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CHAPTER 1

AXIOMS AND FORMAL SYSTEMS

1.1 INTRODUCTION

The great German mathematician DAvID HILBERT (1862-1943) in his address to the second International
Congress of Mathematicians in Paris 1900 placed before the audience a list of the 23 mathematical prob-
lems he considered the most relevant, the most urgent, for the new century to solve. Hilbert had been
a defender of Cantor’s seminal work on on infinite sets, and listed the Continuum Hypothesis as one of
the great unsolved questions of the day. He accordingly placed this question at the head of his list. The
hypothesis is easy to state, and understandable to anyone with the most modest of mathematical educa-
tion: if A is an infinite subset of the real line continuum R, then there is a bijection of A either with IN the
set of natural numbers, or with all of R. Phrased in the terminology that Cantor introduced following
his discovery of the uncountability of the reals and his subsequent work on cardinality the hypothesis
becomes: for any such A, if A is not countable then it has the cardinality of R itself. CH thus asserts that
there is no cardinality that is intermediate between that of N and that of R. If the cardinality of N is
designated wy(or Ry ) and that of the first uncountable cardinal as w;(or ®;) then CH is often written as
“2¥0 = (y” (or 2% = Ry) the point being here is that the real continuum can be identified with the class
of infinite binary sequences N2 and the latter’s cardinality is 2.

Sometimes called the Continuum Problem, Cantor wrestled with this question for the rest of his ca-
reer, without finding a solution. However, in this quest he also founded the subject of Descriptive Set
Theory that seeks to prove results about sets of reals, or functions thereon, according to the complexity
of their description. Such hierarchical bodies of sets were to become very influential in the Russian school
of analysts (SusLIN, LusiN, NovikorE) and the French (LEBESGUE, BOREL, BAIRE). The notion of a hi-
erarchy built up by considering complexity of definition of course also invites methods of mathematical
logic. Descriptive Set Theory has figured greatly in modern set theory, and there is a substantial body of
results on the definable continuum where one tries to establish CH type results not for the whole contin-
uum but just for “definable parts” thereof. Cantor was able to show that closed subsets of R satisfied CH:
they were either countable or could be seen to contain a subset which was of cardinality the continuum.
This allows one to say that then countable unions of closed sets also satisfied the CH. Cantor hoped to
be able to prove CH for increasingly complicated sets of real numbers, and somehow exhaust all subsets
in this way. The analysts listed above made great strides in this new field and were able to show that any
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analytic set satisfied CH. (At the same time they were producing results indicating that such sets were
very “regular”: they were all Lebesgue measurable, had a categorical property defined by Baire and many
other such properties. Borel in particular defined a hierarchy of sets now named after him, which gave
very real substance to Cantor’s efforts to build up a hiearchy of increasing complexity from simple sets.)

However it was clear that although the study of such sets was rewarded with a regular picture of their
properties, this was far from proving anything about all sets. We now know that Cantor was trying to
prove the impossible: the mathematical tools available to him at his day would later be seen to be for-
malisable in Zermelo-Fraenkel set theory with the Axiom of Choice , AC (an axiom system abbreviated
as ZFC). Within this theory it was shown (by (COHEN (1934-2007)) that CH is strictly unprovable. If he
had taken the opposite tack and had thought the CH false, and had attempted to produce a set Aneither
of cardinality that of N nor of R he would have been equally stuck: by a result of Godel within ZFC it
turns out that — CH is strictly unprovable.

It is the aim of this course to give a proof of this latter result of Godel. The method he used was
to look at the cumulative hierarchy V' (which we may take to be the universe of sets of mathematical
discourse) in which all the ZF axioms are seen to be true, and to carve out a special transitive subclass
- the class of constructible sets, abbreviated by the letter L. This L was a proper transitive class of sets (it
contains all ordinals) and it was shown by Godel (i) That any axiom o from ZF was seen to hold in L;
moreover (ii) Both AC and CH held in L. This establishes the unprovability of - CH from the ZF axioms:
L is a structure in which any axioms of ZF used in a purported proof of - CH were true, and in which
CH was true. However a proof of - CH from that axiom set would contradict the fact that rules of first
order logic are sound, that is truth preserving.

In modern terms we should say that Godel constructed the first inner model of set theory: that is,
a transitive class W containing all ordinals, and in which each axiom of ZFC can be shown to be true.
Such models generalising Godel’s construction are much studied by contemporary set theorists, so we
are in fact as interested in the construction as much as (or even more so now) than the actual result.

It is a perhaps a curious fact that such inner models invariably validate the CH but most set theorists
do not see that fact alone as giving much evidence for a solution to the problem: the inner model L and
those generalising it are built very carefully with much attention to detail as to how sets appear in their
construction. Set theorists on the whole tend to feel that there is no reason that these procedures exhaust
all the sets of mathematical discourse: we are building a very smooth, detailed object, but why should
that imply that V is L? Or indeed any other of the later generations of models generalising it?

However it is one of facts we shall have to show about L that in one sense it is “self-constructing”: the
construction of L is a mathematical one; it therefore is done within the axiom system of ZF; but (we shall
assert) L itself satisfies all such axioms; ergo we may run the construction of the constructible hierarchy
within the model L itself (after all it is a universe satisfying all ZF axioms). It will be seen that this process
activated in L picks up all of L itself: in short, the statement “V = L” is valid in L. The conclusion to be
drawn from this is that from the axioms of ZF we cannot prove that there are sets that lie outside L. It
is thus consistent with ZF that V' = L is true! If V = L is true, then there are many consequences for
mathematics: the study of L is now highly developed and many consequences for analysis, algebra,... have
been shown to hold in L whose proof either remains elusive, or else is downright unprovable without
assuming some additional axioms. It is a corollary to the consistency of V = L with ZF, that we cannot
use this method of constructing an inner model to find one in which - CH holds: if it is consistent that
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V = L then it is consistent that L is the only inner model there is, so no construction using the axioms
of ZF alone can possibly produce an inner model of - CH.

We are thus left still in the state of ignorance that Hilbert protested was not the lot of mathematicians
asregards the CH.! Cohen’s proof that CH is not provable from the ZFC axioms does not proceed by using
inner models (we have mentioned reasons why it cannot) but by constructing models of the axioms in
a boolean valued logic: statements there do not have straightforward true/false truth values. In Cohen’s
models, when constructed aright, all axioms of ZF (and sentences provable from them in first order
logic) receive the topmost truth value “1”, and contradictions —o Ao, receive the bottom value “o”. Cohen
constructed such a model in which — CH received a “non-o” truth value in the Boolean algebra, value p
say. Consequently CH is not provable from ZF, else the Boolean model would have to assign the non-
zero p to the inconsistent statement CH A - CH and such is not possible in these models. This literally
taken, says absolutely nothing about sets in the universe V since the model is a sub-universe of V with a
non-classical interpretation. It speaks only about what can or cannot be proven in first order logic from
the axioms of ZFC. ?

There are many results in set theory, in particular in axiomatic systems that enhance ZFC with some
“strong axiom of infinity” that indicate that the CH is actually false (that 2%° = X, often occurs in such
cases). At present this can only be taken as some kind of quasi-empirical evidence and so is a source of
much discussion.

Prerequisites: Cohen’s proof is beyond the scope of this course, but we shall do Godel’s construction
of L in detail. This will involve extending the basic results on ordinal and cardinal numbers and their
arithmetic; we shall have recourse to schemes of ordinal and e-recursion. The reader is assumed familiar
with a development of these topics, as well as with the notion and basic properties of transitive sets.
Although Godel gave a presentation of the constructible hierarchy using a functional hierarchy, with
almost all logic eliminated, (mainly as a way of presenting his results to “straight” mathematicians) we
shall be going the traditional route of defining a “Definability” operator using all the syntactic resources
of a formal language £ and the methods of modern logic. Formal derivability T + o will always mean
that o is derivable from the axioms T in one, or any, system of classical first order calculus familiar to
the reader.

Acknowledgements: these notes are heavily indebted to a number of sources: in particular to RONALD
B. JENSEN : Modelle der Mengenlehre (Springer Lecture Notes in Maths, vol 37,1967), and his subsequent
lecture notes.

1.2 PRELIMINARIES: AXIOMS AND FORMAL SYSTEMS.

We introduce the formal first order language £, and see how we can use class terms expressed in it. We
then give a formulation of the Zermelo-Fraenkel axioms themselves.

'Or any mathematical problem “You can find [the solution to any mathematical problem] by pure reason, for in mathematics
there is no ignorabimus” Hilbert, Lecture delivered to the 2nd International Congress of Mathematicians, Paris 1900.

*This is only one way of interpreting Cohen’s forcing technique. See Kunen [4] Set Theory: An Introduction to Independence
Proofs
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Hilbert in 1900

1.2.1 THE FORMAL LANGUAGE OF ZF SET THEORY; TERMS

ZF set theory is formulated in a formal first order language of predicate logic with axioms for equality.
The components of that language £ = L¢ are:

(i) set variables; v, v1, ..., vy, ... (forn € N)

(ii) two binary predicate symbols: =, &

(iii) logical connectives: Vv, -

(iv) brackets: (,)

(v) an existential quantifier: 3.

The formulae of L are defined inductively in a way familiar for any first order language. We assume
the reader has seen this done for his or herself and do not repeat this here. We assume also that the notion
of free variable (FVbl(y)) and subformula of a formula ¢ as inductively defined over the collection of
all formulae is also familiar. We shall use the notation ¢(y/x) for the formulae ¢ with the free variable
occurrences of the variable x replaced by the variable y. A formula with no free variables is called a
closed formula or a sentence. It is sometimes convenient to augment the language £ with other predicate
symbols A = Ay, A, .. ; if this is done we denote the appropriate language by £ i

We use the binary predicate symbol € as a relation to be interpreted as membership: “vy € v;” will
be interpreted as “vq is a member of v;” efc. 'We often use other letters also to stand in for variables vy:
typically x, y, z, and recalling the convention from ST: «, 3, for ordinals efc. efc. 3 . It is so convenient
to adopt these conventions that we do so immediately even when we write out our basic axioms. Note
that in our statement of the Extensionality Axiom Ax1we also abbreviate “~3vj;—1)” as usual by “Vvy1)”.

Axo (Extensionality)

VxVy(Vz(zex < z€y) < x=y).

*Formally speaking the symbols x, y, e, 3, . . . are not part of £: they have the status of metavariables in the metalanguage; the
latter is the language we use to talk about L. The metalanguage consists of English with a liberal admixture of such metavariables
and other symbols as and when we require them. Some of our metatheoretical arguments require some simple arithmetic, as
when we prove something about formulae or terms by induction. These arguments can all be done with primitive recursive
arithmetic.
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This single axiom expresses the fact that identity of sets is based solely on membership questions
about the two sets.

We have seen that collections, or “classes” based on unguarded specifications within the language £
can lead to trouble; recall Russell’s Paradox: R =4¢ {x | x ¢ x} was a class that could not be considered
to be a set. Likewise V =4 {x | x = x} is not a set. Such collections we called “proper classes”. It
might be thought that this mode of introducing collections or classes is fraught with potential danger,
and although we successfully used these ideas in ST perhaps it would be safer to do without them? In fact
such methods of specifying collections is so useful that instead of being wary of them, we shall embrace
them full heartedly whilst keeping them at a safe distance from our formal language L.

DEFINITION 1.1 (i) A class term is a symbol string of the form {x | ¢} where x is one of the variables vy
and ¢ is a formula of our language.

(ii) A term t is either a variable or a class term.

(iii) The free variables of a term t are given by:

FVbl(t) =4t FVbI(@)\{x} ift ={x | ¢}; FVbl(x) = {x} if x is a variable.

We allow terms to be substituted for variables in atomic formulae x = y and x € y, and for free
variables in general in formulae of £. We thus may write ¢(t/x) for the formula ¢ with instances of x
replaced by ¢. Just as for substitutions of variables in ordinary formulae in first order predicate logic, we
only allow substitutions of terms ¢ into formulae 1) where free variables of ¢ do not become unintention-
ally bound by quantifiers of ¢). Substitutions can always be effected after a suitable change of the bound
variables of 1. A term t with FVbl(t) = & is called a closed term.

A term of the form {x | ¢} is not part of our language L: it is to be understood purely as an abbrevi-
ation. Likewise ¢(t/x) is not part of our language if ¢ is a class term. We understand these abbreviations
as follows:

ye{xlo} is o(y/x);
{xlo)=Az[v} is Vy(o(y/x) — ¥ (y/2))
z={x|¢} is Vy(yez<>ye{x|[o})
{xlo)ef{z]v} is 3y(y={x[o} ri(y/2))
{x[otez is y(yezny={x[¢})

Although class terms appear on both sides of the above, this in fact gives a precise recursive way
of translating a “generalised formula” containing class terms into one that does not. Note that a simple
consequence of the above is that for any x we have x = {y | y € x}. Note in particular that the fourth
line ensures that if we write “s € t” for terms s, t then s must be a set.

We now name certain terms and define some operations on terms. Again these are metatheoretical
operations: we are talking about our language £, and talking about, or manipulating terms, is part of that
meta-talk.

DEFINITION 1.2 (i) V =¢f {x | x = x}; @ =q¢ {x | x # x};
(ii)s St =gs Vx(x €s — x € 1)
(iii))sUt =g {x |x€svxet};snt=g{x|xeEsAxet)
—s=gr {x|x¢shs\t=q {x|xesrx¢t}
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(iv)Us =gt {x|Ty(yesnxey); Ns=g {x|Vy(yes—x€ey)}

WAt tht =g {x|x=tpvx=t,v--Vvx=t,}

(vi) (x, y) =a¢ {{x},{x,y}} (the ordered pair set)

(vii) (x1, X2, ..., Xn) =qf ((X1>-..>Xn-1)>%n) (the ordered n-tuple)

(viii) x x z =q¢ {{u,v) |u€ x Avez} (the Cartesian product of x,z)
2 =ge t x ;" =" x t;

(ix) P(x) =af {y | y S x} (the “power class” of x.)

At the moment the above objects just have the status of syntactic names of certain terms, but we are
going to adopt axioms that will assert that the classes defined are in fact sets. Indeed we shall say “x is a
set” <= 4r“x € V”. In (viii) we have introduced a useful syntactic device: instead of writing

xxz={y|JuIv(uexrvezry=(u,v))}
we have placed the constructed term (u, v) to the left of the |. In general we introduce this abbreviation:
we let {t | o} =4r {z | Ju(z = t A @)} (whose notation is probably more easily understood through the
example above, here i is a list of variables containing all those free in ¢ and ().

Ax1 (Empty Set Axiom) e V.
Ax2 (Pairing Axiom) {x,y}eV.
Ax3 (Union Axiom) Uxe V.

LEMMA 13 te V «—Jy(y=1).

PROOF: (Actually 1.3 is a theorem scheme: for each term ¢ there is alemma corresponding to the definition
of the term ¢.) By our rules on translation 1.2, t € V < Jy(y = t A (x = x)(y/x)) < Iy(y =t A (y =

7)) =y =1). QE.D.
LEMMA 1.4 Axo0-3 prove: xUy € Vi{x,...,x,} € V.

ProOF: By Ax2 {x, y} € V and then by Ax3 U{x, y} € V. And U{x, y} = x U y (by Axo). Repeated
application of Axo-3 shows {xi,...,x,} € V (Exercise). Q.E.D.
There now follow a sequence of definitions of basic notions which we have already seen in ST.

DEFINITION 1.5 Let r be a term. (i) r is arelation <=4 r S V x V
(ii) r is an n-ary relation <=4 r < V".

We write in (i) xry or rxy instead of (x, y) € r and in (ii) rx;---x,, instead of (xi,...,x,) € .

DEFINITION 1.6 Ifr,s are relations and u a term we set:
(i) dom(r) =4¢ {x | Iy(xry)}; ran(r) =4¢ {y | Ix(xry)}; field(r) =4¢ dom(r) U ran(r).
(i) r M u=q¢ {(x,y) | xry Ax € u}.
(iii) r“u =q¢ {y | Ix(x € u AxrYy}.
() 1 =a¢ {{y,x) | xry}.
(v)ros =4 {{x,2) [ Iy(xry A ysz)}.

We may define the unicity quantifier:
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DEFINITION 1.7 lxp <>g4r I2({z} = {x | ¢}).

We now define familiar functional concepts.

DEFINITION 1.8 Let f be a relation.
(i) f is a function (Fun(f)) <=4¢ Vx, ¥, 2(fxy A fxz — y =z) (we write f(x)=y).
(ii) f is an n-ary function<=>g¢ f is a function Adom(f) < V"

(we write f(x1,...,x,) = y instead of f({x1,...,%x4)) = y).
(iii) f : a — b <=4¢ Fun(f) Adom(f) = a Aran(f) < b.
(v)fra—qpybe=qfra—0bn Fun( ™) (“f is an injection or (1-1)”).
(V) f:a—>onto b<=>q f:a—> bAran(f) = b (“f is onto”).
(vi) fra<—b<=yg f:a— (1) DA f:a—ono b (“f is a bijection”).

DEFINITION 1.9 (i) *b =4 {f | f : a —> b} the class of all functions from a to b.
(ii) Let f be a function such that & ¢ ran(f). Then the generalised cartesian product is

[1f =ar {h | Fun(h) A dom(h) = dom(f) A Vx € dom(f)(h(x) € f(x))}.

Note that [T f consists of choice functions for ran( f): each h “chooses” an element from each appropriate
set.

1.2.2 THE ZERMELO-FRAENKEL AXIOMS

The axioms of ZFC (Zermelo-Fraenkel with Choice) then are the following:
Axo (Extensionality) YxVy(Vz(zex <> zey) < x=y)
Ax1 (Empty Set) o€V
Ax2 (Pairing Axiom) {x,y}eV
Ax3 (Union Axiom) UxeV
Ax4 (Foundation Scheme) Foreveryterma:a+ @ — Ix(x€arxna=Q)
Axs (Separation Scheme) For everyterma: xnaeV
Ax6 (Replacement Scheme) For every term f: Fun(f) — f“x € V.
Ax7 (Infinity Axiom) 3x(BexAVy(yex — yu{y}ex))
Ax8 (PowerSet Axiom) P(x)eV
Axg (Axiom of Choice) Fun(f)Aadom(f)e VAgé¢ran(f) —If+@.

NoTE 1.10 (i) ZF comprises Axo-8; Sometimes Ax6 is replaced by:

Ax6* (Collection Scheme) For every term r: Vxr“x # @ — Vw3t(VYu € wiv € t({u,v) € 1).

The Axiom of Choice is equivalent over ZF to the Wellordering Principle:

Axg*(Wellordering Principle) Yx3r(Rel(r) A (x,r) is a wellordering).

There are two useful subsystems. ZF with Replacement dropped is called Z for Zermelo. ZF~ is
Axo0-5,6%,7; ZFC™ is ZF~ with Axg*.

(ii) ZF is an infinite list of axioms: Ax4,5,6, (and 6*) are schemes: there is one axiom for each formula
defining the mentioned terms a and f (or r in 6*). We shall later prove that it cannot be replaced by a
finite list with the same consequences.
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(iii) The statements differ in their formulation from ST: Foundation was there stated just for sets, and
was a single axiom; Separation was given its synonym “Comprehension”: and was stated as follows:

(The set of elements of a set z satisfying some formula, form a set.)

For each formula o(vy, . .. vni2) (with free variables amongst those shown),

VzVwy .. Vw,dyWx(x e y o> x€zn [z, x,wi,...,w,]).

The formulation above shows how powerful and succinct a formulation we have if we allow ourselves
to use terms. Likewise Replacement there had a much longer (but equivalent) formulation.

(iv) The axioms are of different kinds: one group asserts that simple operations on sets leads to further
sets (such as Union, Pairing). Another group consists of set existence axioms (Empty Set, Separation).
Others are of “delimiting size” nature: the power class P(x) may be thought to be a large incoherent
collection of all subsets of x. The power set axiom claims that this is not a large collection but merely
another set. The Replacement Scheme assures us that functions however defined cannot create a non-set
from a set. It thus also in effect delimits size. This axiom is due to Fraenkel. The term ‘Replacement’
comes from the idea that if one has a set, and a method (or function) for replacing each member of that
set by a different set, then the resulting object is also a set. Zermelo's achievement was to recognize (a)
the utlility, if not the necessity, of formulating a formal set of axioms for the new subject of set theory
- which he then enunciated; (b) that the Separation scheme was a method to avoid paradoxes of the
Russell/Burali-Forti kind. Zermelo essentially wrote down the system Z although Separation was given
a second order formulation. Later Skolem gave the familiar first order formulation equivalent to the
above. Again the Axiom of Choice asserts the existence of a rather specialised set: a choice function for a
collection of sets. In ST we adopted the axiom that “Every set can be wellordered” for AC (on pedagogical
grounds). We saw there that this principle was equivalent to the existence of choice functions.

(v) One may ask simply: Are these right axioms? There are indeed other formulations of set theory,
some involving class terms more directly as further objects. Our point of view is that the V hierarchy
comprises all that is needed for mathematics, further we have a somewhat less developed intuition about
what such “objects” these free-standing class terms could possible be: if they are attempts to continue
the V-hierarchy even further, by using the power class operation “just one more time” this would seem
to miss the point. Since we have no need for classes as some other kind of separate entities of a different
sort, we avoid them.

One formulation of set theory (which Godel used - and is named von Neumann-Godel-Bernays)
does however include class variables in the object language but disallows quantification over classes: it
can be shown that this system is conservative over ZFC: that is, it proves no more theorems about sets
than ZFC itself, and so is treated by set theorists virtually as a harmless variant of ZFC.

We use a first order formulation of set theory (meaning that quantifiers 3x ,Vx quantify only over
our objects of interest, namely sets. A second order formulation ZF? is possible, where, as in any second
order language, we are allowed quantifiers such as 3P, VP that range over predicates P of sets. There are
two points that could be made here. Firstly, as a predicate P is extensionally a collection of sets itself,
even to understand the meaning of a second order sentence involving say a quantifier VP is to already
claim an understanding about the universe V. And it is V itself that we are trying to understand in the
first place. As in all areas of mathematics, first order formulations of theories are the most successful: we
may not know of a first order sentence o whether it is true or not, but we do know precisely what it means
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for it to be true. Secondly the tools of mathematical logic are the most useful in the setting of first order
logic. The deductive system associated to ZF* lacks a Completeness Theorem, and hence Compactness
and Lowenheim-Skolem Theorem:s fail. In ZF? it is possible to argue that since the only possible models
of ZF? are V itself and possible initial segments of V of the form V,; (as Zermelo demonstrated), then
ZF? shows that, e.g. CH has a definite truth value: namely that obtained by inspecting that level of the
V-hierarchy where all subsets of N live: V,,;;. However as to what that truth value is, we have no idea.
Hence we are no further forward! Indeed second order logic and ZF* seems not to give us any tangible
information about the universe of sets that we do not obtain from the first order formulations of ZFC
and its extensions.

(vi) Some formulations or viewpoints concerning the mathematical hierarchy of sets take as the base
of that hierarchy not the empty set (“Vy = @”) but rather a collection of “atoms” or base objects: thus
instead we take Vo[U] = U where U is this collection of Urelemente and we build our hierarchy by
iterating the power set operation from this point onwards. This may be of presentational benefit, but, at
least if U is a set (meaning that it has a cardinality), then this is of limited foundational interest to the
pure set theorist.* The reason being, that, if |U| = & say, then we may build an isomorphic copy of V[ U]
inside V, by starting with some « sized set or structure which is an appropriate copy of U. Hence again
to study V is to study all such universes V[U], and we may limit our discussion to universes of “pure
sets” without additional atomic elements.

1.3 TRANSFINITE RECURSION

We recall the definitions of transitive set.

DEFINITION 1.11 X is transitive (Trans(x)) if Vz € x(z < x).

We have the following scheme of e-induction:
LEMMA 1.12 (scheme of e-induction) For any formula p:
Vx[Vy € xp(y) » ¢(x)] = Vxp(x).
This principle was used in the proof of:

THEOREM 1.13 (Transfinite Recursion along €)
IfGisatermand G:V x V — V then thereis a term F givingF: V -V

() VxF(x)=G(x,F | x).

Moreover the term defines a unique function, in that if ' is any other term satisfying () then, VxF(x) =
F'(x).

“This is not to say that models with atoms are without utility: formulations of ZFwith atoms, “ZFA”, are of great use for
studying universes in which the Axiom of Choice fails. The point being made is that we cannot get any additional knowledge
about foundational questions by using them.
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Note: (i) Usually one speaks instead of G, F being defined by formulae ¢g, ¢F etc., but we have
replaced that with talk about terms. In the proof of Theorem 1.13 we, in effect, saw how to build up from
the formula ¢g the formula @g. This is in essence a Theorem Scheme: it is one theorem for each term G.
The ‘canonical’ procedure for building the formula ¢F given ¢ now becomes a method for building a
canonical term defining F from one defining G.

(ii) Often one first proves a transfinite recursion theorem along On: as the ordering relation amongst
ordinals is the e-relation, we can view the latter theorem as simply a special case of Theorem 1.13. From
these we proved the existence of functions giving the arithmetical operations on ordinals, and their basic
properties. It is often useful to have the notion of a wellfounded relation in general:

DEFINITION 1.14 If R is relation on a class A then we say R is wellfounded iff for any z, if zn A # & then
there is y € z N A which is R-minimal (that is Vx € z 0 A(-=xRy)).

An important example of a definition by transfinite recursion along € is that of the transitive closure
operation TC.

DEFINITION 1.15 TC is that class term given by Theorem 1.13 satisfying

VxTC(x) =x U| J{TC(y) | y € x}

ExERCISE 1.1 In ST TC was given an alternative (but equivalent) definition, and was shown to satisfy the definition
of TC above. Rework this by showing, using the above definition, that: (i) x € y — TC(x) < TC(y). (ii) Show

that TC(x) is the smallest transitive set ¢ satisfying x < . [Hint: Use €-recursion.] (Thus if Trans(¢) A x <

t — TC(x) < t.) Moreover Trans(x) «<— TC(x) = x. (iii) Define by recursion on w: %x = x;U""'x =

UU" x); te(x) = U{U"(x) | n < w}. Show that tc(x) = TC(x).
DEFINITION 1.16 For x & On, x € V, sup(x) =4y the least ordinal -y so that 3 € x - 3 < .

In particular if x has no largest element, then sup(x) = U x.

DEFINITION 1.17 (The rank function p) The rank function is defined by transfinite recursion on €:
p(x) =sup{p(y) +1]y € x}.

EXERCISE 1.2 Show that: (i) the relation xRy «— x € TC(y) is wellfounded; (ii) Vx(p(x) = p(TC(x)));

(iii) Trans(x) — p“x € On.

DEFINITION 1.18 (The Cumulative Hierarchy) The V,, function is defined by transfinite recursion on On
as: Vo, ={x | p(x) < a}.

In ST we defined the V,, hierarchy by iterating the power set operation. The previous definition
does not use AxPower and together with the next exercise shows that we can define the latter hierarchy
without it.

EXERcISE 1.3 Define by recursion Ry = &, Ry+1 = P(R,) and for Lim(A), Ry = Ua<y Ro. Show by transfinite
induction that for any o € On that R,, = V.
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1.4 RELATIVISATION OF TERMS AND FORMULAE

We may classify concepts according to the syntactic complexity of their definitions. Accordingly we then
first classify formulae of our language £ as follows.

