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Section 1:

Introduction to group testing

O. Johnson maotj@bristol.ac.uk (Bristol) An introduction to group testing 24th–25th July 2023 3 / 88



Toxic talk treat teaser

Professor J is talking to students at Shedfield University.

7 plates of delicious post-lecture snacks.

Professor J’s evil nemesis, Dr X, has poisoned one of them.

Whoever eats that snack will fall asleep for 24 hours.

How to find the poisoned food, as efficiently as possible?

Can pay any PhD student £10 to eat what we tell them.
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How to solve the mystery?

One idea: pay 7 PhD students to eat one snack each (‘individual
testing’)

One will fall asleep.

Will cost us £70.

Better idea: use the following strategy (only costs £30).

Olives Nuts Bread Crisps Dip Cheese Jelly
sticks straws

PhD 1 ✓ × ✓ × ✓ × ✓

PhD 2 ✓ ✓ × × ✓ ✓ ×

PhD 3 ✓ ✓ ✓ ✓ × × ×
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Outcome

Olives Nuts Bread Crisps Dip Cheese Jelly
sticks straws

PhD 1 ✓ × ✓ × ✓ × ✓

PhD 2 ✓ ✓ × × ✓ ✓ ×

PhD 3 ✓ ✓ ✓ ✓ × × ×

Strategy based on binary representation?

Solution: breadsticks were poisoned.

This strategy would always work.

But what if more than one snack poisoned?
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More interesting problems

What if you had 500 snacks, with 10 poisoned?

How many students would we need?

What should we get them to eat?

How should we find the poisoned snacks?

What if some students are immune to poison . . . or fall asleep anyway?

This is group testing.
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What is group testing?

It’s a way of efficiently testing a large population for a rare disease.

It’s a toy model that throws up some interesting combinatorial
problems.

But also gets used in a variety of applied fields.

Sometimes referred to as ‘pooled testing’.

Will give an introduction without too many pre-requisites.

If you want more detail, see our survey: Foundations and Trends in
Communications and Information Theory Vol. 15, No. 3–4, pp
196–392, 2019 (Joint with Matt Aldridge, Jon Scarlett)

Free version at arxiv:1902.06002.
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Section 2:

Shannon and information theory
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Claude Shannon (1916–2001)
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It’s rare to talk about maths and science as
opportunities to revel in discovery. We speak,
instead about their practical benefits – to so-
ciety, the economy, our prospects for employ-
ment. STEM courses are the means to job
security, not joy. Studying them becomes the
academic equivalent of eating your vegeta-
bles – something valuable, and state sanc-
tioned, but vaguely distasteful.

– from A Mind at Play (2017) by Jimmy Soni and Rob Goodman
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Shannon’s 1948 paper

One of the most influential scientific papers ever.

110k citations and counting.

Impact comparable with e.g. Einstein’s work on relativity?

Recommended movie The Bit Player (on YouTube).
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What did Shannon do?

from A Mathematical Theory of Communication (1948)

Boole had introduced binary arithmetic (0s and 1s).

Shannon realised any information can be represented as series of
these ‘bits’.

Understood we can compress information down to a limit (entropy).

Think about “amount of stuff” (uncertainty) a message contains.

Remove redundancy.

Key Idea: Predictable messages are compressible.
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We all live in Shannon’s world

Phones

Hard Drives

Broadband
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Information
Shannon realised the key quantity is information.

Definition

Consider an event A which happens with probability p(A).

If it happens, amount of information we gain from that is:

I (A) = − log p(A).

Take log to base 2, then unit is bits.

An unlikely event occurring brings more information.

Logs play nicely with independence: given independent events A, B:

p(A ∩ B) = p(A)p(B).

Means that information adds up from independent events:

I (A ∩ B) = I (A) + I (B).

O. Johnson maotj@bristol.ac.uk (Bristol) An introduction to group testing 24th–25th July 2023 15 / 88



Entropy definition

Definition (Shannon 1948)

Suppose we have outcomes 1, . . . , n which occur with probability
p = (p1, . . . , pn) respectively. Then the entropy

H(p) = −
n∑

i=1

pi log pi .

