A Condensed History of Condensation

4th European Set Theory Meeting, July 18, 2013

P.D. Welch, University of Bristol

A Condensed History of Condensation

- Part I: Indeed, some history.
- Part II: Some failures of condensation: grading functions
- Part III: Enforcing versions of condensation principles.

Part I: The Gödel Condensation Lemma

Theorem ((ZF))

Let $\langle L_{\alpha} \mid \alpha \in On \rangle$ be the constructible hierarchy. Let $\langle X, \in \rangle \prec \langle L_{\alpha}, \in \rangle$ be an elementary substructure. Then $\langle X, \in \rangle \cong \langle L_{\beta}, \in \rangle$ for some $\beta \leq \alpha$.

Part I: The Gödel Condensation Lemma

Theorem ((ZF))

Let $\langle L_{\alpha} \mid \alpha \in On \rangle$ be the constructible hierarchy. Let $\langle X, \in \rangle \prec \langle L_{\alpha}, \in \rangle$ be an elementary substructure. Then $\langle X, \in \rangle \cong \langle L_{\beta}, \in \rangle$ for some $\beta \leq \alpha$.

• This is fundamental for subsequent work, and for L itself demonstrates GCH, and later, \diamondsuit ...

Part I: The Gödel Condensation Lemma

Theorem ((ZF))

Let $\langle L_{\alpha} \mid \alpha \in On \rangle$ be the constructible hierarchy. Let $\langle X, \in \rangle \prec \langle L_{\alpha}, \in \rangle$ be an elementary substructure. Then $\langle X, \in \rangle \cong \langle L_{\beta}, \in \rangle$ for some $\beta \leq \alpha$.

- \bullet This is fundamental for subsequent work, and for L itself demonstrates GCH, and later, \lozenge ...
- Without some form of condensation fine structural analysis is hopeless; as for example, for general $A \subseteq ON$ condensation for the $(L_{\alpha}[A] \mid \alpha \in On)$ hierarchy is does not hold.

However...

You might be content with: $M \prec L_{\alpha}[A]$ implying $(M, \in \cap M^2) \cong (L_{\beta}[\bar{A}], \in)$ for some $\beta \leq \alpha$ with at least some properties enjoyed by A going down to \bar{A} .

You might be content with: $M \prec L_{\alpha}[A]$ implying $(M, \in \cap M^2) \cong (L_{\beta}[\bar{A}], \in)$ for some $\beta \leq \alpha$ with at least some properties enjoyed by A going down to \bar{A} .

• Eg, preservation of (some) sharps: A might be of the form $A_0 \cup A_0^\#$ where $A_0^\#$ is some form of sharp for A_0 (with $\alpha > \sup A_0^\#$). Then \bar{A} would be of the form $\bar{A}_0 \cup \bar{A}^\#$.

You might be content with: $M \prec L_{\alpha}[A]$ implying $(M, \in \cap M^2) \cong (L_{\beta}[\bar{A}], \in)$ for some $\beta \leq \alpha$ with at least some properties enjoyed by A going down to \bar{A} .

• Eg, preservation of (some) sharps: A might be of the form $A_0 \cup A_0^\#$ where $A_0^\#$ is some form of sharp for A_0 (with $\alpha > \sup A_0^\#$). Then \bar{A} would be of the form $\bar{A}_0 \cup \bar{A}^\#$.

We thus have some weak form of "#-condensation." But this can be useful. This method is exploited in many places: for example in the Core Model Induction, a simple sharp can be replaced by an " $M_n^{\#}$ " denoting a sharp for a model with n-Woodin-cardinals-over- A_0 , or again for a so-called Q-structure over A_0 .

 $L^{\#}$: Another successful condensation model

Let $\#: On \longrightarrow \mathcal{P}(On)$ be recursively defined as

$$\#(\alpha) = (\# \upharpoonright \alpha)^\#$$

and then $L^\#=(L[\#],\in,\#)$. This is the minimal model closed under the # operation $X\to X^\#$.

 $L^{\#}$: Another successful condensation model

Let $\#: On \longrightarrow \mathcal{P}(On)$ be recursively defined as

$$\#(\alpha) = (\# \upharpoonright \alpha)^\#$$

and then $L^{\#} = (L[\#], \in, \#)$. This is the minimal model closed under the # operation $X \to X^{\#}$.

 $\bullet \ L^\# \models ``V = L^\# + GCH + \diamond + \ldots .$

$L^{\#}$: Another successful condensation model

Let $\#: On \longrightarrow \mathcal{P}(On)$ be recursively defined as

$$\#(\alpha) = (\# \upharpoonright \alpha)^\#$$

and then $L^\#=(L[\#],\in,\#)$. This is the minimal model closed under the # operation $X\to X^\#$.