Bounded quantifiers: Vv; € vj1, 3v; € vj1) abbreviate: Yvi(v; € vj —> ¥) and Jv;(v; € Vi A )
respectively.

The Levy hierarchy: We stratify formulae according to their complexity by counting alternations of
quantifiers. We first define the Aj-formulae of £ inductively:

() vievjandv; =v;are Ay.)

(i) If @, ¥ are Ag, then so are —p and (o V ).

(iii) If o is Ag so is Iv; € vjip.

Having defined A as those without unbounded quantifiers, we then proceed, first setting £y = Iy =
A():

(i) If p is I1,,_; then Jvj---3v; p is Z,,.

(ii) If p is Z,, then - is I1,,.

One should note that if a formula is classified as X, then it is logically equivalent to a Z,, formula
(or to a IT,,-formula) for any m > n, by the trivial process of adding dummy quantifiers at the front.
Of particular interest are existential formulae: those that are ¥1: Jdx¢ with ¢ Ag. Such assert a simple
set existence statement, and universal formulae: these are II;: Vx¢ whose truth requires, prima facie,
an inspection over all sets (although in practice we shall see that by the Downward Lowenheim Skolem
Theorem, we may sometimes restrict that apparent unbounded search). Occasionally, for T a finite set
of formulae, we write /A T for the single formula that is their conjunction.

Some terms will be seen to be definite in that they define the same object in whatever world the
definition takes place. This may sound obscure at the moment, but one can perhaps see that the definition
of the empty set provides a definite object & which is “constant” across possible universes where it might
be defined; likewise given any structure U with sets x, y as members and in which the Pairing Axiom
holds, then the term ¢ = {u | u = x Vv u = y} defines the same object in U as in any other structure
satisfying these conditions. This is in contradistinction to a term such as ¢t = {y | y € x} which defines
the power set of a set x: although the defining formula “vy < v,” is extremely simple, which subsets of
x get picked up when we apply the definition, depends on which structure U we apply the definition in.
It is thus not a definite term. We shall need to investigate this and give a criterion for when terms are
definite. This leads on to the important notion of absoluteness.

We shall be interested in looking at models (M, E) of ZFC + @ for various statements ®@. For this to
be really meaningful we shall want that certain terms and notions defined by certain formulae that are
interpreted in the model (M, E) mean the same thing as when that term or formula is applied in (V, €):
this is the notion of “absoluteness” Certain (simple) objects, such as @, w and the like, are defined by the
same syntactic terms evaluated in V or in M. Itis possible to think about models where the interpretation
of the € symbol is something other than the usual set membership relation. Such models are called non-
standard models, and do not feature highly in this course (or in the wider development of set theory).
We shall be most interested in transitive sets or classes W and where E is taken to be the genuine set
membership relation €. Such an (W, €) is called a transitive e-model. However terms can have different
interpretations even when considered in V and in a standard transitive model (W, ). We first have to
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say what it means for an axiom or sentence ¢ to “hold” or “to be interpreted” in such a structure. We
build up a definition by recursion on the structure of ¢ by straightforwardly restricting quantifiers to the
new putative “universe” W.

DEFINITION 1.19 Let W be a term. We define by recursion on complexity of formulae ¢ of L the relativi-
sation of p to W, p":

(i) (xe )V = (x€y); (x=p)" =4t (x=y);

(ii) (=p)" =4r ~(¥") ;

(iii) (v x) " =g (P v XV ;

(iv) Bxp)W =4¢ Ix € Wb if x is not in FVbI(W) ; otherwise this is undefined.

Notice that we can always ensure that ()" is defined by replacing the bound variables in ¢ by others
different from those of W. We tacitly that this has always been done when discussing relativising formu-
lae. It is immediate that, e.g. (Vx1))" «<— ¥Yx € W¢". We shall be thinking of class terms W as being
potential €- structures - meaning that we shall be thinking of them potentially as models (W,€). We
shall read ()" as “p holds in W” or “ holds relativised to W”. The following theorem (with I' = &)
says the theorems of predicate calculus in £ are valid in non-empty €-structures (W, €). We use the
shorthand that if I is a finite set of formulae, then N\ I is the single formula that is the conjunction of
thosein I'.

THEOREM 1.20 Let ' U {0} be a finite set of sentences in L and W a transitive non-empty term; assume
that if X is a list of all the variables occurringin T U {c} then X nFVbl(W) = @.
If T+othen (NT)" — oW,

Proor: By induction on the length of the derivation of o from I". QE.D.

This is just as it should be: roughly, it is a form of Soundness: if we can prove that o is derivable from
a set of axioms true in a structure, then o should be true in that structure.

LEMMA 1.21 Let W be a transitive class term, Then (AxExt)".

Proor: The Axiom of Extensionality relativised to W is:

(VxVy(Vz(zex < zey) » x=y))W

—Vxe WV¥ye W(Vz(zex < zey) »x=y)W

—VxeWVye W(Vze W(zex < zey)V = (x=y)")

<> VxeWVye W(Vze W(zex < z€ey)>x=y)

Since W is transitive, if x, y € W thenx, y € W.Henceif3z(z € x\yuy\x) thendz € W(z € x\y U y\x).
Hence the — of the last equivalence is true! QE.D.

The next concern is how to relativise a formula that contains class terms. It should turn out that if we
have such a formula we should be able to first relativise the terms it contains to W (Def.1.22) and then
substitute the results into the relativised formula of L.

DEFINITION 1.22 Let t = {x | ¢} be a class term; the relativisation of t to W, is: t" =4 {x € W | ©"'}.
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Example (i) VWV = {x | x =x}"V = {x e W | (x = x)"}. Since (x = x)" is just x = x, this renders
VW=vnw=w.

Example (i) (Ux)V = ({z|Iy(zeyex) NV ={ze W | Fy(zeyex))V} ={ze W |3ye
W(zeyex)V}={zeW|3ye W(zeyex)}.

Notice that if additionally W is a transitive term, (i.e. defines a transitive class) thenx e W — x <
W; moreover Vy(y e x — y € W).Hence{z e W |dye W(zeyex)} ={z|Iy(ze yex)}
and so in this case (U x) W = U x. This demonstrates that | is an absolute operation for transitive classes
and the process of relativisation yields the same set. We shall be particularly interested in such absolute
operators and similarly absolute properties for transitive classes.

LEMMA 1.23 Let to,...,t, and W be terms, with W transitive, let ¢(xq, . ..,x,) be in L; then assuming
y 2 FVbl(p(to,...,tn)):

Vye W(p(tos...otn)V <"V (ty,....t!").

REMARK: The lemma is about syntax, formulae and terms. The x;’s are (meta-)variables (“meta” because
they are standing in for some official variables v;,, ... v; ). In this context the notation is supposed
to mean that each of the terms fo, ... , t, is then substituted for the corresponding variable xo, ... x,.
Above we said that we should more properly indicate this by: “©(to/xo, ... , tn/x,)” but this becomes
too cumbersome, and too tedious to do all the time, so we just leave it for the reader to do depending on
the context.

ProokF: By induction on the complexity of ¢. QE.D.

EXERCISE 1.4 Convince yourself of the truth of the last lemma. [Hint: At least set out the base cases of the induc-
tion: suppose @ is vo € vy and let o = x, t; = {z | ¥}. Then (x € /)" < (x € {z | ¥ })" < ¥(x/2)V < x e {z]
ze WaAyp"} < x" e ()", The other base cases are relatively straightforward, but a little lengthy to write out.
The inductive step for non-atomic formulae is easy by comparison.]

LEMMA 1.24 Let W be a transitive term and suppose for any x, y € W, {x, y} € W, then (AxPair)".
PrOOF: We need to show ({x, y} € V). First just note that by Def. 1.22:
(e, YW ={zeW|(z=xvz=y)"}={zeW|z=xvz=y} = {x,y}.

By supposition we have that:  Vx,ye W({x,y} e W) <
<V, ye WH{x,y}V e VW) < (Yx, y({x, y} e VYW,
(The last <> uses implicitly an atomic formula clause from 2?) Q.E.D.

LEMMA 1.25 Let W be a transitive term.
(i) If for any x € W, Ux € W then (AxUnion)";
(i) If w € W then (Ax. Infinity)".
(iii) I for any x € W and any term a x n a" € W then (AxSeparation)";
(iv) Ifforany x € W, and term f with " beinga function, f “x € W holds, then (AxReplacement)".
(v) If for any term r with r"V being a relation with ¥Yx € Wr' “x # @, and if for any z € W there is
we W so that (Vu € z3v € w(r({u,v)))" holds, then (AxCollection)".
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PrOOF: (i) By Example (ii) above, because W is assumed transitive, (Ux)" = U x. Moreover V" = {z €
W |z =z} =W. Byassumption Vx € WUx € W. Hence
Ve WUx)VeW o Vxe W(Uxe V)V « (VxUx e V)Y, the latter is (AxUnion)".
(iii) We need to show (Vx anx e V)", Suppose y = FVbl(a). This is equivalent (by Lemma 22) to,
Vye W:
Ve W((anx)" e VW)W o vxe W((anx)V e w).
But, forany x e W,:
(anx)V={zeW|(zeanzex)V}={ze W|zea" rzex}.
As Trans(W), x € W, so thisis @'V n x. By assumption this is indeed in W. Q.E.D.

EXERCISE 1.5 Show (ii), (iv) and (v) of the last Lemma.

LEMMA 1.26 Let W be a non-empty transitive term satisfying all the hypotheses of Lemmata 1.24, 1.25. Then
(ZE™)Y that is, each axiom of ZF~ holds inW.

ProOF: We are only left with the Axioms of the Empty Set and Foundation. But @V = @ (Check!), and
@ is a member of any non-empty transitive class (why?). For Foundation let a be a term, and suppose
that (a # @)". Suppose x € a"' n W. Now, by Axiom of Foundation (applied in V) as a" # @, let x,
be an element of a" with xo n a"' = @. Hence (a # @ - 3z(zna = @))". Q.E.D.

Lemma 1.26 is again a theorem scheme: given a class term for which we can prove the assumptions
hold for it, (which itself is an infinite list of proofs in ZF if all the assumptions of Lemma 1.25 are verified)
then the lemma states that for any axiom ¢ of ZF~ then ZF ~ ¢". (This can be trivially extended to a
finite list of axioms ¢ by taking a simple conjunction - but it cannot be extended to an infinite list!) The
next lemma gives a sufficient (but not necessary) condition for AxPower to hold in a transitive class term.
The proof is similar to those above.

LEMMA 1.27 Let W be a transitive term satisfying for any x € W, that P(x) € W; then (AxPower)".
Consequently if W satisfies this in addition to the hypothesis of the last lemma then (ZF)", that is all of
ZF holds in W.

We shall see later that we can prove the existence of transitive e-models (W, €), with W a set, for
which (ZF™)", by establishing the existence of transitive sets satisfying precisely the above closure con-
ditions. We thus shall show for such a W that, assuming ZF, we can show (ZF~)". However in ZF we

cannot prove the existence of sets (transitive or otherwise) W for which (ZF)". (We shall see that this
leads to a contradiction with Godel’s Second Incompleteness Theorem.)

EXERCISE 1.6 Let (v, ..., v,) beany formula. Let g,,(¥) = theleast 3 such that 3x¢(x, ) — 3x € Vgo(x, y) if
such an x exists; let it be 0 otherwise. Show that V¢ g,“V; € V. Deduce that f,,(§) =4 sup(g,“V¢) is a welldefined
function.

EXERCISE 1.7 Let W be the class term {@}. Which axioms of ZFC hold in (W, €)? Consider the class term On.
Which axioms of ZFC hold in (On,€)? (NB For the latter (On, €) just is (On, <).)

ExERCISE 1.8 Which axioms of ZFC hold in V,,?
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ExERcISE 1.9 Check, or recheck, the following basic properties of the V,, using the Definitions 1.17, 1.18 of p and
Vo (i) Trans(V,,); in particular show if x € V,, thenVy € x(y € Vo A p(¥) < p(x));

()< B — Vo S Vg

(i) Va1 = P(Va)s

(iv) If x € V, then p(x) = least « so that x C V,, = least o such that x € V1.

V) p(a) = o

(vi) OnnV, = a.

EXERCISE 1.10 There are a number of deﬁnablg wellorders on "On: hgre is one: for & = (ay,... ,04,,_1),3 =
(Bos--.»Pn-1) set & <" 5 iff max(d) < max(8) or (max(&) = max(5)) A (if i is least so that ; # [3; then
a; < B;). <" is then Ag expressible. Check that this is a wellorder.

EXERCISE 1.1 Prove that the following is a wellorder of On** where the latter is the class of finite sets of ordinals:
for p,q € [On]< define p <* q iff max{p A g} € q. Thatis, p <* q iff the largest element of p\q U ¢\p is in g.
[Hint: it is perhaps to easier to observe first that this ordering is just the lexicographic ordering on the sequences
D> 4 € <“On of the sets p, ¢ when written out as sequences in descending order.]
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CHAPTER 2

INITIAL SEGMENTS OF THE UNIVERSE

In this chapter we look at some properties of initial segments of the universe V: typically local properties
of singular and regular cardinals, and the classes of sets hereditarily of cardinality less than some . These
do not depend on the whole universe of sets. We shall see that when studying wellfounded models of
our theory, it suffices to concentrate our efforts on models (M, €) where M is a transitive set, rather than
more general (N, E). An important application of the Axiom of Replacement is the Montague-Levy
Reflection Theorem: this says that for any given finite set of formulae, we can prove in our theory that
there are arbitrarily large V,, that correctly ‘reflect the truth’ as regards what those formulae say about
the sets in V,,. Cardinals « that are simultaneously both fixed points of certain functions and regular are
called strongly inaccessible. If such exist then we can find models, indeed of the form (V,, €), of all the
ZFC axioms. We discuss these in the last section.

2.1 SINGULAR ORDINALS: COFINALITY

We first do some basic work on notions of regularity, singularity and cofinality. This then leads into the
concepts of normal functions and closed and unbounded sets, and stationary sets. From these further large
cardinals can be defined, and although we give the briefest of illustrative examples, it is not the intention
of the course to go down this route, rich as it is.

2.1.1 COFINALITY

DEFINITION 2.1 If A C i is a set of ordinals, then we say that A is unbounded below (or in) p iff Vo <
uig e A(B > ).

Note that implicitly in the above, we have that Lim (), i.e. that 11 is automatically a limit ordinal.

DEFINITION 2.2 A function f : o —> [3 is a cofinal map, if sup(ran(f)) = 3.

In other words the range of f is unbounded in (. This definition also then implicitly implies that Lim(3).
Example (i) f 1w — w + w given by f(n) =w +n;

17
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(ii) f : w —> w,, given by f(n) = wy;

(iii) g : w1 —> w,,, given by g(a) = w, are all cofinal maps.

(iv) Define the sequence f(0) = wo; f(n +1) = wg(,). Let & = sup(f“w). Then f : w — £ is cofinal
- by construction. Note also here that x = w,. (Check!) Such a « is a fixed point in the enumeration of
the infinite cardinals.

(v) Let E < 3 be any subset. Suppose its order type is 7. We use the notation fg for the (1-1) function
that enumerates E in strictly increasing order. Thus dom( fg) will be 7 which will necessarily be no
greater than (3. If E is now unbounded in 3, that is Vy < 436 € (v, 8)(d € E), then fg : 7 - [ will be
a cofinal map into 3, that is moreover (1-1) and strictly increasing. Then any of the functions in (i)-(iv)
can be regarded as enumerating maps of their ranges.

DEFINITION 2.3 The cofinality of a limit ordinal [3 is the least « so that there is a cofinal map f: o — 5.
It is denoted cf (3).

Taking f as the identity map shows immediately that cf(3) < .

DEFINITION 2.4 (i) A limit ordinal (3 is singular <=>;¢ cf(3) < 8. Otherwise it is called regular.
(ii) We set:
Reg =4¢ {k | K is regular }; Card =4 {k | k a cardinal };
SingCard =¢4¢ {~ € Card | x singular }; LimCard =¢4¢ {«v € Card | v a limit cardinal };
SuccCard =4¢ {«v € Card | v a successor cardinal } = {t* | 7 € On}.

Example (i) cf (w + w) = w. The above example shows that cf (w + w) < w; but it cannot be strictly less
since no function with finite domain can have unbounded range in w + w. The same holds for Example
(ii) above cf(w,) = w. and R, = w,, is an example of a cardinal with a smaller cofinality. It will follow
from below that cf(w,,) = w.

The following is immediate from our definition of cardinality and cofinality.

LEMMA 2.5 cf(3) < |B| < 5. Thus, a regular ordinal must be a cardinal; to rephrase:
cf(f) = p < [isregular <= [ is regular and a cardinal.
Examples: w = wy = Ry € Reg (Hausdorff 1908); w; = R; € Reg, indeed:

LEMMA 2.6 (HAUSDOREF 1914) Any \* € Reg.

PrOOF: Suppose this failed then note that if f : @« — A" with ran(f) unbounded in A™, but o < A,
we would have that A" = Ug<, f(3) - in other words, taking A € Card, the union of |a| < A many sets
of size < \. Assuming AC this is impossible: as A ® A = A, this union could have size at most \! Q.E.D.

Thus any R,4; = R, is regular. These are called successor cardinals (being indexed by successor
ordinals). The first singular cardinal is ®,,, the next is ®,;.; also R,,,R,, € Sing. By Hausdorff’s
observation above, a singular cardinal is always a limit cardinal: it occurs as a limit point of the cardinal
enumeration function: o » R,. Later we shall consider the question of whether the converse fails, that
is whether there are cardinals that are simultaneously limit cardinals and regular.
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LEMMA 2.7 For any limit ordinal (:

(i) cf(B) is the least ordinal « so that there is a (1-1) strictly increasing cofinal map f : oo — [3;
(ii) cf(cf(B)) = cf(B); hence (Hausdor{f 1908) cf(3) is regular;

(iii) If f : o« —> (3 is cofinal and strictly increasing, then cf(a) = cf(53).

PrOOF: (i) Let f : cf () — [ be any cofinal map. We definea g : cf(3) — [3 of the desired kind from
f by recursion on § < cf(3):

8(0) = £(0); g(0 +1) = max{g(d) +1, f(9)} and Lim(A) — g(A) = sup{g(0) [ § <A}.

Note thata) g(d) < 8 implies g(6 +1) < 8 and b) for any Lim(n) if n < cf(3), then g(n) is properly
defined, and thus is less than 5. Thus we have dom(g) = cf(/3). By definition g is strictly increasing (and
moreover is continuous at limit ordinals ) - see Def. 2.11(ii) below). As it dominates f it is cofinal into /.

(ii) Let v = cf(cf(B)). Then v < cf (). However if v < c¢f((3) and f, g are chosen so that f : v —
cf(B), g : cf(8) — [ are both strictly increasing and cofinal, then their composition go f : v — 3
cofinally, contradicting the definition of cf(/3). Hence v = cf(3).

(iii) Exercise. Q.E.D.

COROLLARY 2.8 IfLim(\) then cf(w)y) = cf(A).

EXERCISE 2.1 Prove (iii) of Lemma 2.7 and the corollary following.

EXERCISE 2.2 If Lim(3) show that for any o > 0, cf(« - ) = cf (e + B) = cf(5).

The following gives an alternative characterisation of cofinality for cardinals.

LEMMA 2.9 For any infinite cardinal 3 cf(3) is the least ordinal -y so that there is a sequence (X, | T <)
with each X; € B A |X7| < B and Uy X = .

PrOOF: Let ~y be the least such ordinal defined in the lemma. Then for some cofinal function h : cf(3) —
B, wehave 8 = U gy h(7). Soy < cf(3). So suppose for a contradiction that < cf(/3), and we have
Ur<y X7 = B, with each X, < B A |X;| < . Define f(7) = |X;| < 5. As dom(f) = v < cf() we
have ran(f) is bounded by some § < . Let g : X, < |X;| be a bijection. Define G(§) = (7, g-(&))
where 7 is least so that £ € X. Then G : 8 — « x ¢ is (1-1). But then |8| < |y x | = max{|y|, |d|} < S.
Contradiction! Q.E.D.

ExERCISE 2.3 (This exercise uses the definition of h(x) from Exercise 2.43.) Suppose & is a singular cardinal. Show
that |h(x)| = |P(x)|. Calculate p(h(k)).
2.1.2 NORMAL FUNCTIONS AND CLOSED AND UNBOUNDED CLASSES

For the rest of this section we let Q denote a regular, uncountable cardinal.

DEFINITION 2.10 Let A be a term and suppose A < Q.
(i) Then A is closed if Vi < Q (A N pu is unbounded in p — p € A).
(ii)) We say A is c.u.b. in Q if it is both closed and unbounded in ().
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Note: In clause (i) we deliberately do not require Q) to be in A if the latter is unbounded in Q. Closure
is equivalent to requiring that (ii)": for any x € V if x € A then supx € AU {Q}. (Exercise: Check this
equivalence.)

Examples (i) The cofinal maps from the Examples of the last subsection are all closed and cofinal,
although the first three which were maps just from w cofinally into their range are rather trivially closed.
The function g in the proof of (iii) of Lemma 2.7 was deliberately constructed to have range closed and
unbounded in j3 - closure was obtained by taking for limit ordinals A\, g() to be the supremum of g“\.

(i) The class terms Lim =4¢ {ar € On | o a limit ordinal}, Card, LimCard, are all c.u.b. in On.

DEFINITION 2.11 (Normal Function). Let f : Q@ — Q. Then f is normal if
()a<f— fla)<f(B);
(ii) (continuity) Lim(A) — f(A) =sup{f(a) | a < A}.

Property (ii) says that f is continuous. Normal functions are quite common: all the ordinal arithmetic
operations yield normal functions: A, (€) = o+ & My (€) = a- €, Eo(€) = af are all normal functions.
The R-function which enumerates the cardinals is normal by design.

EXERCISE 2.4 Letw < k € Reg. Define by induction on « < k a function f : K —> &, by f(0) = 0; f(8 +1) =
f(B)+Band Lim(X\) — f(X) =sup{f(3) | B < A}. Then check that f is indeed defined for all &« < x and that f is

normal. Use f to define a partition of « into x many disjoint sets of cardinality « by setting D., = {f(8)+~ | 8 > 7}
Check that D, n D,/ = @ for v # 7' < x; and that U,,; D+ = k.

LEMMA 2.12 (VEBLEN 1908)

(i) Let A < Q. Then A is c.u.b. in Q iff the enumerating function for A, fa, is normal with dom(fa) =
Q;

(ii) let f : O — Q be strictly increasing. Then f is normal iff ran( f) is c.u.b. in Q.

ProOF: (i) Let f = f4. (<) Asdom(f) = Q, and f is (1-1), ran(f) cannot be bounded in the cardinal
Q. So A is unbounded in Q. The continuity of f translates directly into the closure of A: suppose ;1 < Q
and A Ny is unbounded in p. Let 6 < Q be such that f | § enumerates A N u; then we have that Lim(6)
(as Lim()) and by continuity of f, f(§) = sup f“0 = p and so p must be in A.

(=) Clearly f is a monotone increasing function: a < 5 < Q — f(«a) < f(/3). As Ais closed, then
fa will be also continuous: if A € Q is a limit then A n f“\ is unbounded in sup f“\. So by closure the
latter is in A and is then f(\). Note now that dom( f) must be Q) since otherwise it is some 5 < Q and
f would witness that cf(Q) < 8. However Q) was assumed regular.

(ii) This just follows from (i), as f clearly is the enumerating function of A = ran( f). See the Exercise
below. Q.E.D.

EXERCISE 2.5 Let f : O — Q be strictly increasing. Then f is normal iff ran( f) is c.u.b. in Q.

LEMMA 2.13 Let C < Q be c.u.b. in Q. Let fc be the enumerating function of C. Then the class of fixed
points of fc : D =4r {a < Q| fe(@) = a} is c.u.b. in Q. Hence for any normal function f : Q — Q there
is a c.u.b. class of points o < Q) that are fixed points for f: f(«a) = a.
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Proor: Again let f = fc. Let v € Q be arbitrary. We find a member of D above ~ (this shows that D is
unbounded in Q). Define: v = 73 Vn41 = f(7n); Yo = sup({¥n | n <w}). Note that~,, # Q. This is clear
by the assumption of )’s regularity. We claim that 7, € D. Let ) < 7,,. Then for some n n < v, < ..
Hence (1) < f(Vn) = Yn+1 < Y- Hence f“v, S v,. As f is continuous, f(7,) = Yw € D. We are left
only with showing that D is closed in Q. Let & < Q with D n  unbounded in p. Similar to showing the
closure of v,, under f above, we have that f“i © 1 (as any 1 < p is less than some fixed point v < p),
and again by continuity f(u) = p. The last sentence is immediate as ran( f) is c.u.b. in Q. Q.E.D.

DEFINITION 2.14 For any E < On define E* to be the class of limit points of E: namely those limit ordinals
B such that 8 n E is unbounded in f3.

EXERCISE 2.6 For any E < On, show that E* is a closed class, and if E € V with cf(sup(E)) > w, then E* is c.u.b.
below sup(E).

EXERCISE 2.7 Suppose Q) € Reg. (i) Let C, D < Q be c.u.b.in Q. Show that Cn D is c.u.b. in Q. (ii) Now generalise
this argument: let y < Q. Let (C¢ | £ < ) be a sequence of c.u.b.in Q classes. Show that N¢., C¢ is c.ub. in Q.

REMARK 2.15 We used the letter Q) in this subsection rather than a generic mid-alphabet letter such as
for a cardinal (our usual convention) since it is possible to construe the results here as also holding when
Q is interpreted as the class term On. To this extent On behaves like a ‘regular cardinal, and we can
interpret many results here as holding about terms a & On which are not necessarily sets. One should
be a little more careful than we have, when talking about sequences of classes if we allow O = On. In
this case to define a sequence of classes (C¢ | £ < ) with C¢ < On, we should speak about a single class
term ¢ of ordered pairs (&, () with C¢ = On being defined as the class {¢ | (£,¢) € c}. With care this
is unambiguous and proper, and can be done with v = On also. We could do the same in the following
exercise, but have chosen not to, and have returned to our assumption that € as a regular cardinal.

EXERCISE 2.8 (DIAGONAL INTERSECTIONS) Let Q) € Reg. Let (E¢ | £ < Q) be a sequence of subsets of Q. Define
the diagonal intersection of the sequence to be the set D = Accq(Ee | £ < Q) =4r {0 < Q| VS < a(a € Eg)}.
Now suppose that the E¢ are all c.u.b. in Q. (i) Show that the diagonal intersection D is c.u.b. in Q. (ii) Show that

D= ma<Q(Ea U (Oé + 1))

DEFINITION 2.16 The 1 (beth) function is defined by:
g = wos da+1 = 230‘,‘ 3y = sup{ja | o < )\} lleIl’l()\)

Thus o — 1, is a normal function, and has a range which, as always, is c.u.b. in On. By the last
lemma it has a c.u.b. in Q class of fixed points o so that a = 1.

EXERCISE 2.9 Show that Va(| Vil = 30).