Amount of information we expect to gain from source of randomness.
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Coin toss example

Fair coin:

Heads with probability 0.5 =⇒ See Heads, gain 1 bit,
Tails with probability 0.5 =⇒ See Tails, gain 1 bit.

Overall expect to gain H = 0.5× 1 + 0.5× 1 = 1 bit.

Biased coin:

Heads with probability 0.11 =⇒ See Heads, gain 3.184 bit,
Tails with probability 0.89 =⇒ See Tails, gain 0.168 bit.

Overall expect to gain H = 0.11× 3.184 + 0.89× 0.168 = 0.5 bit.
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Maximising entropy

More unpredictable means bigger entropy.

Can show that if n outcomes possible:
1 in general: 0 ≤ H(p) ≤ log n.
2 entropy is maximised iff pi ≡ 1/n (uniform). In this case H(p) = log n.
3 entropy is maximised iff pj ≡ 1 for some j , pi = 0 else (deterministic).

In this case H(p) = 0.

Challenge: can you prove this?
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Channels and noise

Shannon also modelled noisy (imperfect) ‘communications channels’.

Imagine we send message X = (0 0 1 0 1 0 0 1 . . .)

Measurements inaccurate, environment has interference etc.

Through noisy channel receive Y = (0 1 1 0 1 0 0 0 . . .) ̸= X

Could model this as Y = X ⊕Z , where Z is noise (randomly flip bits).

If Z IID Bernoulli(p), this is binary symmetric channel.
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Coping with noise

Shannon realised noise needn’t be a problem.

Can make messages longer (deliberately introduce redundancy).

e.g. Naively just repeat message 3 times – call this ‘rate 1/3’.

Even with some errors know what was (probably) sent.

In fact, better strategies available.

In general rate is ‘proportion of bits that are message’.

How big can rate be?
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Shannon capacity

Shannon introduced ‘capacity’ C of a channel, gave general formula.

Think about “width of a pipe”.

Roughly speaking:
1 [Achievability] For any rate < C , there is a strategy so the message

gets through.
2 [Converse] For any rate > C , no such strategy exists.

Key Idea: Some problems can’t be solved.
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Example: Binary symmetric channel

In some cases can explicitly calculate the capacity.

‘Memoryless’ case relatively straightforward.

Recall binary symmetric channel (bits independently flipped with
probability p)

Capacity

C = 1− h(p) = 1− (−p log2 p − (1− p) log2(1− p)) .

What’s the worst case?

How does this relate to one-time pad?
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Section 3:

Adaptive group testing algorithms
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Early history of the group testing problem

1942/3, US wanted to test all men joining army for syphilis.

Tests not cheap, so overall potentially very expensive.

Condition rare, so test outcomes known with high probability.

Idea: pool blood from a group of people, test it together.

If syphilis present in any blood sample, test outcome is positive.

If no syphilis present, test outcome is negative.

Obviously an idealization.

Call this standard noiseless group testing.
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Variations on the model

Can make assumptions more realistic:

Binary vs non-binary outcomes

Guaranteed (‘zero error’) vs high probability (‘small error’) recovery

Partial vs full recovery

Noiseless vs noisy

Number of defectives known vs unknown?

Fixed number of defectives vs defective with fixed probability (or e.g.
Markov structure)
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Notation

Refer to population as ‘items’ (say N of them).

Refer to infected people as ‘defective’ (say K ≪ N of them).

Sometimes refer to defective set K (collection of infected people).

Often write K̂ for estimate of defective set produced by particular
algorithm.

Define error probability P(err) = P(K̂ ̸= K).

Do T tests, hope to have low P(err) (high P(suc)).
Think about N → ∞:

1 [Very sparse regime:] K is constant (or bounded as K = O(1))
2 [Sparse regime:] K scales sublinearly as K ∼ Nα for some sparsity

parameter α ∈ [0, 1).
3 [Linear regime:] K scales linearly as K ∼ βN for β ∈ (0, 1).

