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Abstract

We provide a precise representation for, and a calculation of the length
of, possible path independent determinateness hierarchies of Field’s con-
struction in [4].

We further show in the hierarchies Fα of Fieldian truth sets, and
Herzberger’s Hα revision sequence starting from any recursive hypothesis
for F0 (or H0) that essentially each Hα (or Fα) carries within it the history
of the whole prior revision process; we use this to prove a result on the
non-decreasing nature of such sequences.

We demonstrate the existence of generalised liar sentences, that can
be considered as diagonalising past the determinateness hierarchies de-
finable in Field’s recent models. The ‘defectiveness’ of such diagonal sen-
tences necessarily cannot be classified by any of the determinateness pred-
icates of the model. They are ‘ineffable liars.’

1 The Scope

The purpose of this note is to investigate more closely the hierarchies of truth
sets produced by the revision sequence process. The first hierarchy, the one pro-
duced by Herzberger, [12], [11], was invented to test how various self-referential
sentences in a language containing names for elements of a ground model M ,
and sufficient to define such diagonalising sentences, would behave under re-
peated applications of the Tarskian definability scheme which produced repeat-
edly truth sets. Herzberger allowed this process to proceed into the transfinite by
using a liminf rule (all of which we specify in more detail below). This revision
process has been the subject of various investigations and extensions, notably
by Gupta and Belnap in a series of papers, but also in the book [9].

More recently Field in e.g. [4], has used such a liminf revision process, to
analyse the consequences of adding a binary operator −→ to a language similar
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to the above, with Tr a truth predicate. Field takes at each successive stage not
just a new level of definability in the Tarskian sense, but a strong Kleenean fixed
point (à la Kripke [15]).

The two sequences of sets we shall dub here 〈Hα |α ∈ On〉 (the “H-sets”) and
〈Fα | α ∈ On〉 (the “F -sets”) (where On denotes the class of ordinals). When de-
fined over the same model, such as M = N they are, mathematically at least,
surprisingly similar. Indeed we showed in [22] the stability sets consisting of
those sentences that are in all the H-sets from some point on, and Field’s ul-
timate truth sets are recursively isomorphic - that is there is a pencil and paper
algorithm for converting members of one set into the other, and conversely. Of
course this is not to say that the members of the final sets are the same or have
the same intended meaning. The phenomenon we are seeing here is that the
liminf rule is acting as some kind of very powerful infinitary logical rule. One
can show that whatever one does (within some considerably wide bounds) at
successor steps will be swamped in effect by the limit rule. This is why the two
ultimate sets are, up to recursive isomorphism, the same set.

It seems to hard to claim any purely truth-theoretic justification for this rule
and on these grounds the present writer finds the revision theories of truth de-
ficient. (To be fair on Herzberger, he made no claims thet his methodology was
a fully fledged theory of truth; Gupta and Belnap ([9]) on the other hand, claim
the rule of revision goes to the the very heart of truth, and it is to theories of
truth based on such transfinite revision sequences that the above remark is ad-
dressed.) Field on the other hand makes no claim that the sets of sentences that
are ultimately true are of substantial significance in themselves, or indeed that
the construction has some essential features of a theory of truth: it simply pro-
vides a model demonstrating the consistency of the kind of principles he would
like to have. As he shows, the introduction of a binary −→ operator renders cer-
tain classical principles (such as the law of excluded middle in general) invalid.
At the moment we have only a set of principles that are validated by this model’s
construction (and those of others which he dubs “G-models”), but we do not
have a theory that is being instantiated by this model. (The same is also true
for revision theories.) The situation is rather different from that of Kripke’s con-
struction of the Strong Kleene minimal fixed point, which is very clearly tied to
a logic, an interpretation of connectives, and an axiomatisation.

Martin in [17] in particular, points out that it would be wrong to see Field’s
construction as playing an analogous role to that of Kripke’s for the minimal
Strong Kleene fixed point (although Field himself I think is not making this claim,
as he does not present this construction as the construction, or as having spe-
cial status, but only as demonstrating his principles’ consistency). Martin also
voices doubts about the possibility of any convincing theory of truth that intro-
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duces an implication −→.
Field is able to express the fact that the simple liar L0 sentence is somehow

defective, being neither in the extension of the the Truth or the Falsity predicates
for example in the Kripkean construction, in a way that that Strong Kleene logic
cannot. This is done by means of what he calls a ‘determinateness operator’ and
which is a syntactic operation on any sentence A: D A is defined to be A∧¬(A −→
¬A). In [4] and [5] the construction allows this to be A −→ (> −→ A) and from
this, and the staging process that assigns values to sentences containing −→, it
may be interpreted during the process, at a successor stage as “A holds now,
and it did at the last stage.” This D operation Field iterates, and there is quite
a lengthy and difficult discussion in [5] on the lengths of possible iterations of
this operator; and how one might iterate it along ‘paths’, how such paths may be
defined, in a bivalent, or a non-bivalent manner etc. This discussion is germane
probably to any claim about revenge immunity and so it is interesting to see how
this unfolds. We believe that, at least in the case of this model’s construction,
it is possible to give an exact description as to the lengths of such paths that
are internally definable within the model. (There is more detail on this outline
below.) Furthermore, externally defined paths of longer length will be precisely
those for which one is diagonalising out of the model.