EXERCISE 2.10 (i) Check that the GCH (Generalised Continuum Hypothesis: that Vo (2% = R,,;)) implies that
Va(Rq = 3q). (ii) Show that the first fixed point of the 1 function has cofinality w. (iii) Show that for any regular
cardinal & there is «, a fixed point of the 2 function, with cf () = k.
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2.1.3 STATIONARY SETS

Let Q denote either an uncountable regular cardinal «, or else On the class of ordinals.

DEFINITION 2.17 Let E < Q. Then E is called stationary in Q if for every C < Q which is c.u.b. in Q, then
EnC=#g.

If we were to talk about a class term S < () being stationary where Q) = On, we should declare more
precisely what this means: it means that for any class term ¢ which is a closed and unbounded class of
ordinals, then we can also prove that cn S # @.

Stationary subsets of regular cardinals (or subclasses of On) exist: any c.u.b. subset of x with «
regular is stationary, by Exercise 2.7 (i). (Similarly for subclasses of On). But there are other stationary
subsets of regular cardinals.

EXERCISE 2.11 Let § < Q be stationary and C < Q be c.u.b. Then § n C is stationary.

EXERCISE 2.12 Let S € () be stationary. Show that S N S§* is stationary.

ExamMpLE1 Let Q = w;. Then S, =¢f {a < wy | cf(r) = w} and Sy, =4¢ {@ < w; | cf (@) = w;} are two
disjoint stationary subsets of w;: let C < w, be any c.u.b. subset. Let f : w, — Cbe its strictly increasing
enumerating function. Then f(w) € CnS, and f(w;) € CN S,,.

ExEeRcISE 2.13 Can you generalise this example to larger regular cardinals, e.g. w,, for n < w, or any regular x > w,?

ExERciISE 2.14 Find S, S R, stationary, for n < w, with S,41 S S, but with N, S, = @.

The reason for the nomenclature comes from (ii) of the following Lemma.

LEMMA 2.18 (FODOR’s LEMMA 1956) Let k > w be a regular cardinal. The following are equivalent.

(i) S is stationary in Kk ;

(ii) For every function f : S —> On which is regressive, that is Va € S(a > 0 — f(a) < «), there
is a stationary set So < S and a fixed a so that V€ € So(f(€) = ).

ProoF: Assume (i). If (ii) failed for some regressive function f then we should be able to define for every
a<rkacub. Co S kwith{e ConS — f(§) # . Let D = {a | V5 < a(a € Cg)} be the diagonal
intersection of (C, | & < k). Then D is c.ub. ink and forany £ € DN S, f(&) £ £ Butif £ € Dn S we
must have f(§) < &, which is a contradiction. (ii) implies (i) is trivial. Q.E.D.

Remark: AC was used heavily in picking the C, in the above; if one attempts the proof without using
AC one obtains in (ii) only the conclusion that for some « < « that f ~1“qq is unbounded in k. Because
one cannot in general pick class terms, if one attempts to prove the Lemma for stationary classes and
regressive functions on all of On, rather than just x, one again weakens the conclusion (see the next
Exercise).

ExERCISE 2.15 (E) Let f be a function class term with dom(f) = On and f regressive. Show that for some «
f'{ap} is unbounded in On. [Hint: Suppose the conclusion fails; then define g(¢) = sup f~"“{¢}; now find «g
closed under g: g“cvg < o]
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We could have defined stationary subsets of ordinals 5 with cf(3) > w. This is possible, but notice
that it would make no sense to define the notion of a stationary subset 3 if cf () = w. For,if f : w — 3
is a strictly increasing function cofinal in /3 then ran( f) is c.u.b. in ; but it is easy to define another c.u.b.
in /3 set C (of order type w) with ran(f) n C = & so it makes little sense to even try to define stationary
in this way.

We saw above that w, contained two disjoint stationary subsets. In fact far more is true. (The proof
of this theorem is omitted.) Any stationary set in a regular x can be split into £ many disjoint sets which
are still stationary.

THEOREM 2.19 (Bloch (1953), Fodor (1966), Solovay (1971)) Let k > w be regular, and let S < k be station-
ary. Then there is a sequence of k many disjoint stationary sets S¢ = S for { < k (i.e. for ( <{ <k SenNS¢ =
@) with S = Ugy Se.

EXERCISE 2.16 (*)(E) (H.Friedman) Let S € wj be stationary. Then for any « < w; there is a closed subset C,, < S
with ot(C, ) = @+ 1. [Hint: Do this by induction on « for any stationary S. This is trivial for & = § + 1 assuming it
is true for 3 (just add one more point 7 € S above sup(Cg) to Cg to get Cg.q of order type cv+1). Assume Lim ()
and for § < a we can find such Cg. Note that for any ¢ we can find such C with min(Cg) > ¢ - by considering
the stationary S\d. Let (cv, | n < w) be chosen with sup, o, = «; for any 6 then pick closed subsets C,, < S of
order type v, +1and with min(C,,,,) > sup(C,, ). Then U, C,, < S and is closed in S with the exception of the
point sup(U,, Cy, )- Call a point arrived at as a sup of such a sequence of sets C,,, an “exceptional” point. We have
just shown that the exceptional points are unbounded in w;. But now just note that a limit of exceptional points
is also exceptional. That is, they form closed subset of w;. As S is stationary there is an exceptional point o € S.
This o can be added to the top of the sequence of points from the sets C;, witnessing the exceptionality of ; this
sequence then has order type o + 1 and is contained in S.

Remark: This is not the case at higher cardinals, e.g. w,. Let (%) be the statement “for any X < w, and any
o < wy either X or wp\X contains a closed set C with ot(C) = ”. Then ZFC i (*).

2.1.4 FILTERS. IDEALS, AND MEASURES

DEFINITION 2.20 Let F < P(k) for an infinite cardinal k. Then F is a filter (on k) if it satisfies (i) and
(ii).

(i) XeFAY2X—YE€EF

(ii) X,YeEF—XnYE€eF
A filter is said to be non-trivial if & ¢ F. Additional properties a filter may have:

(iii) Y& < k {€} ¢ F (non-principality)

(iv) X € F — |X| = k (uniformity)

(v) V€ < kY(X¢ | ¢ <E[V((X¢ € F) — Ne<e X¢ € F] (k-completeness)

(vi) V(X | ¢ < K)[V((X¢ € F) — A¢cX¢ € F] (normality)

DEFINITION 2.21 (THE C.U.B. FILTER ON K, Fy;) Let k > w be regular; let
XeF,«—3C< k(Ciscub AC < X).

EXERCISE 2.17 Let k € Reg be uncountable. Check that F,; has all the above properties.

EXERCISE 2.18 Show that if a filter on  is k-complete and non-principal, then it is uniform.
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EXERCISE 2.19 . Let Fp, = {X € & | 3y < k(X < )} be the co-bounded subsets of x. Check which of the
properties (i)-(v) holds for F,;.

EXERCISE 2.20 Show that if x is uncountable, and F is a normal filter that contains F,;, on k, then F 2 F,, thus
F contains the c.ub. filter on . [Hint: First show that X, =4 Limnk € F; let D = ranfp be any cub set, and
consider the limit points of the diagonal intersection of the k-sequence X,, = k\(fp(a) +1) for a < k..

A filter which is w;-complete will often be called countably complete or o-complete. Thus for such a
filter if for n € w, X,, € F then N, X, € F.

DEFINITION 2.22 A filter on k is called an ultrafilter, or a (2-valued) measure on &, if for any X € P(k),
either X or the complement of X, k\X, is in F.

The existence of ultrafilters on subsets of a k > w satisfying additionally (iv) and (v) cannot be proven
in ZFC, (they can for k = w) but is crucial for studying elementary embeddings of the universe V to
transitive subclasses of V' and for considering many consistency results in forcing theory.

DEFINITION 2.23 A cardinal k > w is called measurable if there is a k-complete uniform ultrafilter on k.

We thus asserted in the previous paragraph that we cannot prove the existence of a measurable car-
dinal from the axioms of ZFC - a discussion we return to later. A class of subsets of x on which there
is an ultrafilter satisfying (i)-(v) is often said, in an equivalent terminology, to have a 2-valued measure,
in which case property (v) is called “k-additivity”. Sets have value 0/1 depending on whether they are
out/in the ultrafilter. (iii) then translates as “points have measure 0”.

A notion dual to that of a filter is that of an ideal.

DEFINITION 2.24 Let I € P(k) for an infinite cardinal k. Then I is an ideal (on k) if it satisfies (i) and
(ii).

(()XelInYScX—Yel

(i) X, Yel — XuYel
An ideal I is said to be non-trivial if k ¢ I.

Note that F is a filter on s iff I = Ir = {k\X | X € F} is an ideal on k. We say that I is the dual of the
filter F (and vice versa and write F = F). An ideal I is then said to have any of the properties (iii)-(iv) if
the filter F; dual to it has those properties.

Example The non-stationary ideal on a cardinal x, NS, is the ideal dual to Fj.

DEFINITION 2.25 Let I be an ideal. The collection of sets that are I-positive are those X < k that are not
inl: I* =df {X§K|X¢I}.

2.2  SOME FURTHER CARDINAL ARITHMETIC

We give some further results on cardinal arithmetic.
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DEFINITION 2.26 Let (Ko, | & < T) be a sequence of cardinal numbers. Let (X, | o < T) be a sequence of
disjoint sets, with ko = |X,|. (i) Then we define the cardinal sum:

> ka=|U Xal

a<T a<T
(ii) The cardinal product is defined as [1p<r ko = [[Tacr Xal-

Note: (i) as usual these values are independent of the choices of the X,, with the stipulated cardinali-
ties. For the product the requirement that the sets X,, be disjoint may be dropped. Here this is an accord
with Definition 1.9 where f is the function so that f(a) = X,, for o < 7.

(ii) If all the ko, = A > w for some fixed A, and 7 € Card, then Y., ko = T @ A and [ ,«r Ko = 7.

EXERCISE 2.21 Show that If w < 7 € Card and every K, # 0, then 2 Ko = T ® SUP,, ., Ka-

A
EXERCISE 2.22 Show that [To<; 52 = (ITaer o) and [T, o, k1o = gEa<rAa,

EXERCISE 2.23 Show that if k, > 2 for a < 7, then Y Ko < [Toer Ka-

EXERCISE 2.24 Show that [] distributes over ¥, i.e. that [T, Y 5<, a8 = Yerul Ka,f(a)-

LEMMA 2.27 Ifw < 7 € Card and (ko | a < T) is a non-decreasing sequence of non-zero cardinals, then
[To<r Ka = (supa<7 Ka)'-

Proor: We partition 7 into 7 many disjoint pieces each of size 7 (by using some bijection 7 : 7 X 7 < 7).
Let us say then that 7 = g, Xg. Because the sequence of the %, is non-decreasing, and each Xz is

unbounded in 7, we still have sup,cy, Ko = SUP,., Ko = K say, for each § < 7. Now note that we may
reorganise the product

[Tkaas [T I] kal-
a<T B<t \aeXg
But [Toex, Ko 2 SUP,ex, Ka = Ks hence we have that [T« £ > [Igcr 5 = K7.
Conversely [To<r Ka < [Ta<r & = k7. Hence we have equality as desired. QE.D.

EXERCISE 2.25 [],., 1 = [0 10 = Wy = 2905 T e, Wi = (weoy )

THEOREM 2.28 (Ko6nig’s Theorem) If ko < Ay for o < 7 then

Z Ko < H Ao

a<T a<T
Proor: Pick X, for a < 7 with |X,| = A,. We shall show that if Y, < [],., X, for « < 7 are
such that |Y,| < kg, that then Ug<r Yo # [To<r Xo. Hence we cannot have Y, ko > [Toer Aa- Let
P, = {f(«) | f € Y4} be the projection of Y, on to the o’th coordinate. As |Y,| < |X4|, |Pa| < |Xo| but
P, © X,. Solet f € [1,<r Xo be any function so that for any o < 7 f(«) ¢ P,. Then f cannot be in
any Yy,. Thus Ug<r Yo # [Ta<r Xo as we sought. Q.E.D.

EXERCISE 2.26 Deduce Cantor’s Theorem that s < 2" from Konig’s Theorem.



26 Initial segments of the Universe
COROLLARY 2.29 For all B, and for all o cf(w3*) > wq. Hence in particular cf(2%) > & for any cardinal
K.

PRrROOE: Let k., be a sequence of cardinals for 7 < w,, with K, < wga. It suffices to show that }°,_, K- <
5. Let A be the fixed sequence with all A; = wi*, for 7 < w,. By Kénig’s Lemma then

“s
Yoke< [T Aa= (wg*)* = wg®.

T<Wa T<Wa
Q.E.D.
COROLLARY 2.30 k(%) > k for any cardinal k > w.
PrOOF: For o < cf() let kg be less than « so that £ = ¥ c¢(x) Ka- Then
K= Yaccf(r) Ko < Tacct(n) £ = KE(R), QE.D.

We may put some of these facts together to get some more information about the exponentiation
function under GCH. First:

EXERCISE 2.27 If A < cf (k) then *k = Upe, M = Uct(x)<a<n A,

THEOREM 2.31 Suppose GCH holds and , \ > w. Then k> takes the following values:
(i) A" ifr<X
(i) k¥ ifcf(k) <A< kK;
(iii) k if A <cf(k).

Proor: (i) follows from x* = 2* = \*. (ii) k < kF(F) < KX < k" = 25 = k*; (iii) We use Ex.2.27.
K = |Uper - Butfor a <k, |al < |%a| =21l = o] < k. Sok <k <k ®@sup, ., |a|" =K. QE.D.

Without GCH the only known constraints on the exponentiation function for regular cardinals « are
(@) k <27 and (b) kK < A\ > 2% < 2*. For singular x the situation is more subtle and a discussion of this
involves large cardinals.

EXERCISE 2.28 Prove that 23 = 1,3, = J,,4;. [Hint: Every subset of 1, can be coded as a function w — 1,,.]

EXERCISE 2.29 Assume CH but not GCH. Show that (R,,)™ =R, for1 < n < w.

2.2.1 THE SINGULAR CARDINALS HYPOTHESIS

Without the assumption of the GCH, the behaviour of the exponention function at regular x, or more
simply put, the value 2%, is more or less independent of the values of 2* for regular A <  apart from
the monotonicity requirement that A < x — 2* < 2% and the additional basic constraint following on
from Cantor’s theorem, that 2% > . However for singular « this is not the case, at least for those x with
uncountable cofinality. One can show that the value of 2 is dependent on the value of 2* for a stationary
set of cardinals A\ < x. To quote an example: if on a stationary set of A\ < k, we have 2* = A** then
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2" must be k™*. The value k** was just an example here: we could have written A* or A*"* for a fixed
row of n +s. Then the value of 2" would be k™ or k™" respectively. However this picture is entirely
dependent on the assumption that cf(x) > w. For « of cofinality w the picture is more subtle.

The Singular Cardinals Hypothesis, SCH asserts that for all singular cardinals k. <9 = 21(%) g 1o+,

Notice that this latter equality is always true for regular & > w, as k(%) = ¥ = 2% = 28 @i+ = 2K @i+,
But for any & we have x(*) > x* by Corollary 2.30 and trivially x<(*) > 2¢7(*)  Hence the SCH is
asserting that the value of /(%) is the minimum it could be.

LEMMA 2.32 The GCH implies the SCH.

ProOE: Note that we can identify any function f € x““(*) via a bijective pairing function 7 : & X K < &
as itself a subset of k, hence kF(F) < 25 Now let k be a singular limit cardinal. Now assume GCH, then
2°" = f. Butif we fixa cofinal function f : cf (k) — x thenforany X < k, wehave X = Uqy<cf(x) XNf ().
However for each such «, |P(f(«))| < k and so bijections between such P( f(«)) and ordinals less than
#. So we have a (1-1) map g : P(r) — x5(*). Hence 2% < (%), The SCH then follows as the above
shows £E(5) = 25 = g+ = 2¢f(K) g o+, Q.E.D.

We've noted that the SCH implies that (%) is the least possible value. The following summarises
exponentiation under this assumption.

LEMMA 2.33 Assume the SCH. Then:

(1) if k € SingCard then:

(a) if the exponentiation function 27 is eventually constant for \ < r then 2% = 2°%;
(b) otherwise 2% = (2°%)%;

(2) for w < Kk, X € Card then:

(a)ifk < 2* then K = 2%

(b) if2* < K and X < cf (k) then K = K;

(c)if2* < k and \ > cf (k) then k* = k™.

2.3 TRANSITIVE MODELS

We have seen how certain assumptions about a transitive set or class term allows us to conclude that a
number of the ZF axioms hold, by relativisation to that set or term. When thinking of a term W as a
structure, which we more properly write (W, €), we say that (W, €) is a transitive model, or transitive
€ model if we wish to emphasise the standard interpretation. We saw that in 1.24 and 1.25 that closure
under those lists of conditions ensured that (ZF~)". The following Lemma allows us to create transitive
isomorphic copies (M, €) of possibly non-transitive structures (H,€). It is known as the “Collapsing
Lemma” since it collapses any “e-holes” out of the structure (H, €). The Lemma is much more general
and in fact a structure (H, R) will be isomorphic to a transitive model (M, €) provided that R satisfies
two necessary conditions: that it be wellfounded, and that it be “extensional”. The latter simply requires
it to be e-like. Clearly these conditions are necessary, since € is itself wellfounded, and for transitive M
we always have that (AxExt)M,
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DEFINITION 2.34 Given a term t and a relation R on t we say that R is extensional on t iff for any u,v €
t,u # v thereis z € t with zRu «<— —zRv (i.e. {z€ t|zRu} + {z € t | zRv}).

Note that € is extensional on x if Trans(x) but need not be in general.

LEMMA 2.35 (MOSTOWSKI (1949)-SHEPHERDSON (1951) The Collapsing Lemma)
LetHe V.

(i) Suppose that R is wellfounded and extensional on H. Then there is a unique transitive term M and
a unique collapsing isomorphism 7 : (H, R) — (M, €).

(ii) Additionally if R | x* =€ x* x € H, and Trans(x), then 7w | x =id | x.

PRrOOF: (i) (1) If 7 exists, then it is is unique.

Proof: Suppose 7, M = ran(7) are as supposed. Let u,v € H. Note if uRv then w(u) € w(v) as 7
preserves the order relations. Thus forve H: {m(u)|u€ HAuRv} < 7w(v).

However if z € w(v), then z € M, as M is transitive. Hence z = 7(u) for some u € H with uRv.
Hence {7(u) | u € HAuRv} 2 7(v). Thus w(v) = {7 (u) | u € H A uRv}. Thus the isomorphism, if it
exists must take this form.

(2) 7 exists.

We thus define by R-recursion: 7(v) = {m(u) |u€ HAuRv} (%)
and take M = ran(7). Trivially Trans(M) by (). (3)-(5) will show that 7 is an isomorphism.

(3) 7 is (1-1).

Proof: If not pick ¢t e-minimal in M so that there exist u # v with t = 7(u) = 7(v). As u # v,and R
is extensional, there is some w with wRu <> —-wRy. Without loss of generality we assume wRu A =wRy.
Then m(w) € m(u) =t =7 (v) . So we must have that for some xRv: w(x) = m(w) (as w(v) is the set of
all such 7(x)’s). But now if we set s = 7(x), we have s € t and 7w(x) = 7(w) = s and, as =-wRv, x # w.
However this s contradicts the e-minimality in the choice of ¢.

(4) 7 is onto.

This is trivial as M is defined to be ran().

(5)  is an order preserving isomorphism.

We have already that 7 is a bijection. This then follows from the definition at (x): uRv < 7w (u) €
w(v).

This finishes (i). For (ii) we now assume that R | x> =e} x2, Trans(x) and x € H.

)7 x=1id | x.

Then for v € x we have v £ x € H. Thus (*) becomes, for v € x: m(v) = {m(u) | u € v}. Now, by
€-inductionon €l x x x wehave Vv e x[(Yuev » m(u) =u) > w(v) =v] > Vv e x(n(v) =v).

Q.E.D.

The resulting structure M is called the ‘collapse; or better, the ‘transitive collapse’ of (H, R). To illus-
trate how the Collapsing Lemma works note the following exercise:

EXERCISE 2.30 Let (H, R) € WO. Apply the Collapsing Lemma. What is the outcome?

Note the use in the above proof of a recursion along the wellfounded relation R rather than €. More
generalised forms of this argument are possible. We may take any class term ¢ in place of the set H and
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provided the wellfounded extensional relation R is set-like - meaning for any u € t {v | vRu} € V, then
the same argument may be used, and a class term M defined in the same way.

LEMMA 2.36 (GENERAL MOSTOWSKI-SHEPHERDSON COLLAPSING LEMMA) Let A be a class term.

(i) Let R € A x A be a wellfounded extensional relation which is set-like in the above sense. Then there
is a unique term M, and unique collapsing isomorphism 7 : (A, R) — (M, €).

(ii) If R =€ then if s is a transitive term with s C A, then | s =id |'s.

ExERcIsE 2.31 Show that V,, can be ‘coded’ as a subset of w: that is there is E  w so that (w, E) = (V,,,€). [Hint:
Define nEm «—g¢ the “2"” column in the binary expansion of m contains a 1; (thus {n | nE11} = {0,1,3}); check
there is u satisfying (w, E) = (u, €) with Trans(u). Show u = V,,.]

EXERCISE 2.32 Show if (A, €), (B, €} are transitive sets, and f : (A, €) = (B, €) is an isomorphism, then f =id | A
EXERCISE 2.33 Suppose Trans(x) and f : k < x is a bijection. Define E € k x k by: (o, 8) € E «— f(a) € f(B).
Show that (r, E) = (x, €) and that the isomorphism is the Mostowski-Shepherdson collapse map. Let g : £ x K <> K

be a further bijection. Then if E = g“E, we can then think of x as coded by a subset of #, namely by E. Note that x
will have 2%-many such different codes depending on the function f.

EXERCISE 2.34 Find an example of an (x, €) which is not extensional. If we nevertheless apply the Mostowski-
Shepherdson Collapse function 7 to it, what happens?

2.4 THE H,, SETS

The following collects together sets whose transitive closure is of a certain maximal size. The phrase
“hereditarily of [property ]” means that not only must an x have property ¢, but so must all its members,
and their members, and ... and so on. In other words all of TC(x) must have property ¢.

DEFINITION 2.37 Let k be an infinite cardinal. Then H, =qr {x | |TC(x)| < K} is the class of sets
hereditarily of cardinality less than k.

We summarise some properties of these classes.

LEMMA 2.38 Let k be an infinite cardinal.
(i) Onn H,, = k ; Trans(Hy,);
(ii) H, < V,, and hence Hy; € V11, p(Hy) = K
(iii) ye HeAx €y — x € Hy;
(iv)x,y€ H, — Ux,{x,y} € Hy;
(v) (AC) k regular — Vx(x € H,, <> x € Hy, A |x| < K).

ProOOF: (i) Exercise; (ii): We use Ex.1.2: let 0 = p“TC(x), and if x € H,, we have | TC(x)| < k; hence
0 < k. and thus x € Vy,;. Thus H, < V,, thence H,, € V41 and p(H,) < k; as kK © H,, we have
p(Hy) > k. (ii) is completed.

(v) (=) Assume x € Hy. As Trans(Hy) A x © TC(x) this follows from the definition of H,,. («) As
TC(x) =x UU{TC(y) | y € x}, it is the union of less than x many sets all of cardinality less than . By
AC such a union has itself cardinality less than x so we are done. QE.D.
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EXERCISE 2.35 Prove (i), (iii)-(iv) here. Give an example to show that the conclusion of (v) fails if & is singular.

LEMMA 2.39 (AC) k> w A k regular —> (ZFC™)H~, More formally: let @ be a finite list of axioms from
ZFC™ . Then ZFC -k > w A k regular — (J\ @)=

ProOF: We appeal to Lemma 1.26 once we have observed that Separation, Collection, and the Wellorder-
ing Principle axioms hold relativised to H,, the others follow from Lemma 2.38. (AxSeparation )~ holds
since if af’* is any term, and x € H, then y= af’* n x is a subset of x and hence it satisfies | TC(y)| < &
also. Similarly, for the Axiom of Collection, if ( is a relation AVxr“x # &)= then let s be the function
(defined in V) given by sx = y < (r(x,y) Ax,y € H, AVz < y-r(x,2)) vV (x ¢ Hy A y = @) where
(Hk, <) € WO for some wellorder <. Then letting w € H,, be arbitrary, and applying Replacement
(again in V') we deduce that s“w € V. However s“w < H, and has at most |w| < x many elements.
Hence setting ¢ = s“w we have t € H,; as required in the statement of Ax6’. For (WP)** let x € H,, and
(x,<) € WO. Just check as x € H, that <} x x x € H,. Q.E.D.

We remark also that the last lemma is false for singular cardinals k.

2.4.1 H,, - THE HEREDITARILY FINITE SETS

For k = w then H,, is known as the class of the hereditarily finite sets - and is so also more usually
abbreviated as HF.

EXERCISE 2.36 Show that V,, = HF. [Hint: For (S) use induction on # to show V,, € HF. For (2) use €-
induction].
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LEMMA 2.40 (ZFC— Ax.Inf +- Ax.Inf)HF

Proor: See Exercise. Q.E.D.

ExXERCISE 2.37 Check that HF is closed under all the assumptions of Lemmata 1.24 and 1.25 (except 1.24 (ii)) and
even the power set operation. Hence (ZFC - Ax.Inf)"F,

EXERCISE 2.38 (Ackermann 1937) Investigate the following function f : HF — w: f(x) = Z,¢,2/ ),

2.4.2 le- THE HEREDITARILY COUNTABLE SETS

The class H,, is also known as the class of sets hereditarily of countable cardinality, and so also is given
the abbreviation of HC. P(w) < HC and hence we regard the real continuum as a subclass of HC. At

«s

least in one crude sense, HC “is” P(w), see the following Exercise.

EXERCISE 2.39 If x € HC then we have | TC(x)| < w. Define a wellfounded extensional relation E on w so that
(w, E) = (TC(x),€). [Hint: We have a bijection f : N «— TC(x) for some N < w; define nEm < f(n) € f(m).
If we use a recursive pairing bijection p : w <— w x w (for example p~({k, 1)) = 2¥.(2I + 1) — 1) we may further
code E as a subset E S w. We thus have effectively coded up TC(x) as a subset of w.] (By using further such
coding devices we may take any countable structure with domain in HC and code it up as a subset of w. In this
sense to study all countable structures is to study all of P(w).)

However unlike the case of w and HF, we cannot identify HC with any V,: V11 2 P(w) but V,,4
does not contain any countable ordinal & > w + 1. But w; € HC as can be easily determined from its
definition. On the other hand |V,;,| = [PP(w)| = 2%" > 2 = |HC| so V,,+» ¢ HC. Clearly then HC is
not closed under the power set operation but we do have that all other ZF axioms hold there:

LEMMA 2.41 (ZF)HC,

EXERCISE 2.40 Which axioms of ZF hold in V,, if Lim(«)? Find a wellordering (A, R) € V., but for which there
is no ordinal 8 € V4, with (A,R) = (5, <); hence find an instance of the Ax.Replacement that fails in V..
[The latter is a model of Z, the axiom system of Zermelo which is ZF with Replacement removed. For almost all
regions of mathematical discourse, V.., is a sufficiently large “universe” - mathematicians never, or rarely, need
sets outside of this set.]