Sparse regime turns out to be mathematically the most interesting.

Linear regime perhaps easiest to motivate, but mathematically not
interesting (individual testing generally wins).
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Dorfman testing

Simplest strategies are adaptive (choice of tests depends on results of
previous tests).

Algorithm (Dorfman testing)

Dorfman suggested two stage strategy:

1 Split large group of people into pools, test each pool together.

2 If negative, know everyone is disease-free.

3 If positive, suggested retesting individually.

Basic strategy for COVID-19 pooled testing.

At low prevalence can save many tests.
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Run-time of Dorfman testing (see Feller Section IX.9)

Suppose we split N items into ℓ pools of size N/ℓ.

Procedure requires at most

T = ℓ+ K
N

ℓ
tests.

Differentiating w.r.t. ℓ, optimal pool size satisfies 1− KN/ℓ2 = 0.

That is, the best choice ℓ =
√
KN.

Hence Dorfman testing needs at most 2
√
KN tests.

Can we do better though?
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Better adaptive testing

With large initial pools can be inefficient to retest individually.

Binary search strategy is better.

Hwang’s algorithm (JASA 1972) essentially optimal in terms of
number of tests.
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Binary splitting algorithm (Sobel and Groll)

Algorithm (Binary splitting)

Given a set A:

1 Initialize the algorithm with set A. Perform a single test containing
every item in A.

2 If the preceding test is negative, A contains no defective items, and
we halt. If the test is positive, continue.

3 If A consists of a single item, then that item is defective, and we halt.
Otherwise, pick half of the items in A, and call this set B. Perform a
single test of the pool B.

4 If the test is positive, set A := B. If the test is negative, set
A := A \ B. Return to Step 3.

This is guaranteed to find one defective item in ⌈log2 |A|⌉ tests, if there is
one.
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Binary splitting performance

Theorem

We can find all K defectives in a set of N items by repeated rounds of
binary splitting, using a total of K log2N + O(K ) adaptive tests, even
when K is unknown.

Proof.

Each round finds 1 defective. At the end of each round we can test the
remaining items to see if there is another defective left.

O. Johnson maotj@bristol.ac.uk (Bristol) An introduction to group testing 24th–25th July 2023 31 / 88



Hwang’s algorithm

Algorithm

Divide the N items into K subsets of size N/K (rounding if necessary),
and apply binary splitting to each subset in turn.

This will find the defective set with certainty using K log2(N/K ) + O(K )
adaptive tests.
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Magic number
This performance is close to the ‘magic number’ of T = log2

(N
K

)
.

For K ≪ N:

log2

(
N

K

)
∼ K log2(N/K ).

Argument: if we want an error probability of exactly zero, a simple
counting argument based on the pigeonhole principle reveals that we
require T ≥ log2

(N
K

)
.

There are only 2T combinations of test results, but there are
(N
K

)
possible defective sets that each must give a different set of results.

Theorem (BJA, ISIT13)

Choose defective set uniformly from
(N
K

)
sets of size K . For adaptive or

non-adaptive standard noiseless group testing, any test design and any
algorithm:

P(suc) ≤ 2T(N
K

) .
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Drawback of adaptive testing

However, binary search can take many rounds.

For COVID this could be close to generation time.

Trade-off between tests saved and value of each one.

PCR testing is parallel: need to declare whole test strategy in advance.

How well can we do non-adaptively?
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Section 4:

Applications of group testing
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Applications of group testing

Group testing is used in a variety of applied settings.

Specifically (see Section 1.7 of survey): biology, communications,
information technology and data science.

Early applications in industrial process monitoring (quality control).

e.g. Test string of Christmas tree lights
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Applications in biology

Already described applications to finding infection

Works similarly for e.g. screening for cancer, finding rare DNA
sequences.

Sometimes can’t or don’t want to identify infected individuals, only
count.

e.g. mosquitos with malaria, HIV prevalence (privacy questions)

Versions of algorithms specialised to counting defectives (see Section
5.3 of survey)

Key result: if K defectives, each item in test with probability p, test is
positive with probability 1− (1− p)K .

