)

= E
[
log λ2

]
= E [log ξ] ,(S.37)

where (S.33) has been applied; (S.35) holds because θ preserves P; (S.36)
holds due to (S.34) and similarly because θ preserves P; and the final equality
in (S.37) holds by hypothesis (since we are trying to prove (S.30)). Thus we
conclude

E [log ξ]

=

ˆ
Ω

log

 1

ρω
ess supx

R̃ω
([

hθω
]2)

(x)

`ω(x)

P(dω).(S.38)

Now for ε > 0 and ω ∈ Ω, introduce

Aω,ε :=

{
x : `ω(x) <

(1 + ε)

ρω
hω(x)2

}
.
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14 N. WHITELEY AND A. LEE

Then for any x ∈ XN ,

`ω(x) ≥ hω(x)2

ρω
+ ε

hω(x)2

ρω
IAcω,ε(x), P− a.s.

Now by Proposition 2 and the definition of h, we know infω,x h(ω, x) > 0,
and similarly, by (S.24), infω,x `(ω, x) > 0. Combined with Lemma 5 this
ensures that there is a strictly positive constant k independent of ε and ω
such that for any x ∈ XN ,

ξω =
R̃ω

(
`θω
)

(x)

`ω(x)

≥
R̃ω

([
hθω
]2)

(x)

ρθω`ω(x)
+

ε

ρθω`ω(x)

ˆ
Acθω,ε

R̃ω(x, dx′)hθω(x′)2

≥
R̃ω

([
hθω
]2)

(x)

ρθω`ω(x)
+

ε

ρθω
kµ(Acθω,ε), P− a.s.,

where µ is as in Lemma 5. Thus we find, once again using the fact that θ
preserves P,

E [log ξ] ≥
ˆ

Ω
log

 1

ρω
ess supx

R̃ω
([

hθω
]2)

(x)

`ω(x)
+

ε

ρω
kµ(Acθω,ε)

P(dω),

but we have already proved (S.38), and since ε, k and ρω are strictly positive
and finite we deduce that

(S.39) P
({
ω : µ(Acθω,ε) = 0

})
= 1.

Now for any ω ∈ Ω, if µ(Acθω,ε) = 0, then by (S.19)
(
dν⊗N/dν̃

)
(x) is zero

for ν̃ − a.a. x ∈ Acθω,ε, and then ν⊗N (Acθω,ε) = 0. Therefore, from (S.39) we
find

1 = P
({
ω : ν⊗N (Acθω,ε) = 0

})
= P

({
ω : ν⊗N (Aθω,ε) = 1

})
= P

({
ω : ν⊗N (Aω,ε) = 1

})
,(S.40)

where the final equality holds since θ preserves P.
From the definition of Aω,ε it is clear that for any ω,

(S.41)
⋂
m≥1

Aω,1/m =

{
x : `ω(x) =

1

ρω
hω(x)2

}
=: A?ω,
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and

(S.42) Aω,1/(m+1) ⊆ Aω,1/m, ∀m ≥ 1.

Now suppose that for some ω ∈ Ω, ν(Aω,1/m) = 1 for all m ≥ 1. Then
in light of (S.41) and (S.42) , continuity of probability under ν⊗N dictates
ν⊗N (A?ω) = 1. On the other hand, if ν⊗N (A?ω) = 1, then it must be that
ν⊗N (Aω,1/m) = 1 for all m ≥ 1. Therefore

(S.43)
{
ω : ν⊗N (A?ω) = 1

}
=
⋂
m≥1

{
ω : ν⊗N (Aω,1/m) = 1

}
.

Evaluating ν⊗N on the sets in (S.42) we find

(S.44)
{
ω : ν⊗N (Aω,1/(m+1)) = 1

}
⊆
{
ω : ν⊗N (Aω,1/m) = 1

}
, ∀m ≥ 1.

Then by (S.40), (S.43), (S.44) and continuity of probability under P,

(S.45) P
({
ω : ν⊗N (A?ω) = 1

})
= 1.

Now (S.45) ensures that, for P−a.a. ω, A?ω is non-empty, so it is legitimate
to write, for any x ∈ A?ω,

ξω
λ2
ω

=
R̃ω

(
`θω
)

(x)

`ω(x)

hω(x)2

[Qω(hθω)(x)]
2

=
ρω
ρθω

R̃ω
([

hθω
]2)

(x)

[Qω(hθω)(x)]
2

=
ρω
ρθω

Gω(x)2
´
φω(x, x′)2M̃ω(x, dx′)hθω(x′)2

Gω(x)2
(´

φω(x, x′)M̃ω(x, dx′)hθω(x′)
)2

≥ ρω
ρθω

,(S.46)

where the final inequality is due to Jensen’s inequality. Therefore we have
proved

ξω
λ2
ω

ρθω
ρω
≥ 1, P− a.s.

However, by hypothesis, E
[
log ξ

λ2

]
= 0, and combined with the fact that θ

preserves P we find
ˆ

Ω
log

(
ξω
λ2
ω

ρθω
ρω

)
P(dω) = E

[
log

ξ

λ2

]
+

ˆ
Ω

log ρθωP(dω)−
ˆ

Ω
log ρωP(dω) = 0,
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16 N. WHITELEY AND A. LEE

therefore it must be the case that in fact

(S.47)
ξω
λ2
ω

ρθω
ρω

= 1, P− a.s.

Equation (S.47) implies equality must hold in the instance of Jensen’s
inequality (S.46), i.e. for P-almost all ω, and all x ∈ A?ω,

φω(x, x′)hθω(x′) = cω(x), M̃ω(x, ·)− a.s.,

and therefore

M̃ω(x,B) =
1

cω(x)

ˆ
B
Mω(x, dx′)hθω(x′), for any B ∈ X⊗N .

Normalization then dictates

M̃ω(x,B) =

´
BMω(x, dx′)hθω(x′)

Mω(hθω)(x)
,

and this completes the proof.

Lemma 7. [2)⇒3)] If for P-almost all ω ∈ Ω there exists Aω ∈ X⊗N
such that ν⊗N (Acω) = 0 and for any x ∈ Aω,

M̃ω(x,B) =

´
BMω(x, dx′)hθω(x′)´
XN Mω(x, dz)hθω(z)

, for all B ∈ X⊗N ,

then supn Ṽωn,N <∞ for P-almost all ω ∈ Ω.