- $L^{\#} \models ``V = L^{\#} + GCH + \diamond + \dots$
- Moreover we have $Condens(L^{\#})$:

Let $(X, \in, \# \cap X) \prec (L_{\alpha}^{\#}, \in, \#)$ be an elementary substructure. Then, for some $\beta \leq \alpha$,

$$(X, \in, \# \cap X) \cong (L_{\beta}^{\#}, \in, \#).$$

Theorem (Jensen)

Given $(V, \in, A) \models V = L[A] + GCH + A \subseteq On$ we may define a class forcing \mathbb{P} , cardinal preserving, with

$$(V[G], \in) \models \exists r \subseteq \omega \ V = L[r] \land A, G \ are \ definable \ in \ L[r].$$

Theorem (W)

With similar assumptions on V, A there is a \mathbb{P}^{DJ}

$$(V[G], \in) \models \exists r \subseteq \omega \ V = K^{DJ}[r] \land A, G \ are \ definable \ in \ K^{DJ}[r].)$$

Theorem (W)

With similar assumptions on V, A there is a \mathbb{P}^{DJ}

$$(V[G], \in) \models \exists r \subseteq \omega \ V = K^{DJ}[r] \land A, G \ are \ definable \ in \ K^{DJ}[r].)$$

• However the above was deficient in preserving large cardinals.

Theorem (W)

With similar assumptions on V, A there is a \mathbb{P}^{DJ}

$$(V[G], \in) \models \exists r \subseteq \omega \ V = K^{DJ}[r] \land A, G \ are \ definable \ in \ K^{DJ}[r].)$$

• However the above was deficient in preserving large cardinals.

Theorem (S. Friedman)

With similar assumptions on V, A there is a \mathbb{P}^{μ}

$$(V[G],\in)\models\exists r\subseteq\omega\,V=L^{\mu}[r]\wedge A,G \ are\ definable\ in\ L^{\mu}[r].$$

Acceptability

Definition

(Acceptability) Let $A \subseteq On$. Then a hierarchy $\langle (L_{\alpha}[A], \in, A) \mid \alpha < \infty \rangle$ is *acceptable* if, whenever $B \in Def(L_{\alpha}[A], \in, A) \cap \mathcal{P}(\rho)$ and $B \notin L_{\alpha}[A]$ then $\exists F \in L_{\alpha+1}[A]$, with $F : \rho \longrightarrow L_{\alpha}[A]$ which is onto.

Definition

(Weak Acceptability) Let $A\subseteq On$. Then a hierarchy $\langle (L_{\alpha}[A],\in,A)\mid \alpha<\infty\rangle$ is acceptable if, whenever $B\in Def(L_{\alpha}[A],\in,A)\cap \mathcal{P}(\rho)$ and $B\notin L_{\alpha}[A]$ then $Hull^{L_{\alpha+1}[A]}(\rho)=L_{\alpha+1}[A]$.

Acceptability

Definition

(Acceptability) Let $A \subseteq On$. Then a hierarchy $\langle (L_{\alpha}[A], \in, A) \mid \alpha < \infty \rangle$ is *acceptable* if, whenever $B \in Def(L_{\alpha}[A], \in, A) \cap \mathcal{P}(\rho)$ and $B \notin L_{\alpha}[A]$ then $\exists F \in L_{\alpha+1}[A]$, with $F : \rho \longrightarrow L_{\alpha}[A]$ which is onto.

Definition

(Weak Acceptability) Let $A\subseteq On$. Then a hierarchy $\langle (L_{\alpha}[A],\in,A)\mid \alpha<\infty\rangle$ is acceptable if, whenever $B\in Def(L_{\alpha}[A],\in,A)\cap \mathcal{P}(\rho)$ and $B\notin L_{\alpha}[A]$ then $Hull^{L_{\alpha+1}[A]}(\rho)=L_{\alpha+1}[A]$.

• "(Weak) Acceptability" (for V) means we can find a predicate $A \subseteq On$ so that $L_{\alpha}[A]$ is an (weak) acceptable hierarchy.

Acceptability

Definition

(Acceptability) Let $A \subseteq On$. Then a hierarchy $\langle (L_{\alpha}[A], \in, A) \mid \alpha < \infty \rangle$ is *acceptable* if, whenever $B \in Def(L_{\alpha}[A], \in, A) \cap \mathcal{P}(\rho)$ and $B \notin L_{\alpha}[A]$ then $\exists F \in L_{\alpha+1}[A]$, with $F : \rho \longrightarrow L_{\alpha}[A]$ which is onto.