Hence using Bernoulli tests with p(ℓ) = 1− 2−1/ℓ, if K ≫ ℓ then
many more than half the tests positive.

Similarly if K ≪ ℓ then many fewer than half positive.
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Applications in communications

Multiple access channel: several users communicating with single
receiver.

Group testing style protocols (see Wolf)

People broadcast at times when they see fit (think of test matrix)

Three outcomes: idle, success, collision (zero, one, multiple users
sending signal at same time)

Cognitive radio: similar, but frequencies not times

Pick a frequency band to broadcast in, hope it’s not occupied.

Network tomography: infer structure of network by time taken for
packets to go between particular pairs of computers.
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Applications in information technology

File comparison problem: N files, suppose K of them have changed,
want to know which.

In advance can store result of hashes (pseudorandom function) of
subsets of files.

If file changes, so do corresponding hashes. Just like group testing.

Bloom filters: Test whether a given item lies in a special ‘interesting’
set.

Database systems: Want to work out which items in database are
‘hot’ (in high demand).

Similarly, spotting heavy hitters (high-traffic flows) in Internet traffic.
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Applications in data science

Group testing is example of search problem

Similarities to ‘find a counterfeit coin’ problem

In general area of sparse inference (c.f. compressed sensing)

Also classification problems

Crops up in various theoretical computer science problems (pattern
matching, K -junta problem – if function depends on at most K
inputs).

Quantum analogues of group testing exist.
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Section 5:

Non-adaptive group testing algorithms
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Standard non-adaptive noiseless group testing

Outcome Y
1 1 1 1 0 0 0 0 Positive
0 0 0 0 1 1 1 1 Positive
1 1 0 0 0 0 0 0 Negative
0 0 1 0 0 0 0 0 Positive
0 0 0 0 1 1 0 0 Positive
0 0 0 0 1 0 0 0 Positive

Represent pooling strategy via binary test matrix X.

Rows are tests, columns are people or ‘items’.

Put a 1 if item is in test.

Red denotes being defective

Can describe test outcomes as (here
∨

represents max or OR):

yt =
∨
i∈K

xti .

O. Johnson maotj@bristol.ac.uk (Bristol) An introduction to group testing 24th–25th July 2023 42 / 88



In practice

Outcome Y
1 1 1 1 0 0 0 0 Positive
0 0 0 0 1 1 1 1 Positive
1 1 0 0 0 0 0 0 Negative
0 0 1 0 0 0 0 0 Positive
0 0 0 0 1 1 0 0 Positive
0 0 0 0 1 0 0 0 Positive

Want to infer list of defective items (‘defective set’ K)

Want as few tests as possible.

Can separate choice of algorithm and design of matrix.
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Group Testing Algorithms

Will discuss some algorithms that find defective set

Mostly focus on computationally feasible algorithms . . .

. . . with provable performance guarantees.

Infer defective items from test matrix X and outcomes Y only.

Negative test . . . all items in it are non-defective.

Positive test with one item in . . . item is defective.
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Capacity and rate

Definition

Channel coding analogy applies:

In general represent defective set by binary random vector U

Magic number = entropy H(U).

Do T tests.

Rate of algorithm = H(U)/T (bits learned per test).

Hence (for binary outcomes) rate ≤ 1.

Write P(suc) for success probability.
Constant C is (weak) group testing capacity if for any ϵ > 0:

1 [Achievability] there exist algorithms with rate ≥ C − ϵ with
P(suc) → 1,

2 [Weak converse] all algorithms with rate ≥ C + ϵ have P(suc)
bounded away from 1.
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COMP algorithm (Chan, Che, Jaggi, Saligrama 2011)

Algorithm (COMP)

Algorithm has two stages:
1 All items in a negative test are non-defective . . .
2 Mark all remaining items (Possible Defectives) as defective.
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COMP example

1 0 1 0 0 1 0 Negative
1 1 0 1 0 0 1 Positive
1 0 0 0 1 0 0 Negative
0 1 1 0 1 1 0 Positive
1 0 1 1 0 1 0 Positive

First, look at negative tests.