Proof. Let C ∈ F with P(C) = 1 be a set of ω’s for which the hypothesis
of the Lemma holds. Then for each n ≥ 0, let Cn :=

⋂n
p=0 θ

−pC, and C? :=⋂∞
n=0Cn. Since θ preserves P, it follows that P(Cn) = 1 for all n ≥ 1, and

since Cn ↘ C?, we have by continuity of probability P(C?) = 1. Furthermore,
by construction, we have that for any ω ∈ C? and any n ≥ 0 there exists
Aθnω ∈ X⊗N such that ν⊗N (Acθnω) = 0 and for any x ∈ Aθnω,

(S.48) M̃θnω(x,B) =

´
BMθnω(x, dx′)hθ

n+1ω(x′)´
XN Mθnω(x, dz)hθn+1ω(z)

, for all B ∈ X⊗N .

Now pick any ω ∈ C?. This ω remains fixed throughout the remainder of
the proof. Observe firstly that for any n ≥ 0 and x ∈ Aθnω, using Lemma 1
and the fact that by Proposition 2 h is strictly positive, the measures ν⊗N ,
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SUPPLEMENTARY MATERIAL FOR: TWISTED PARTICLE FILTERS 17

Mθnω(x, ·) and M̃θnω(x, ·), are mutually absolutely continuous. Assume now
that n ≥ 2 and observe secondly that since Gω(x) = λωh

ω(x)/Mω(hθω)(x),
we have from (S.48) that, for any (x1, . . . , xn) ∈

[∏n
p=1Aθpω

]
,

n−1∏
p=1

Gθpω(xp)φ
θpω(xp, xp+1) =

hθω(x1)

hθnω(xn)

n−1∏
p=1

λθpω.

Combining these two observations with ν⊗N (Acθnω) = 0 and again using
Gω(x) = λωh

ω(x)/Mω(hθω)(x), we obtain:

µ⊗N0 R̃ω
n(1)

= ẼωN

n−1∏
p=0

Gθpω(ζp)
2φθ

pω(ζp, ζp+1)2


= ẼωN

n−1∏
p=0

IAθp+1ω
(ζp)G

θpω(ζp)
2φθ

pω(ζp, ζp+1)2


=

n−1∏
p=1

λθpω

2

ẼωN

[
Gω(ζ0)2φω(ζ0, ζ1)2

(
hθω(ζ1)

hθnω(ζn)

)2
]

=

n−1∏
p=0

λθpω

2

ẼωN

[
hω(ζ0)2

Mω (hθω)
2

(ζ0)
φω(ζ0, ζ1)2

(
hθω(ζ1)

hθnω(ζn)

)2
]

≤

n−1∏
p=0

λθpω

2(
sup

(ω,ω′,x,x′)

hω(x)

hω′(x′)

)4

ẼωN
[
φω(ζ0, ζ1)2

]

≤

n−1∏
p=0

λθpω

2(
sup

(ω,ω′,x,x′)

hω(x)

hω′(x′)

)4
ε2N+ ε̃+

ε̃2−
ν̃

([
dν⊗N

dν̃

]2
)
,(S.49)

where the final inequality is an application of (S.21). In the case n ≤ 1 a simi-
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18 N. WHITELEY AND A. LEE

lar upper bound can be obtained. Now using Gω(x) = λωh
ω(x)/Mω(hθω)(x),

[µ0Q
ω
n(1)]2 = Eω

n−1∏
p=0

Gθ
pω(Xp)

2

=

n−1∏
p=0

λθpω

2

Eω

n−1∏
p=0

hθ
pω(Xp)

M θpω(hθp+1ω)(Xp)

2

=

n−1∏
p=0

λθpω

2

Eω

 hω(X0)

hθnω(Xn)

n∏
p=1

hθ
pω(Xp)

M θp−1ω(hθpω)(Xp−1)

2

≥

n−1∏
p=0

λθpω

2(
inf

(ω,ω′,x,x′)

hω(x)

hω′(x′)

)2

,(S.50)

where Eω
[
hθ

pω(Xp)
∣∣X0, . . . , Xp−1

]
= M θp−1ω(hθ

pω)(Xp−1) has been ap-
plied. Combining (S.49) with (S.50), we arrive at

sup
n≥1

µ⊗N0 R̃ω
n(1)

[µ0Qωn(1)]2
≤

(
sup

(ω,ω′,x,x′)

hω(x)

hω′(x′)

)6

<∞,

where the final inequality is due to Proposition 2.

Lemma 8. [3) ⇒1)] If supn Ṽωn,N <∞ for P− a.a. ω, then ΥN (M̃) = 0.

Proof. Obvious.

Proof of Lemma 3. We first address 1)⇒ 2). By Theorem 1, if ΥN (M) =
0, it must be the case that up to ω and x being in null sets,

Mω(x,B) =

´
BMω(x, dx′)hθω(x′)´
XN Mω(x, dz)hθω(z)

, for all B ∈ X⊗N .

and therefore using (H2), we find there must exist a random variable, say
χ, such that

for P− a.a. ω, hω(x) = χω, for ν⊗N − a.a. x.

Under (H2), the first equation in (2.18) shows that the probability measure
ηω is equivalent to ν and therefore

for P− a.a. ω, [ηω]⊗N (hω) = χω.
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SUPPLEMENTARY MATERIAL FOR: TWISTED PARTICLE FILTERS 19

But by the third equation in (2.18), we have [ηω]⊗N (hω) = ηω(hω) = 1, and
it follows that

(S.51) for P− a.a. ω, hω(x) = 1, for ν − a.a. x.

Now we show 2) ⇒ 3). Suppose that (S.51) holds. Then on appropriate
sets, Qω(hθω) = λωh

ω reduces to

Gω(x) = λω =: Cω.

Finally, we show 3)⇒ 1). Suppose there exists a random variable C : Ω→
R+ such that

for P− a.a. ω, Gω(x) = Cω, for ν − a.a. x.

Then since by hypothesis M̃ω = Mω we have Ṽω,Nn = 1 for all n ≥ 1 and
P−a.a. ω. Therefore ΥN (M) = limn→∞ n

−1 log Ṽω,Nn = 0 with P probability
1. This completes the proof.