How large is H,;? This depends again on the power set operation on sets of ordinals. Every element
of H,+ can be coded as a subset of . See the next exercise which just mirrors the argument of Ex.2.39.

EXERCISE 2.41 #' Extend Ex.2.39 to any H,+. [Hint: let p now be any pairing bijection p : kK «— Kk x k. Assume
f Kk «—= TC(x) and put aEof if f(«) € f(5). Then by the Collapsing Lemma (s, Eg) = (TC(x),€). Let E =
p'“Ey. Then any structure with domain in H,+ can be coded by a subset of E < x.] Deduce that |H,+| = [P(x)|.

We adopt the notation: For &, A € Card, x<* =4 sup{s* | p € Card A pr < \}.

EXERCISE 2.42 Let x € Card. Show that |H,;| = 2<". [Hint: for x a successor cardinal, this is the last Exercise.]

EXERCISE 2.43 (Levy) Let h(k) be the class of sets x with (i) Yy € TC(x)(|y| < k), (ii) |x| < . Show that if
K € Reg, then H,, = h(k); find an example where this fails if « is singular.

'An Exercise annotated with a = indicates that is perhaps harder than usual. An (E) indicates that it is Extra to the course.
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2.5 THE MONTAGUE-LEVY REFLECTION THEOREM

This section proves a Reflection Theorem, so called because it shows that in ZF we can prove that the
fact of any sentence ¢ holding in V' is reflected by an initial portion of the universe: we shall see that
¢ < ' for some a, indeed for unboundedly many o € On. However these arguments are of more
interest than just as a means to solving this problem.

We shall be able to prove from this theorem that any finite collection S of the ZF (or ZFC) axioms can
be shown to hold in a transitive set; indeed we shall see that we can always find a level of the cumulative
hierarchy, a V,,, in which S is true: ZF + Ja(S)">. Of course we have just seen that all of ZF" is true
in any H,+. If our finite list contains the Ax.Power then Reflection arguments provide a solution. From
this we shall be able to see later that ZFC is not finitely axiomatisable: there is no finite set of axioms S
that have the same deductive consequences as those of ZFC.

2.5.1 ABSOLUTENESS

DEFINITION 2.42 Let W < Z be class terms. Let ¢ € Le with FVbl{¢} < {x}.

(i) o is upward absolute for W, Z iff Vi € W (" — ©?);

(ii) o is downward absolute for W, Z iff Vi € W(p"W «— ¢?);

(iii) @ is absolute for W, Z if both (i) and (ii) hold: Vx € W (W « ¢?)
IfZ = V then we omit it, and simply say “p is upward absolute for W”etc. If @ = @i, ..., @, is a finite list of
formulae then we say that @ = ¢y, . . ., p, are upward absolute (etc. ) if their conjunction N\ ¢ = P1A-* Ay
is.

DEFINITION 2.43 Given classes W < Z and a term t we say t is absolute for W, Z iff
Vie Wt(X)W e W < t(X)? e Zat(%)? = t(x)V)

(Recall that asserting t(¥)? € Z is to assert that t(X)Z is a set of Z. Note we could have defined
‘upwards’ and ‘downwards’ absoluteness for terms ¢ as well.) A standard example of a term that is not
absolute is given by “the first uncountable cardinal” (t = {«e € On | cv is countable }). Suppose W < V.
Certainly ¢tV = t is defined: it is w;. It may be that t" is defined, and is a cardinal in W. But V may
simply have more onto functions f with dom(f) = w and ran(f) < On, than W has. We may thus have
t" < tV. Another example is given by t = P(w).

DEFINITION 2.44 A list of formulae @ = 1, . .., o, is subformula closed iff every subformula of a formula
is on the list.

The following establishes a criterion for when a formula’s truth value is identical when interpreted in
different in different class terms.

LEMMA 2.45 Let @ be a subformula closed list. Let W < Z be terms. The following are equivalent:
(i) @ are absolute for W, Z. ;
(ii) whenever @; is of the form 3xpj(x,y) (with FVbl(p;) < {y} ) it satisfies the Tarski-Vaught
criterion between W and Z:
Vye W[3x € Zpj(x, y)* — Ix € Wo;(x, y)%].
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PROOF: (i) =(ii): Fix j € W and assume ;($)* = 3x € Zp;(x, y)%. By absoluteness of ¢;, ¢; ()", so
Ix € Weji(x,y)" and by absoluteness ¢;, ¢;(x, y)%, so Ix € We;(x, y)*.

(ii)= (i): By induction on the length of ¢;: we thus assume absoluteness checked for all ¢; on the
list for shorter length, in particular for any subformula of ¢;.

;i atomic: absolute by definition.

©i = p; V i then ¢; is absolute since both ¢; and ¢y are by the inductive hypothesis.

@i = ~pj: similar;

@i =3xpj(x,y). Sofixye W.

ei()" o Ixe Woi(x, )" « Ix e Zpi(x,5)” < 0i(5)”

Where : the first and last equivalence is just the definition of relativisation; the second equivalence -
from left to right uses the absoluteness of ¢ ; from the Ind.Hyp., and the fact that W = Z; and from right
to left uses Assumption (ii) and again the absoluteness of (; from the Ind. Hyp. QE.D.

LEMMA 2.46 Let W be a transitive class term. Then any Ao-formula o is absolute for W.

PrOOF: Let ¢ be Ag and apply the last argument (with & the list of ¢ together with all it subformulae).
The point here is that Trans( W) so W knows the full e-relationship on its members. As any A,-formula
only contains bounded quantifiers, this is enough to satisfy the criterion of 2.45 when one comes to the
induction step ¢ = Jx € y where 1 is A itself, in the induction step at the end of the last proof.

EXERCISE 2.44 Fill in the details. [Hint: by what has just been said, only the ¢ = 3x € y1) step and the last chain
of equivalences needs to be argued.]

EXERCISE 2.45 Let W be a transitive class term. Then (i) any X;-formula ¢ is upwards absolute for W; (ii) any
I1;-formula ¢ is downwards absolute for W.

2.5.2 REFLECTION THEOREMS

We use the last criterion of absoluteness in our Reflection Theorems. The first lemma really contains the
essence of the argument.

LEMMA 2.47 Let Z be a class term, and suppose we have a function F; with Fz(«) = Z,, so thatVa(Z, €
V). Assume
(i) a<f—Zy< Zg;
(ii) Lim(A) — Zx = Uaer Za;  Then forany @ = @o, ..., ¢n
(”l) Z = Uaeon Za-

(%) ZF +~Ya3p > (@ are absolute for Z3, Z).

Note: Formally here we are saying that if we have a term for Z and a term for the function Fz, and
we can prove in ZF that F; has properties (i) - (iii), then for any &, there is a proof in ZF of (). We are
not saying that in ZF +“V 3 ((*)) holds”. (Assertions such as the latter we shall see later are false.)
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ProoF: We apply Lemma 2.45 and try and find some W = Zz such that (ii) of the lemma applies. This
will suffice. By lengthening the list if need be we shall assume that  is subformula closed. For i < n we
define functions F; : On — On. If ¢; = 3xp;j(x, y) set:
Gi(y) = 0if-Ixe Zpj(x,5)*
= 1 where 7 is least so that 3x € Z,p;(x, y)%.
Fi(§) = sup{Gi(y)|ye Z}.
Note that G; is a well defined function, and consequently so is F;: G;“Z¢ € V by AxReplacement; hence
Fi(&) = sup G;“Z is then a well defined term. Note also that each F; is monotonic: { < § — F;(() <
Fi(&). If p; is not of the above form, set F;(&) = 0 everywhere.
Claim: Ya3p > a(Lim(B) AVE < BYi < nF;i(€) < B).
Proof of Claim: Define by recursion on w: A\g = o
At = max{ g + LFy(Ar),..., Fu( k) )5 B = supy Ag.
Then A < A implies that Lim(/3). Hence if 7 < /3 then 7 < \i for some k € w. Hence F;(7) <
F,'()\k) < Ay < B. Q.E.D.(Claim)
Now that the Claim is proven, then we may verify the Lemma with such a 3 for Zg and Z.

Q.E.D.

EXERCISE 2.46 Carry out this final verification.

We may immediately set Z to be V and Z,, to be V,, and obtain the corollary:

THEOREM 2.48 (Montague-Levy) The Reflection Theorem. Let F be any finite list of formulae of L.
Then
ZF - Ya3p > o are absolute for V). Q.E.D.

As cautioned above, this is a theorem scheme again: it is one theorem of ZF for each choice of .
Notice that if, in particular, 7 are sentences, we may write the conclusion as:
ZF - Ya3B > a(@ < (B)"F).
Moreover if the F are axioms of ZF we have that they are true in V. In this case we may write:
ZF+YaidB > a( (NE)Y?).
In other words: for any finite list from ZF we can find arbitrarily large 3 so that those axioms hold
in V3. We can state something stronger:

COROLLARY 2.49 Let T be any set of axioms in L extending ZF, and @ a finite list of axioms from T. Then
T+VYaodB>a( (NP)Y).

ProoF: Since T extends ZF T proves the existence of the V,, hierarchy, and T + ¢; for each ¢; from &.
Hence T+ A @ trivially,. And T+ Va3B>a( A B «— (AF)"?) QE.D.

At first blush it might look as if the restriction to finite lists of & is unnecessary. Why could we
not look at a recursive enumeration ¢; of all axioms of ZF say, and find some V,, in which they were all
true? We know from the Godel Second Incompleteness Theorem that there is no way to formalise that
argument within ZF, since it would be tantamount to proving the existence of a model of the ZF axioms,
and hence the consistency of ZF. So what goes wrong? Lemma 2.47 can only work for finite lists 7: the
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statement “ are absolute for Zg, Z” involves a conjunction of the formulae from the list: we cannot
write an infinitely long formula in £, so we have no way of even expressing the absoluteness of such an
infinite list. Another paraphrase on this is in the following Exercise.

EXERCISE 2.47 Show that for every formula ¢ of £ :
ZF +“There is a c.u.b. class C < On so that Vo € CVx € V,, (0(%) < (¢(%))V>)”

[Hint: The reasoning of Lemma 2.47 pretty much gives the relevant cub class as the closure points of the F;.]
Remark: One might think that one could enumerate all the axioms of ZF ¢y, ¢, .. ., find the appropriate classes
C,, and take D = N, C,,,. This appears then to be an intersection of only countable many c.u.b. classes and so
must be c.ub. in On? But for any element o € D wed have (ZF) ">, and we appear to have proven the existence
of models of ZF - contradicting Godel. What is wrong with this reasoning?

EXERCISE 2.48 Find a sentence ¢ so that if o is absolute for V,, then « is a limit ordinal. Repeat the exercise and
find 7 so that if 7 is absolute for Vg then 8 = wg (the S’th infinite cardinal). [Hint: consider the statement: “For
every B wg exists”.]

As the last exercise shows, if we insist on finding a V;, which is absolute for any particular sentence,
then we may need to find a very large « for this to happen. If we are content to merely find a set for which
a formula is absolute, we can find a countable such set. More generally:

LEMMA 2.50 Let Z be a term, and @ be any finite list of formulae of L. Then
ZFCr Vx € Z3y[x € y S Z A @ are absolute for y, Z A|y| < max{w, |x|}].

ProOF: We define from the term Z the term giving the function F(«) = Z n V,, which we shall call
Zq. Again assume that @ is subformula closed. As x is a set, by the AxReplacement G“x € V where
G(u) =g4¢ the least o such that u € Z,, (or = 0 if u ¢ Z). Then sup G“x = JG“x € V. Call this ordinal
Bo. By Lemma 2.47 find 3 > 5, with  absolute for Zg, Z. By AC fix a wellorder < of Zg. Without loss
of generality we assume @ € Zg. If ; is of the form Jx¢;(x, y1,..., yk;) (with FVbl(¢;) < {y}) we

define a function G; : ¥1Z3 — Zz by the following clauses:
hi(y) = the <-least x € Zg so that ¢;(x, y1, ... ,yk].)zﬂ if such exists
= & otherwise.

We also set h; to be the constant @-function in the cases that ; is not of the above form, or that ¢;
has no free variables. With /; now defined in every case, we look for the least set y closed under the h;.
We can find such a y by repeatedly closing under the finitary functions /;, and obtain a y with cardinality
no greater than max{w, |X|} (see Exercise 2.49). We can then appeal to the criterion in Lemma 2.45,
which asserts in this case that P is absolute for y, Zz. But @ is absolute for Zg, Z, and thus the Lemma
is proven. Q.E.D.

EXERCISE 2.49 Let x be any set, and f; : "'V — V for i < w be any collection of finitary functions (meaning
that #; < w); show that there is a y 2 x which is closed under each of the f; (thus f;“ "y < y for each i) and
|y| < max{w, |x|}. [Hint: no need for a formal argument here: build up a y in w many stages yx S y,; at each

step applying all the f;.]

The last lemma then says that, e.g. , if ¢ were a finite list of axioms of ZFC, and x = @, then (y,€)
would be a countable structure in which those axioms were true.
Returning to our reflection results, we may apply the above to obtain corollaries to Lemma 2.50.
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COROLLARY 2.51 Let Z be a term, and @ be any finite list of formulae of L. Then
ZFC+ Vx € Z[Trans(x) — Iw[x S w A Trans(w) A @ are absolute for w, Z A |w| < max{w, |x|}]

Proor: We directly apply the Mostowski-Shepherdson Collapsing Lemma to the set y appearing in the
statement of Lemma 2.50, thereby collapsing it to the transitive w 2 x here. As (w,€) = (y,€) we have
©(v)” < ¢o(m(v))". Hence @ are absolute for w, Z. Obviously |y| = |w|. Q.E.D.

In the special case that Z = V and x = w in the above we may get:

COROLLARY 2.52 Let T be any set of axioms in L extending ZFC, and @ a finite list from T, then

T+ 3y[Trans(y) Aly| = w A A(P)].

Thus we can find for any finite set of ZFC axioms a countable transitive set model in which all those
axioms come out true. Again the finiteness of @ is necessary.

2.6 INACCESSIBLE CARDINALS

We shall encounter in this section an example of a ‘large cardinal’: this is a cardinal whose existence does
not follow from the axioms of ZFC. In general this is because such cardinals allow one to conclude that
there are structures (typically V.. where k is the cardinal number under consideration) in which all the
ZFCaxioms are true. If ZFC could prove the existence of such a x then this would contradict the Godel
Second Incompleteness Theorem. From these further large cardinals can be defined, and although we
give the briefest of illustrative examples, it is not the intention of the course to go down this route, rich
as it is.

2.6.1 INACCESSIBLE CARDINALS
DEFINITION 2.53 A cardinal k > w is a strong limit cardinal, if for any o < k — 2/ < k.

DEFINITION 2.54 A regular cardinal k > w is

(i) weakly inaccessible if it is a limit cardinal (Hausdor{ff 1908);

(ii) (Sierpinski-Tarski (1930); Zermelo (1930)) strongly inaccessible if in addition it is a strong limit
cardinal.

The idea behind the nomenclature is that an accessible cardinal « is one that can be reached from
below by either the successor cardinal operation, or else the power set operation, as per Note (1) that
follows.

Notes (1) Another way of putting this is to say that a cardinal « is weakly inaccessible if it is (a) regular
and (b) & < kK —> o™ < k. Itis (strongly) inaccessible if it is both (a) regular and (¢) o < kK — |P(a)| <
K.

(2) The word ‘strongly’ is often omitted.
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(3) If the GCH holds then the two notions coincide (for the simple reason that GCH — 2lal =
|P(a)| = a* < K!).

(4) The least strong limit cardinal is singular of cofinality w (Check!) In particular if GCH holds then
R, is the least strong limit cardinal.

LEMMA 2.55 (AC) Let w < k € Reg. The following are equivalent:
(i) k is strongly inaccessible;
(”) Vi =Hg;
(iii) (ZEC) = ;
(iv) Kk = 2.

PrOOF: (i) =(ii). Since x € Card, we have H,, € V,; (Lemma 2.38(ii)). But x € V,; = Ja < k(x € V,).
By induction on « < x one shows that |V,,| < k: suppose true for 5 < oz then V, = P(Vg) ifa = f +1,
and as | V3| < &, then [P(V3)| = [21V2]] < & as & is strongly inaccessible; if Lim () then V,, is the union
of less than x many sets of size less than x, and hence has cardinality less than . Hence, in either case
V., is a transitive set of size less than x. Hence it is in H,..

(ii) = (iii). We have already that (ZFC™ ) (by Lemma 2.39). Only Ax.Power is missing. But
(Ax.Power) " for any limit ordinal ), and hence in particular for \ = k.

(iii)= (iv). We prove by induction that a < K — 1, < . This suffices. Assume true for 3 < av. If
o = 3+ 1then 27 = 1,. But (AxPower +AC)"~, hence (37 € On(7 ~ P(25))"*. So 274 = |P(25)| <
7 < k. If Lim(«) then 3, < & by the inductive hypothesis and the regularity of .

(iv) =(i). Recall that |V ,4q| = 34 (Ex. 2.9). Our assumption yields that

wW<a <k — 2= |P(a)] < |Vau| = 2an < &
as required for strong inaccessibility. Q.E.D.

EXERCISE 2.50 Verify that « is weakly inaccessible iff « is regular and x = R.

EXERCISE 2.51 Does k > w A V,, = H,, imply that « is strongly inaccessible?

DEFINITION 2.56 (Mahlo 1911) A regular limit cardinal k is called a weakly Mahlo cardinal in case Reg N
is stationary below k. k is called (strongly) Mahlo if it is both weakly Mahlo and strongly inaccessible.

LEMMA 2.57 If k is weakly Mahlo then in fact k is the x’th weakly inaccessible cardinal, and the class
of weakly inaccessible cardinals below k is stationary below k. The same sentence is true with ‘strongly’
replacing ‘weakly’ throughout.

PrOOF: As Regn k is unbounded in x, (Regn k)™ is c.u.b. below . But such are all limit cardinals. As
Reg Nk is moreover stationary below k, D =4¢ (Regn ) N (Regn k)™ is stationary below « (see Ex.2.12).
But all members of D are then weakly inaccessible cardinals. Q.E.D.

EXERCISE 2.52 Let A be the least weakly inaccessible cardinal which is itself a limit of weakly inaccessible cardinals
(meaning the weakly inaccessibles below A are unbounded in A). Show that A is not weakly Mahlo. The same
sentence is true with ‘strongly’ replacing ‘weakly’ throughout.
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2.6.2 A MENAGERIE OF OTHER LARGE CARDINALS

We briefly consider some other notions of “large cardinal” stronger than Mahlo. (For a full account see
Drake [2], Devlin [1], Jech [3].) We do this to give some flavour to the rich structure of even the so-called
small large cardinals. They are called ‘small’ because, if they are consistent, then they are consistent with
the statement that “V = L” - they can thus potentially be exemplified in L. Several depend upon the
notion of a homogeneous set for a certain kind of function.

DEFINITION 2.58 (i) [k]" denotes the set of all n element subsets of k.
(ii) [k]** denotes the set of all finite subsets of

DEFINITION 2.59 H C & is homogeneous for f : [k]" — A\ <¢¢ | [H]"| =1

A homogeneous set is one therefore that every n-tuple there from gets sent by f to the same ordinal
€ < A. Often in applications A = 2 = {0,1} so we can think of f as partition of [x]" into two colours. If
H is homogeneous, then this means that all #-tuples from H are assigned the same colour. For A colours
the same applies. If a longer order type is specified on H then the harder it is to find such homogeneous
sets. Large cardinals can then be specified by putting requirements on H and so forth as in the next two
definitions.

DEFINITION 2.60 A cardinal k is weakly compact if for every f : [k]* — 2 there is a homogeneous subset
H < k with H unbounded in k.

DEFINITION 2.61 (Jensen) A cardinal r is ineffable if for every f : [k]*> —> 2 there is a homogeneous
subset H C k with H stationary in k.

By themselves the bare definitions may not mean too much. We give some equivalent formulations.

DEFINITION 2.62 (i) A tree (T, <r) is a wellfounded partial ordering so that foranys€ T, {so € T | so <
s} is linearly ordered.

(ii) A branch through a tree T is a maximal linearly ordered set;

(iii) Ty =4¢ {s € T | ranky(s) = a} is the set of elements of the tree of tree-rank or ‘level’ a.

A tree thus looks how it sounds.

DEFINITION 2.63 Let us say that a cardinal k has the tree property iff for every tree T = (k,<r) with
Va < k(| To| < k) has a branch of order type k.

There is no reason for a cardinal in general to satisfy the tree property. For example on wj it may be
the case that there is an uncountable tree T = (wj, <r), with field w;, with all levels T, countable, yet
without any branch of cardinality w;. (Such trees are called Aronszajn trees.) However the Konig Tree
Lemma shows that wy has the tree property.
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LEMMA 2.64 For a cardinal k the following are equivalent:

(i) k is strongly inaccessible and satisfies the tree property;

(ii) k is weakly compact;

(iii) for every A C k there is a transitive M, and a B, j with j : (V,, €, A) — (M, €, B) an elementary
embedding with j | k =id | k and j(k) > k.

There are many further characterisations of weakly compact. See Jech, Drake. One property of
weakly compact cardinals is that every stationary subset of « reflects this property below x, as in the
following Exercise.

EXERCISE 2.53 (%) Let x be weakly compact. Show that for any stationary subset S < &, there is A < & so that
S N Ais stationary in A. [Hint: Use (iii) of the last lemma: suppose the conclusion fails; then there is Cy S A with
CyNn SN\ =g forevery cardinal A < k. Let A = {{,A\) | £ € Cy} US x {0}. Let j, M, B be as in (iii) above.
Let C,, = {£ | (¢, k) € B}. By elementarity of the embedding j the following holds in M : “C,; is c.u.b.in , whilst
C.nNSNKk=2" But(Snk)y =S - so this is a contradiction.]

DEFINITION 2.65 (Jensen) A cardinal k is subtle iff
For any sequence (A, | o < k) with all Ay, € « and any c.u.b. C C K, there is a pair of o, 5 € C with
a<fBAAgna=A,).

LEMMA 2.66 (Jensen) For a cardinal k the following are equivalent:
(i) k is ineffable ;
(ii) for any sequence (A, | o < k) with all A, € « there is a set E C K, so that

{a < k| Ay = Enaj} is stationary.

DEFINITION 2.67 A cardinal k satisfies the partition relation kK — ()5 <=q¢ forany f: [k]* — 2
there is an H < k, ot(H) > -y, which is homogeneous for f : [k]<Y —> ), namely for all n < w —

fH =1

The extra strength here is that f must assign the same colour to each n-tuple from H (although for
a different m # n a different colour may be chosen for all m-tuples from H). Such cardinals become
rapidly stronger than those considered above, and quickly enter the realm of ‘medium large cardinals’
This happens as soon as y crosses the threshold from countable to uncountable. The cardinals here
defined are in increasing strength, when measured in terms of where they are first exemplified in On: if
K is the least satisfying k —> (w)5“ then k is the x’th ineffable cardinal. Similar if & is the first ineffable,
it is the «’th subtle cardinal, and also the «’th weakly compact cardinal. If x is the first weakly compact
cardinal, then it is the x’th Mahlo cardinal. All the above are consistent with ‘V' = L’; not however the
existence of a cardinal « satisfying kK —> (w;)5®: if such a cardinal exists we may prove that V # L.
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CHAPTER 3

FORMALISING SEMANTICS WITHIN ZF

The study of first order structures and the languages appropriate to them is the branch of mathematics
called model theory. Like other parts of mathematics it can be formalised within set theory, and developed
from the ZFaxioms. Whereas most mathematicians would not be seeing any great advantage in having
their area of mathematics in doing this, as set theorists we shall see that formalising that part of model
theory that handles structures of the form (X, €), (or of (X,€,A;,...,A,) where A; < X), will be of
immense utility. Amongst other results it is at the heart of Godel’s construction of the constructible
hierarchy, L.

We have defined the notion of absoluteness of formulae between structures or terms rather generally.
However we have not been very specific about what kinds of concepts are actually absolute. We alluded
to this problem at the end of Section 1.2, and in particular we noted the possible non-absoluteness of the
power set operation. In general objects that have very simple definitions tend to be absolute for transitive
sets and classes (thus @, {x, y},w, “f is a function’, “x an ordinal”) whilst more complex ones are not
(y = P(x), “x is a cardinal”).

3.1 DEFINITE TERMS AND FORMULAE

The definite terms and formulae are amongst those that we are interested in being absolute between
transitive ZF~ models. We address the question of which terms and formulae defining concepts can be
so absolute. We shall define “definite term (and formula)” first and later show that such have this degree
of being “absolutely definite”

DEFINITION 3.1 (Definite terms and formulae)
(A) We define the definite terms and formulae by a simultaneous induction on the complexity of formulae
and of the terms’ definition.
(i) Any atomic formula x = y, x € y is definite ;
if o, ¢ are definite, then so are: - (pVv); dyexp
(ii) Any variable x is a definite term. If s, t are definite terms, so are:

Us, {s, t},s\t.

41
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(iii) Suppose to(x1,...,x,) and ty,...,t, are definite terms. Then to(t/X1,. .., tn/xy) is a definite
term. If p(x1,...,xy) is a definite formula then so is p(t1/x1, ..., tn/%Xn).
(iv) If p(x0, X1, - . ., X)) and t,. .., t, are definite, then so are the terms:

yni{x|o(x, b/x1,. .., tafxn)} and {t1(y,x) | y € z}.

v) w.
(vi) If t is definite, and Fun(t), then the canonical function term f given by the recursion

f(y, %) =t(y,%,{f(z,%) | z€ y}) is definite.

Note (1): By (i) any A, formula of £ is definite. (iv) gives a form of “definite separation” axiom, in the
first part, and a kind of “definite replacement” in the second part. Note also that if s is a definite term

» o«

then in particular “x € s”,“Jy € s¢” are definite formulae.

LEMMA 3.2 (ZF") If t is a definite term then: VX (t(x) € V).

Proor: Formally this would be a proof by induction on the complexity of t; informally notice that the
way we have defined definite terms uses methods, such as at (ii) where the ZF~ axioms yield these classes
directly as sets, or in the case of (iii) and (iv) an appeal to Ax.Subsets would yield them as sets. In (vi)
we appeal to the principle of recursion (which does not use Ax.Power) to ensure that f as defined there
is a function of V" to V (for some n). Q.E.D.

We shall be interested in terms and formulae that are absolute between any two transitive ZF~ models
M, N. Such we shall call absolutely definite, a.d. for short. We shall be particularly interested in when
they are so absolute between such an M and V. We shall readily be able to identify a whole host of terms
and defining formulae as definite. We shall also be showing that any definite term or formula is a.d., and
thus in one fell swoop be able to conclude they are absolute for such classes. As might be expected the
proof proceeds by induction on the complexity of the term or formula.

THEOREM 3.3 Let t(X) be a definite term, and p(x) a definite formula. Then (a) t and (b) p are a.d., that
is, they are absolute between any two transitive ZF~ models M, N.