Test 1 is negative, so items 1,3,6 are non-defective.

Test 3 is negative, so items 1,5 are non-defective.

Hence items 2,4,7 are possible defectives (PDs).

COMP algorithm: declare 2,4,7 to be defective.

O. Johnson maotj@bristol.ac.uk (Bristol) An introduction to group testing 24th–25th July 2023 47 / 88



COMP performance

COMP makes no errors in the first stage.

Item labelled as non-defective must indeed be so.

COMP estimate K̂ contains no false negatives.

Can take a long time for all non-defectives to appear in a negative
test.

Works fine, but not really optimal.
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DD algorithm (Aldridge, Baldassini, Johnson 2014)

Algorithm (DD)

Algorithm has three stages (first stage is same as COMP):
1 All items in a negative test are non-defective . . . leaving smaller set of

possible defectives (PDs).
2 Look for positive tests with exactly one PD item in . . . that item must

be defective.
3 Deal with others arbitrarily e.g. mark as non-defective.
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DD example: Stage 2

0 0 0
1 1 1 Positive
0 0 0
1 0 0 Positive
0 1 0 Positive

Restrict to submatrix corresponding to the PD set

Test 4 is positive with one PD item in, so item 2 is defective.

Test 5 is positive with one PD item in, so item 4 is defective.

Up to this point, inference is definitely correct.
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DD example: Stage 3

0 0 0
1 1 1 Positive
0 0 0
1 0 0 Positive
0 1 0 Positive

Don’t know about item 7.

Arbitrarily, make it non-defective (sparsity grounds).

Item 7 masked by defective items (important later).

This is probably the obvious algorithm.

However possible to prove performance bounds.
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SCOMP algorithm

SCOMP is a greedy algorithm which builds on DD.

Algorithm (SCOMP)

1 Initialize K̂ as the estimate K̂DD produced by DD algorithm, and
declare any definitely nondefective items (items appearing in a
negative test) to be nondefective. The other possible defectives are
not yet declared either way.

2 Any positive test is called unexplained if it does not contain any items
from K̂.

3 Add to K̂ the possible defective not in K̂ that is in the most
unexplained tests, and mark the corresponding tests as no longer
unexplained. (Ties may be broken arbitrarily.)

4 Repeat step 2 until no tests remain unexplained. The estimate of the
defective set is K̂.
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SSS algorithm

Another (idealized) algorithm is SSS.

Algorithm (SSS)

Look for Smallest Set L that ‘Satisfies’ all the tests, i.e.

1 Each positive test has at least one member of L,
2 No negative test has any member of L.

Not practically feasible?

(Problem relaxed to reals soluble via linear programming)

But if SSS doesn’t work, why would any other algorithm?

Intuition formalised by Aldridge (IEEE Trans. Inform Theory, 2019)
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SSS example

1 0 1 0 0 1 0 0

1 1 0 1 0 0 1 1

1 0 0 0 1 0 0 0

0 1 1 0 1 1 0 1

1 0 1 1 0 1 0 1

Since we have only n = 7 items, it is, in this small case, practical to
check all 27 = 128 subsets.

It is not difficult to check that the sets {2, 4} and {2, 4, 7} are the
only satisfying sets.

Of these, {2, 4} is the smallest satisfying set.

Can use COMP and DD as pre-processing steps.
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Section 6:

Group testing and COVID
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Group testing in Wuhan
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Group Testing and COVID

Early in pandemic, tests v. scarce, so group testing natural strategy.

Has been applied in practice in various countries.

Much of it has been Dorfman type pooling (e.g. 11 million in 5 days
in Wuhan in May 2020).

As much a regulatory problem as a maths one?

Very extensive literature developed in last few years.

See survey by Aldridge and Ellis.

Need finite blocklength results, not just asymptotic rate.