Proofs for section 3. The following operators will enter into our N →
∞ analysis of the twisted particle system. Define

Φ̂ω : P(X)→ P(X), Φ̂ω(µ)(dx) :=
µQω(dx)ψω(x)

µQω(ψω)
, µ ∈ P(X).

and also for each N ≥ 1,

ΓωN : P(X)→ P(X), ΓωN (µ) :=
1

N
Φ̂ω(µ) +

(
1− 1

N

)
Φω(µ), µ ∈ P(X).

Γω0,N := Id, Γωn,N := Γθ
n−1ω
N ◦ · · · ◦ ΓθωN ◦ ΓωN , n ≥ 1.

For purposes of developing limits and fluctuation studies in the regime
N → ∞, it is convenient to construct the particle system of interest as
follows.

Let KN be set of all bijections between {1, . . . , N} and itself, and let its
power set be KN . Let ZN :=

(
XN × KN

)N be the set of infinite sequences
valued in XN × KN , endow it with the σ-algebra ZN :=

(
XN ⊗KN

)⊗N,
so as to form a measurable space (ZN ,ZN ). Let

{(
ζ̂n, κn

)
;n ≥ 0

}
be the

coordinate process on ZN .
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20 N. WHITELEY AND A. LEE

η̂Nn :=
1

N

N∑
i=1

δ
ζ̂in

n ≥ 0.

Now for some fixed ω ∈ Ω, let us introduce a probability measure, PωN , on
(ZN ,ZN ) according to the following prescription. Under PωN , the sequences{
ζ̂n;n ≥ 0

}
and {κn;n ≥ 0} are independent. The sequence

{
ζ̂n;n ≥ 0

}
is

a Markov chain with the following law. At time n = 0, the random variables{
ζ̂i0

}N
i=1

are independent and identically distributed according to µ0. At time

n ≥ 1, the random variables
{
ζ̂in

}N
i=1

are conditionally independent given

ζ̂n−1, and

(S.52) ζ̂1
n|ζ̂n−1 ∼ Φ̂θn−1ω(η̂Nn−1), ζ̂in|ζ̂n−1 ∼ Φθn−1ω(η̂Nn−1), i = 2, . . . , N.

Finally, the components of the sequence {κn;n ≥ 0} are independent and
identically distributed according to the uniform distribution on (KN ,KN ).
Expectation under PωN will be denoted by EωN .

Remark 11. Our interest in this construction is that if we define, for
each n ≥ 0 and i = 1, . . . , N , the random variables

ζin := ζ̂κn(i)
n

we obviously have the identity of empirical measures

(S.53) η̂Nn =
1

N

N∑
i=1

δ
ζ̂in

=
1

N

N∑
i=1

δζin = ηNn , n ≥ 0.

Furthermore, using the fact that with M̃ as in (3.1), for any (ω,A) ∈
Ω × X⊗N , M̃ω(x,A) is invariant to permutations of the coordinates x =
(x1, . . . , xN ), it is straightforward to check that under PωN , the process {ζn;n ≥ 0}
is Markov, with

(S.54) ζn|ζn−1 ∼ M̃θn−1ω(ζn−1, ·), n ≥ 1,

which is exactly the transition law of interest. The important thing here
is that the identity of random measures (S.53) permits us, by construc-
tion, to perform asymptotic analysis of functionals of the empirical measures{
N−1

∑N
i=1 δζin ;n ≥ 0

}
through study of the random variables

{
ζ̂n;n ≥ 0

}
rather than {ζn;n ≥ 0}: the conditional independence structure of the former
as per (S.52) is easier to work with than that of the latter under (S.54).
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Remark 12. To see that Algorithm 3 does indeed implement (S.54),
notice that for A ∈ X⊗N , x = (x1, . . . , xN ) ∈ XN , z = (z1, . . . , zN ) ∈ XN ,
and ˆ

A
Mω(x, dz)ψθω(z)

=
1

N

N∑
k=1

ˆ
A

 N∏
j=1

∑N
i=1Q

ω(xi, dzj)∑N
i=1G

ω(xi)

ψθω(zk),

where
∏

indicates tensor product of measures and we have abusively written
ψθω(zk) to represent the function which maps z = (z1, . . . , zN ) ∈ XN 7→
ψθω(zk) ∈ R+. In particular then,

ˆ
XN

Mω(x, dz)ψθω(z) =

[
N∑
i=1

Qω(ψθω)(xi)

]
/

[
N∑
i=1

Gω(xi)

]
,

and

M̃ω(x,A) =

1

N

N∑
k=1

ˆ
A

∏
j 6=k

∑N
i=1Q

ω(xi, dzj)∑N
i=1G

ω(xi)

(∑N
i=1Q

ω(xi, dzk)ψθω(zk)∑N
i=1Q

ω(ψθω)(xi)

)
.(S.55)

We proceed with a crude but simply proved Lp error estimate.

Lemma 9. Assume (H3). Then for each ω ∈ Ω, n ≥ 1, µ ∈ P(X) and
p ≥ 1 there exist finite constants Bω

nand Cωn,p such that for any ϕ ∈ L(X),

(S.56)
∣∣[ΓωN,n(µ)− Φω

n(µ)
]

(ϕ)
∣∣ ≤ ‖ϕ‖ Bω

n

N

(S.57) EωN

[∣∣[η̂Nn − ηωn] (ϕ)
∣∣p]1/p

≤ ‖ϕ‖
Cωn,p√
N
.

Proof. The proof of (S.56) is by induction. At rank n = 0 the inequality
holds trivially since Φ̂ω

0 = Φω
0 = Id. Suppose the inequality holds at rank

n− 1. Then at rank n,∣∣[ΓωN,n(µ)− Φω
n(µ)

]
(ϕ)
∣∣

≤
∣∣∣[Γθn−1ω

N (ΓωN,n−1(µ))− Φθn−1ω(ΓωN,n−1(µ))
]

(ϕ)
∣∣∣

+
∣∣∣[Φθn−1ω(ΓωN,n−1(µ))− Φθn−1ω(Φω

n−1(µ))
]

(ϕ)
∣∣∣
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≤ 1

N

∣∣∣[Φ̂θn−1ω(ΓωN,n−1(µ))− Φθn−1ω(ΓωN,n−1(µ))
]

(ϕ)
∣∣∣

+

∣∣∣∣∣ΓωN,n−1(µ)Qθ
n−1ω(ϕ)

ΓωN,n−1(µ)Qθn−1ω(1)

[
1−

ΓωN,n−1(µ)Qθ
n−1ω(1)

Φω
n−1(µ)Qθn−1ω(1)

]∣∣∣∣∣
+

∣∣∣∣∣∣
[
ΓωN,n−1(µ)− Φω

n−1(µ)
]
Qθ

n−1ω(ϕ)

Φω
n−1(µ)Qθn−1ω(1)

∣∣∣∣∣∣ ,
and the result holds by the induction hypothesis and some simple manipu-
lations.