Definition

(Weak Acceptability) Let $A \subseteq On$. Then a hierarchy $\langle (L_{\alpha}[A], \in, A) \mid \alpha < \infty \rangle$ is *acceptable* if, whenever $B \in Def(L_{\alpha}[A], \in, A) \cap \mathcal{P}(\rho)$ and $B \notin L_{\alpha}[A]$ then $Hull^{L_{\alpha+1}[A]}(\rho) = L_{\alpha+1}[A]$.

- "(Weak) Acceptability" (for V) means we can find a predicate $A \subseteq On$ so that $L_{\alpha}[A]$ is an (weak) acceptable hierarchy.
- Then: Acceptability \leftrightarrow *GCH* but W. Acceptability $\not\leftrightarrow$ *GCH*.

Q: How "big" must L[E] be in order for Condens(L[E]) to fail?

Q: How "big" must L[E] be in order for Condens(L[E]) to fail?

Answer: Not very big at all. Suppose L[E] has an ω_1 -Erdős cardinal κ .

Q: How "big" must L[E] be in order for Condens(L[E]) to fail?

Answer: Not very big at all. Suppose L[E] has an ω_1 -Erdős cardinal κ .

• Or even less: just need $\alpha < \omega_1 \forall \beta \in [\alpha, \omega_1) \exists I_\beta$ indiscernibles for $\mathfrak{A} = L_\kappa[E]$ with

$$tp_{\mathfrak{A}}(I_{\alpha}) = tp_{\mathfrak{A}}(I_{\beta}) \wedge otp(I_{\beta}) \geq \beta.$$

Because then all the hulls $H_{\mathfrak{A}}(I_{\alpha}) \cap \omega_1 = H_{\mathfrak{A}}(I_{\beta}) \cap \omega_1 = \bar{\alpha}$, and there is no $H_{\mathfrak{A}}(I_{\beta}) \cong M \models "|\bar{\alpha}| = \omega$ ". But some $L_{\beta}[E] \models "|\bar{\alpha}| = \omega$ " so a tail of the $H(I_{\beta})$ are not condensing correctly.

Q: How "big" must L[E] be in order for Condens(L[E]) to fail?

Answer: Not very big at all. Suppose L[E] has an ω_1 -Erdős cardinal κ .

• Or even less: just need $\alpha < \omega_1 \forall \beta \in [\alpha, \omega_1) \exists I_\beta$ indiscernibles for $\mathfrak{A} = L_\kappa[E]$ with

$$tp_{\mathfrak{A}}(I_{\alpha}) = tp_{\mathfrak{A}}(I_{\beta}) \wedge otp(I_{\beta}) \geq \beta.$$

Because then all the hulls $H_{\mathfrak{A}}(I_{\alpha}) \cap \omega_1 = H_{\mathfrak{A}}(I_{\beta}) \cap \omega_1 = \bar{\alpha}$, and there is no $H_{\mathfrak{A}}(I_{\beta}) \cong M \models "|\bar{\alpha}| = \omega$ ". But *some* $L_{\beta}[E] \models "|\bar{\alpha}| = \omega$ " so a tail of the $H(I_{\beta})$ are not condensing correctly.

• Define for $\alpha < \omega_1$ $h_0^E(\alpha) = \text{least } \beta$ s.t. $L_{\beta+1}[E] \models \text{``}|\bar{\alpha}| = \omega\text{''}$. Then we only need indiscernibles I s.t. if $H = H_{\mathfrak{A}}(I) \wedge \alpha = H \cap \omega_1$ then $otp(I) \geq h_0^E(\alpha)$.

• In L[E] for small κ we shall have condensation: if we take $X \prec L_{\omega_3}[E]$ and then $\pi: X \cong M = L_{\beta}[\bar{E}]$ then because there are so few M-cardinals by the comparison theory for such levels we must have $L_{\beta}[\bar{E}] = L_{\beta}[E]$.

Theorem (Velickovic)

If L[E] is a (sufficiently iterable) model of a Woodin limit of Woodins, then it has no precipitous ideal on ω_1 .

Proof: V shows that if the function h_0^E as above dominates the order type of the transitivised countable models (here $(L_{\beta}[\bar{E}])$, *i.e.* is a "collapsing function." then there are no such ideals.