Maybe isn’t (binary) group testing at all?
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Proof of concept: March 2020

‘A single positive sample can be detected in pools of up to 32 samples’
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Rwanda work: Nature paper October 2020

Hypercube algorithm, practical trials

O. Johnson maotj@bristol.ac.uk (Bristol) An introduction to group testing 24th–25th July 2023 59 / 88



Tapestry pooling

Non adaptive, each sample tested in 3 different pools (Reed–Solomon
design)

Outperforms binary converse bounds due to varying Ct levels – cf
compressed sensing
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Section 7:

Algorithm performance
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Matrix designs

First question is how to choose test strategy (design the text matrix)

Algorithms like COMP and DD should work for any matrix design
given enough tests.

Hope a sensible random matrix performs well on average.

cf random coding, RIP in compressed sensing.

Common strategy in combinatorics – see ‘probabilistic method’.

Though COVID has shown good performance from structured
matrices (finite blocklength problem?)
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Simple matrix designs

Most basic design is Bernoulli(p) – every item in every test
independently with probability p.

This design is relatively easy to analyse.

Number of defective items in each test is ∼ Bin(K , p) ≃ Po(pK ).

So taking p = 1/K implies about 36% of tests are negative.

Hence entropy of outcomes is quite high, tests are informative.

Some items don’t get tested very often which can be a problem.

So constant column-weight matrix can perform better (though harder
to analyse).
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COMP performance

Given a nondefective item, the probability that it appears in a
particular test, and that such a test is negative, is p(1− p)K .

Hence, probability this given nondefective appears in no negative tests
is (1− p(1− p)K )T .

COMP succeeds precisely when every nondefective item appears in a
negative test, so the union bound gives

P(err) = P

(⋃
i∈Kc

{item i does not appear in a negative test}

)

≤ |Kc|
(
1− p(1− p)K

)T
≤ N exp(−Tp(1− p)K ).
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COMP performance (cont.)

Taking p = 1/K meaning that (1− 1/K )K → e−1.

Taking T = (1 + δ)eK lnN means that Tp(1− p)K ∼ (1 + δ) lnN.

Deduce that

P(err) ≤ N exp(−Tp(1− p)K ) ∼ N−δ.

Hence if K ∼ Nα the COMP rate is

H(U)

T
=

log2
(N
K

)
T

=
(1− α)K lnN

T ln 2

=
(1− α)

(1 + δ)e ln 2
∼ 0.531(1− α).
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DD rate

With K defectives, Bernoulli(1/K ) matrix does well:

Theorem (ABJ, IEEE Trans. Inform Theory, 2014)

Using a Bernoulli(1/K ) matrix in the regime K = Nα, the DD algorithm
has P(suc) → 1 when

rate <
1

e ln 2
min

(
1,

1− α

α

)
≃ 0.53min

(
1,

1− α

α

)
.

Constant column weight even better (see Johnson, Aldridge, Scarlett,
IEEE Trans. Inform Theory, 2019).

Improves the 0.53 to 0.69.

i.e. rate 0.69min
(
1, 1−α

α

)
achievable.
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Intuition for DD rate

Assuming that p = 1/K and that T = CeK lnN, expected number of
negative tests is

EM0 = T (1− p)K ∼ Te−1 = CK lnN.

Write G for the (random) number of non-defectives wrongly surviving
COMP step.

Can argue G |M0 = m0 ∼ Bin(N − K , (1− p)m0).

Binomial concentration tells us that M0 is close to its mean with high
probability, so G has

EG ∼ N(1− p)EM0 ∼ N exp(−pEM0) ∼ N1−C .

If C = max{α, 1−α}+ ϵ ≥ 1−α+ ϵ, then deduce EG ≤ Nα−ϵ ≪ K
(since K ∼ Nα).

I.e. number of possible defectives is close to number of true
defectives, so true defectives should not get ‘drowned out’.

O. Johnson maotj@bristol.ac.uk (Bristol) An introduction to group testing 24th–25th July 2023 67 / 88



SCOMP performance

SCOMP is harder to analyse

Greedy, sequential algorithms like this mean you need to keep track of
all the previous stages.

Not many rigorous results.