Proor: We shall first prove (a) and (b) by a simultaneous induction on the complexity of definite terms
and formulae. We do this by referring to the construction clauses (i)-(vi) Def. 3.1 in turn. It suffices
to prove this absoluteness between V and any transitive class term model of ZF~ W (note V is also a
transitive ZF~ term). So let W be a transitive class term with (ZE~)". The atomic formulae of (i) are
trivially so absolute, and the inductive steps in the more complex formulae are trivial except for the
bounded existential quantifier; assume y € W and ¢ is absolute for W:

)W

(Bxep)p)V o Bx(xeyrp))V o Ixe W(xeynp") o 3x(xeynp") o (Ixey)p

where we use the transitivity of W and hence that y £ W, in the « direction of the third equivalence.
We remark that we have shown Lemma 2.46:

COROLLARY 3.4 Let ¢ be a Ay formula. Then o is a.d.
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For (ii) suppose s, t are definite:

U)W ={z|Fyes(ze )}V ={z|ze WrIyesW(zey)} ={z|TyesV(ze y)} =Us
since s" = W. {s, t} and s\t are similar.

For (iii) suppose t, ..., t, are definite. Letz 2 Fvbl{#y,...,t,}. Let {x1,...,x,} 2 Fvbl(¢). Then
we make the inductive assumptions that for any z € W : t;(Z)" = t;(Z), and for any ¥ € W that
to(X)V = to(¥). By Lemma 3.2, if t;(Z)is defined for Z € W then we know that t;(Z) € W.

to (0 (2) )1, sty (2) )

=t (t1(2))x1, ... ta(Z)]%0)

to(t1(2)/x15 ... tu(2)[xn)

The first equality is just the definition of relativisation to W and the next two are the inductive hy-

potheses outlined.
Entirely similarly,

(to(t(Z) /1, -+ s tn(Z) %)Y

(o(tr/x1s .- tufx0))Y <> @V (5 [x1, o 6 [x0) = @V (01 x15 s tafxn) <> @(B) %15 ta)%n)

where the new inductive hypothesis is now that (X) <> o(%)" for any ¥ € W, and is used in the final
equivalence. The first equivalence is Lemma 1.23.

For (iv): suppose ©(x9, x1,...,%,) and f1, ..., t, are definite, then:

(7 x| 9(x/ 00 /31, tuf ) DY

=ynWn ({x]|o(xti/xt,. ..o ta/x) DV

=ynWn{xeW| (o(x, ti/x1, ..., ta)x:))"V}

=ynWn{xeW]|o(x, ti/x1,...,ta)x,)} (by (iii))

=yn{x|p(x, ti/x1,..., tn/xn)} since y © W as Trans(W).

Assume z € W and ¢ is definite. We make the inductive assumption that we have shown that
tl(u,v)w = t1(u,v) € W for any u,v € W. Then

(rolye " = {u(nx)"(ye )V} = {u(nx)lye 2}
using that z € W in the first equality.

For (v) we consider w. We note that the following are expressible in a Ay way and hence are absolute
for W :

(@Qx=g < Vzex(z+z)

(b) Trans(x) <> Vy € xVz € y(z € x);

(c) x € On <> (Trans(x) AVy,zex(yezvzeyvz=y));

(d) Lim(x) <> x€OnAx + 3AVyexIze x(y € z);

() x € w < x € OnA-Lim(x) AVy € x=Lim(y).

(f) x =w <> x € OnALim(x) AVy € x—~Lim(y)

By (e) we have seen that x € w is given by a A formula and hence is absolute for W. Now note that
w € W: suppose n € w is least for which n ¢ W. Then0 =@ € W son =m+1=g muU{m}. However
if m" = m then by Ax.Pair and Union (m u {m})" € W where

mu{mH" ={xeW|(xemvx=m)V}={xeW|(xemvx=m)}={x|(xemvx=m)}=
mu{m}.
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Hencew € W. Butthenw" = {x e W|(x e w)"} = {x e W|(x ew)} (by(e)
={x|(xew)} (sincew < W).
= w.
Finally for (vi): we assume ¢ is definite, and Fun(t), and f is the canonical function term given by:
f(,%) =t(y, %, {f(z,X) | z€ y}).
We thus have the inductive hypothesis that t(y, X, u)" = t(y,%,u) forany y,¥,u € W. Let y,X €
W. We prove the result by e-induction, hence we also assume we have proven for any z € y that
f(z,%)" = f(z,%) € W. Then by (iv) we have: {f(z,%) | z€ y}" = {f(z,X) | z€ y} € W. Then:
[ = (0%, {f(z%) | ze y)"
= (0% {f(z.%)[zey}")
t(y,%,{f(z,X) | z€ y}) (by the above comment)
f(y,X%) asrequired. Q.E.D.(Thm.3.3)

We now have a very powerful method for showing that all sorts of concepts and definitions are ab-
solute for transitive structures in which ZF~ holds. For example all the ordinal arithmetic operations are
defined by recursive clauses from definite terms. We can formally justify this as follows.

LEMMA 3.5 Suppose we define:

fx) = u(yx)  ifn(yx)
tn(y: %) if ¥n(y,X)
= %) otherwise.
for some definite t, . . . , t,, and mutually exclusive (meaning at most one of 1 (y, %), ..., ¥u(y, %) holds)

but definite i, ..., 1y, then f(y,X) is definite.

Proor: Note that uy U+ U u, = U{uy,...,u,} so this is definite.
Then:  f(y,x) ={t(y, X)[r(y, %)} U U {ta(y, X)Vu(y, %)} QE.D.

COROLLARY 3.6 All the arithmetical functions Ao (B) = a + f; Mo (B) = a - B; Eo(B) = o are definite
and hence a.d.

ProoOF: For example:

Aq(x) o if x =@
Aa(x) = An(y)+1 if x € On A Succ(x) Ax = S(y);
Anp(x) = sup{A.(y)lyex} ifxeOnALim(x).

The first and third conditions on the right we have already seen are definite at (a), (c), (d) above. But
Succ(x) < Jy(x = yu{y}) < Iy € x(x = yu {y}). We note that y U {y} is definite, and so by the
Theorem 3.3 Succ(x) is definite. The three conditions are mutually exclusive we can appeal to the last
lemma once we note that the three terms &, y U { y}, and U z where z is a definite set by 3.1 (iv) in place
of 11, t;,and t3 are definite. The other functions are exactly the same. Q.E.D.
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Note (1): P(x) is not definite: if it were we could conclude from Theorem 3.3 that for any transitive
set satisfying (ZF~)" that P(x) € W which is not true in general.

“x is countable” cannot be expressed by a definite formula ¢(x): again if it were, we should have that
the concept is absolute for transitive W satisfying (ZF~)". We list some definite concepts.

LEMMA 3.7 For any n: (i) U" x, (i) {x1,...x,}, (iii) (x, y); (u)o, (1)1 where u = ((u)o, (u)1); (iv)
(xX15. . > xn), (v) x X y,(vi) ran(z), (vii) dom(z), (viii) z°, (ix) z | x, (x) z Y are all definite terms.
The following relations are definable by definite formulae:

(xi) x < y; (xii) Trans(y); (xiii) Rel(z); Fun(z); (xiv) z(x) = y; (xv) “z is a (1-1) function”; z is an onto

», o« », o«

function; (xvi)“x is unbounded in B7; “z : o« — [ is a cofinal function”; “x < (3 is a closed and unbounded
set”;
(xvii) the terms TC(x), (xviii) p(x) are definite terms.

Thus all the above are a.d.

Prookr: The first two are simply repeated applications of operations defined to be definite. Similarly
(iii) (x, y) = {{x},{x, ¥} }; (iv) (x1, ..., x,) was defined by repeated application of (-, —) and hence is
definite; (v) x x y = U{x x {z}|z € y} = U{{(w, 2)|w € x}|z € y}.

(vi): ran(z) = {ue Pz 3w e zAve U z(w = (v,u)};

(vii): dom(z) = {u e U*z[3w e zAv e U? z(w = (u, v) };

(viii): zx = {ve U?z | Jue xIw e z(w = (u,v)) };

(ix), (x) Exercise.

(xi): x € y <> Vz € x(z € y), it is thus Ay and so definite;

(xii) Trans(y) < Vz € y(z S y);

(xiii) Rel(z) <> z < dom(z) x ran(z);

Fun(z) < Rel(z) A Vx € dom(z)Vu,v eran(z)(v + u — ({x,u) €z = (x,v) ¢ 2));

(xv) z(x) = y < Fun(z) A (x, y) € z;

(xvi) Exercise.

(xvii) TC(x) = t(x, {TC(y)|y € x}) for a definite t using the definite recursion scheme.

(xviii): s(z) = zu {z} is definite; then {s(v) | v € u} is definite as then is t(u) = U{s(v) | v € u} (by
(iv) and (ii) resp. in Def.3.1). Using the definite recursion scheme (vi) we get p(x) = t({p(y) | y € x}).
(Here we are just expressing that p(x) = sup{p(y) + 1|y € x}.) Q.E.D.

ExXERCISE 3.1 (i) Show that “x is a total order of y” can be expressed in a A, fashion.
(ii) Complete (ix),(x), (xvi), (xvii) of Lemma 3.7.

LEMMA 3.8 The following are definite: "x (for any n); “x =g¢ U{"x|n € w}; “x is finite”. Hence
Pw(z) =g {x S z|x is finite} is definite.

ProoOF: By induction on 7 : we define F(n,x) = "x:
F(0,x)="x=@.
F(n+1x) = ™x = {f U {(my)}If € F(mx) nye x)s
F(w,x) =<“x = U{F(n,x)|n € w}.
This is given by definite recursion clauses, and so F(#, x) is definite for n < w.
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“x is finite”«> 3f € ““x(f is onto). And then:
{x € 2| x is finite} = {x|3f € ““z(x =ran(f))} Q.E.D.

Note: the absoluteness of finiteness implies that if Trans(W) A (ZF~)" then any finite subset of W
is in W. This need not be true of course for infinite subsets of W.

EXERCISE 3.2 Suppose Trans(W)A(ZF™)". Show (V,,)" = V,,nW. [Hint: use that the rank function is definite.]

Note: “cf(«)” along with “x is a cardinal” or “w;” are not definite, and so not absolute for such W in
general (but see the next exercise). Neither then is “x is a regular/singular cardinal” However being a
wellorder is so absolute as the next lemma shows.

EXERCISE 3.3 Let A be a limit ordinal; show that the following are absolute for Vy: (i) P(x) (ii) “« is a cardinal”
(and hence (Card)" = Card n \); (iii) cf(a) (iv) “a is (strongly) inaccessible” (v) y = V,, (vi) R, (vii) Jq.

LEMMA 3.9 (i) “z is a wellorder of y”; (ii) “z is a wellfounded relation on y” are absolutely definite.

ProOF: Suppose Trans(W) A (ZE™)W, z,y € W. For (i) “z is a total order of y” can be expressed in a
Ao way (Exercise). Suppose (“z is a wellorder of y”)". Since we have Ax . Replacement holding in W we
have that “(y, z) is isomorphic to an ordinal” holds in W. If (a« € On)" and (f : (y,2) = (a, <))" then
dom(f) = y,ran(f) = «, “f is a bijection’, efc., are all absolute for W. Hence f : (y, z) 2 («, <) holds in
V. Consequently (y, z) is truly a wellorder.

Conversely if “z is a wellorder of y” with z, y € W, then as for any w € V with w S y we have w has
a z-minimal element wy say, then wy € W (as Trans(W)) and no u € W satisfies uzwy. Soifalsow € W
then (“wy is an z-minimal element of w”)".

(ii) is only an amplification of (i), effected by defining an absolute rank function p, of the wellfounded
relation z. We leave this to the reader. Q.E.D.

The example of wellorder shows that being expressible by a A, formula is not a necessary condition
for absoluteness: wellorder in general is a IT;-concept when literally written out. However if (ZF~)W
holds then we have Ax.Replacement available to turn this IT; concept into an existential X; statement
and hence have that it is U-absolute for W. We may say that it is thus “A?F > If W is not a model of
sufficient Replacement then this argument can fail.

EXERCISE 3.4 “p(x) < a”is Ay, and “y = V,,” is [T, expressible.

3.1.1 THE NON-FINITE AXIOMATISABILITY OF ZF

We use the Reflection Theorem together with our absoluteness results to prove the non-finite axioma-
tisability of ZF. (We say a set of axioms T axiomatises S if T + o for every o from S. A set S is finitely
axiomatisable if there is a finite set T that axiomatises S.)

THEOREM 3.10 (The non-finite axiomatisability of ZF) Let T be any set of axioms in L, extending ZF,
and Ty be any finite subset of T ; if from Ty we can prove every axiom of T then T is inconsistent.
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In particular, with T as ZF, no finite subset of ZF axioms will axiomatise all of ZF, unless ZF is incon-
sistent.

ProoOF: Suppose T 2 Ty were such sets of axioms, with all of T provable from Ty, for a contradiction.
We have the assertion: ZF + VadB > a((A To)"? < A To). Then as T, proves every axiom of ZF, it
proves the following instance of the Reflection Theorem:
To + VOZH,B > Oé((ﬁ(\ T())VB < N T())
However trivially Ty + Ya38 > a((A To)"?)
since Ty + /A To. Then, by the principle of ordinal induction:
To + 3Bl (A To) %o AVE < Bo(~(A To)"?]. (+)
We are assuming that Tj proves all of ZF, so by the Soundness of first order predicate logic, Theorem
1.20, in the form that if Ty - 1) and (A Tp)", then () V7, we may deduce, Tp ~ (ZF)"%.
Then all our absoluteness results about transitive models hold for Vj, for such a 3y as in (). Also
in particular :
To+ < By~ (VB)VﬁO = Vg n V3, = V3 (Exercise 3.2)
Again using Soundness, since Ty - 33(/A To) V#, and at (*) we have Ty - ( A\ Tp) %o:
Ty + (Hﬁ(m To)vﬁ)vﬁﬁ.
However, then we have
To + 38 < Bo(A To) V# which contradicts (#). So T and hence T is inconsistent. Q.E.D.

3.2 FORMALISING SYNTAX

We shall consider the language £ = L¢ - that we have been using to date, that can be interpreted in
€-structures, that is any structure (X, E) with a domain a class of sets X and an interpretation E for the
€ symbol. In what follows, we shall almost always be considering the standard interpretation of the &
symbol, where it is interpreted as the true set membership relation. The equality symbol = will without
exception be interpreted as true equality =. Up to now the object language of our ZF theory has been
floating free from our universe of sets, but we shall see how this language (indeed any reasonably given
language) can be represented by using sets, just as we can represent the natural numbers 0,1,2, ... by the
sets @, {@},{@,{@}},... We make therefore a choice of coding of the language L by sets in V. The
method of coding itself is not terribly important, there are many ways of doing this, but the essential
feature is that we want a mapping of the language into a class of sets, where the latter is ZF (in fact ZF~
or even much more simply) definable). As we are mainly interested in the first order language £ we give
the definitions in detail just for that. In principle we could do this for any language, for any structures.

DEFINITION 3.1 (Gddel code sets) We define by (a meta-theoretic) recursion on the structure of formulae
@ of L the code set "¢' € V,,.

(i) "vizv;'is 2041 371, vi€v;'is 5itL. 73+l

(i) "x vtis (X' ') ;

(iii) =" is (0, ") ;

(iv) vt is (111, "))



48 Formalising semantics within ZF

Note (a) atomic formulae are the only ones coded by integers, (b) in each case, that if ¢ is non-atomic
then the code set contains immediate subformula(e) codes as direct members. (c) If we had wanted to
have further predicate symbols besides € in our language, e.g. monadic predicates Ay (v, ) we could have
added as codes 13¥*! - 17"*1, and similarly for j-place predicates. The means of coding are completely
flexible and in this setting any reasonable system can work.

Clearly given a code set u we may decode ¢ from it in a unique fashion, making use of the primes and
the prime power coding. We give the formal counterpart of the above definition using finite functions
from V,,, a definite formula defining the characteristic function of the class of code sets of formulae of

L:

DEeFINITION 3.12 (i) Fml(u, f,n) =1« fe ““V,Andom(f) =n+1A f(n) =u A
AVk € dom(f)[3i, je w(f(k) =213y f(k) =51 .77ty
T, 1 < KLF(K) = (£ (m), F(D) v F(K) = (0, f(m)) v 3i € w( (k) = (10, f(m))]] ) s
Fml(u, f,n) = 0 otherwise.
(i) Fmla(u) =1« In e wif € *“V,Fml(u, f,n) = ; Fmla(u) = 0 otherwise.

We thus may think of the formula ¢ as represented by, or coded by, f(n), where f is the function
that describes its construction according to the last definition, with dom(f) = n + L.

It should be noted that both the last definitions are built up using definite terms, and so are defined
by definite formulae and thus are a.d.

3.3 FORMALISING THE SATISFACTION RELATION

We now formalise the (first order) satisfaction relation due to Tarski, familiar from model theory.

DEFINITION 3.13
(i) Qx =4 {h|Fun(h) Adom(h) =w A ran(h) € x Adn € wiy € x(Vm > nh(m) = y)}.
(i) If h € Qy, and y € x, then h(y/i) is the function defined by:

View(j#i— h(y/i)(j) = h(j)) A h(y[i)(i)=y.

Again Q) is definite: we may write
heQx < dhpe “xIyex(h=hou{(n,y)|newndom(hy) <n}).
Thus although Q, does not contain finite functions, any h € Q, is essentially a finite function with
a constant tail - and this makes it definite. (Again: “x, like P(x), is not definite.) (ii) also specifies a
definite relation between i, x, y, and h.
We next specify what it means for a finite function / to be an assignment of variables potentially
occurring in a formula u to objects in x that makes u come out true in the structure (x, €).



Formalising definability: the function Def. 49

DEFINITION 3.14 (i) We define by recursion the term Sat(u, x);

Sat("vi=v;',x) = {he Qih(i)=h(j)};
Sat("vievi',x) = {he Qih(i)eh(j)};
Sat("x ve',x) = Sat("x',x)uSat("Y,x)};
Sat("—p',x) = Qi\Sat("Y',x)};
Sat("Ivip',x) = {heQu3yex(h(y/i)eSat("V',x))]};
Sat(u,x) = @ if Fmla(u) =0.

(ii) We write (x,€) = u[h] iff h € Sat(u, x).

Note: By design then we have (x,€) = "—)"'[h] iff it is not the case that (x,€) & "'[h] etc. (We write
the latter as (x, €) # "'[h].) If, uninterestingly, x = & then also Sat(u, x) = @.

LEMMA 3.15 Sat(u, x) is defined by a definite recursion. Hence “(x,€) & "p'[h]” is definite.

Proof: This should be pretty clear, but we give an explicit recursive term ¢ for Sat:
Sat(u,x) ={h € Q, | Fmla(u) =14
i, jew[(u=2"13" A h(i) = h(j)) v (u =57 A (i) € h(j))]]v
v[IveUu(h e Sat(v,x))] v[0e UunFveUu(v+0nh¢Sat(v,x)]v
vdiew@™ e UuaIveudyex(h(y/i) e USat(v,x) ]}.
The specification here yields a definite term Sat(u, x) = t(x, u, {Sat(v,x)|v € u}) noting that we
have already established that all the concepts appearing here, such as “Q,”,“Fmla(u)’, “w”, efc. are defi-
nite. Q.E.D.

By our work so far then then we may say that “the assignment / makes the formula ¢ true in the
structure (x, €)” if (x,€) & "¢'[h]. Otherwise we say it is similarly “false”.

If ¢ is a formula of £ with free variables amongst Vigsens Vi, and yg, ..., ¥, € x then we abbreviate:

(x,€) E "' [¥05-- > ¥n] < (x,€) E "@'[h] for any h € Q, with h(j;) = y; alli < n.
This makes perfect sense, since the intepretation of the formula ¢ in the structure only depends on the
assignment to the free variables of ¢. If ¢ has no free variables at all, then it is deemed a sentence and
either Sat("¢", x) = Q, , in which we case we say the sentence ¢ is true in (x, €) or else Sat("p',x) =@
in which case it is false. In each case we simply write (x,€) E "¢" or (x,€) # "' accordingly, as then
assignment functions h are superfluous.

3.4 FORMALISING DEFINABILITY: THE FUNCTION Def.

The following is the crucial function used to build up definable sets.
DEFINITION 3.16 Def(x) =¢f {{w e x| (x,€) Fu[h(w/0)]};Fmla(u) =1Ah e Q,}.

LEMMA 3.17 “Def(x)” is a definite term.
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ProOF: First note that we have shown that “(x, €) = u[h(w/0)]” is definite. Hence so is
t(x,u, h) =gt {w € x|(x,€) = u[h(w/0)]}.

Hence {¢(x,u, h)|Fmla(u) = 1A h € Q,} is definite. Q.E.D.

The class Def (x) we think of as the “definable power set of x”: it consists of those subsets y < x so
that membership in y is given by a formula ¢ (v, v1, . . ., v, ) all of whose free variables are amongst those
shown, together with a fixed assignment of some y;,. .., ¥, and the members y, € y are determined
by allowing v to range over all of x. Those y, that when added to the fixed assigment yi,. .., y,,, cause
©[ Y0, Y15+ - -» Ym ] to come out true in (x, €) are then added to y. We may write slightly more informally:

Def(x) = {z|z={w|(x,€) E p[W, y1,..., ym] },Fmla(p) =1, y € “x}

where it is implicitly understood that we should have written "¢ for ¢ and it is left unsaid that the free
variables of ¢ have all been assigned some value in x by the assignment displayed.

LEMMA 3.8 (i) x € Def(x); (ii) Trans(x) — x < Def(x);
(iii)) Yz < x(|z] < w > z € Def(x));
(iv) (AC) |x| > w — | Def(x)| = |x|.

PrROOF: (i) x = {w|(x,€) E "vo = vo'[w]} and so x € Def(x).

(iv) Assume x is infinite. Then Q, has the same cardinality as ““x, namely |x|. Also, F =4¢ {u |
Fmla(u) =1} is a countable set. Since Def(x) is the class of subsets of x given by a definition involving
a formula u € Fmla together with a finite parameter string yi,..., y, we see that: |Def(x)| < |F|®
|Qx| = w®|x| = |x|. That |x| < | Def(x)| follows from (iii). (ii) and (iii) are left as an exercise. = Q.E.D.

EXERCISE 3.5 Finish (ii) and (iii) of Lemma 3.18.

EXERCISE 3.6 Let (x, €) be a transitive €-model. Show that Trans(Def(x)). If y, z € x then is (y, z) € Def(x)? Is
{x}? [Hint (for the last question): If p(x) = «, compute p(Def(x)) and compare this with the given sets.]

EXERCISE 3.7 Let us say that w is outright definable in the set (x,€) if for some formula ¢ with only free variable
vo then w is the unique element in x so that (x, €) = ¢[w]. We may thus define a variant on the Def function by:

Defy(x) = {z|{z} = {w € x|{x,€) = o[w] },Fmla(p) = ,FVbl(p) = {vo} ,w € x}

of the sets outright definable in (x, €), definable without use of parameters. Show that | Def(x)| < w for any x.

DEFINITION 3.19 We say that a set z is ordinal definable® (“z € OD*”) if for some [3, z € Def( (V).

(This definition is just a placeholder for the official - but equivalent - definition of ordinal definability
to come.)

EXERCISE 3.8 (i) Show that: (a) On € OD*; (b) Y8V € OD*; (c) Vx(x € OD* — {x} € OD*). (ii)(*) Show
that there is a (countable) set X so that for unboundedly many ordinals 8 in On, X € Defy( V). [Hint: consider
the theory of each Vj: the set of all codes of sentences o so that (V,€) = "o". This is a subset of V,,.]
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3.5 MORE ON CORRECTNESS AND CONSISTENCY

The next theorem illustrates that our definitions are ‘correct’: we have formulated two ways of talking
about a statement ¢ being ‘true in a structure’ W, firstly we considered relativised formulae and spoke
from an exterior perspective of ‘@ holds or is true in W’ by asserting ‘0"’ The formula ¢ from £ we
consider to be in our language in which we wish to state our axioms about the structure consisting of our
intuitive universe of sets. We have now a second interior method through the formalised version of the
language which consists of sets coding formulae as for "¢’ above together with the satisfaction relation.
This relation was between (codes of) formulae and structures or ‘models. The next theorem asserts that
these two methods are in harmony.

THEOREM 3.20 (Correctness Theorem) Suppose  is a formula of L with free variables v = vj,...,v;,
then:

ZE~ - Vxvy e "x[({x.€) "¢ [7/7]) < (o(7/7)]

e This would be a proof by induction on the complexity of ¢ (we shall omit the details). It is again
a theorem scheme, being one theorem for each .

The ZF and ZFCaxiom collections themselves have formal counterparts as sets: just as each formula
 is mapped to its code set "' as above, we can also find sefs that collect together the code sets of those
sentences ¢ that are axioms of ZF (or ZFC). Namely, there is an algorithm for listing the axioms of ZFas

900’901)---)S0n>---

DEFINITION 3.21 'ZF' =4¢ {u|Fmla(u) = 1A (Ax0(u) v Ax1(u) v - v Ax8(u))}.
"ZEC' is defined similarly by adding “v Ax9(u)”.

In the above by ‘Axj(u)” we mean that u is a code set for an axiom of the type Axj written out in
our official language. Thus Axo is the Ax.Extensionality. If this latter axiom is written out using only -,
v, 3 etc. as o then we have Ax0(u) <— u = "o". The other axioms similarly must be written out in the
formal language, and then coded according to our prescription. Some axioms are in fact axiom schemata:
infinite sets of axioms. So for Ax6(u) (for Ax.Replacement) we should demand that u conforms to the
right shape of formula that is an instance of the axiom of replacement when written out in this correct
manner. Ax 6(u) will then be an infinite set, as will be "ZF" .

LEMMA 3.22 (i) “u € "ZF'”, “u € "ZFC'” are definite. (ii) If p is an axiom of ZF then
ZF v "' € "ZF'.
Similarly if @ is an axiom of ZFC then ZF~ + "¢' € "ZFC" .

This would again be a proof by induction on the structure of (. The intuitive meaning that it captures
is that “ZF < "ZF"”. 'The point again is that the definitions of "ZF' and "ZFC" are again definite. These
details are uninteresting and somewhat tedious, but the idea that this can be done is very interesting. (ii)
is again a theorem scheme, one for each axiom ¢.

DEFINITION 3.23 “(x,€) E "ZF "<=g4¢ Yu € "ZF' (x,€) = u. (“(x,€) £ "ZFC"” similarly.)
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We have that, e.g. “(x,€) & "ZF"” and “(x, €) = "ZFC"” are definite, and so a.d. Then in this case we
say that (x, €) “is a model of ZF(C)”.

COROLLARY 3.24 (to the Correctness Theorem) For @ any axiom of ZF~ then
ZF - Vx((x,€) E ZF T — ol®e)y;
similarly for @ any axiom of ZFC
ZF - Vx({x,€) £ ZFC" —> %)),

EXERCISE 3.9 Suppose k is strongly inaccessible. Verify that (V,;,€) £ "ZFC".

EXERCISE 3.10 (%) (E) Let A, B be structures. We write A < B if for every formula u, every h € Q4 if B & u[h]
then A = u[h]. Suppose that x, A are such that (V,;,€) < (V),€). Show that & is a strong limit cardinal and that
both (V,, €), (Vy, €) are models of ZFC.