Generalising h_0^E

Definition

A grading up to $\kappa \in Card \cup \{\infty\}$ is a sequence $\langle h_{\alpha} \mid \alpha = \nu^+ < \kappa \rangle$ with $h_{\alpha} : \alpha \longrightarrow \alpha$ s.t. for any $X \prec \langle L_{\kappa}[A], A, B, \ldots \rangle$

$$sup(X \cap \alpha) < \alpha \rightarrow ot(X \cap On) < h_{\alpha}(sup(X \cap \alpha)).$$

Generalising h_0^E

Definition

A grading up to $\kappa \in Card \cup \{\infty\}$ is a sequence $\langle h_{\alpha} \mid \alpha = \nu^+ < \kappa \rangle$ with $h_{\alpha} : \alpha \longrightarrow \alpha$ s.t. for any $X \prec \langle L_{\kappa}[A], A, B, \ldots \rangle$

$$sup(X \cap \alpha) < \alpha \rightarrow ot(X \cap On) < h_{\alpha}(sup(X \cap \alpha)).$$

• *Magidor Covering for L* $(\neg 0^{\#})$:

Every set $X \subseteq On$ closed under the primitive recursive set functions is a union of countably many sets in L.

Let us say a filter F that occurs as E_{γ} , say, on an E sequence, is ω -closed if, in $L[E \upharpoonright \gamma, F]$ it is an ω -closed filter.

Let us say a filter F that occurs as E_{γ} , say, on an E sequence, is ω -closed if, in $L[E \upharpoonright \gamma, F]$ it is an ω -closed filter.

• Magidor Covering for K (Assume $\neg 0^{pistol}$ and no ω -closed filter on E): Every set $X \subseteq On$ closed under the primitive recursive-in-E set functions is a union of countably many sets in the core model K.

Theorem

(No IM(Woodin) & no ω -closed F on E)

- (i) MCL(L[E])
- (ii) $\exists \langle h_{\alpha} \mid \omega < \alpha = \nu^{+} < \infty \rangle$ a grading up to On.

Condensation principles

We suppose we have a hierarchy $\mathfrak{M} = \langle M_{\alpha} | \alpha \in On \rangle$ with $M = \bigcup_{\alpha < \infty} M_{\alpha}$ an IM of *ZFC* which is a continuous chain: (i) $Trans(M_{\alpha})$;

(ii)
$$\alpha < \beta \to M_{\alpha} \in M_{\beta}$$
; (iii) $Lim(\lambda) \to M_{\lambda} = \bigcup_{\alpha < \lambda} M_{\alpha}$;

(iv)
$$\theta \in Card^{\mathfrak{M}} \to (H_{\theta} = M_{\theta})^{\mathfrak{M}}$$
.

Definition

 $\mathfrak{B} \prec (M_{\alpha}, \langle M_{\beta} | \beta < \alpha \rangle, \ldots)$ condenses if for some $\gamma \leq \beta$:

$$\mathfrak{B}_0 = (B, \langle M_\beta \mid \beta \in B \rangle) \cong (M_\gamma, \langle M_\beta \mid \beta < \gamma \rangle).$$

Definition (Strong Condensation [at κ])

We require of the hierarchy that for all α [$\alpha \le \kappa$] there exists an expansion in a countable language

$$\mathfrak{A} = (M_{\alpha}, \langle M_{\beta} | \beta < \alpha \rangle, \ldots)$$
, so that any $\mathfrak{B} \prec \mathfrak{A}$ condenses.

Definition (Local Club Condensation [up to κ])

We require that $\forall \alpha \ [\forall \alpha \le \kappa \] \ \text{if } |\alpha| > \omega \wedge \mathfrak{A} = (M_{\alpha}, \langle M_{\beta} | \beta < \alpha \rangle, \ldots)$, then there is a continuous chain $\langle \mathfrak{B}_{\gamma} \rangle_{\gamma < |\alpha|}$ of condensing substructures, with $\gamma \subseteq B, |B_{\gamma}| = |\gamma|$ and $\bigcup_{\gamma < |\alpha|} B_{\gamma} = M_{\alpha}.$

First results

Lemma (Wu, Friedman-Holy)

If
$$\langle M_{\alpha} \rangle_{\alpha \in On}$$
 satisfies LCC, and $(\tau \in Card \land \kappa = \tau^+)^M$, $cf(\tau) > \omega$ $\mathfrak{B} \prec (M_{\kappa}, \langle M_{\beta} | \beta < \kappa \rangle) \land B \cap \tau \in \tau$, then \mathfrak{B} condenses.