This requires a somewhat thorough-going analysis of the mathematics of the
model construction process, and thus the Fα-sets that arise. Hence the main
part of this paper is somewhat technical since it perforce must discover these
relationships between these sets, and thus the nature of the ‘internal’ part of the
model. This ‘internal’ is in quotes, since what in fact happens is that a ground
model M such asN is taken and it is extended to a model M+, in an extended
language with ‘Tr ’ and a binary symbol −→, but which has exactly the same do-
main of elements. So in what sense can we talk of sets of integers say as being
‘internal’? The point is that one can find a formula A(X ) with one free variable
for example, and define {n ∈ M | ‖A(X /n)‖ = 1} where “‖B‖” denotes the ulti-
mate semantic value of a sentence in the construction. In this sense, when us-
ing Tr(A(X /n)) as substituted for this ‖A(X /n)‖, it can be shown that the strong
Kleene minimal fixed point has exactly the hyperarithmetic sets of integers as
‘internal’ to it. The models of [4] and [5] also have internal sets, and in par-
ticular internal sets defining orderings (and hence ‘paths’) etc. Once we have
constructed such internal paths, then we may safely iterate D . Paths defined
‘externally’ to the model in any way, presumably have no length restrictions,
and would correspond to some kind of ‘super-determinateness’. We shall further
characterise the internal sets in this type of model construction: they form in the
case of M =N a somewhat large but countable initial segment of the Gödel hier-
archy of constructible sets. (To take some terminology from [2], the internal sets
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in M+ are precisely the ‘arithmetically quasi-inductive and co-quasi-inductive’
sets - if one can bear the neologism. Those internal sets that define wellorder-
ings have those orderings’ ranks strictly less than some precise bound ζ, defined
below, this ordinal taking over the role of the least non-recursive ordinal for the
Strong Kleene minimal fixed point.)

Our analysis of both the F -hierarchy, and the H-hierarchy yields comple-
menting results: for any level of the F -hierarchy, Fα say, has the whole history
of the revision process that built it, coded into it. Indeed there is a uniform
process, so that given Fα the whole sequence 〈Fβ | β < α〉 of prior sets can be
retrieved from it (‘uniform’ meaning that the process is the same for each α).
Moreover this process is arithmetic, so not of great complexity. An entirely anal-
ogous result holds for the Hα (this is the ‘Uniform Definability’ result of Lemma
1.1 below). This may perhaps at first sight be surprising. The fact that we can
do this is a somewhat delicate set-theoretical matter (which we shall discuss in
the rest of the paragraph - although this does not directly affect any of the philo-
sophical consequences). It depends on the fact that the ordinal ζ concerned,
although large proof-theoretically is still in some sense small: it suffices for our
purposes that ζ ≤ β0 where the latter, sometimes called the ordinal of the least
model of full second order comprehension, but more commonly for set theo-
rists, is the least ordinal β0 so that Lβ0 |= ZF− - Zermelo-Fraenkel with the power
set axiom dropped. Our ordinals are well below that of Lα whose reals form the
first model ofΠ1

3 -Comprehension (but above that forΠ1
2 -Comprehension) so we

are safely within this region. Nevertheless a set theoretical analysis of the Gödel
L hierarchy and how sets are produced is needed: it is precisely because of set-
theoretical facts that we can establish the uniformity of the arithmetical retrieval
process from any Fα.

We have used a part of this ‘Uniform Definability’ result already in [24]. In
order to effect the retrieval of the whole sequence prior to the α’th stage, it is
necessary as a building block, to have first a wellordering of the required length
α available. One first establishes that there is such which is also uniformly de-
finable from Fα (or Hα). In [24] we were attempting to give a game-theoretic
semantics for the Herzberger stability set and the Fieldian ultimate truth set.
This was to mirror previous results on the strong Kleenean minimal fixed point
by Martin (cf. [16] and [17]) where two players I and II play a game to deter-
mine whether a sentence A was T or F in the fixed point. The possession of
a winning strategy by a player indicated that the sentence indeed had a fixed
value. If the game were of infinite length then no player had such a strategy and
one concludes that neither A nor ¬A is in the fixed point. For the Herzbergerian
or Fieldian set, there is indeed such a game but it is necessarily an ∃∀∃ game,
and must in general run for infinitely many moves, even with a winning strat-
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egy for a player. This complexity in the game reflects naturally the complexity
of the stability and ultimate truth sets involved. However to obtain this char-
acterisation we needed not only that a wellordering of length α was uniformly
arithmetic in Hα or Fα, but moreover that it was uniformly recursively enumer-
able. This observation could then be turned into the result that the Hα (and Fα)
sets were non-decreasing in α. This result was stated but not proved in [24] and
we discharge the obligation here.