The proof of (S.57) is also by induction. At time n = 0, the random

variables
{
ζ̂i0

}N
i=1

are iid according to µ0, so by the Marcinkiewicz–Zygmund
(MZ) inequality,

EωN

[∣∣[η̂N0 − µ0

]
(ϕ)
∣∣p]1/p

≤ ‖ϕ‖
Cω0,p√
N
.

Suppose the inequality holds at rank n− 1. Then at rank n,

EωN

[∣∣[η̂Nn − ηωn] (ϕ)
∣∣p]1/p

≤ EωN

[∣∣∣[η̂Nn − Γθ
n−1ω
N (η̂Nn−1)

]
(ϕ)
∣∣∣p]1/p

(S.58)

+EωN

[∣∣∣[Γθn−1ω
N (η̂Nn−1)− Γθ

n−1ω
N (ηωn−1)

]
(ϕ)
∣∣∣p]1/p

(S.59)

+
∣∣∣[ηωn − Γθ

n−1ω
N (ηωn−1)

]
(ϕ)
∣∣∣ .(S.60)

The term in (S.58) is dealt with by application of the MZ inequality and the
term in (S.60) is dealt with using (S.56). For the term in (S.59),[

Γθ
n−1ω
N (η̂Nn−1)− Γθ

n−1ω
N (ηωn−1)

]
(ϕ)

=
1

N

[
Φ̂θn−1ω(η̂Nn−1)− Φ̂θn−1ω(ηωn−1)

]
(ϕ)

+

(
1− 1

N

)
η̂Nn−1Q

θn−1ω(ϕ)

η̂Nn−1Q
θn−1ω(1)

(
1−

η̂Nn−1Q
θn−1ω(1)

ηωn−1Q
θn−1ω(1)

)

+

(
1− 1

N

)[
η̂Nn−1 − ηωn−1

] Qθ
n−1ω(ϕ)

ηωn−1Q
θn−1ω(1)

,

and the result follows by elementary manipulations involving the MZ in-
equality and the induction hypothesis.
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Proof of Lemma 4. The result follows from the Lp estimate (S.57), a
standard Borel-Cantelli argument and the identity (S.53).

Lemma 10 is an extension of the CLT in [2, Chapter 9, Theorem 9.3.1]
to the case of certain random test functions and the setting of the twisted
particle system. It is established by an application of [6, Theorem 3.33, p.
478].

For d ≥ 1 and m ≥ 1, let ϕ : (p, q, x) ∈ N × {1, . . . ,m} × X 7→ ϕp,q(x) ∈
Rd be a bounded measurable function and for each N ≥ 1 let βN :={
βNp,q; (p, q) ∈ N× {1, . . . ,m}

}
be a collection of Rd-valued random variables

on the probability space (ZN ,ZN ,PωN ) such that for any p ≥ 1 and 1 ≤ q ≤
m, βNp,q is measurable w.r.t. σ(ζ̂0, . . . , ζ̂p−1) and

{
βN0,q; q ∈ {1, . . . ,m}

}
are

constants. Then let the random function fN : (p, x) ∈ N× X 7→ fNp (x) ∈ Rd
be defined by

(S.61) fN,ip (x) :=
m∑
q=1

βN,ip,q ϕ
i
p,q(x), 1 ≤ i ≤ d,

where fN,ip is the ith coordinate of fNp , and for n ≥ 0 define

Mω,N
n (fN ) :=

n∑
p=0

[
η̂Np (fNp )− Γθ

p−1ω
N

(
η̂Np−1

)
(fNp )

]
,

with the convention that Γθ
−1ω
N

(
η̂N−1

)
(ϕ) = µ0. Clearly

{
Mω,N
n (fN );n ≥ 0

}
is an Rd-valued martingale w.r.t. to the natural filtration of

{
ζ̂n;n ≥ 0

}
.

Lemma 10. Assume (H3) and that there exist deterministic and finite
constants (βp,q; (p, q) ∈ N× {1, . . . ,m}) each valued in Rd such that for each
p, q, i,

(S.62) βN,ip,q → βip,q

in probability as N →∞. Then with

f ip(x) :=
m∑
q=1

βip,qϕ
i
p,q(x),

for any fixed ω ∈ Ω, the Rd-valued martingale
{√

NMω,N
n (fN );n ≥ 0

}
con-

verges in law to an Rd-valued Gaussian martingale {Mω
n (f);n ≥ 0} such that
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for any 1 ≤ i, j ≤ d,

∀n ≥ 0,
〈
Mω(f i),Mω(f j)

〉
n

=
n∑
p=0

ηωp
[
(f ip − ηωp (f ip))(f

j
p − ηωp (f jp ))

]
,

where Mω(f i) is the i-th coordinate of Mω(f) .

Proof. For a ∈ R let [a] be the integer part of a and let {a} = a − [a].
Consider the decomposition

√
NMω,N

n (fN ) =

(n+1)N∑
k=1

UNk (fN )

where for any 1 ≤ k ≤ (n + 1)N and (p, i) satisfying 1 ≤ i ≤ N and
k = pN + i,

UNk (fN ) =


1√
N

[
fNp (ζ̂1

p )− Φ̂θp−1ω(η̂Np−1)(fNp )
]
, k − pN = 1,

1√
N

[
fNp (ζ̂ip)− Φθp−1ω(η̂Np−1)(fNp )

]
, k − pN = i > 1.

We will establish distributional convergence of the process

XN
t (fN ) :=

[Nt]+N∑
k=1

UNk (fN ),

to a continuous Gaussian martingale by application of [6, Theorem 3.33, p.
478]. The dependence on ω of UNk (fN ),XN

t (fN ) and various other quantities
is suppressed from the notation in the remainder of the proof.