ExERCISE 3.1 (*) (E) Suppose there is A which is strongly inaccessible. Show that there is x with (V;, €) a model
of ZFC, and with cf(x) = w. [Hint: Use the Reflection Theorem proof on V), which we now have assumed to be
a ZFC model, to show that every formula ¢ of ZFC now “reflects” down to a cub C, < A set of ordinals. Now
intersect over all . This method shows that in fact there is a cub set of points x < A with (V,;, €) not only a model
of ZFC, but also (V,;,€) < (Vy,€) ]

EXERCISE 3.12 Suppose (X,€) = T for some setof sentences T including Ax.Ext. Show that there is a countable
transitive x with (x,€) = T. [Hint: The Downward-Lowenheim Skolem Theorem says for any cardinal A with
w < A < |X]| thereisa Y with (Y,€) < (X,€) and |Y| = A. Then use the Mostowski-Shepherdson Collapsing
Lemma.] In particular if there is an e-structure which is a model of ZFC then there is a countable transitive one.

3.5.1 INCOMPLETENESS AND CONSISTENCY ARGUMENTS

In general when we say that a theory T is consistent we mean that for no sentence o do we have T + 0 and
T + —o. We abbreviate thisas “Con(T)”. Of course if T is inconsistent then we may prove anything at all
from T and we can then say (assuming that T is in a language in which we formulate arithmetic axioms)
that “T' + 0 = 1” encapsulates the notion that T is inconsistent. The heart of Godel’s argument is that it is
possible to formulate the concept of a formal proof from an algorithmically or recursively given axiom
set T extending PA, Peano Arithmetic, in such a way that “v codes a proof from "T" of v;”, abbreviated
PfT (vo, v1), can be represented in the theory T. Then we may use “~3vo Pf” (v, "0 = 1')”, abbreviated as
“Con™, to capture the formal assertion that T is consistent. He then showed that T ¥ Con’. In short
we thus formalise the notions of “proof”, “contradiction”, “axiom” etc. within the theory T, starting with
the formalisation of syntax that we have already effected. We are not going here to go down the route of
investigating Godel's proof in its entirety, however we can rather easily obtain a weak version of Godel’s
Second Incompleteness Theorem which suffices for our purposes. (Compare the proof of Theorem 3.10)
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THEOREM 3.25 (Gddel) Con(ZF) = ZF i Ix(Trans(x) A (x,€) = "ZF").

PRrOOF: Suppose o abbreviates the sentence 3x(Trans(x) A (x,€) = "ZF"). Suppose that ZF + ¢. Then:
ZF + 3z(Trans(z) A (z,€) E "ZF' A“Yw(Trans(w) A p(w) < p(z) = (w,€) # "ZF")” ()

Let z satisfy the last formula. By the last Corollary for any axiom ¢ of ZF we have (>}, That is
(ZF){%€). As ZF + o we shall have that (¢'){*€). In other words (3x(Trans(x) A (x,€) = ZF')){=€),
So let y € z satisfy this, namely

(Trans(y) A (y,€) = "ZE"){5€),

But this is a definite formula and so is absolute for the transitive structure (z, €) as (ZF~){*€). Hence we
really do have:

y € zATrans(y) A (y,€) = "ZF'.

But p(y) < p(z). This contradicts (). Hence ZF is inconsistent. Q.E.D.

However, providing we have done our formalisation of "ZF" and Pf” (v, v|) etc. sensibly, we shall
have that in ZF we can prove the Gédel Completeness Theorem: that any consistent set of sentences in
any first order theory whatsoever has a model, and thus shall have:

ZF -“Con?t — 3X,E[|X| =w A (X, E) £ "ZF'] > (#%)

But there is no indication that E should be the natural set membership relation on the countable set X,
or that Trans(X). X, E arise simply from the proof of the Completeness Theorem. In general E will not
be wellfounded, and will be completely artificial.

Taking this line further: if there is a set which is a transitive model of ZF, let us assume (x,€) € V is
such. We additionally assume such an x is chosen of least rank. The assumed existence of (x, €) implies
Con?¥, and as this latter assertion is expressed as a definite sentence, and (x, €) is a transitive ZF~ model,
we have (Con?")(*€), By (#+) (3X, E(|X| = w A (X, E) & "ZF"))*€). Then the model (X, E) € x can-
not be a model with E wellfounded (it is an exercise to check this using p(X) < p(x) - cfEx. 3.15 below).

What we shall attempt with Godel’s construction of L is to show:
(+) Con(ZF) = Con(ZF+®)
where @ will be various statements, such as AC or the GCH.

A statement such as the above (+) should be considered as a statement about the two axioms sets
displayed: if the former derives no contradiction neither will the latter. The import is that if we regard
ZF as “safe’, as a theory, then so will be ZF +®. (One usually claims that these arguments about the
relative consistency of recursively given axiom sets are theorems of a particular kind in Number Theory
and themselves can be formalised in PA - but we ignore that aspect.)

EXERCISE 3.13 (#) (E) We say that a set x is outright definable in a model (M, E) of ZFC if there is a formula ¢ (vy )
with the only free variable shown, so that x is the unique set so that (»[x])™ holds. Suppose Con(ZFC). Show
that there is a model (M, E) of ZFC in which every set is outright definable.

EXERCISE 3.14 (E) Show that there is no formula ¢ (v, ) with just the free variable vy so that {y | ()} is the class
of outright definable (in (V, €)) sets. [Hint: use a form of Richard’s Paradox. Suppose there is such a . The least
ordinal 7y not outright definable is a countable ordinal, but now let ¢)(vy) be “vo € On AVv; < vo(v1) A —p(vp)”]

EXERCISE 3.15 (##) (E) Suppose that there are transitive models of ZF. Let (x,€) be such, chosen with p(x)
least. Then (by Ex.3.16 ) if (X, E) € x is such that (X, E) = "ZF", show that (X, E) cannot be an ‘w-model, that



54 Formalising semantics within ZF

is wXE) % . (Thus (X, E) contains non-standard integers, and in particular codes for non-standard formulae.
More particularly still, ("ZF"){*F) will contain non-standard axioms besides the standard ones.)

EXERCISE 3.16 (#x) (E) Suppose (M, E) is a model of ZF. Show that there is an element (N, E’) of M with (N, E')
a model of ZF.

3.5.2 SATISFACTION OVER V

In the above we defined satisfaction, and so truth, over any set structure (x, €). In particular for x as any
Va. Can we define satisfaction for the whole universe (V, €)? The answer is no, not in ZFC alone. That
is, there is no single formula Sat,,(vo, -+, v, ) so that

(V,€) = Saty[u,x1, -, x,] < Fml(u) A(V,€) E u[x1, -, x]. (#)w

EXERCISE 3.17 Show that if there were such a formula Sat,, satisfying the above then ZF would be inconsistent.
[Hint: Use the Reflection Theorem on Sat,,.]

However for any fixed n there is a formula Sat, that works for the above as long as u is restricted to
those formulae that are at level £,, in the Levy hierarchy. We let the reader devise a function Fml, so that
Fml, (#) = 1precisely when u codes a formula that is at some level £ for k < n. Now run Definition 3.14
but restricting it to X formulae for k < n to define Sat,. This is a legitimate definite recursion defined
over (V,€). This gives us a true equivalence (), where Sat, is in place of Sat,, in the above.

EXERCISE 3.18 Show that for any natural number n ZF proves that there is an « (indeed a cub class of ) so that
(Var€) <3, (V,€). [Hint: for an informal argument, just use reflection on Sat,. More formally for the second
partlet 'S, denote the codes of X, formulae of £ in the Levy hierarchy. Show that there is a term ¢, £ On for a
closed unbounded class of ordinals, so that ZF + V§ € ¢,V ' € 'S, 'VX € V5(p(%) < (Vs,€) E "¢'[¥]). This we
should naturally, but informally, also abbreviate as (Vs,€) <5, (V,€)’]

Just as in the Reflection Theorem, that ‘for any natural number »’ is on the outside of what ZF proves.
That n is metatheoretic and not one of the objects in V.

EXERCISE 3.19 (#%) (E) Suppose the language £; is the standard language of set theory augmented by a single
constant symbol 4. Suppose we consider the following scheme of axioms T stated in £ s: for each axiom ¢ of ZFC
we adopt the axiom p;: V¥ (Fr(p) € X — (¢[%])"s < ©[X])). (Thus ¢ is declared absolute for V;.) T consists
of all the axioms ¢;. Informally, taken together then, T says that (Vs,e) < (V,€) where § interprets §. However
the existence of a ¢ satisfying the latter relation is not provable in ZFC (by the Godel Incompleteness Theorem).
Nevertheless show that Con(ZFC) = CON(ZFC+T'). Why does this not contradict Gédel?
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CHAPTER 4

THE CONSTRUCTIBLE HIERARCHY

In this chapter we define the constructible hierarchy due to Godel, and prove its basic properties. Besides
its original purpose used by Godel to prove the relative consistency of AC and GCH to the other axioms
of ZF, we can exploit properties of L to prove other theorems in algebra, analysis, and combinatorics. In
set theory itself, properties of L can tell us a lot about V even if V # L.

Kurt Godel (1906 Brno - 1983 Princeton, USA)

4.1 THE L,-HIERARCHY

We use the Def function to define a cumulative hierarchy based on the notion of definable power set
operation: the Def function.

DEFINITION 4.1 (G6del) (i) Lo = @; Lo+ = Def((La,€);
Lim(\) — Ly = U{La | a < A}.
(ii) L = U{Lq | @ < On}.

57
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LEMMA 4.2 The term L, is definite, and hence absolute for transitive W satisfying (ZF~ ).

Proor: The Def function is definite and the o > L, function is defined by definite recursion from it.
QE.D.

We thus have defined a class term function F(«) = L,, by a transfinite recursion on On, and so also
the term L itself. It is natural to define the notion of “constructible rank” or L-rank, by analogy with
ordinary V-rank.

DEFINITION 4.3 For x € L we define the L-rank of x, p(x) =g¢the least o so that x € L.

We give some of the basic properties of the L, -hierarchy. Many are familiar properties common with
the V,,-hierarchy: all of the following are true with L,, replaced by V.

LEMMA 4.4 (i) 8 <a— Lg S Lq;
(i) B<a—Lg€ Ly;
(iii) Trans(Ly, );
(i) @ = p(La) ;
(v) a = OnnL,,.
Hence Trans(L) and On < L.

Proor: We prove this by a simultaneous induction for (i)-(v). These are trivial for &« = 0. Suppose
proven for o and we show they hold for v + 1.

(i): It suffices to prove that L, L, since by the inductive hypothesis, for § < a we already know
Ls € Lg. (Actually this is just an instance of Lemma 3.18(ii), noting that Trans(L,,) by (iii), but we prove
it again.) Let x € L. By (iii) for o, Trans(L, ) and hence x < L,.

x={y€ Ly|(La-€) E "vo€w'[y,x]} € Def({(La,€)) = Lo+

(ii) Again it suffices to show that L, € Ly+;. However L,, € Def({L,,€)) by Lemma 3.18 (i).
(iil) Loa+1 € P(Ly) hence x € Loy —> x S Lo € Lo by (i).
(iv) By the inductive hypothesis p(Ly) = . By (ii) Lo, € Lo+, hence o = p(Ly) < p(La+1). Hence
a +1 < p(La+1). For the reverse inequality note that: x € Loy — x S Ly, and so p(x) < p(Ly) =
This means that

p(Las1) =af sup{p(x) +1|x € L4} <a+1
(v) By the inductive hypothesis and (i) @ S L, S Lqy+1, S0 it suffices to show that a € L4 in order to
show that & +1 < L. Thus:

a={0€Ly|0€0n}={d€Ly|(La,€) E vEON'[]} € Def({Lo,€)) = L1
That OnNLy+1 S a+1: OnnLyy S {6 € On | p(J) < a + 1} by (iv). But the latter is just o + 1.

We now assume Lim(\) and (i)-(v) hold for o < A. Then (i)-(iii) and (v) are immediate. For (iv) :
p(Ly) =sup{p(x) +1]|x € Ly} <sup{aja€ A} = \. Conversely A Ly —> p(Ly) > \. Q.E.D.
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LEMMA 4.5 (i) Forall « € On, pr(«) = p(a) =
(ii) Forn<w L, = V,.
(iii) For all a > w|Lq| = |a].

Prook: (i) and (ii): Exercise. For (iii) we prove this by induction on «. For a = w this follows from (ii)

and |V,,| = w. Suppose proven for . |Ly41| = |Def({Ln,€))| = |La| = |o| = | + 1| by Lemma 3.18 (iv).

For Lim(A): |Lx| = |Ua<x Lal < |- |A| = |A| as by the inductive hypothesis |Ly| = || < |A| for o < A.
Q.E.D.

EXERCISE 4.1 (i) Verify that for all & € On, p; («) = p(«) = « (ii) Prove thatforn < w L, = V,,.

Remark: (i) shows that as far as ordinals go, they appear at the same stage in the L-hierarchy as in
the V-hierarchy. However it is important to note that this is not the case for all constructible sets: there
are constructible subsets of w that are notin L.

DEFINITION 4.6 (i) Let T be a set of axioms in L. Let W be a class term. Then W is an inner model of T,
if (a) Trans(W); (b)) On< W; (c) (T)V, that is, for each o in T, (o) ™.
(ii) If (i) holds we write IM(W, T) and if T is ZF then simply IM(W).

THEOREM 4.7 (Godel) L is an inner model of ZF, IM(L). In particular (ZF)L.

Remark: again this is to be read as saying: for each axiom ¢ of ZF, ZF + (p)L.
PrOOF: We already have (a) and (b) by Lemma 4.4, so it remains to show (ZF)L. We justify this by
considering each axiom (or axiom schema) in turn. We use all the time, without comment the fact that
each L, is transitive.

Ax 0 Empty is trivial as @ = @' € L.

Ax1: Extensionality: This is Lemma 1.21, since we have Trans(L).

Ax2: Pairing Axiom Let x, y € L,,. Then

{x,y} ={z€ Lo | (La>€) E vo=v1 vV vo=v2'[2/0,x/1, y/2]} € Def(Ly) = La-s1 < L.

By Lemma 1.24 then Ax2 holds in L.

Ax3 Union Axion Let x € L. This follows from Lemma 1.25 once we show:

Ux={z€ Ly |(La>€) E I(i€vy Avoévy'[2/0,x/2]} € Def(Ly).

Ax4 Foundation Scheme Let a be a term. Then:

(a2@— (Ixea(xna=09))) < (al + @ — Ix € a*(x na® = @)). But the right hand side
of the equivalence here is simply an instance of the Foundation scheme in V and thus is true.

Axs Separation Scheme Again let a be a class term. Suppose

a = {z|p(2/0, /1., yu[n)}.

Suppose x, y € L. We apply Lemma 2.47 to the hierarchy Z, = L, Z = L to obtain a 3 >~y so that

ZE Yz e La( (9(2 715+ yn))E = (0(2 Y1505 ya))12) ).
By the Correctness Theorem 3.20

(2 15 yu))" (L, €) E 0 (2, 1, s Yu )
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Hence, putting it all together:
{zexlp(zpn .y}t = {zex|p(z . .oyn)) =

={zeLg|(Lg,€) E "©AVoEVpi1 [Z, Y15-..» Y- x|} € Def(Lg).

Ax6 Replacement Scheme Suppose f is a term, x € L, and Fun(f)%. Let p; be the constructible
rank function. Then by the Replacement Scheme (in V) (py o f£)“x € V. Let « be its supremum. Then
fL“x € Lg. Let B > a be sufficiently large so that by the Reflection Theorem

ZF ¥y, ze Lo( (f(2) = ) o (f(2) = 9)1) ).

Then again using the Correctness theorem we have that

5% = {y € Lol{Ls, €) = Fneva(f(w) = v0)'[1/0,/2]} € Def(Ly).

Axy Infinity Axiom Just note that w € Ly,,1.

Since we have shown the requisite sets are all in L we apply the appropriate cases of Lemma 1.25 and
conclude Ax3,5,6,7 hold in L. We are thus left with:

Ax8 PowerSet Axiom (Yx3y(y=P(x)))t < (VxIpVz(zS x < ze y))L <

—VxeldyelVzeL(zSx<z€y)

~VxellyeL(y=P(x)nL).

So we verify the latter: let x € L be arbitrary. P(x) n L € V by Axiom of Power and Separation in V. By
Ax.Replacement p,“P(x) n L € V. Let a be its supremum. Then, as required:
P(x)nL={z€ Ly|(La,€) E voEw'[2,x]} € Def(Ly,). Q.E.D.

Suppose we define imo( W) to be the variant on IM( W) that, keeping (a) and (b), replaces (c) by the
statement that “Vx € W3y € V(x < y A Trans(y) A Def({y,€) € W)” then a close reading of the last
proof reveals that we in fact may show:

THEOREM 4.8 Suppose W is a class term and imo(W). then IM(W).

EXERCISE 4.2 () (E) Prove this last theorem.

EXERCISE 4.3 Show that “x is a cardinal” and “x is regular” are downward absolute from V to L. Deduce that if x
is a (regular) limit cardinal then ( is a (regular) limit cardinal)*.

4.2 THE AxioM OoF CHOICE IN L

The very regular construction of the L, -hierarchy ensures that the Axiom of Choice will hold in the con-
structible universe L. Indeed, it holds in a very strong form: whereas the Axiom of Choice is equivalent
to the statement that any set can be wellordered, for L there is a class term that wellorders the whole
universe of L in one stroke. Essentially what is at the heart of the matter is that we may wellorder the
countably many formulae of the language £, and then inductively define a wellorder <, for L,; using
a wellorder <, for L. This latter wellorder <, gives us a way of ordering all finite k-tuples of elements
of L,, and thus, putting these together, we get a wellorder of all possible definitions that go into making
up new objects in Ly;. We shall additionally have that the ordering <, end-extends that of <. This
means that if y € Ly41\L,, then for no x € L, do we have that y <41 x. Taking <;= Uaeon <o gives us
the term for a global wellordering of all of L. We now proceed to fill out this sketch.
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Let x € V and suppose we are given a wellorder <, of x. We define from this a wellorder <, . For
f € Qy weletlh(f) =4 the least n so that Vm > n(f(m) = f(n)). We then define for f, g € Q,:

f<q. & «=ar Th(f) <Ih(g) v (Ih(f) = lh(g) A3k <Ih(f)(Vn <kf(n) = g(n) A f(k) <x g(K))).

EXERCISE 4.4 Check that <, is definite. Moreover if <,€ WO then <¢ € WO.

We now suppose we also have fixed an ordering ¢y, ¢1,. .., @y, ... of the countably many elements
of Fml which have at least v, amongst their free variables (we may define such a listing from any map
g w <— Fml). We assume that the function f given by f(n) = "¢, is a definite term.

DEFINITION 4.9 We define by recursion the ordering <, of Lo. <o= &; let x, ¥ € Los1:
X <a+l Y < df
(xeLoAy¢La)V(x,yeLaAx<qy)V(x,y¢ LanIdnewdf e Qr, (x=1t(La>@n fIA
VmewvVg e Qr,(y=t(Larpmg) —>n<mv(m=nnf<q, g))))
Lim(\) —<x= Ua<r <5 <2=df Uaeon <a-

LEMMA 4.10 (i) <, is definite; (ii) the ordering <g is a wellordering and end-extends <, if o < 3 ; (iii) if K
is an infinite cardinal then <, has order type r; <1 has order type On. Thus (AC)L.

ProOF: (i) f(a) =4¢<q is defined by a definite recursion. (ii) By an obvious induction on «. (iii)
Exercise. Q.E.D.

EXERCISE 4.5 Show that ot(L,, <) = & for x an infinite cardinal; deduce that ot(L, <;) = On.

4.3 THE AxiomM oF CONSTRUCTIBILITY

DEFINITION 4.11 The Axiom of Constructibility is the assertion “V = L” which abbreviates “Vx3ax € L,.”

The Axiom of Constructibility thus says that every set appears somewhere in this hierarchy. Since the
model L is defined by a restricted use of the power set operation, many set theorists feel that the Def func-
tion is too restricted a method of building all sets. Nevertheless, the inner model L of the constructible
sets, possesses a very rich structure.

LEMMA 4.12 (i) Let W be a transitive class term, and suppose (ZF~)V. Then

()" L  ifOnnW =0On

Lg IfOnﬂWZG.

(ii) There is a finite conjunction oy of ZE~ axioms, so that in (i) the requirement that (ZF~ )" can be replaced
by (01)" and the conclusion is unaltered.
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Proor: (i) The function term L,, is definite. Hence is absolute for such a W. Note that in the case that
OnnW = 6 € On then indeed Lim(#). But in either case for any a € W (L,)" = L,. Hence

()" = (J{Lala e On})" = | J{Lola € OnnW}

which yields the above result.
(ii) o is simply the conjunction of sufficiently many axioms needed for the proof that the function
term L,, is definite, plus “there is no largest ordinal”. QE.D.

COROLLARY 4.13 (ZF) (V =L)~L

ProOF: Trans(L) and (ZF™)L. But (V = L)t < VE = LL. As VE = [ and by Lemma 4.12 (L)L = L we
are done. Q.E.D.

THEOREM 4.14 Con(ZF) = Con(ZF+V =L).

PrOOF: Suppose ZF +V = L is inconsistent. Suppose ZF+V =L - (p A =p).
ZF+ (ZF+V = L)t by the last Corollary and Theorem 4.7, then:

ZF - (o A =)L, and hence:
ZF - ot A (=) Hence:
ZF + ob A = (o). Hence ZF is inconsistent. Q.E.D.

REMARK 4.15 P. Cohen (1962) showed Con(ZF) = Con(ZF+V # L) by an entirely different method,
that of “forcing”. This method can be construed as either constructing models in a Boolean valued (rather
than a 2-valued) logic; or else akin to some kind of syntactic method of construction. (An entirely dif-
ferent method was needed - see Exercise 4.7.) He further showed that Con(ZF) = Con(ZF +- AC)
and Con(ZF) = Con(ZF +- CH). His methods are now much elaborated to prove a wealth of “relative
consistency” statements such as these.

THEOREM 4.16 (Godel 1939) Con(ZF) = Con(ZF + AC)

ProOF: We have shown ZF +~ (AC)L, but also ZF + (ZF)L, and thus ZF ~ (ZF+ AC)L, Hence if
ZF + AC + ¢ A = for some ¢ then we should have ZF + (¢ A —¢)! as in the last proof, and hence
not Con(ZF). Q.E.D.

EXERCISE 4.6 Suppose there is a transitive set M with (M, €) = "ZFC". Show that there is a minimal (transitive)
model of ZFC, that is for some countable ordinal 5y, (Lg,,€) = "ZFC" and that Lg, is a subclass of any other such
transitive set model of ZF .

Remark We note the following observation on argumentation. For any formula y we have the equiva-
lence: ZF + x* if and only if ZF+V = L + x. For the (=) direction, we have that, clearly, ZF+V = L
x*t. But it also proves that x* <> x" <> x. For the converse, we have that ZF ~ (ZF)%, but also we saw
at Cor.4.13 that ZF ~ (V = L)L. By the Soundness Theorem we thus have ZF + x%. This observation
can make proofs of properties of L, which can then be proven under the additional hypothesis of V = L,
easier.
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4.4 THE GENERALISED CONTINUUM HYPOTHESIS IN L.
We first prove a simple lemma, but one of great utility.

LEMMA 4.17 (The Condensation Lemma) Let 0 be the finite conjunction of axioms of ZE~ from Lemma
4.12, and suppose x and o are such that (x,€) < (L, €) and (o1)te. Then there is v < a with (x,€) =

(Ly,€).

PROOF: As (O’])L”‘, and and so by Lemma 4.12, we have (V = L)L“. So by the Correctness Theorem,
we have that (L,,€) = "V = L". Hence (x,€) = "V = L". Let 7 : (x,€) —> (y,€) be the Mostowski
Shepherdson Collapse with Trans(y). Then (y,€) & "o7' A "V = L' (as 7 is an isomorphism). By the first
conjunct, and Correctness again, we have (o7 A V = L)?. By Lemma 4.12, L” = L n y = Lonn,. But by
the second conjunct then, this equals y itself. So we may take v = Onny. QE.D.

Note: It can be shown that the assumption that (o1 ) can be very much reduced: all that is needed
for the conclusion of the lemma is that Lim(«), and with a lot more fiddling around even this condition
can be dropped, and we have Condensation holding for every L,,.

THEOREM 4.18 ZF + (w < x € Card — H,, = L,.)!. Hence ZF + (GCH)! and thus ZF +V = L~ GCH.

Proor: By the Remark at the end of the last subsection it suffices to prove ZF+V = L +~ GCH. So
we shall assume V = L. We have that L,, = V,, = H,, already and hence the conclusion for x = w.
Assume w < k € Card. If @ < k then by Lemma 4.5(iii) |Lo| = | < k. Hence L, € Hy. Thus L,, <
H,. Now for the reverse inclusion suppose z € Hy. Find an « sufficiently large with {z}, TC(z) € L,
and by the Reflection Theorem (0y)l>. Asz € H, — TC(z) € Hj, we may apply the Downward
Lowenheim-Skolem theorem in L and find (x,€) < (L,,€) with TC({z}) = TC(z) u {z} < x, and
|x| = max{| TC({z})|, Ro} < K.

As the transitive part of x contains all of TC({z}), we have that 7(z) = z where 7 is the transitive
collapse map mentioned in the Condensation Lemma, taking 7 : (x,€) — (y,€) = (L., €) for some
7 < o.. However we know that |x| = |L,| = || < x by design. Hence z € L, € L,.

As z € H,, was arbitrary we conclude that L, 2 H,,. We thus have shown H,; = L. To show GCH it
suffices to show that for all infinite cardinals x that 2% = k*. However 2" ~ P(k)and P(k) S Hy+ = Ly+.
Hence |[P(k)| < |Lx+| = k*. By Cantor’s Theorem we conclude |P(x)| = x™.

This argument establishes that ZF + V = L - GCH and the conclusion of the Theorem. QE.D.

The proof of the next is identical to that of Cor. 4.16:

COROLLARY 4.19 (Godel1939) Con(ZF) = Con(ZF + GCH).

EXERCISE 4.7 (E) (Shepherdson) Show that there is no class term W so that ZFC + IM(W) and ZFC (-~ CH)".
[This Exercise shows that Godel’s argument was essentially a “one-off”: there is no way one can define in ZFC alone
an inner model and hope that it is a model of all of ZF plus, e.g. , -~ CH.]

EXERCISE 4.8 Show that if there is a weakly inaccessible cardinal  then (ZFC)%=. Hence ZFC i 3x(k a weakly
inaccessible cardinal.) [Hint: Use the fact that (GCH)*.]
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EXERCISE 4.9 Show that if x is weakly inaccessible then Yoo < k38 < k(8 > a A Lg = "ZFC"). [Hint: use the
Condensation Lemma and Downward Lowenheim-Skolem Theorem.]

EXERCISE 4.10 Assume V = L. When does L, = V,?