In general since we now know that there is a close correspondence between
the Hα and the theories of the Lα further results about the Herzberger sequences
are perhaps waiting to be mined. For example, one may characterize those levels
Hα which are models of Cantini’s V F : they are precisely those for which α is
Σ2-admissible, or equivalently those α with the reals of Lα forming a model of
∆1

3-Comprehension (these results may appear elsewhere).
In the next two subsections we outline in more detail these results: in the

first the hierarchy theorems we have just discussed, in the second the appli-
cations to determinateness hierrachies. In Section 2 we start the construction
proper. We first produce these results for the H-hierarchy, as there the succes-
sor steps are more conventional and perhaps clearly understood. We establish
the Uniform Definability and the Non-Decreasing results for this hierarchy. In
Section 3 we then see what modifications are needed to claim the same for the
F -hierarchy. In Section 3.2 we establish our claims concerning path indepen-
dent hierarchies. Both Sections 2 and 3 depend intrinsically on some analysis
of the L-hierarchy; these can be treated by the reader uninterested in such tech-
nicalities as a black box, and these ‘Limit Lemmata’ proofs establishing how the
theories of various Lλ (for limit ordinalsλ) can be obtained by the liminf process,
have been hived off to Section 4. Even if the reader wishes to ignore this section,
just some basic knowledge of how the L-hierarchy is created will be needed to
read Sections 2 and 3. For the results on the Fieldian hierarchy we shall need to
assume the reader is familiar with the construction of [4], which is also that of
Ch.16. of [5].

1.1 Truth hierarchies

Recall that the Herzberger sequence results in a ‘loop’ that is first entered at
stage ζ and repeats at a later stage Σ. As established by Burgess [2] the least
such pair (ζ,Σ) is the least such pair for which Lζ ≺Σ2 LΣ. We independently es-
tablished that the universal Infinite Time Turing Machine of [10] also enters a
final loop with the same (ζ,Σ) the first such pair (see [23] for an account of this).
We first used these two facts to prove the results here on the non-decreasing na-
ture of the Herzberger sequence starting with a null, or any recursive hypothesis
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or distributions of truth values. We intend here to give direct proofs eliminat-
ing the use of machines, and use directly here the, perhaps more familiar, Gödel
L-hierarchy. We let Hγ denote the γ’th truth set over N of sentences σ in the
language of arithmetic with an additional Ṫ symbol to interpret the H sets, LT ,
using Herzberger’s liminf revision rule, and starting out with H0 =∅. (Any other
initial recursive distribution of truth values would have the same effect. Indeed
the distribution can be hyperarithmetic or indeed any H0 at all, as long as it is
an element of Lζ.) Thus we recall:

Hγ+1 = {pσq | 〈N,+,×. · · · , Hγ〉 |=σ[Ṫ /Hγ]}
Hλ = liminfα→λ Hα =⋃

β<λ
⋂
β<α<λ Hα if Lim(λ).

We then have that Hζ = HΣ = H∞ where by the last set we mean the set of
sentences stably true in the sequence of length all the ordinals On. H∞ is thus
the ‘stable truth’ set of this process. We demonstrate how, if γ < Σ then, uni-
formly in γ, the whole sequence up to that point, 〈Hβ | β < γ〉, is arithmetically
obtained from Hγ. (Lemma 1.1 below.) We use a part of this result to show:

Theorem 1.1 (H-Non-Decreasing)

If β< γ<Σ, then in the Herzberger revision sequence Hγ* Hβ.

The same methods can be used to show that for Field’s construction in [4]
which we showed in [22] essentially constructed a recursively isomorphic copy
of the stability set Hζ of the Herzberger sequence, that we can say the same for
his sets.

Field does the following (particularising to the case of building truth sets
over the structure of the natural numbers M = 〈N,+,× 0,T 〉).