For fixed N , let HNk be the σ-algebra generated by the random variables
ζ̂ip for any (p, i) such that pN + i ≤ k. Then

[Nt]+N∑
k=1

EωN
[
UNk (fN,i)UNk (fN,j)|HNk−1

]
= CNt (fN,i, fN,j),

where
CNt (fN,i, fN,j) = CN[t](f

N,i, fN,j) + δCNt (fN,i, fN,j),

CNn (fN,i, fN,j) =
1

N
d̂Nn (i, j) +

(
1− 1

N

)
dNn (i, j),
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d̂Nn (i, j) =
n∑
p=0

Φ̂θp−1ω(η̂Np−1)
[
f̂N,ip f̂N,jp

]
,

dNn (i, j) =

n∑
p=0

Φθp−1ω(η̂Np−1)
[
f̄N,ip f̄N,jp

]
,

f̂N,ip = fN,ip − Φ̂θp−1ω(η̂Np−1)(fN,ip ),

f̄N,ip = fN,ip − Φθp−1ω(η̂Np−1)(fN,ip ),

and

δCNt (fN,i, fN,j)

= I [[Nt]−N [t] ≥ 1]
1

N
Φ̂θ[t]ω(η̂N[t])

[
f̂N,i[t]+1f̂

N,j
[t]+1

]
+I [[Nt]−N [t] ≥ 2]

([Nt]−N [t]− 1)

N
Φθ[t]ω(η̂N[t])

[
f̄N,i[t]+1f̄

N,j
[t]+1

]
with the convention Φ̂θ−1ω(η̂N−1) = Φθ−1ω(η̂N−1) = µ0.

Now for n ≥ 0 consider

Cn(f i, f j) :=
n∑
p=0

ηωp
[
(f ip − ηωp (f ip))(f

j
p − ηωp (f jp ))

]
.

By Lemma 4 and (S.62), for any n ≥ 0 and t ∈ R+, (and using [Nt]/N → t)

CNn (fN,i, fN,j)→ Cn(f i, f j),

and

δCNt (fN,i, fN,j)

→ {t}ηω[t]+1

[(
f i[t]+1 − η

ω
[t]+1(f i[t]+1)

)(
f j[t]+1 − η

ω
[t]+1(f j[t]+1)

)]
,

both in probability as N →∞. Defining

Ct(f i, f j) := C[t](f
i, f j) + {t}

(
C[t]+1(f i, f j)− C[t](f

i, f j)
)

we have proved that for any t ∈ R+,

[Nt]+N∑
k=1

EωN
[
UNk (fN,i)UNk (fN,j)|HNk−1

]
−→ Ct(f i, f j).
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in probability as N →∞.
We now need to verify the conditional Lindeberg condition is satisfied: we

shall prove that for any t ∈ R+ and ε > 0,

(S.63)
[Nt]+N∑
k=1

EωN

[∣∣UNk (fN )
∣∣2 I[∣∣UNk (fN )

∣∣ > ε]|HNk−1

]
→ 0,

in probability as N →∞. To this end, fix t ∈ R+, set n = [t] + 1 and define
‖ϕ‖n := ∨0≤p≤n,1≤q≤m,1≤i≤d

∥∥ϕip,q∥∥. Now for any 1 ≤ k ≤ [Nt] +N , setting
p = [(k−1)/N ], we have by hypothesis of the lemma that βNp,q is measurable
w.r.t. HNk−1 for any q ∈ {1, . . . ,m}, and therefore

EωN

[∣∣UNk (fN )
∣∣2 I[∣∣UNk (fN )

∣∣ > ε]|HNk−1

]
≤ 4

N

d∑
i=1

m∑
q=1

∣∣βN,ip,q

∣∣2 ∥∥ϕip,q∥∥2 I

2

 d∑
i=1

m∑
q=1

∣∣βN,ip,q

∣∣2 ∥∥ϕip,q∥∥2

1/2

> ε
√
N


≤ 4

N
‖ϕ‖2n

d∑
i=1

m∑
q=1

∣∣βN,ip,q

∣∣2 I
ε−1N−1/22‖ϕ‖n

 d∑
i=1

m∑
q=1

∣∣βN,ip,q

∣∣21/2

> 1


≤ 8

εN3/2
‖ϕ‖3/2n

 d∑
i=1

m∑
q=1

∣∣βN,ip,q

∣∣23/2

,

so in turn,

[Nt]+N∑
k=1

EωN

[∣∣UNk (fN )
∣∣2 I[∣∣UNk (fN )

∣∣ > ε]|HNk−1

]

≤ 8

ε
√
N
‖ϕ‖3/2n

n∑
p=0

 d∑
i=1

m∑
q=1

∣∣βN,ip,q

∣∣23/2

.(S.64)

The right hand side of (S.64) converges to zero in probability as N → ∞
due to (S.62) and the continuous mapping theorem. This establishes (S.63),
as required.

Therefore {XN
t (fN ); t ∈ R+} converges in law to a continuous Gaussian

martingale {Xt(f); t ∈ R+} such that for any t ∈ R+ and 1 ≤ i, j ≤ d,〈
X(f i), X(f j)

〉
t

= Ct(f i, f j).
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The proof is complete upon noting for n ∈ N,XN
n (fN ) =

√
NMω,N

n (fN ).