Corollary (Wu)

$$(V = M)$$
 LCC up to ω_2 implies SC at ω_2 .

Enforcing condensation

Theorem (Wu, Friedman-Holy)

Assume GCH. There is a cardinal preserving iterated forcing of length \aleph_2 to add a SC at ω_2 . Hence: $Con(ZFC) \Longrightarrow Con(ZFC + SC(\omega_2))$

Enforcing condensation

Theorem (Wu, Friedman-Holy)

Assume GCH. There is a cardinal preserving iterated forcing of length \aleph_2 to add a SC at ω_2 . Hence: $Con(ZFC) \Longrightarrow Con(ZFC + SC(\omega_2))$

Q. Is there a set forcing to add a SC at ω_3 ?

Enforcing LCC globally

Theorem (Friedman-Holy)

Assume GCH. There is a class forcing that adds LCC and preserves large cardinals up to and including ω -superstrongs.

Enforcing LCC globally

Theorem (Friedman-Holy)

Assume GCH. There is a class forcing that adds LCC and preserves large cardinals up to and including ω -superstrongs.

Theorem (Friedman-Holy)

(GCH) It is possible to force to obtain LCC and Weak Acceptability simultaneously whilst preserving cofinalities and large cardinals such as ω -superstrong cardinals.

Enforcing LCC globally

Theorem (Friedman-Holy)

Assume GCH. There is a class forcing that adds LCC and preserves large cardinals up to and including ω -superstrongs.

Theorem (Friedman-Holy)

(GCH) It is possible to force to obtain LCC and Weak Acceptability simultaneously whilst preserving cofinalities and large cardinals such as ω -superstrong cardinals.

• Objective here:

Theorem (Friedman-Holy)

If V is a proper extension of a model M satisfying Local Club Condensation, Weak acceptability, square on the singular cardinals, \Box_{λ} for every singular λ and PFA(\mathfrak{c}^+ -linked), then there is a Σ_1^2 -indescribable gap $[\kappa, \kappa^+)$ in M.

Q. To what	extent does S	C (or LCC) o	capture true	fine structui	ral features?

Q. To what extent does SC (or LCC) capture true fine structural features?

Theorem (Wu)

Let κ be a Mahlo limit of measurable cardinals. Then the forcing to collapse κ to \aleph_2 to add a $SC(\omega_2)$ sequence can be modified to also ensure $\neg \square_{\omega_1}$. Hence:

$$Con(ZFC + \exists \kappa \ Mahlo, \ and \ a \ stationary \ limit \ of \ measurable \ cardinals \) \\ \Longrightarrow Con(ZFC + SC(\omega_2) + \neg \Box_{\omega_1}) \ .$$

Q. To what extent does SC (or LCC) capture true fine structural features?

Theorem (Wu)

Let κ be a Mahlo limit of measurable cardinals. Then the forcing to collapse κ to \aleph_2 to add a $SC(\omega_2)$ sequence can be modified to also ensure $\neg \square_{\omega_1}$. Hence:

$$Con(ZFC + \exists \kappa \ Mahlo, \ and \ a \ stationary \ limit \ of \ measurable \ cardinals \) \\ \Longrightarrow Con(ZFC + SC(\omega_2) + \neg \Box_{\omega_1}) \ .$$

• (PDW) The hypothesis here can be weakened to a Mahlo limit of ω -Erdős cardinals, thus rendering the hypothesis consistent with V=L.

Q: Can this be weakened to κ a Mahlo alone?

Q. To what extent does SC (or LCC) capture true fine structural features?

Theorem (Wu)

Let κ be a Mahlo limit of measurable cardinals. Then the forcing to collapse κ to \aleph_2 to add a $SC(\omega_2)$ sequence can be modified to also ensure $\neg \square_{\omega_1}$. Hence:

$$Con(ZFC + \exists \kappa \ Mahlo, \ and \ a \ stationary \ limit \ of \ measurable \ cardinals \) \\ \Longrightarrow Con(ZFC + SC(\omega_2) + \neg \Box_{\omega_1}) \ .$$

• (PDW) The hypothesis here can be weakened to a Mahlo limit of ω -Erdős cardinals, thus rendering the hypothesis consistent with V=L.

Q: Can this be weakened to κ a Mahlo alone?

Theorem (Holy...)

Let κ be a Mahlo limit of measurable cardinals. Let $\omega_1 \leq \lambda = \nu^+$. Then the forcing to collapse κ to λ^+ whilst adding an $LCC(\kappa = \lambda^+)$ sequence can be modified to also ensure $\neg \Box_{\lambda}$.

Thank you