Each new model Mα only has the extension of the truth predicate, and the
extension of the operator → changed, and Mα,σ assigns semantic values from
{0, 1

2 ,1} to sentences. Mα,σ+1 is then the strong Kleenean jump of Mα,σ according
to the usual truth tables. A Kleenean fixed point stage has been reached when
Mα,σ = Mα,σ+1, denoted Mα,Ω, which is essentially the usual strong Kleene fixed
point computed over the starting model Mα,0 with a fixed assignment of values
to the conditional. At such starting stages Mα,0 and all subsequent stages Mα,σ

up to the next fixed point, conditionals are assigned values as follows according
to a revision-theoretic liminf rule:

|A → B |α,σ = 1 if ∃β<α∀γ ∈ [β,α)(|A|γ,Ω ≤ |B |γΩ)
= 0 if ∃β<α∀γ ∈ [β,α)(|A|γ,Ω > |B |γΩ)
= 1

2 otherwise.
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We shall freely use the notion of ‘|A|β’ (as Field does) for |A|β,Ω. For our
purposes here, we may define for β<Σ:

Fβ =d f
{〈pA −→ Bq,1〉 | |A −→ B |β = 1

}∪{〈pA −→ Bq,0〉 | |A −→ B |β = 0
}

.

Because of the liminf rule, we thus have for limit λ that Fλ includes codes
for those sentences A that either stably have semantic value 1 below λ, or stably
have value 0. (To see this just look at any A, and see if 〈p>−→ Aq,1〉 is in Fλ etc.
) Similarly from Fα+1 one may read off the sentences A that had value 1 (or 0)
at the previous stage: |A|α,Ω = 1(0 respectively). Indeed from Fα one may read
off all the values |A −→ B |α, and thus all the semantic starting values necessary
for calculating the next Strong Kleene fixed point over those values, in this con-
struction. Those fixed point values are then written into Fα+1 as defined above.

Because of the same limit rule, the stability sets Fζ and Hζ are very much the
same mathematically speaking, and the sequences can be analysed in some-
what similar fashions. Field’s first ‘acceptable point’ ∆0 of his sequence was
shown in [22] to coincide with ζ, and the second with Σ. (It is a feature of these
kinds of inductive sequence, that the limit stages are determined by the liminf
rule, which is in effect some form of infinitary rule; and this wipes out differ-
ences in what one does at successor stages; one could even have much stronger
(or weaker) successor stage operations than Field considers, but if we stick with
the liminf rule at limits one again ends up with the same pair of ‘stability’ ordi-
nals (ζ,Σ) reappearing.1 We then have analogously to the above:

Theorem 1.2 (F -Non-Decreasing)

If β< γ<Σ, then in the Fieldian sequence Fγ* Fβ.

We don’t know if there is a simpler direct method of establishing this lemma.
Essentially the original single motivating idea can be expressed as follows. Since
the H sets encompass iterated definability, then they should (and do) encode
the levels of the L - hierarchy which is also defined by iterated definability along
the ordinals. We are sufficiently low down in the L-hierarchy, that the levels are
all the ranges of maps with partial domain ω which themselves are simply de-
fined over those levels. In particular there are simply defined wellorderings of
order type the height of the structure, definable over the structure itself. (Sim-
ple here has a technical meaning.) If β< γ are sufficiently closed ordinals, then
one should be able to effectively decode a wellordering of type γ from Hγ. If this

1In [7] he considers changing the conditional −→. We have not checked but strongly conjecture
that for this notion the very same ordinal ζ,Σ are relevant: again this is symptomatic of this kind
of strong infinitary rule.

7



decoding is effective enough, and the wellordering of type β is decodeable from
Hβ in the same way, then this will prevent Hγ being a subset of Hβ. That is the
idea.

Pushing these ideas further we shall in fact have something more:

Lemma 1.1 ‘Uniform Definability’ (i) There is a single uniform method of arith-
metically defining the whole sequence 〈Hγ | γ < β〉from Hβ for any β < Σ. Again
this method is uniform in the sense that it is independent of β.

(ii) The same as (i) with the Fieldian sets Fγ replacing Hγ.

In the case of a successor β= γ+1 <Σ we may moreover assert that there is
a single recursive function (thus independent of β) F :N2 −→N, so that if we set

H = {〈pAq,u〉 ∈N2 | F (〈pAq,u〉) ∈ Hβ

}
then with wβ the well ordering of type β of the type sketched above, and u ∈ wβ,
then, if u has rank γ in wβ then Hu =df {pAq | 〈pAq,u〉 ∈ H } is nothing other
than Hγ itself. Thus for such β we have a way not only of defining simply a
wellorder of type β from Hβ, but we may recursively recover the whole prior se-
quence 〈Hγ | γ<β〉 from knowledge of Hβ. Again the method is independent of
β. Hence we may think of Hβ as always encoding the whole revision sequence
up to β. From a set-theoretical perspective, this is just as it should be. For limit
β< Σ the process is more complicated: it is still arithmetical rather than recur-
sive, but still can be done uniformly. Again the same is true for the F -sequence.
This Lemma represents the content of the second paragraph of our abstract.

It is from the Uniform Definability that we get a special kind of reflection in
our sequences: we shall see that any talk about stabilization (or otherwise) of a
formula B in a hierarchy, can itself be expressed, or reflected, by formulae about,
inter alia, a code of B , that themselves stabilize (or otherwise). This will be put
to use in particular in the next subsection and Section 3.2.