Believe it should increase success probability.

But Coja-Oghlan et al. show it doesn’t improve the rate.
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Converse results: Bernoulli matrices?

One defective can get masked by other K − 1 defectives.

If so, SSS (and hence any algorithm) will fail.

For Bernoulli matrices, inclusion-exclusion gives probability of this.

Theorem (ABJ, IEEE Trans. Inform Theory, 2014)

Using any Bernoulli matrix in the regime K = Nα, the SSS algorithm has
P(suc) bounded away from 1 when

rate >
1

e ln 2

(
1− α

α

)
≃ 0.53

(
1− α

α

)
.

Hence, although simple, DD is essentially optimal for α > 1/2
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Rate bounds
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Converse results in general

Can provide a similar converse for constant column weight – again,
0.53 improves to 0.69.

In fact this is optimal for all matrix designs.

See Coja-Oghlan, Gebhard, Hahn-Klimroth, Loick COLT 2020.

Also give practical algorithm (under tweaked matrix design) that
matches SSS performance.

Hence they found the capacity of noiseless group testing.
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Section 8:

Testing with noise
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Effect of noise

Unrealistic to imagine noiseless model holds in practice.

Tests will not be perfect, and give measurement errors.

Work in progress to develop corresponding theory for noisy
measurements.

Key is model for noise: different model, different result.

Simplest model: send test outputs through BSC.

Can extend this to independent noise channel with
P(0 → 1) ̸= P(1 → 0).

In practice: dilution/threshold effects?
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Noisy testing notation

Recall that noiseless group testing has outputs

yt =
∨
i∈K

xti

Can consider models where output of test t is (random) function of∨
i∈K xti .

Example (Binary symmetric noise)

In the binary symmetric noise model, the t-th test outcome is given by

Yt =

{∨
i∈K xti with probability 1− ρ

1−
∨

i∈K xti with probability ρ.

This is, each test is flipped independently with probability ρ.
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Noisy testing notation (cont.)

Definition

We define the probability transition function p(· | m, ℓ) such that for a test
containing m items, ℓ of which are defective, for each outcome y ∈ Y we
have

P

(
Yt = y

∣∣∣∣∣
N∑
i=1

Xti = m,
∑
i∈K

Xti = ℓ

)
= p(y | m, ℓ),

independently of all other tests.

Example (Standard noiseless group testing)

p(1 | m, ℓ) = 1 if ℓ ≥ 1, p(0 | m, ℓ) = 0 if ℓ ≥ 1,
p(1 | m, ℓ) = 0 if ℓ = 0, p(0 | m, ℓ) = 1 if ℓ = 0,

independent of m.
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Only defects matter

Many noise models have the following property:

Definition

A noise model satisfies the only defects matter property if the probability
transition function is of the form

p(y | m, ℓ) = p(y | ℓ).
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Noisy model examples – models not equivalent?

Example (Addition (reverse Z -channel) noise - false positives only)

In the addition noise model, the probability transition function is given by

p(1 | m, ℓ) = 1 if ℓ ≥ 1, p(0 | m, ℓ) = 0 if ℓ ≥ 1,
p(1 | m, ℓ) = φ if ℓ = 0, p(0 | m, ℓ) = 1− φ if ℓ = 0,

where φ ∈ (0, 1) is a noise parameter.

Example (Z channel noise - false negatives only)

In the Z channel noise model, the probability transition function is given by

p(1 | m, ℓ) = 1− ϑ if ℓ ≥ 1, p(0 | m, ℓ) = ϑ if ℓ ≥ 1,
p(1 | m, ℓ) = 0 if ℓ = 0, p(0 | m, ℓ) = 1 if ℓ = 0,

where ϑ ∈ (0, 1) is a noise parameter.
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Noisy model examples

Example (Dilution noise)

In the dilution noise model, the probability transition function is given by

p(1 | m, ℓ) = 1− ϑℓ, p(0 | m, ℓ) = ϑℓ, for all ℓ ≥ 0,

where ϑ ∈ (0, 1) is a noise parameter.