EXERCISE 4.11 (E)(*) Show that if a < wy is any limit ordinal, which is countable in L, then there is 3, countable
in L, so that P(w) n Lg = P(w) N Lg+q. [This shows that although by the GCH proof all constructible reals will
have appeared by stage (w; )", there are arbitrarily long ‘gaps’ of countable length in the constructible hierarchy
below (w; )%, where no new real numbers appear,. Hint: Suppose V' = L. Let 2 = (L,,,, €) and, by the Downward
Lowenheim-Skolem Theorem, let Y © a+1be a countable elementary substructure of 2: ¥ < (. Letw: Y — M
be the transitive collapse of Y and as in the GCH proof, M = L., for some 7. Consider 8 = m(w;). Theny > 3 > o]

EXERCISE 4.12 Show that (i) if x is a weakly inaccessible cardinal, then (k is strongly inaccessible)"; (ii) if x is a
weakly Mahlo cardinal, then (k is strongly Mahlo)* .[Hint: See Exercises 4.3 & 4.8. For (ii) show that the property
of being cub in & is preserved upwards from L to V]

EXERCISE 4.13 (i) Let (x,€) < L, where w; = (w;)". Show that already Trans(x) and so x = L., for some y < w.
[Hint: For § < wj note that (|§] = |Ls| = w)"1. Hence for § € x, in L,,, and thus in x, there is an onto map
f:w—> Ls. Thus,asw € x A f € x we deduce that ran(f) = Ls < x. Deduce that Trans(x).]

(ii) (*) Now let (x,€) < L,,, where w; = (w,)". Show that Trans(x N L, ) and so x N L, = L, for some 7.

EXERCISE 4.14 (*) Assume V = L. N. Schweber defined a countable ordinal 7 to be memorable if for all sufficiently
large 8 < wy, T € Defy({Lg,€)). Show:

(i) The memorable ordinals form a countable, so proper, initial segment of (wy, €).

(ii) Let 6 be the least non-memorable ordinal. Show that ¢ is also the least ordinal 7 so that for arbitrarily large
v <w, Ly <L,.

4.5 ORDINAL DEFINABLE SETS AND HOD

Godel's method of defining the inner model L of constructible sets was not the only way to obtain the
consistency of the Axiom of Choice with the other axioms of ZF. Another model can be defined, the inner
model of the hereditarily ordinal definable sets or “HOD” in which the AC can be shown to hold. (The
GCH is not provably true there, and the absoluteness of the construction of L - which allowed us to show
that LY = L is not available: it is consistent that HOD" 9P + HOD.) We investigate the basics here. There
is some evidence that Godel was aware of this approach, as he suggested looking at the ordinal definable
sets for a model of AC. However the construction requires essential use of the Reflection Theorem that
was not proven until the end of the 1950’s by Levy and Montague. Some see these remarks of Godel as
indicating that he was aware of the Reflection Principle, even if he did not publish a proof.

DEFINITION 4.20 We say that a set z is ordinal definable (z € OD) if and only if for some formula
©(V0, V1, . .. » Vi) With free variables shown, for some ordinals o, . .., a,, then z is the unique set so that

elz,ag, ... am].

We next need to show that the expression ‘z € OD’ is definable within ZF. (At the moment the last
clause of the last definition has loosely talked about “definability (in (V,€))” - which is not definable
in (V,€).) We do this by showing it is equivalent to the alternative definition given in Def.3.19, which
involved only the definable sets V3 and the definable function Def(x).
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EXERCISE 4.15 (Richard’s Paradox) Let T be the set of those z so that for some closed term {x | #(x)} (that is one
without free variables) z = {x | t(x)}. Show that there is no formula ¢)(v,) (with just the one free variable shown),
so that T = {z | ¥[z]}, and thus T is not definable by such a formula, thus T is not such a closed term. [Hint:
as there are only countably many closed terms, there will only be countably many ordinals in T. Suppose for a
contradiction that ¢)(vy) does define the set of elements of T (meaning that it is true of just the elements of T).
Consider the term {« | V3 < a(¢[5]) }.]

EXERCISE 4.16 Let¥ =,...,7vs—1 € "On for some n. Then there is 3 so that 5 € Def(V3). [Hint: Let <" be the
wellorder of " On as above at Ex. 1.10. Let ¢ (&) express “& is the <"-least sequence so that V3 (& ¢ Def(V3))”
But if o (ct) were true, it would reflect to some J. But then & € Defy(Vy).]

EXERCISE 4.17 (Scott) For any formula 1 (vo, . .., V1) with free variables vy, ..., v;_1,
ZF - Yay,...,0n138(, ..., aymg € Defo(Vg) AVXg, .o s X190 (X0s - - o5 Xm-1) < (P(Xo, - . . ,xm,l))vﬁ).

[Hint: Another use of the Richard Paradox argument. Expand Ex.4.16. Suppose the displayed formulais Vo, . . ., a1 (&),
and suppose (@) false for some <"-least ay, ..., a,_1. Let § be any sufficiently large ordinal (so greater than
max{a}) that reflects ¢; A 1. But now, as in Ex.4.16, g, ..., a,—1 € Defy(V3) and Vg reflects 7 too which is a
contradiction.]

THEOREM 4.21 Z € OD’ is expressible by the single formula in ZF: op(z): “I6(z € Defo(V3))”

ProOF: Let OD* denote the class of sets z satisfying the Definition 3.19, that is the formula pop(z)

above. It suffices to show then OD* = OD. (<) is clear. Suppose x is the unique set satisfying ¢[ x, v, . . . , 1]
By Ex. 4.17 thereis B with avg, . . . , vy € Defp(Vp) and Vg reflects p with x € V. Then ¢[x, o, . . ., aty1]
defines x in V3. But amalgamating the definitions of the sequence & with that given by ¢ we have a def-
inition ¢'[x] in V without the use of ordinal parameters. Thus x € Def,(V3). Q.E.D.

THEOREM 4.22 OD has a definable wellordering.

PrOOF: We use a definable wellorder <H¥ of HF to impose a wellordering on the Godel code sets of
formulae with one free variable. As OD = {z | 33(z € Defo(Vp))} for any z € OD we can set 3(z) =4f
the least /3 so that z € Defy(Vj3). Let ¢, be the least, in the ordering <#¥, formula with the single free
variable v, that defines z in V3(2)-

Now define

x <op z < x,2€ OD A (B(x) < B(2) v (B(x) = B(2) A ¢x <" ¢2)).

One can check this is a wellorder of OD. Q.E.D.

LEMMA 4.23 Let A be any class that has a definable set-like wellorder given by some p(vo, v1) (“set-like”
meaning for any zo € A, {z € A | p(z,2¢)} is a set). Then A < OD.

PrOOF: Byassumption we can define by recursion a rank function r(z) = sup{r(y)+1| y € Arp(y,2)}.
Then ran(r) € On. But now for each z € A for some o we have r(z) = o and we may define z as “that
unique z with r(z) = o Q.E.D.

COROLLARY 4.24 L < OD
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ProoOF: By Ex. 4.5 the ordering <y of L is both definable and a wellorder in order type On. It is thus
“set-like” as described above. Hence L < OD. Q.E.D.

COROLLARY 4.25 Con(ZF) = Con(ZF+V = OD).

Proor: V =L implies V = OD by the last corollary. So this follows from Theorem 4.14. QE.D.

On the other hand it is not provable in ZF that V = OD (or that OD is transitive; even (AxExt)°P
may fail, see Ex.4.20 below). Thus we cannot prove that OD is an inner model of ZFC. For this we need
to consider the closely related subclass of hereditarily ordinal definable sets.

DEFINITION 4.26 (The hereditarily ordinal definable sets - HOD)
z€ HOD < ze ODATC(z) < OD.

We thus require not only that z be in OD but this fact propagates down through the e-relation below
z. By definition HOD is a transitive class of sets, and it contains all ordinals. We can use the formula
©wop (see Theorem 4.21) in the definition above to give a similar formula pyop true of exactly the sets
in HOD.

EXERCISE 4.18 Showz € HOD <> ze OD AVYy € z(y € HOD). Show that P(w) n OD = P(w) n HOD.

THEOREM 4.27 (ZFC)HOP, that is for each axiom T of ZFC, we have 710D,

Proor: By transitivity of HOD we have @ € HOD and AxExtensionality holds in HOD. It is easy to
check that x,y € HOD — {x, y},Ux € HOD. Likewise as any ordinal is in HOD (e.g. , by induction
using the last exercise), so is w € HOD. For AxPower: suppose x € HOD. It will suffice to show
that P(x)9P = P(x) n HOD € OD. The first equality is obvious as “y < x” is Ag. But notice that
P(x)NnHOD =P(x)nOD. (If y < x A y € OD then y € HOD by the exercise.) So it suffices to show
P(x)nOD € OD. Let v = p(x); then P(x) n OD < V. ,1. Let op be as above. As x € OD there are
U, B, ... Bn with {x} = {x | 1(x, 3)}. By the Reflection Theorem on wop and ¢ we can find 7, > 7o, 3
with z = P(x) n OD < (Ix(¢(x,8) Az ={y| pop(y) Ay < x}))".

For AxSeparation: let a be a class term, and let x € HOD. We require that a?°? n x € HOD.
Suppose a = {z | ¢(z,7)} for some ¢, some y € HOD. Let ¢;(x,¢) and ¢,(,6) uniquely define x
and ¥ respectively. By the Reflection Theorem we can find a sufficiently large v > max{¢, 0, p(x), p(¥)}
which is reflecting for all of ¢, (1, ¢, and the defining formula for HOD, ¢rop, and with af’oPx ¢ V.
Then we have:

HO

u=a"Pnx o (u={zex|p(zy)"P}H".

From the right hand side here, we see that u is definable over V., but using the parameters x and y. So
we may replace the latter by using the definitions ¢y, ¢,, 0, C etc. , thereby rendering the right hand side
a term purely with ordinal parameters. Hence u is in OD and thence in HOD (asu < x < HOD).
AxReplacement is similar: let F/9P be a function given by a term, and let x € HOD. We require
FHOD<«y « HOD. In V, by AxReplacement, let FHOD«, < V., but then it also is a subset of V., n HOD.
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It thus suffices to show V, n HOD € HOD, as then the AxSeparation, as applied in HOD will separate
out from HOD n V,, exactly the set F79P“x. This is the next Exercise.

Finally for AxChoice, note that we have the stronger principle of a Global Wellorder of HOD from
which AC is obviously derivable. To define such a wellorder <pop, just restrict the Global Wellorder
<op (Theorem 4.22) to elements of HOD < OD. Q.E.D.

EXERCISE 4.19 Show that for any 3, Vg n HOD € HOD.

EXERCISE 4.20 Show that the following are equivalent: (i) V = OD, (ii) V = HOD, (iii) Trans(OD), (iv) (AxExt)°P.
[Hint: Use that for any o V,, € OD AV, nOD € OD.]

EXERCISE 4.21 Show that HODNP(w) is the largest subset of P (w) with a definable wellorder. [Hint: Use Lemma
4.23 and Ex. 4.18.]

EXERCISE 4.22 Suppose that W is a term defining an inner model of ZF and there is a definable global wellorder
of W (that, as in L, there is a formula defining a wellorder <y, of the whole of W in order type On). Show that
W < HOD. (Consequently HOD is the largest inner model W with a definable bijection F : On < W.)

EXERCISE 4.23 Define “IT,-OD” (and II,-HOD) just as we did for OD and HOD but now restrict the formulae
allowed in definitions to be IT, only. Show that IT,-OD = OD and I1,-HOD = HOD. Now do the same for 2,-OD
and X,-HOD.

EXERCISE 4.24 * Show that there is a single formula ¢y (vo) with just the free vy, so that OD is the class of all
those x so that x € Defy(Vjp) for some 3, but only using (; that is, the class of those x so that for some 3,

{x} ={z] Vs = po[2]}-

Again it is consistent that V = L = HOD, V # L = HOD and V # L # HOD as well as further com-
binations such as HOD"°P may or may not equal HOD. CH may fail in HOD (see the next Exercise).

EXERCISE 4.25 (*)(E)) This shows that we may have (=CH)#9P, Let C,, = {n € w | 2%+ = R, ,41}. Suppose
[{C, | a € On}| > &, (this can be shown consistent with ZFC), then (-CH)#°P,

We can define OD,. and HOD, as before but now we allow sets z € x as parameters in our definitions
as well as ordinals. HOD, will be an inner model of ZF as before, but it will only be a model of Choice
if there is an HOD,-definable wellorder of x itself to start with.

EXERCISE 4.26 The Leibniz-Mycielski Principle (LM []) is the following:

Vx # y(3"p(vo) AFVDI(p) = {vo} AIB(x, y € Vs A (Vp,€) E olx] < ¢[y])))-

Show that V = OD implies LM.

4.6 CRITERIA FOR INNER MODELS

It is possible to give a definition for when a class term W is an inner model, IM (W) of the ZF axioms
which is formalisable in ZF. We first give an equivalent axiomatisation of ZF.
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DEFINITION 4.28 We set ZE™ to be the theory that consists of the Axioms Axo-4, Ax7-8 and:

Ax5* (Ag-Separation Scheme) Forevery Ag-terma: xnaeV

where by a Ag-term a we mean a term a = {x | ¢(x, y)} where @ is a Ag-formula.

Ax6” (Collection Scheme) For every formula @: VyIvp(v, y) — YwIt(Vy e wv € to(v, y)).

The weakening of the Axs is made up for by the strengthening of Ax6 which is less about the range
of functions than ‘collecting’ together the ranges of relations on sets z. Note we could have expressed
Ax6”, arguably more awkwardly, as: “For any term r if Vy r“{y} # @ then Vw3tVy e w(r“{y} nt + @)”

THEOREM 4.29 ZF + ZF* and ZF* + ZF, and thus the two theories are equivalent.

PRrOOF: (ZF + ZF*) As ZF already proves AxSep for all terms we only have to show that ZF proves the
stronger Collection scheme. Suppose  satisfies the antecedent, and let w be any set. By the argument
of the Reflection Principle there is 1) so that w € V,, and Vy € w3vp(v, y) is absolute between V and V,.
So we may take t = V,,.

(ZF* + ZF) We first show that ZF* + Axs. Let ¢ be Qyvi-+-Q,v,1(vo, V) where 1 is quantifier free, and
we have taken (by Logic) ¢ in prenex normal form, and vj is the only free variable of ¢. Let zy be any
set. We wish to show that {vg € zo | ¢} € V. By induction we define further sets z; for 0 < i < n. Assume
z;—1 is defined.

Case1Q;is V.

Yo ... vio1 € Zia(3Vi=Qisvisr - Quvntd (vo, V) = v; € 2_1=QinaVisr - Quvntp (vo, V).
Case1 Q; is 3.
Yo ... vio1 € Zi1(IViQisaviar - Quvath (vo, V) = v € 21 QinaVisr-Quvntp(vo, v)).

Then in either case the existence of z;_; is implied by the Collection scheme, and we maylet z; = z;_;Uz}_,.
We thus have, again for both cases:

Yo ... via € Zis1(QiviQinVier - Quvat(vo, V) <> Qivi € ZiQinVisr Quvath(vo, V)).

Hence: R
Vvo € Zo(QlVl"'Qnan/J(Vo,V) <~
< Qv € Z1Quv2 Qv (vo, V)

< Qv1 € z1--QuVy € 2, (v0,V)).

Consequently the term {vy € z | o} = {vo € 20 | Qiv1 € 21+ QuVy € 2400 (v0, V) }. By Ag-Separation on
the formula defining the right hand term, we have that {vo € zo | ¢} is a set as required.

We need to show that AxRep is derivable in ZF*. Let Fun(f) Aw € V. Suppose f = {(x,y) |
©(x,y)}. As Fun(f) then Vx3yp(x, y). By Collection then thereis t € V so that Vx € wiy € to(x, y).
Then f“w = {y € t | 3x € wp(x, y)}. The latter is a set in V since we have just proven full Separation.

Q.E.D.
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THEOREM 4.30 If W is any term, let imo( W) be the sentence: “VYx € W3y(x S yATrans(y)ADef({y,€
)) & W Then IM(W) is equivalent to imo(W). That is IM(W) g imo(W) and conversely
zmo(W) F7F IM(W)

PrOOE: (IM(W) +7p img(W)): Since ZE" (by IM(W)) we have that (Vx3a(x € V,))". Thus the
rank function p" is definable in W, but it is also absolute, and thus p" = p. Let x € W and let z = p“x.
Then z € V by the AxRep applied in V to p. Let n = supz. Then n € On. Note thatif y = VnW then
Trans(y) (as V," is transitive in W which itself is transitive). Lastly Def ({y, €)) = W, as by absoluteness
of the Def function Def({y,€)) = (Def({y,e))".

(l?’l’lo(W) I—ZF IM( W))

(1) Trans(W).

ProOF: Note first imo(W') implies that W # &. Let x € W. Then {x} < V and by im(W), there is y
with x € y A Trans(y) A Def((y,€)) € W. As Trans(y) we then have x  y. Let z € x and so z € y.
Thenz={tey|tez}(asze yA Trans(y)). Thisis equal to {t € y | (t € z)”} by the absoluteness of
€ to transitive sets, and so equals

{tey|(y,€) E (voen)[t,2z]} € Def({y,€)) < W.

Therefore z € W as required.

(2) Onc W.

PrROOE: As Trans(W) either On"' = On (in which case we are done) or On" = 1 for some n € On.
Then imo(W) implies there is a transitive y € W with ) € y, and Def({y,€)) € W. Thenn = {z € y |
zeOn}(asy < W).Butthenn = {z e y|(y,€) F (vo¢On)[z]}. But Def({y,€)) € Wandsone W,
contradicting that n = On".

We need to show that (ZF)" holds. By the previous theorem it suffices to show (ZF*)W. That
Trans(W) and On < W already yields that AXEmpty and AxInf hold in W; Pairing, Union, Power,
Foundation and Ag-Separation in W can be left as exercises.

(3)( Ax6*)".
PrOOF: Let ¢(x, y, p) be a formula of ZF with free variables shown. Then:

(Vp(VxIyp —» YuIvWx e udy e vp))W «

Vpe W(Vxe Wiye Wo" »Vue Wive W¥x e udyevp").
So, taking p,u € W, we assume Yx € W3y € We". By Collection in V there is a set t € V so that
Vx e udy e t(y € WA V). By img(W) there is a transitive z 2 t n W, and with Def({(z,€)) < W.
But then z € W and so Vx € udy € zp". QE.D.

The utility of the last theorem is that often it is a simple matter to verify for any given W the three
assertions that it is transitive, contains all ordinals and is a model of imy(W). For example, HOD is
easily seen to have these three properties. Whereas the statement “(ZF)"” (or indeed “IM(W)”) is
metatheoretic in nature: it requires assertions of the infinitely many formulae contained in “(ZF)"”.
The theorem shows that within ZF, that a term W is an inner model is truly a first order expression
about W.
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EXERCISE 4.27 Show that there is a finite set of axioms of ZF so that if On < W and W is a transitive class
model of just these axioms then it is a model of all the axioms of ZF. Why does this not contradict the non-finite
axiomatisability of ZF, Theorem 3.10?

EXERCISE 4.28 Show that if M is a class term, and ZF proves IM (M) and (~CH)™, then ZF is inconsistent.

EXERCISE 4.29 Call a set x non-typical if 3y(x € y € OD A|y| = w), and write x € NT. Say, as usual, that a set x is
hereditarily non-typical, and write X € HNT, if x € NT and TC(x) € NT. Show that (i) the class HNT 2 HOD;
(ii) ZFNT (It need not be the case that ACHNT; (Tzouvaras [?]).)

4.6.1 FURTHER EXAMPLES OF INNER MODELS
Relative constructibility

There are several ways to generalise Godel’s construction of L.
(I) The L(A)-hierarchy.
Here we start out, not with the empty set as L, but with the set A:

DEFINITION 4.31

Lo(A) = AuU{A};
Lasi(A) = Def({La(A),€));
Lim(\) > Ly(A) = U{La(A)|a <AL

L(A) = U{La(A)|a<On}.

In this model the arguments for L can be straightforwardly used to show that all axioms of ZF are
valid in L(A). However the Axiom of Choice need not hold, unless in L(A) there is a L(A)-definable
wellorder of A. Of course if V = L then A € L and the construction of L inside the ZF-model L(A)
reveals that “V = L” holds, in which case AC(4) trivially holds. Matters become more interesting when
V # L, and an important model here is when A = R. The model L(IR) contains all the reals (and so the
structure of mathematical analysis). Consequently anything definable in the structure of analysis resides
in the model. Moreover anything obtained by ‘iterated definability over analysis’ is also here: it would be
definable using ordinals and the set of reals. Thus it is thought, the broadest methods of definability over
analysis would produce sets in this model. Consequently it is in some sense a laboratory for generalised
definability in analysis. However it is not thought in general that there must be wellorder of R that is
definable over R, or indeed in L(IR). (This was one approach that Cantor took to look at CH: to try to
find a definable wellorder of IR; but it is consistent with the axioms of ZF that there is no such wellorder.)
Consequently when. set theorists investigate L(IR)) they do not assume that AC holds there, although it
is taken to hold hold in the wider universe V.

(II) The L[ A]-hierarchy.
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The next hierarchy instead enlarges the language of set theory to incorporate a one place predicate
symbol A. Thus A(x) either will or will not be true of sets x. The Def operator is enlarged to an operator
Def ; that now defines new sets over some structure in this new language

DEFINITION 4.32

Lo[A] = g

Lou[A] = Defi({La[A].€. A));

Lim(\) = Ly[A] = U{La[A]|a <A}
L[A] = U{La[A]]|a < On}.

The predicate A is usually taken to be a set in V, but the definition is perfectly good, and can be
formulated in ZF if A is a definable proper class of sets. In either case A may impose quite a ‘wild’
behaviour on the model L[A]. Note that if A © w then A € L,,+;[A] and so L[A] is “L of a real”. All of
the arguments about L that we have studied ‘relativise’ to L[ A]. Consequently it is a model of AC, GCH,
V = L[A], etc.. If A € k for some larger ordinal x, then without further information there is no knowing
how the universe L,;[ A] looks. It may, or may not, be a model of GCH. However since information from
A'is only fed in gradually, L[ A] will have a definable wellorder of its universe. This is in contradistinction
to L(A) where A has been thrown in ab initio and there may not be any definable wellorder of A in this
model, and thus may only be a model of ZF alone. Further, if A & On then we may have that A n L[A]
is a proper subclass of A. Nevertheless an induction on « shows that we have that the domains, L,[A]
and L,[A n L[A]] are equal. The following is another very important inner model: unlike L, this model
can accommodate a measurable cardinal.

DEFINITION 4.33 (L[p]) L[] is the above hierarchy where y is a k-complete uniform ultrafilter on P (k)
in the sense of the discussion of Section 2.1.4.

The inner model L[ 11] is much studied. It has an absolute construction property similar to L within in any
other inner model with such a ultrafilter or ‘measure’ on £. It can be shown that (GCH)*(*], although the
Condensation Lemma strictly speaking, fails in L[ 1+]. More to the point, in N L[] is an element of L[ 1]
and (k is a measurable cardinal with N L ]the only k-complete normal measure on fi)L[“]. Moreover
it is the least inner model with this property.

EXERCISE 4.30 Show for any A that (ZF)L(A) and that (ZFC)L[A]. [Hint: Just modify the same arguments for L.]

EXERCISE 4.31 (i) Show that in L[A], for A C k, that for any v > &, 27 = 4. (Thus, in L[A] the GCH holds ‘above
k. [Hint: Again modify the argument for L; this can only work above x since A could be completely general, and
we have no knowledge how L[ A] may look.]

(i) However improve the last exercise, by showing that in L[A], for A € « = §*, that for any 7y > §, 27 = v*.

Higher Order Constructibility

We do not give the details, but for the reader familiar with notions of higher order logics, in particular
n’th-order logics for n < w, we may construct L" using n’th order logical definablility Def" (where our
previous Def is now Def!. Remarkably these notions do not form a hierarchy for n > 3, but instead all
collapse:
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THEOREM 4.34 (MYHILL-ScoTT) Forn >2L" = HOD.

4.7 THE SUSLIN PROBLEM

It is well known (in fact it is a theorem of Cantor) that if (X, <) is a totally ordered continuum that satisfies

(i) (X, <) has no first or last end points ;

(ii) (X, <) has a countable dense subset Y (that is Vx,z€ X3y e Y(x < y < 2));

then (X, <) is isomorphic to (R, <).

(By continuum one requires that for any bounded subset of an interval in (X, <) has a supremum in
X (and likewise an infimum in X.)

Suslin asked (1925) whether (ii) could be replaced with the seemingly weaker

(iii) (X, <) has the countable chain condition (c.c.c.) (that, if I, = (x4, yo) for a < wy is a family of
open intervals in (X, <) then 3a3p(I, nIg # @)).

Notice that (ii) implies (iii) : every open interval I, must contain an element of Y; however Y only
has countably many elements.

The question is thus: do (i) and (iii) also characterise the real line (R, <)? Suslin hypothesised that
they did. This became known as Suslin’s hypothesis (SH). The problem can be reduced to the following
question concerning trees on ordinals.

DEFINITION 4.35 A tree (T, <) is a partial ordering such that Vx € T({y | y < x}) is wellordered.
(i) The height of x in T , ht(x), isot({y | y < x},<) (also called the rank of x in T).
(ii) The height of T is sup{ht(x) | x € T};
(iii) To =4r {x € T | ht(x) = a}.

Thus T, consists of the bottommost elements of the tree, and so are called root(s) (we shall assume
there is only one root). A chain in any partial order (T, <r) is any subset of T linearly ordered by <t
and an antichain is any subset of T no two elements of which are <; —comparable. For a tree T a subset
b < T is a branch if it is a maximal linearly ordered (and so wellordered) set under <7. A branch need
not necessarily have a top-most element of course.

DEFINITION 4.36 Let k be a regular cardinal. A k - Suslin tree is a tree (T, <) such that
() |T|=r;
(ii) Every chain and antichain in T has cardinality < k.

We shall be concerned with wi - Suslin trees (and we shall drop the prefix “w;”). Konig’s Lemma states
that every countable tree with nodes that “split” finitely, has an infinite branch. This paraphrased says, a
fortiori, that there are no w-Suslin trees.

It turns out (see Devlin [1]) that the Suslin Hypothesis is equivalent to:

(SH): “There are no wy-Suslin trees”

(Although this requires proof which we omit.) So do such trees exist?

THEOREM 4.37 (Jensen) Assume V = L; then there is an wy-Suslin tree.
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Hence:

COROLLARY 4.38 Con(ZF) = Con(ZFC+ CH +-SH)

It turns out that there is a construction principle for Suslin trees that is in itself of immense interest:
it can be considered a strong form of the Continuum Hypothesis. It has been widely used in set theory
and topology and has been much studied.

DEFINITION 4.39 (The Diamond Principle). & is the assertion that there exists a sequence
(Sa|a < wy) so that (i) Va(Sa € @)
(i) VX € wi{a|X na = S, } is stationary.

< thus asserts that there is a single sequence of S, ’s that approximate any subset of w; “very often”
In particular note that & — CH: if x € w is any real then x = §,, for “stationarily” many o < w;. Thus
the ¢ sequence incorporates an enumeration of the real continuum with each real occurring w; many
times in that enumeration. However it does much more beside.

THEOREM 4.40 (Jensen) In L, & holds. That is ZF + (&)L,

PrOOF: Assume V = L. We have to define a &-sequence (S, | < wy). We define by recursion (S, Cy,)
for a < wy: (Sa, Co) is the < -least pair of sets (S, C) so that

(a) Sy € «

(b) Ciscaub.ina;

(c)VBeC(SnpB+Ss)
if there is such a pair, and (S,, C,)=(J, @) otherwise.