1.2 Determinateness Hierarchies

Field has defined a notion of determinateness that seeks to express the idea that
whereas some sentences (such as a simple liar L0) in, for example, a Strong Klee-
nean fixed point are neither true nor false, that language lacks the expressive-
ness to somehow qualify that liar sentence as having that status. In his model
of [4] he considers for each sentence A a corresponding sentence asserting the
determinate truth of A. There it is A ∧ (>−→ A). This he abbreviates as D A. In
his construction the ultimate value of the simple liar ‖L0‖ is 1

2 , whereas ‖DL0‖
is easily seen to be 0. In turn ‖¬D Tr(pL0q‖ has value 1, and thus we may say
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that although we cannot assert that the liar L0 is not true we can say that it is not
determinately true. We thus have the means to express to some extent the ‘de-
fectiveness’ of the liar in not having a 0/1 semantic value. By the usual diagonal
argument there is however a sentence L1 expressing ¬D Tr(pL1q). Again ‖L1‖ is
1
2 but so is ‖DL1‖. Basically this is because, whereas the simple liar L0 alternates
in value from 0 to 1 or back again at every stage, D A - which asserts “A now and
A was true at the previous stage” (to paraphrase: we took >−→ A to express the
latter conjunct) when D is applied to L0 this must be static at zero. Change the
periodicity of the alternation, say from every stage to every two stages - as is the
case with L1 - then DL1 will itself switch from 0 to 1 and back again, becom-
ing to have value 1 every fourth stage. However instead DDL1 can be seen to
have value 0 everywhere. Defining L2 to be equivalent to ¬D2 Tr(pL2q) a similar
analysis holds, where now L2 has a periodicity 3. Field then defines iterations
Dn A in the obvious way and a transfinite iteration DωA is taken as (the formal
version of) “∀n Tr(pDn Aq))”. We may then define Dω+1 A as DDωA and so forth,
For each Dα so defined there is a generalised liar Lα with, amongst others, the
properties that ‖Lα‖ = 1

2 = ‖DαLα‖ but ‖Dα+1Lα‖ = 0.
Field asks then for how long this process may continue. In [4] he mentions

that this can be done at least up to some recursive ordinalλ0. In [6] it is remarked
that this is too restrictive and that it can be done for all recursive ordinals. In the
latter paper and the book [5] there are lengthy discussions as to how to define
first ‘path dependent hierarchies’ of the D operator, and even ‘path independent
hierarchies’. In essence one wants a path of iterations of D , and for finite ordi-
nals, or recursive ordinals, there are orderings readily to hand along which to
effect this. (For recursive orderings there are the Kleene O notations to ‘name’
ordinals belowωck

1 - the first non-recursive ordinal, to effect this - cf. [21].) Field
would like the iterations of the ‘D-operator’ to lead to concepts and notions of
determinateness of increasing strength, but if these notions depended on the
path (read: ordering or ordinal notation system) used, this is rather undesirable.
What we want are ‘path independent hierarchies’ which lead to notions so inde-
pendent. There is some difficult discussion on this, but it seems that, at least for
the principal model under discussion or maybe its counterpart when the ground
model is not arithmetic, but some model of set theory of the form Vκ- the col-
lection of sets of rank less than some ordinal κ (we discuss this latter variation
below), the upshot is that such hierarchies are of some unspecified, or ‘fuzzily
defined’ length which ‘fall short of the first acceptable point’ ([6]).

It is part of our task (which we sketched in [25]) to bring some clarity to this
discussion, at least for models of the kind described in [4] and [5]. Here this
‘principal model’ construction allows one to internally define paths in the model
M+ up to ∆0(M ) the first ‘acceptable ordinal’ over the model. We thus want
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to establish a) how to explicitly get such paths - in essence bivalently defined
prewellorderings and b) an explicit and exact upper bound on the lengths of
such.

One might ask whether that has exhausted the possible ‘path independent
hierarchies’ that Field envisages, but we see no sensible mechanism for this be-
yond what we have proposed. Could we then claim that we have listed all possi-
ble notions of strengthened determinateness? Indeed one of our results below
(Lemma 1.4) explicitly says that there are no paths at all of the kind we describe
that are longer than ours. Hence there are no such internally defined notions
of determinateness beyond, or stronger than, what we have produced here. It
would seem then that an externally defined path of length longer than ∆0 is just
what one does not want: from that one can define all the internal paths and
could then diagonalise out of the sets defined from the model.

Proposition 1.1 There are sentences C ∈L + so that for any determinateness pred-
icate DB with B ∈ Field(¹) ‖DB (QC )‖ = 1

2 . Thus the defectiveness of QC is not
measured by any such determinateness predicate definable within the L + lan-
guage.