Proof of Theorem 2. We first address convergence of the unnormal-
ized measures. Keeping in mind (S.53), consider the decomposition:

γω,Nn (ϕ)− γωn (ϕ)

=
n∑
p=0

γω,Np Qθ
pω
n−p(ϕ)− γω,Np−1Q

θp−1ω
n−p+1(ϕ)

=
n∑
p=0

γω,Np (1)

η̂Np − η̂Np (ψθ
pω)

Φθp−1ω
(
η̂Np−1

)
(ψθpω)

Φθp−1ω
(
η̂Np−1

)Qθpωn−p(ϕ)

=

n∑
p=0

γω,Np (1)
[
η̂Np − Φθp−1ω

(
η̂Np−1

)]
(gω,Np,n )

= Rω,Nn +Mω,N
n ,(S.65)

with the conventions that γω,N−1 Qθ
−1ω = Φθp−1ω

(
η̂N−1

)
= Γθ

p−1ω
N

(
η̂N−1

)
= µ0;

and where

gω,Np,n := Qθ
pω
n−p(ϕ)− ψθ

pω

Φθp−1ω
(
η̂Np−1

)
(ψθpω)

Φθp−1ω
(
η̂Np−1

)
Qθ

pω
n−p(ϕ),

with the convention ψω/Φω
(
η̂N−1

)
(ψω) = 1; and

Mω,N
n :=

n∑
p=0

γω,Np (1)
[
η̂Np − Γθ

p−1ω
N

(
η̂Np−1

)]
(gω,Np,n ),

Rω,Nn :=
n∑
p=0

γω,Np (1)
[
Γθ

p−1ω
N

(
η̂Np−1

)
− Φθp−1ω

(
η̂Np−1

)]
(gω,Np,n )

=
1

N

n∑
p=0

γω,Np (1)
[
Φ̂θp−1ω

(
η̂Np−1

)
− Φθp−1ω

(
η̂Np−1

)]
(gω,Np,n )

=
1

N

n∑
p=0

γω,Np (1)Φ̂θp−1ω
(
η̂Np−1

)
(gω,Np,n ),

where Φθp−1ω
(
η̂Np−1

)
(gω,Np,n ) = 0 has been used. Lemma 4 and the continu-

ous mapping theorem ensure that γω,Nn (1) → γωn (1) and
√
NRω,Nn → 0 in
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probability as N →∞. By Slutsky’s lemma it remains to prove the conver-
gence in distribution of

√
NMω,N

n . This is achieved using Lemma 10 and a
programme of arguments similar to [2, Proof of Proposition 9.4.1.]; therefore
some steps are only summarised.

For 0 ≤ p ≤ n, define

V N
p :=

√
N
[
η̂Np − Γθ

p−1ω
N

(
η̂Np−1

)]
(gω,Np,n ).

We shall first apply Lemma 10 to address the convergence in law of the
random vector

(
V N

0 , . . . , V N
n

)
. For the quantities in (S.61) let m = 2, d =

n+ 1 and for i = 0, . . . , n, set

βN,i+1
p.1 := I[p = i],

βN,i+1
p.2 := I[p = i]

Φθp−1ω
(
η̂Np−1

)
Qθ

pω
n−p(ϕ)

Φθp−1ω
(
η̂Np−1

)
(ψθpω)

,

ϕi+1
p,1 := I[p = i]Qθ

pω
n−p(ϕ), 0 ≤ p ≤ n,

ϕi+1
p,2 := I[p = i]ψθ

pω, 1 ≤ p ≤ n,

and βN,i+1
0.2 = ϕi+1

0,2 = I[i = 0]. Then by construction, for p = 0, . . . , n,

Mω,N
n (fN,p+1)

=
[
η̂Np − Γθ

p−1ω
N

(
η̂Np−1

)] m∑
q=1

βN,p+1
p,q ϕp+1

p,q


=
[
η̂Np − Γθ

p−1ω
N

(
η̂Np−1

)]Qθpωn−p(ϕ) + ψθ
pω

Φθp−1ω
(
η̂Np−1

)
Qθ

pω
n−p(ϕ)

Φθp−1ω
(
η̂Np−1

)
(ψθpω)


=
[
η̂Np − Γθ

p−1ω
N

(
η̂Np−1

)]
(gω,Np,n )

= V N
p /
√
N,

where Mω,N
n (fN,p+1) is the p + 1th coordinate of Mω,N

n (fN ) appearing in
Lemma 10. Thus by Lemma 10, the random vector

(
V N

0 , . . . , V N
n

)
converges

in law to a centered Gaussian random vector, say (V0, . . . , Vn). Then using
the again the fact that for each n, γNn (1) converges to γn(1) in probability,
Slutsky’s lemma together with the continuous mapping theorem ensure that√
NMω,N

n converges in law to
∑n

p=0 γp(1)Vp, and by exactly similar argu-
ments to [2, Proof of Corollary 9.4.1.], the components of (V0, . . . , Vn) are
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independent, so
∑n

p=0 γp(1)Vp is a Gaussian random variable with variance
as given in the statement of the theorem.

Now for the normalised measures. Consider the decomposition:

η̂Nn (ϕ− ηωn (ϕ)) = η̂N0 Q
ω
0,n(ϕ̄) +

n∑
p=1

η̂Np Q
ω
p,n(ϕ̄)− η̂Np−1Q

ω
p−1,n(ϕ̄)

= Rω,Nn +Mω,N
n ,

where ϕ̄ = ϕ− ηωn (ϕ) and

Mω,N
n :=

n∑
p=0

[
η̂Np − Γθ

p−1ω
N

(
η̂Np−1

)]
Q
ω
p,n(ϕ̄)

Rω,Nn :=
n∑
p=1

Γθ
p−1ω
N

(
η̂Np−1

)
Q
ω
p,n(ϕ̄)− η̂Np−1Q

ω
p−1,n(ϕ̄)

=

n∑
p=1

1

N

[
Φ̂θp−1ω

(
η̂Np−1

)
− Φθp−1ω

(
η̂Np−1

)]
Q
ω
p,n(ϕ̄)

+

n∑
p=1

(
1−

η̂Np−1(Gθ
p−1ω)

ηωp−1(Gθp−1ω)

)
Φθp−1ω

(
η̂Np−1

)
Q
ω
p,n(ϕ̄),

with the convention Γθ
−1ω
N

(
η̂N−1

)
= µ0. Lemma 10 provides the desired con-

vergence in distribution of
√
NMN,ω

n (ϕ̄), so by Slutsky’s lemma, it remains
only to prove that

√
NRω,Nn → 0 in probability. To this end, noticing that

ηωpQ
ω
p,n(ϕ̄) = 0, we have

EωN
[∣∣Rω,Nn ∣∣]

≤
n∑
p=0

2

N

∥∥Qωp,n(ϕ̄)
∥∥

+
n∑
p=0

(
ηωp−1(Gθ

p−1ω)−1EωN

[∣∣∣[ηωp−1 − η̂Np−1

]
(Gθ

p−1ω)
∣∣∣2]1/2

· EωN
[∣∣∣[Φθp−1ω

(
η̂Np−1

)
− ηωp

]
Q
ω
p,n(ϕ̄)