Thus, somewhat paradoxically, (S,, C,) is chosen to be the <; - least “counterexample” to a <-
sequence of length a.

Let S = (Sa|a < wy). As we are assuming V' = L, we have just constructed S € H,, = L,,. Looking
a little more closely, since P(w;) < L,,,, we have actually defined S by a recursion which only involved
inspecting objects in L,,, which had certain definite properties. L, isa model of ZF~ so these properties
are absolute between L, and V which is L by assumption. In short the recursion as defined in L, defines
the same S asin V: Va < wy ((Sa,» CO[))sz = (Sa, Cy) and indeed (S)sz =S.

If § is not a O-sequence then:

(1) There is an <y -least pair (S, C) with

(@) S < wi; (b) C S wyand Ccubinwy; () VBe C(Sn B #Sg).

Given that we have S €L,,, the quantifiers in (1) are referring only to sets in L,,. (1) thus holds
relativised to L,,. Expressing that in semantical terms we have:

(2) (Ly,,,€) E“(S, C) is the <[ -least pair with

(@) S < wi; (b) C S wiand Ccubinwy; () VBe C(SN B #8p)”

By appealing to the Léwenheim-Skolem Theorem we can find X < L,,, with:

(3) (X,€) < (Ly,,€) with S,(S,C), w1 € X,w S X, and |X| = w.

By Exercise 4.13 (ii) we have that X n L,,, is transitive and so in fact is some L, for some v < w;. If
we now apply the Mostoski-Shepherdson Collapsing Lemma we have there is a 7 and a 7 with:
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(4)m:(Ls,€) = (X,e) withm | L, =id.
(Recall that as L, < X and is transitive 7 will be the identity on L,.)
(5) () = wy, and if S, C are such that 7(S) = S, 7(C) = C, then S =Sn~,C=Cn~.
ProOE: 771 (wy) = {771(&) | £ € wi n X}
={{|{ewnX}
=wnX=r.
Similarly S =771(8) = {n71(£) | £€ Sn X}
~{xl(e) [€eSnn)
~{¢] €€ Sy} (using (4))
=Snn.
That C = Cnyis entirely the same. Q.E.D.(5)
6)IfS=7"YS) then S =S | v.
Proo¥: Note that 77 ({S¢l¢ <wi)) = 7 ({(& Se) | € <wi})
(6 S 1€ <m i wn)}
= {m71(€), 7 (Se)) [ € <}
= {(£,S¢) | € <} sinceboth &, S¢ € L.

Similar equalities hold for 77 ({C¢|¢ < wi)). Hence 77 ({(Se, Ce)l€ <wr)) =S 1. Q.E.D.(6)

Appealing to (2) and (4) we have:

(7) (Lr»€) £ (S, C) is the <y -least pair with

()ScSy(b)CSyandCcubiny; () Ve C(SNB#Sp)”

As <p,= (<)L, and <y is an end-extension of <, and since (a)-(c) are absolute for transitive ZF~
models, we have that (a)-(c) are really true in V of S,C,ie.:

(8) (S, C) is the < -least pair with

() S (b)C<yand Ccubiny; (c) VBe C(Sn B #Sp).

That is, S, C really are the candidates to be chosen at the next, 7’th, stage of the recursion:

(9) (S,C)=(S,,Cy). _ _

Now note that v € C as C = C n+y is unbounded in the closed set C. Also, using (5), SN~y =S5 =,
This contradicts (1)! Q.E.D.

EXERCISE 4.32 (*) Formulate a principle <, which asserts similar properties for a sequence (S, | a < k) where x
is any regular cardinal, and prove that it holds in L

EXERCISE 4.33 (**) Show that <> implies the existence of a family (A¢ | £ < w;) of stationary subsets of w;, such
that the intersection of any two of them is countable.

THEOREM 4.41 (Jensen) & implies the existence of a Suslin tree.

Proor: We shall construct by recursion a tree T of cardinality wj, using countable ordinals. In fact
we shall have that T = w itself, the construction thus delivers <. T will be the union of its levels T,
all of which will be countable, and <7= Ug<w, <7., Where (a) Tcn = Ug<q T and (b) <7, is the tree
ordering constructed so far on T.,. We shall ensure that every <r-branch is countable, and likewise
every maximal antichain. Then (T, <7) will be Suslin. The recursion will ensure a normality condition:
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for every £ € T, and if § € T, then for every a < B < wj there is ( € Tg with { <7 (; every node then in
the tree has tree-successors of arbitrary height below w;.

Welet T I 1 =Ty = {0}and T¢; = @. Assume Lim(«) and T, <r_, defined for all 3 < . Then
T 1 o =Up<a Tp and <r_,=Up<q <1.,- Normality as described above, is then trivially conserved.

Assume now « = /3 + 1 and that Succ(3). We assume that T I 3, and <r_, have been defined. We
thus have defined T, where v +1 = 3. For each { € T, we allot in turn the next w sequence of ordinals
available {&; | i < w}. (We thus go through T, say by induction on the ordinals £ € T, and we define
<1, by adding to the ordering <r_, (which equals in the obvious sense <r. ) the pairs (£,&;) (and also
the pairs (¢, &;) for those { <7 § to complete the ordering.) Thus at successor stages of the tree it is
infinitely branching. Again normality is obvious. This defines T' | o and <1, =<7,

Finally if o = S+1but Lim(/3) we need to define T | o and make a careful choice of which maximal
branches through Tz (thus those of order type 3) that we may extend with impunity to have nodes at
level 3, i.e. in Tg, thus fixing <7, . This is where we use o.

Case1S5(< B) is a maximal antichain in the tree so far defined: (T<p, <r_5 ).

In this case for any § € T4 there must be some o € S with either o <r_, { or § <r_, 0. Either way
by the normality of the tree (T.g, <r_) so far, we pick a branch b through T.s with both 7, € € be. Let
B = {b¢ | £ € T.3}. This is a countable set of branches. We enumerate B as {b, | n < w} and choose the
next w many ordinals &, for n < w, with &, ¢ T.3. We extend the branch b, to have &, as a final node,
and enlarge <r_, appropriately to <r_,. (Thus if  is on the branch b, extended with the new point §,,,we
add the ordered pair (¢, ,) to <r_,; we thus obtain <7_,.) Then we have Tg = T.g U {, | n <w} and
so we have T' | .. By construction again we preserve normality: every ¢ € T, has a successor in Tg.

Case 2 Otherwise.

Then we let T be any set consisting of the next w many ordinals not used so far, and extend the
ordering of <r_, to T3 in any fashion as long as normality is preserved. (In other words we can just
enumerate T.g as ((u|n < w) and go through adding on some new ordinals &, to some branch through
(n that has order type [3 -if need be- as long as we ensure (,, has some successor at height £3.

This ends the construction. We claim that if we set T = Uq<w, T and <7= Uq<w, <14then (T,<r)is
a Suslin tree. First we see that it has no uncountable antichain. Suppose there were such, and let A < w,;
be a maximal uncountable antichain (which exists by Zorn’s Lemma).

Claim C = {a | An T, is a maximal antichain in T, } is cub in w;.

PrOOF: Let By < wj be arbitrary. As T.g, is countable, there exists 3; < w; with every element of T.g,
compatible with some element of A n T.g. Repeating this, we find 3, > 3 so that every element of
T.p, compatible with some element of A N T.g,; and similarly 3,1 > B, so that every element of T.g,
compatible with some element of An T, ,,. If v = sup, 3, then An T., is a maximal antichain in T...
C is thus unbounded in w;. That C is closed is immediate. Q.E.D. Claim

By our requisite property that (S, | @ < wy) is a o-sequence, now that C is cub and A € wj, there
must be 5 € C with S3 = An B. Thus S is a maximal antichain in <r_,. However at precisely this
point in the construction we would have chosen Tj so that every element of T3, and so every element
of AN Tg, has a tree successor at height 5 in Tg. Note that all elements of the tree at greater heights
0 > 3 are extensions of the tree above these elements on Tg. Thus A n 3 is a maximal antichain in <r!
But A n 8 must be A and be countable! Contradiction! Q.E.D.
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EXERCISE 4.34 (**) Show that & implies the existence of two non-isomorphic Suslin trees.

One could further ask whether SH depends on CH. It is completely independent of CH as the fol-
lowing states.

e Con(ZF) implies the consistency of any of the following theories:

ZF + CH + SH; ZF+CH+- SH; ZF+- CH +- SH: ZF+- CH + SH

The second of these is Cor. 4.38 above. The other consistencies can be shown by using variations on
Cohen’s forcing methods, for which see [4]. Some of the arguments are very subtle.

Ronald Jensen



APPENDIX A

LOGICAL MATTERS

A.1 THE FORMAL LANGUAGES - SYNTAX

We outline formal first order languages of predicate logic with axioms for equality. We do this for our
language £ = Lc which we shall use for set theory, but it is completely general:

(i) set variables; vo, v1,...,Vp,... (forn € N)

(ii) two binary predicates: =,&; an optional n-ary relation symbol Rv;---v,, (other languages would
contain further function symbols F; and relations symbols R; of different -arities).

(iii) logical connectives: Vv, -

(iv) brackets: (,)

(v) an existential quantifier: 3.

A formula is finite string of our symbol set; the formulae of £ (Fml’) are defined inductively in a way
similar for any first order language.

1) x = y and x € y are the atomic formulae where x, y stand for any of the variables v;, v;. (If we opt for
variants where we have the relation or function symbols, then Rv,---v,, and Fv,---v,, = v,y are also atomic.)

2) Any atomic formula is a formula;

3) If  and 1) are formulae then so is —~ and (¢ V ©), Ixp where x is any variable;

4) @ is only a formula if it is so by repeated applications of 1)-3).

Inherent in the induction is the idea that a formula has subformulae and that a formula is built up
from atomic formulae according to some finite tree structure. Further, given the formula we may identify
the unique tree structure. Indeed we think of this as an algorithm that given a symbol string tests whether
itis a formula by winding the recursion backwards to try to discover the underlying tree structure. Using
this fact we can then perform recursions over the class of formulae using the clauses 1)-3) as part of our
recursive definition. Clause 4) then ensures that our recursion will cover all formulae.

DEFINITION A.1 For ¢ a formula we define
(A) the set of variables of o, Vbl(y) by:

77
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Vbl(v; = v;) = Vbl(vi € vj) = {vi,vj}; VBI(Rv--v,) = {vi,v2, ..., v}

Vbl( —p)) = Vbl(p); VbI((¢ V1)) =Vbl(p)uVbl(); Vbl(Ixp) = Vbl(p) U {x}.

(B) the set of free variables of ¢, FVbl(y) would be obtained exactly as above but changing the clause
for 3xy to: FVbl(Ixp) = FVbl(p) — {x}

(C) ¢ is a sentence if FVbl(p) = @.

By the above remarks in (B) we have defined the free variable set for all formulae. Note the crucial
very final clause in (B) concerning the 3 quantifier. The set of official logical connectives is minimal, it is
just — and v. But it is well known that the other connectives, A, —, <> can be defined in terms of them, as
can V, from 3 and —. We shall use formulae freely involving these connectives, without comment. Here
is another example.

DEFINITION A.2 For ¢ a formula, we define the set of subformulae of ¢, Subfml(y), by:
Subfml(v; = v;) = Subfml(v; € v;) = Subfml(Rv;--v,) = &;
Subfml(—¢)) = Subfml(Ixy) = Subfml(yp) U {¢};
Subfml((¢ Vv 1)) = Subfml(y) U Subfml(v)) U {p, 1 }.

Deductive systems

A deductive system of predicate calculus is (I) a set of axioms from which we can make pure logical
deductions together with (II) those rules of deduction. There are many examples. The following is the
simplest to explain (but rather difficult to use naturally) but this allows us to prove things about the
system as simply as possible.

(I) Axioms of predicate calculus (for a language with relational symbols, and equality):

For any variables x, y and any ¢, ¢, x in Fml:

v = (Y —>¢)

(p = (W =>x)) > (¢ =9) > (p=>X))

(=9 = =) = (= = ¢) = ¥)

Vxp(x) — ¢(y/x) where y is free for x (this has a slightly technical meaning).

V(¢ = 1) > (¢ > Vxv) (where x ¢ Fr(p))

Vx(x =x)

x=y = (p(xx) = p(x, 7))

(IT) Rules of Deduction

(1) Modus Ponens. From (¢ — 1) and ¢ deduce: 1.

(2) Universal Generalisation: From ¢ deduce Vxp.

In general a theory is a set of sentences, T, in a language (such as L¢). A proof of a sentence o is then
a finite sequence of formulae: ¢y, 1, -+, v, = 0 such that for any formula ¢; on the list either: (i) ¢; is
an instance of a pure axiom of predicate calculus; or (ii) ¢; is in T; or (iii) ¢; follows from one or more
earlier members of the list by an application of a deduction rule.

In which case we shall say that the list is a proof from the set of axioms T, and write T + o. If
T = & then we shall call this a proof in first order logic alone. We shall want to be able to say that it is
a mechanical, or algorithmic, process to check a proof. Given a finite list which purports to be a proof,
it is indeed a mechanical process to check (i) or (iii) for any ¢; on the list. In order to ensure the whole
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process is algorithmic it is usual (and overwhelmingly the case) that the set of axioms T is either finite
itself, or for any formula ) there is an algorithm or recursive process which can decide whether v is in
T or not. In which case we say that T is a recursive set of axioms.

A.2 SEMANTICS

We have defined so far only syntactical concepts. We have not associated any meaning, or interpreta-
tion to our language. We want to know what it means for a sentence to be true (or false) in an interpre-
tation. If I wish to express the commutative law in group theory say, then I may write something down
such as VxVy(o(x, y) = o(y,x)) (with a binary function symbol o(v;,v;) ). For this to be true in the
group G say, we need that for any interpretation of the variables x, y as group elements g, 4 in G that
g.h = h.g holds for the group multiplication.

We can give a recursive definition of what it means for a sentence to be ‘true in a structure, but as can
be seen, the recursion involves at the same time defining satisfaction of a formula ¢ by an assigment of
elements to the free variables of ¢, again by recursion on the structure of formulae. We'll keep with the
example of a group (G, e, -, ) for a language containing a binary function symbl F,, a unary function
symbol I and a constant symbol E which are interpreted as -,”', and e respectively. Then ‘I(v;) = v’ and
‘Fo(vi, vj) = v’ now count as atomic formulae.

We let Qg = =~ VPG be the set of maps from finite sequences of variables of the language to G to G.
For ¢ a formula let Vbl(¢p), be the set of all variables occurring in ¢. For h € Qg , v; € dom(h) and
g € Gwelet h(g/i) be the function that is defined everywhere like h except that h(g/i)(v;) = g.

DEFINITION A.3 (i) We define by recursion the term Sat(p, G);
Sat(vi =v;,G) ={h € Qg|h(i) = h(j)} ;
Sat(I(vj) = v, G) = {h € Qglh(j)™ = h(k)}
Sat(Fo(vi,vj) = Vi, G) = {h S QG|h(l) . h(]) = h(k)} ;
Sat(x V1, G) = (Sat( x, G) uSat( ¥,G))n{h e Qg |dom(h) = {Vbl(x)u Vbl(¥)}};
Sat(-1),G) = Qg\ Sat( ¥, G)} ;
Sat(Iv;1), G) = {h € Qg|dom(h) 2 Vbl(y)) U {v;}&Ig € G(h(g/i) € Sat( ¥, G))]};
Sat(u,G) = @ if u is not a formula.

(i) We write (G, e,~, ' ) & p[h] iff h € Sat(, G).

Note: By design then we have (G, e,-, ™' ) & —¢[h] iff it is not the case that (G, e,-, ') &= 1[h] etc. (We
write the latter as (G, e, -, ) # ¢ [h].)
If ¢ is a sentence then we write
(G, e, ') E v iff for some h € Qg with dom(h) 2 Vbl(¢) (G,e,-, ") E [h]
(equivalently for all h € Qg with dom(h) 2 Vbl(¢p) (G, e, ") E¥[h]).
If T is a set of sentences in a language, and 2l is a structure appropriate for that language, we write
A= Tiffforallyin TAE .

DEFINITION A.4 (Logical Validity) Let Tu{c} be a theory in a language; then T = o if for every structure
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2( appropriate for the language,
AeT=>Aro.

THEOREM A.5 (Gddel Completeness Theorem) Predicate Calculus is sound, that is,
T-o=>TEo.

and is moreover complete, thatis Tk o= T+ o.

The substantial part here is the Completeness direction: it is an adequacy result in that it shows that
Predicate Calculus is sufficient to deduce from a theory T all those sentences that are true in all structures
that are models of a particular theory. That it deduces only those sentences true in all structures satisfying
the theory, is the soundness direction.

This theorem should not be confused with Godel’s Incompleteness Theorems. These concerned whether
sets of axioms T were consistent, that is whether from the axioms of T we cannot prove a contradiction
such as ‘0 = I’ Here if we take T to be PA - Peano Arithmetic the accepted set of axioms for the natural
number structure N = (N, 0, Succ), then Godel showed that there was a suitable mapping ¢ = "¢ tak-
ing formulae in the language appropriate for N, into code numbers of these formulae (called godel codes).
If formulae could be coded as elements of N, so can a finite list of formulae - in other words potential
proofs. Using the fact that the axioms of PA are capable of being recursively listed, he showed that there
was a formula defining a function on pairs of numbers, F(#, k), to 1/0 with:

PA + VnVkF(n,k) € {0,1}A
F(n,k) =1 < nis a code number of a proof from PA of the formula ¢ with "p" = k.

He then showed that if PA is consistent, then in fact PA # VnF(n,0 = 1') = 0. The right hand
side here is a statement about F and numbers, but has the interpretation that “PA is a consistent system
(in other words that ‘0 = 1 is not deducible’). This is commonly abbreviated ‘Con(PA)’; so he showed
that even if PA is consistent, PA i Con(PA) (the Second Incompleteness Theorem). In fact the theorem
has wider applicability as he noted after considering Turing’s work on computability: for any consistent,
computably given set of axioms T say, if from T we can deduce the Peano axioms, then T # Con(T).
The axioms of set theory ZF, if consistent, are of course such a T.

EXERCISE A.1 Let x be any set, and f; : ™V — V for i < w be any collection of finitary functions (meaning
that n; < w); show that there is a y 2 x which is closed under each of the f; (thus f;“ "'y < y for each i) and
ly| < max{w, |x|}. [Hint: no need for a formal argument here: build up a y in w many stages yx < yx1 at each

step applying all the f;.]

DEFINITION A.6 Let2 = (A, =, R}, f;) be any structure for any (first order) language Lq. We writeB < A

(“B is an elementary substructure of 2(”), where B = (B, =, R I B, F; } B), to mean that every formula
©(Vos - . . Vu_1) of the language of Ly, and every n-tuple of elements yy, ... , yu_1 from B, then

A= @[ Yo/Vos-- s Vn-1/Vn-1] < B E©[yo/Vos--- Yn-1/Vn-1]-



A Generalised Recursion Theorem 81

The Tarski-Vaught criterion yields when one substructure ®B is an elementary substructure of 2.

LEMMA A.7 (TARSKI-VAUGHT CRITERION) B < 2L iff for all formulae p(vo, ..., vy),

Vby,...,b, € B(3ae AU E [a,b] > Ibe BB = [a, b]).

DEFINITION A.8 (SKOLEM FUNCTION) Let 3x¢(x, yo, ..., ¥n) be any formula in the language Ly appro-
priate for the structure 21. Suppose there is a wellorder < of the domain A. The skolem function h, for ¢
is the (partial) function:

ho(Y0s...> yn) ~ the Q-least x such that A = @[X, yo, ..., yu].

Notice that there are as many skolem functions as formulae in the language - which will be countable
in the cases of interest to us. There are situations where the skolem functions h, are already present

amongst the functions F; of the structure 2. In particular we may have that that a wellorder <1 of 2 is
itself one of the relations E; of 2. In that case we do not need the skolem functions s, to be amongst

the f;, since we can outright define them, within 2 and not referring to anything external to 2(; namely,
just use the displayed definition within 2( to pick out the least x.
The following theorem will be used in applications.

THEOREM A.9 Lowenheim-Skolem Theorem Let 2 be any infinite structure for any language as above
of cardinality p. Suppose X = A. Then there is a elementary substructure B of A, B < A, with X = B <
A A |B| = max{|X|, p}.

ProoF: The idea is to find the closure of X under the finitary skolem functions h,,. Let H be the set of
such functions. Then |H| we are told is p. Let Xy = X, and let

Xpar =\ J{ho Xy | hp e HY; Y = | X,

n<w

The idea is that by closing up in this way we have ensured that the Tarski-Vaught criterion can be applied.
However |X,.1| = p ® | X,| = p ® | Xo|. Hence B = U, X, satisfies |B| = p ® | X| = max{p, |X|}. Now if we
take any o, ..., y, € B we shall have that yy, ..., y, € X,, for some m < w. But then if A = (z, y) then
Jx € X1 (B E o(x,¥)). Q.E.D.

COROLLARY A.10 Any infinite structure 2 has a countable substructure B < 2L.

A.3 A GENERALISED RECURSION THEOREM

DEerINITION A1 If (A, R) is a partial order, we let A, =47 {y | y € A A yRx}. We sometimes write
Ay = pred 4 py (x) if we wish to be clear about which order on A is concerned.

A, is thus the set of R-predecessors of x that are in A.
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DEFINITION A.12 If (A, R) is a wellfounded relation, R is said to be is set-like on A, if for every x € A,
Ay =4y pred iy py(x) =47 {y | y € AA yRx} is a set.

One can prove a recursion theorem for wellfounded relations, but observe that such relations are not
necessarily transitive orderings. We remedy this by defining R* - the transitive closure or transitivisation
of R in A, where for x, y € A we want to put

xR*y <>4¢ xRy vIn>03z1 € A,...,z, € A(xRziRzy---Rz,Ry).

This is a somewhat informal definition, but the intention is clear: xR* y if there is a finite R-path using
elements from A from x to y.

DEFINITION A.13 (A, R) be a relation. For x € A we define Up x =g U cx Az. We let

USx=AsUs!x=U{A;|zeUjsx}.
For x, y € A we set yR*x iff y € U{U} x|n € IN}. R* is called the ancestral or transitive closure of R.

The reader should check that a) U™ x = {y € A | 3z € A---3z, € A(yRzgRz--Rz,Rx)}, and b)
with R as the e-relation itself y €* x <> y € TC(x).

LEMMA A.14 Let (A, R) be a relation. Then:
(i) R* is transitive on A. If x € A then R* is transitive on A, U {x}.
(ii) If R is set-like, then so is R*.

Proof: (i) is obvious. (ii) We first note that g z is a set; this is because z is a set and R is set-like on
A which implies that A, is a set for each x € z, and the Axiom of Unions allows us to conclude that
Uxez Ax € V. Hence by induction, so is each 3" z, and then another application of Replacement and
Union ensures that U{Uj{x}|n € N} € V; but this latter set is then the set of R* predecessors of x.

Q.E.D.

THEOREM A.15 (Transfinite Induction on Wellfounded Relations). Suppose (A, R) is a wellfounded relation,
with R set-like on A. Let t A be non-empty class term. Then there is u € t which is R-minimal amongst
all elements of t.

Proof: Let A} =47 pred , p«) (x) be the set of R*-predecessors of x. Note this is a set and is a subset of
A. Let x be any element of ¢, and let u be an R-minimal member of the set (N A¥) n {x}. Q.E.D.

One should note that we do need to prove the above theorem, since the definition of (A, R) being
wellfounded (Def. 1.14) entails only that every non-empty set z = A has an R-minimal element. The
theorem then says that this holds for classes t too.

THEOREM A.16 (Generalized Transfinite Recursion Theorem)
Suppose (A, R) is a wellfounded relation, with R set-like on A. If G : V x V — V then there is a
unique function F : A - V satisfying:

VxF(x)=G(x,F | Ay).
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Proof: We shall define G as a union of approximations where u € V is an approximation if (a) Fun(u);
(b) dom(u) < Ais R-transitive - meaning y € dom(u) —~ A} < dom(u); and (c) Vy € dom(u)u(y) =
G(y,u I Ay). We call an approximation u an x-approximation if x € dom(u). So u satisfies the defin-
ing clauses for F throughout its domain. Notice that if u is an x-approximation, then v is also an x
approximation, where v = u | {x} U A%. (It is the smallest part of u which is still an x-approximation.)

(1) If u and v are approximations, and we set t = dom(u) N dom(v) thenu | t = v | t and is an
approximation.
Proof: Note that for any y € t, A% < t so t is R-transitive. Let Z={yet|u(y)#v(y)}.

If Z # @ let w be an R-minimal element of Z (by the wellfoundedness of R). Thenu | A,, =v | A,
hence:

u(w)=G(w,u t Ay,) =G(w,v I Ay) =v(w).

This contradicts the choice of w. So Z = & and u, v agree on ¢, the common part of their domains.
This finishes (1). Exactly the same argument establishes:

(2) (Uniqueness) If F, F, are two functions satisfying the theorem then F = F.

(3) (Existence) Such an F exists.

Proof: Let u € B <> {u | u is an approximation}. B is in general a proper class of approximations,
but this does not matter as long as we are careful. As any two such approximations agree on the common
part of their domain, we may define F = U B and obtain:

(i) F is a function ;

(ii) dom(F) = A.

Proof (ii): Let C be the class of sets z € A for which there is no z-approximation. So if we suppose for a
contradiction that C is non-empty, by Theorem A.15, then it will have an R-minimal element z such that
Vy e A,Ju(u is a y-approximation). But now we let f be the function:

{7 | ye Az A f7is a y-approximation A dom(f”) ={y}uUAj}.

By (1) for a given y such an f” is unique, and moreover the f” all agree on the parts of their domains
they have in common. Note that the domain of f is R-transitive, being the union of R-transitive sets
dom(f”) for y € z. Hence A} < dom(f) and thus {z} U dom(f) is also R-transitive. We can extend f
to

ff=fu{{zG(f 1 A))}

and f* is then a z-approximation. However we assumed that z € C, contradiction! Hence C = @& and
(ii) holds. Q.E.D.

For some applications it is useful to note that the AxPower was not used in the proof of this the-
orem, and it can be proved in ZF~. For (A, R) a wellfounded relation, we can define a rank function
par) : A — On by appealing to the last theorem: p(4 z)(x) = sup{p(4,r)(¥) +1| y € AA yRx}. Clearly
this satisfies xRy — p(4 r)(x) < pa,r)(¥), and p(a gy(x) is onto On if A is a proper class, or an initial
segment of On, i.e. an ordinal, if Ae V.

EXERCISE A.2 If (A, R) a wellfounded set-like relation, x € A, and p(4 gy(x) = @, show that V3 < ady(y €
ANYR*x A piary(y) = B).
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EXERCISE A.3 If (A, R) a wellfounded set-like relation, show that p(4 gy is (1-1) if and only if R* is a total order.

EXERCISE A.4 (i) If (A, R) a wellfounded set-like relation, and B < A, show that p(g gy(x) < p(a,ry(x) for any
x € B. Show that additionally equality holds if A* € B where A% is as in the proof of Theorem A.15 above.

(ii) If (A, R),(A, S) are wellfounded set-like relations, and S < R, show that p(4 sy(x) < p(a,r)(x) for any
x €A
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