This is proven in the final subsection of Section 3. These are our examples of
diagonalised sentences whose defectiveness is not encompassed by any DB for
B genuinely in Field(¹): they are the ineffable liars.

For a sentence A we may define ρ(A) to be the least ordinal ρ (if it exists)
in a revision sequence so that the semantic value of A is constant from stage ρ
onwards.

We may define in the language L + a prewellordering ≺ of sentences of sta-
bilizing truth value: we set P≺(pAq,pBq) if and only if ρ(A) < ρ(B), where pAq
is an integer Gödel code for A. (It has to be shown that we can do this and that
P≺ is given by an L + formula.) We could do this just for sentences stabilizing
just on 1, or on ‘designated truth values’, but we do this here for 0,1 only. The
ordering ¹ derived from ≺ is a prewellordering since naturally many sentences
A may stabilize at the same ordinal. Letting ‖A‖ be the ultimate semantic value
of the sentence A, in the model M+, we then show:

Lemma 1.2 There are formulae P¹(v0, v1), P≺(v0, v1) in L + so that for any sen-
tences A,B ∈L +, we have

‖P≺(pAq,pBq)‖ = 1 iff ρ(A) ↓,ρ(B) ↓ and ρ(A) < ρ(B);
= 0 iff ρ(A) ↓,ρ(B) ↓ and ρ(A) ≥ ρ(B);
= 1

2 otherwise.
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(And similarly for the formula P¹.)

The construction of these formulae P≺ and P¹ will build on the work of the
above. We abbreviate A ≺ B for ‖P≺(pAq,pBq)‖ = 1 etc. Then, if ‖A‖ = 1 (or
0) say, then {B : B ≺ A} = {B : ‖P≺(pAq,pBq)‖ = 1} is a prewellordering of order
type some ordinal ξ < ∆0. It is less than ∆0 since, recall, that any sentence that
stabilizes must do so by ∆0 by the latter’s definition.) We let Field(≺) denote the
set of sentences stabilizing on 0 or 1. The next lemma shows how long these
prewellorderings can be:

Lemma 1.3 For any ξ < ∆0 there is a sentence A = Aξ in Field(≺) with the order
type of {B |B ≺ A} equalling ξ.

That this is as far as one can go is shown by:

Lemma 1.4 Let Q(v0, v1) be a formula of L +. Define n ≺Q m if ‖Q(n,m)‖ = 1.
Suppose ≺Q is a prewellordering, and further that for any m ∈ Field(≺Q ), it is a
bivalent matter for any n ∈Nwhether Q(n,m). Then ot(≺Q ) ≤∆0.

The assumptions are thus that Q defines a prewellordering, so that, to rephrase,
for any m ∈ Field(≺), for any n ∈N‖Q(n,m)‖ 6= 1

2 . The bound of ∆0 is attained
by the ordering P≺ above. This then delimits the kind of determinateness hier-
archies of the kind we have been considering to have lengths strictly less than
∆0.

We now have the wherewithal to define internal hierarchies of iterated de-
terminateness along initial segments of ≺ given by the sets {B : B ≺ A}. We may
define for any sentence C :

DC (A) ≡∀B
(
P≺(B ,C ) → (∀y(y = pDB (A)q→ T (y)))

)
.

For C ∈ Field(¹) this defines a ‘genuine’ determinateness hierarchy of length
ρ(C ). However it is not a bivalent matter as to whether a general C is or is not
in Field(¹). (In other words Field(¹) is not a crisp subclass of N.) However if
C ∈ Field(¹) then it can be shown that it is a bivalent matter whether a general B
is ≺-below C or not (Lemma 3.6 below).

Because of the presence of sentences C for which we cannot bivalently as-
sign a 0/1 semantic value to “C ∈ Field(¹)” the expression “〈DB (v0)|B ≺C〉 forms
a determinateness hierarchy” is not in the classical part of the language L + to
which the Law of Excluded Middle holds. I believe that this gives a precise for-
mulation to Field’s idea that ‘O is an iteration of D is ‘fuzzy’ ’ in this context.
Lemmas 1.3 and 1.4 give the extent of such hierarchies.
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The ‘ordinals internally L +-definable’ are thus for us the ordinals ξ < ∆0,
which we define through our use of stabilizing sentences and the ordering ¹.
Although the latter has order type precisely∆0 (by Lemma 2) there is no sentence
δ stabilizing precisely at stage ∆0. Thus the internally defined determinateness
hierarchy breaks down, not fuzzily, but precisely, at ∆0. There is no internally
definable maximal hierarchy. Externally we see exactly what is going on, and
could of course, define a hierarchy of length∆0 using the full field of the ordering
≺.

If one takes the formula P≺, then for any ordinal ξ with ∆0 < ξ< Σ (where Σ
is the next acceptable point above ∆0) there will be C so that {B : |B ≺ C |ξ = 1} is
a prewellordering under ≺ of order type δ > ∆0 and further, defining DC (A) as
above:

|DC (A) forms a determinateness hierarchy|ξ = 1.