∣∣∣2]1/2
)
,
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and

EωN

[∣∣∣[Φθp−1ω
(
η̂Np−1

)
− ηωp

]
Q
ω
p,n(ϕ̄)

∣∣∣2]1/2

≤ EωN

∣∣∣∣∣ η̂Np−1Q
ω
p−1,n(ϕ̄)

η̂Np−1

(
Gθp−1ω

) ∣∣∣∣∣
2
∣∣∣∣∣∣1−

η̂Np−1

(
Gθ

p−1ω
)

ηωp−1

(
Gθp−1ω

)
∣∣∣∣∣∣
2


1/2

+
1

ηωp−1

(
Gθp−1ω

)EωN [∣∣[η̂Np−1 − ηωp−1

]
Q
ω
p−1,n(ϕ̄)

∣∣2]1/2

≤
∥∥Qωp,n(ϕ̄)

∥∥
ηωp−1

(
Gθp−1ω

)EωN [∣∣∣[ηωp−1 − η̂Np−1

] (
Gθ

p−1ω
)∣∣∣2]1/2

+
1

ηωp−1

(
Gθp−1ω

)EωN [∣∣[η̂Np−1 − ηωp−1

]
Q
ω
p−1,n(ϕ̄)

∣∣2]1/2
,

where for the final inequality∣∣∣η̂Np−1Q
ω
p−1,n(ϕ̄)/η̂Np−1

(
Gθ

p−1ω
)∣∣∣ ≤ η̂Np−1

(
Gθ

p−1ω
)∥∥Qωp,n(ϕ̄)

∥∥ /η̂Np−1

(
Gθ

p−1ω
)

has been used. Then by application of Lemma 9 we conclude that there exists
a constant bω(n) such that

NEωN
[∣∣Rω,Nn ∣∣] ≤ ‖ϕ‖ bω(n),

which implies, via Markov’s inequality, that
√
NRω,Nn → 0 in probability, as

required.

We now turn to the proof of Proposition 5. As per (S.17), we will work
with the non-negative kernel

R̃(ω, x, dx′) = G(ω, x)2φω(x, x′)2M̃(ω, x, dx′),

In order to prove Proposition 5 we shall introduce the kernel

S(ω, x, dx′) :=
1

[hω(x)]2
R̃(ω, x, dx′)

[
hθω(x′)

]2
,

which may be regarded as a randomized similarity transform of R̃. Then
writing, in the usual fashion,

(S.66) Sωn := Sω · · ·Sθn−1ω, n ≥ 1,
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it is clear that

Sωn(1)(x) =
1

[hω(x)]2
R̃ω
n

([
hθ

nω
]2
)

(x),

and we have

Lemma 11. Assume (H1), (H2) and

sup
ω,ω′x,x‘′

ψω(x)

ψω′(x′)
<∞.

Then for any x ∈ XN

lim
n→∞

1

n
logSωn(1)(x) = lim

n→∞

1

n
log R̃ω

n(1)(x), P− a.s.

Proof. Using the bound supω,ω′x,x′ h
ω(x)/hω

′
(x′) of Proposition 2, we

have
1

n
logSωn(1)(x) =

1

n
log R̃ω

n

([
hθ

nω
]2
)

(x)− 2

n
log [hω(x)]

≤ 1

n
log R̃ω

n(1)(x) +
c

n
,

for some finite constant c which does not depend on ω or n. This bound,
combined with a similar lower one, complete the proof.

The second component in the proof of Proposition 5 is the following
Lemma, whose proof we briefly postpone.

Lemma 12. Assume (H2),

sup
ω,ω′x,x‘′

ψω(x)

ψω′(x′)
<∞,

and fix ω ∈ Ω. Then for any N ≥ 2 and x ∈ XN ,

∣∣∣∣Sω(1)(x)

λ2
ω

− 1

∣∣∣∣
≤ 1

N − 1

[
2 sup

(z,z′)∈X2

ψθω(z)

ψθω(z′)
− 1

]

· sup
z∈XN

(
Mω

(
ψθω

)
(z)

Mω(hθw)(z)

)
sup

(z,z′)∈X2

(
hθω(z)

ψθω(z)
− hθω(z′)

ψθω(z′)

)
where λω is as in Proposition 2.
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Proof of Proposition 5. Let us choose the initial distribution µ0 to
be the eigen-measure ηω defined in Proposition 2. Iterative application of the
equation ηωQω = λωη

θω shows that

Eω

n−1∏
p=0

Gθ
pω(Xp)

 =
n−1∏
p=0

λθpω,

and then by Lemma 11, Proposition 4, (S.66) and the property that θ pre-
serves P, we have

ΥN (M̃) = lim
n→∞

1

n
logSωn(1)(x)− 2

n

n−1∑
p=0

log λθpω,

≤ log

[
P− ess supω

(
sup
x∈X

Sω(1)(x)

λ2
ω

)]
,

where the limit holds for P almost all ω. Applying Lemma 12, and notic-
ing supz∈XN Mω(ψθω)(z)/Mω(hθw)(z) ≤ supx∈X ψ

θω(x)/hθω(x), the proof
is complete.

Proof of Lemma 12. At various places in the proof we shall write, for
some suitable function ϕ, osc(ϕ) := supx,y |ϕ(x)− ϕ(y)|.

The starting point is the expression:

Sω(1)(x)

λ2
ω

− 1 =
Gω(x)2

λ2
ωh

ω(x)2
Mω(ψθω)(x)2

ˆ
XN

M̃ω(x, dz)
hθω(z)2

ψθω(z)2
− 1

=
Mω(ψθω)(x)Gω(x)2

hω(x)2λ2
ω

ˆ
XN

Mω(x, dz)
hθω(z)2

ψθω(z)
− 1

=
Mω(ψθω)(x)

Mω(hθw)(x)2

ˆ
XN

Mω(x, dz)
hθω(z)2

ψθω(z)
− 1.