Example (Threshold group testing)

In the probabilistic threshold group testing noise model, the probability
transition function is given by

p(1 | m, ℓ) = 1 if ℓ
m ≥ θ, p(0 | m, ℓ) = 0 if ℓ

m ≥ θ,

p(1 | m, ℓ) = 0 if ℓ
m ≤ θ, p(0 | m, ℓ) = 1 if ℓ

m ≤ θ,

p(1 | m, ℓ) = 1
2 if θ < ℓ

m < θ, p(0 | m, ℓ) = 1
2 if θ < ℓ

m < θ ,

where θ ≤ θ are thresholds.
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Noisy results

Fair to say that there isn’t a general theory for noisy channels yet.

Algorithms need to be developed on slightly ad hoc basis.

Performance bounds, tuning parameters similarly ad hoc.

Some ideas pass over though.

Algorithm (Noisy DD)

1 Declare every individual that appears in α∆ or more displayed
negative tests as healthy and remove such individual from every
assigned test.

2 Declare every yet unclassified individual who is now the only
unclassified individual in β∆ or more displayed positive tests as
infected.

3 Declare all remaining individuals as healthy.
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Can give performance bounds
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Noisy COMP vs. DD bounds for the Binary Symmetric Channel

DD p=q=0

COMP p=q=0

DD p=q=0.01

COMP p=q=0.01

DD p=q=0.1

COMP p=q=0.1

from Gebhard, Johnson, Loick and Rolvien, IEEE Transactions IT, 2022
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Some theoretical results

Strengthened form of only defects matter property:

Definition (Noisy defective channel)

If we can express
p(y | m, ℓ) = p(y | I{ℓ ≥ 1}),

where p(y | I{ℓ ≥ 1}) is the transition probability function of a noisy
binary communication channel, then we say that the noisy defective
channel property holds.

Theorem

If the noisy defective channel property holds then the group testing
capacity C is bounded above by Cchan, the Shannon capacity of the
corresponding noisy communication channel p(y | I{ℓ ≥ 1}):

C ≤ Cchan.
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Section 9:

Group testing extensions
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Different defectivity models

Have focused on model where K is chosen uniformly among all sets of
size K (combinatorial prior).

Alternative models exist: e.g. every item defective independently with
same probability p (probabilistic prior).

To make more realistic, could remove independence assumption.

e.g. simulate model with local interactions, infections grow in spatial
clusters.

In theory, makes things easier (magic number lower than if infections
independent).

But some practical questions: group testing within families might
have multiple positives (would prefer 0 or 1).
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Group testing with constraints

Have assumed we can use any test strategy that we like.

In practice, this may not be possible.

For example, medical testing, can perhaps only split a sample into γ
parts, or have at most ρ samples in one test.

Here γ, ρ are bounded, whereas e.g. Bernoulli designs would want to
let these quantities tend to infinity (see Gandikota et al.).

See also model where items correspond to nodes on a graph (e.g.
testing a computer network)

May only allow test pools that correspond to physically allowable
paths in a network (see work of Chergaghchi et al.).
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Finite blocklength

A lot of the theory is in asymptotic regimes: e.g. N → ∞, K ∼ Nα

or K ∼ Nβ, how can T behave?

But in many practical situations we have a finite size problem.

e.g. (PCR testing) T = 96, N = 500, how many defectives can we
find?

Which regime is this (linear or sublinear)?

It shouldn’t really matter – would like universal performance bounds.

Fairly open question . . .
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Linear regime

Mostly focused on the sparse (K = Nα) regime

Some interesting questions in the linear (K = Nβ) regime.

Turns out you can’t beat individual testing for non-adaptive problem
(see Aldridge).

Adaptive testing more interesting.

Binary splitting algorithms work (though get into issues about
rounding set sizes to powers of 2).

For small error probability, results also due to Aldridge.

For zero error probability, individual testing is suboptimal for β < 1/3,
conjectured to be optimal for β ≥ 1/3, known to be optimal for
β > 0.369.
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Linear regime results
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Thank you for listening!
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