However this is only an evaluation at a non-acceptable point ξ, and the se-
mantic value of such when evaluated at ∆0 or Σ is quite different, as it must be
by Lemma 1.4. Thus, viewing the construction of the model dynamically, there
are longer hierarchies, prewellorders etc, but they are evanescent: they appear
for a while in the revision process, but then disappear: ∆0 is the sum total of
all the hereditarily definable ordinals. It is the least ‘fuzzy’ ordinal in that it is
the least ordinal which is not the length of a ‘stabilized’ or ‘bivalently defined’
wellordering.

Acknowledgements: I should like to thank Leon Horsten, Graham Leigh, and
Toby Meadows for their comments on an earlier draft, but most particularly the
referee for his or her insights, and cogent suggestions for substantial improve-
ment of the technical arguments.

2 The construction

We shall be able to conclude that for all limit ordinals β, that there is always a
wellordering of N, wβ, of order type β which is recursively enumerable in Hβ,
uniformly in β. Here ‘uniformly’ means that the definition does not depend on
β but is the same for all β less than Σ (the fact that there is such a definition
at all depends crucially on the defining property of Σ). In slightly finer detail it
will be asserted that there is a recursive (1-1) function G :N×N −→N, so that
if wβ = {≺ u, v Â ∈N | ∃i ∈NG(i ,≺ u, v Â) ∈ Hβ} then wβ is an ordering of type
β, for Lim(β). Now, towards a proof of Theorem 1.1, if β< γ< Σ are both limits,
and we supposed that Hγ ⊆ Hβ, then G−1“Hγ ⊆ G−1“Hβ. However this would
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be absurd as then we should have wγ ⊆ wβ and thus wβ has a suborder of type
γ! This is the contradiction. This proof then depends on the construction of G
which, perhaps surprisingly, turns out to be not a trivial matter. We also have
the minor irritant of having to deal with those ordinals β,γ etc. not limits. This
we shall get by noting that not only is Hλ ≤T Hβ (for any β with λ ≤ β < λ+ω)
but there is in fact a uniform way independent of β and λ, of (1-1) recursively
reducing any such Hλ to any such Hβ.

In fact it is possible to regard this paper as chiefly about the construction of
two recursive functions, a G =GH just described, and another GF for the Fieldian
hierarchy. The way this has been achieved is to demonstrate that the L-hierarchy
〈Lα | α < λ〉 is uniformly arithmetical in Hλ. Then from known facts about the
L-hierarchy, we deduce the existence of the required wellorderings wλ etc.

We have taken ≺−,−Â:N×N−→N to be some fixed recursive bijection. We
shall further use standard terminology from recursion theory. We shall use the
Kleene notation of {e}X to denote the e’th function recursive in X ; the domain
of this function is denoted W X

e . We shall as usual write A ≤T B to mean that A is
Turing reducible to B , which in turn means that the characteristic function of A
is recursive in B . A ≤1 B will indicate that A is (1-1) reducible to B : there is a total
recursive function f : N→N so that A = f −1“B . We shall quote without further
specifying here standard theorems, such as the snm-theorem and the (Second)
Recursion Theorem (for these and all other facts see either [20] or [19]). We note
that for any X , K X =d f {e | e ∈W X

e }, is a completeΣX
1 set (beingΣ1-definable over

〈N, X 〉). We set X (0) = X and let X (1) =d f X ′, the Turing jump of X , to be this set
K X , and let X (n+1) be (X (n))′. Let X (ω) =d f {〈n,k〉 | k ∈ X (n)}. Then X (ω) is the
complete arithmetic set over X . Recall also that if X ≤T Y then X (ω) ≤1 Y (ω). In
our context we have that for n ≥ 1 that (Hα)(n) is (1-1) reducible to the complete
Σn theory of 〈N, Hα〉. Further, (Hα)(ω) is (1-1) reducible to Hα+1. We let G1 be a
recursive function witnessing this last reduction.

Lemma 2.1 (i) There is an effective procedure for testing Hβ to determine if β is
a multiple of ω. (ii) For ω > n ≥ 0 there is a sentence τn so that Lim(λ) → (β =
λ+n +1 ↔ τn ∈ Hβ).

Proof: Firstly we note that we can always tell from Hβ whether Lim(β) or not:
we look and see if both L0 and ¬L0 are absent from Hβ where L0 ↔¬T (pL0q) is
a simple Liar sentence. By the Herzberger rules, this happens precisely at limit
β. Let τ0 be the sentence ¬T (L0)∧¬T (¬L0). Then τ0 is true in 〈N, Hµ〉 (and
hence is in Hµ+1) iff Lim(µ). Now set for n ≥ 1, τn ≡ T n(τ0)). Then for n ≥ 1,
〈N, Hµ〉 |= τn iffµ=λ+n where λ is the largest limit less than or equal to µ.