=

ˆ
XN

Mω(x, dz)hθω(z)

Mω(hθw)(x)

[
Mω(ψθω)(x)

Mω(hθw)(x)

hθω(z)

ψθω(z)
− 1

]
(S.67)

=

ˆ
XN

M̃ω(x, dz)

[
dM̃ω

opt(x, ·)
dM̃ω(x, ·)

(z)− 1

]2

.

where Mω(hθw) = λωh
w/Gω has been used, and the final equality, included

only for purposes of exposition, is valid with the Markov kernel M̃ω
opt(x, dz) =

Mω(x, dz)hθω(z)/Mω(hθw)(x).
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The main strategy of the proof is to introduce, for each ω ∈ Ω, two
judiciously chosen Markov kernels, Kω : XN × X⊗2 → [0, 1] and Lω : XN ×
X⊗2 → [0, 1] such that we can write

ˆ
XN

Mω(x, dz)hθω(z)

Mω(hθw)(x)

[
Mω(ψθω)(x)

Mω(hθw)(x)

hθω(z)

ψθω(z)
− 1

]

=

ˆ
X2

[
Kω(x, dz1:2)− Lω(x, dz1:2)

]
fω(x, z2),(S.68)

where

fω : (x, z) ∈ XN × X 7−→ Mω(ψθω)(x)

Mω(hθw)(x)

hθω(z)

ψθω(z)
− 1 ∈ R,(S.69)

and such that we can control the magnitude of (S.68) using an estimate of
‖Kω(x, ·)− Lω(x, ·)‖tv. Now for any ω and x, by definition Mω(x, ·) is a
symmetric measure. For 1 ≤ q ≤ N and x ∈ XN , we shall write Mω

(q)(x, ·)
for the marginal of Mω(x, ·) over the first q ≤ N coordinates.

The first Markov kernel we introduce is:

Kω(x, dz1:2) :=
N∑
k=1

N∑
l=1

ˆ
XN

1

N

Mω(x, dz)hθω(zk)

Mω(hθw)(x)

ψθω(zl)∑N
j=1 ψ

θω(zj)
δ(zk,zl)(dz

1:2),

where here, and henceforth, z = (z1, . . . , zN ) ∈ XN. Elementary manipula-
tions then yield

ˆ
X2

Kω(x, dz1:2)fω(x, z2)

=

ˆ
XN

Mω(x, dz)hθω(z)

Mω(hθw)(x)

[
Mω(ψθω)(x)

Mω(hθw)(x)

hθω(z)

ψθω(z)
− 1

]
,

where fω is as in (S.69).
The second Markov kernel is:

Lω(x, dz1:2) :=
Mω

(2)(x, dz
1:2)hθω(z1)ψθω(z2)

Mω(hθw)(x)Mω(ψθω)(x)
,

so that then ˆ
X2

Lω(x, dz1:2)fω(x, z2) = 0.

Furthermore, we have:
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Kω(x, dz1:2)

=
1

N

N∑
k=1

ˆ
XN

Mω(x, dz)hθω(zk)

Mω(hθw)(x)

ψθω(zk)∑N
j=1 ψ

θω(zj)
δ(zk,zk)(dz

1:2)

+

[(
1− 1

N

)Mω
(2)(x, dz

1:2)hθω(z1)ψθω(z2)

Mω(hθw)(x)

·
ˆ
XN−2

Mω
(N−2)(x, dz

1:N−2)

N−1
[
ψθω(z1) + ψθω(z2) +

∑N−2
j=1 ψθω(zj)

]


≥
(

1− 1

N

)Mω
(2)(x, dz

1:2)hθω(z1)ψθω(z2)

Mω(hθw)(x)

·
ˆ
XN−2

Mω
(N−2)(x, dz

1:N−2)
[
N−1ψ̄(z1, z2, z1:N−2)

]−1(S.70)

where in the final display ψ̄(z1, z2, z1:N−2) = ψθω(z1)+ψθω(z2)+
∑N−2

j=1 ψθω(zj).
Then, noting that Lω(x, ·) � Kω(x, ·), for Mω

(2)(x, ·) − almost all z1:2 ∈
X2,

dLω(x, ·)
dKω(x, ·)

(z1:2)

≤
(

1− 1

N

)−1 1

Mω(ψθω)(x)

1

N

·

ˆ Mω
(N−2)(x, dz

1:N−2))

ψθω(z1) + ψθω(z2) +
N−2∑
j=1

ψθω(zj)

−1−1

≤
(

1− 1

N

)−1 1

Mω(ψθω)(x)

1

N

·

ψθω(z1) + ψθω(z2) +

ˆ N−2∑
j=1

ψθω(zj)Mω
(N−2)(x, dz

1:N−2))


= 1 +

1

N − 1

[
ψθω(z1) + ψθω(z2)

Mω(ψθω)(x)
− 1

]
,

where the first inequality uses (S.70) and the second is due to Jensen’s in-
equality.
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Since Lω(x, ·)� Kω(x, ·), we then have, with the set

A = {z1:2 ∈ X2 :
dLω(x, ·)
dKω(x, ·)

(z1:2) ≥ 1},

‖Lω(x, ·)−Kω(x, ·)‖tv =

ˆ
A

[
dLω(x, ·)
dKω(x, ·)

(z1:2)− 1

]
Kω(x, dz1:2)

≤
ˆ
A

1

N − 1

[
2 supz ψ

θω(z)

Mω(ψθω)(x)
− 1

]
Kω(x, dz1:2).

≤ 1

N − 1

[
2 supz ψ

θω(z)

Mω(ψθω)(x)
− 1

]
.(S.71)

The tv-norm can also be expressed as

‖Kω(x, ·)− Lω(x, ·)‖tv

= sup
{ϕ:osc(ϕ)≤1}

∣∣∣∣ˆ [Kω(x, dz1:2)− Lω(x, dz1:2)
]
ϕ(z1:2)

∣∣∣∣
and combining this with (S.67), (S.68) and (S.71) we obtain∣∣∣∣Sω(1)(x)

λ2
ω

− 1

∣∣∣∣
=

∣∣∣∣ˆ [Kω(x, dz1:2)− Lω(x, dz1:2)
]
fω(x, z2)

∣∣∣∣
≤ 1

N − 1

[
2 sup
z,z′∈X

ψθω(z)

ψθω(z′)
− 1

]
osc (fω(x, ·))

≤ 1

N − 1

[
2 sup
z,z′∈X

ψθω(z)

ψθω(z′)
− 1

]
sup
x

(
Mω(ψθω)(x)

Mω(hθw)(x)

)
osc
(
hθω

ψθω

)
.
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