Q.E.D.
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Lemma 2.2 (i) There is a (1-1) total recursive function f0 so that for any limit λ
and any n <ω, then Hλ = f −1

0 “Hλ+n+1.
(ii) Moreover the sequence 〈Hλ+k | 0 ≤ k < n〉 is uniformly recursive in Hλ+n

for any such λ and n ∈N.

Proof: There is an effective list of indices E = 〈{ek } | k <ω〉 for recursive func-
tions Fk , with the property that for k > 0, {ek } is an index of the function Fk so
that Fk (s) is the gödel code of the result of adding k applications of T to the sen-
tence with gödel code s. (Here F0 = {e0} is taken as the identity function.) Let f
be the following function, which is recursive in X ⊆N:

f (s) = 1 if s ∈ X , L0 ∉ X and ¬L0 ∉ X or
if Fk+1(s) ∈ X where k is least so that τk ∈ X ;

= ↑ otherwise.
Then for some index e of the function f , if X = Hλ+k for any k < ω, Hλ =

W X
e . But in general W X

e is (1-1) reducible to K X . That is for some total recursive
G , W X

e = G−1“K X . We combine this with the fact that for any β < Σ, there is
a total recursive function h witnessing K Hβ ≤1 Hβ+1 (this is because K Hβ is Σ1

definable over 〈N, · · · , Hβ〉). We take f0 = h ◦G . This finishes (i). (ii) is similar.
We shall show that there is a (1-1) recursive partial function hX : N×N → N,
partial recursive in any set X , so that for any limit λ ≤ Σ, and for any n ∈ N, if
X = Hλ+n , then hX is total, and Hλ+k = {s | hX (k, s) = 1} for k < n.

Define
h(k, s) = 1 ↔ for the least n such that τn−1 ∈ X {en−1−k }(s) ∈ X ;
h(k, s) = 0 ↔ for the least n such that τn−1 ∈ X {en−1−k }(s) ∉ X ;
h(k, s) =↑↔ there is no such n.

Then h(k, s) is a function partial recursive in X , and when X = Hλ+n then it
is total with 〈Hλ+k | 0 ≤ k < n〉 recursive in Hλ+n as required. Q.E.D. Lemma 2.2

We seek to generalise the last observation on the definability of all Hλ+k from
Hλ+n (for k < n) to all β< γ<Σ. We shall show (in Lemma 2.9 below) that:

The sequence 〈Hγ | γ<λ〉 is uniformly arithmetic in Hλ for any limit λ<Σ.

Combining this then with (ii) of the last Lemma we shall have the uniform
definability of 〈Hγ | γ<β〉 from Hβ for any β<Σ.

In our construction of the L hierarchy we shall assume, somewhat non-standardly,
that L0 =Vω = HF the hereditarily finite sets. This is just to make the numeration
of our induction stages easier. H1 contains all truths of arithmetic, and via a re-
cursive function all truths of 〈HF,∈〉, hence it makes sense to start constructing
the Lα’s with L0 = HF. We express this well known fact concerning T h(〈L0,∈,〉)
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and T h(〈N, · · · ,〉), that is H1, as:

Lemma 2.3 (Ackermann, cf [18] IV.3.22) There is a (1-1) recursive function k :
N −→ N so that 〈HF,∈〉 |= σ ↔ 〈N,+,×, . . .〉 |= k(σ). Consequently the theory
Th(〈L0,∈〉) is recursively isomorphic to H1.

We shall make use of codes for wellfounded relations, whether they be wellorder-
ings or the ∈-relation on (usually) transitive sets. If 〈M ,∈〉 is a structure, with M
a transitive countable set, we say that EM ⊆N is a code for 〈M ,∈〉 if there is an
bijection f :N↔ M , and we have for n,m ∈N that f (n) ∈ f (m) ⇐⇒〈n,m〉 ∈ EM .
In short we have that 〈N,EM 〉 is isomorphic to 〈M ,∈〉. A code for a wellorder is
merely the special case when M ∈ On. It is occasionally useful to have subsets
ofN rather than all ofN coding wellorders. Such a subset is then the field of the
coded wellorder.

We shall assume the reader is familiar with at least some of the details of
the usual construction of the Gödel L hierarchy. In particular the inductive con-
struction of 〈Lµ+1,∈〉 from the structure 〈Lµ,∈〉. This is effected by looking at all
subsets Xϕ,~y of Lµ definable using first order formulae in the language of set the-
ory, ϕ(v0, y1, . . . , yk ) with parameters ~y = yi from Lµ. In our setting to follow, it is
a fact that given the complete theory of the countable model Lµ - Th(〈Lµ,∈〉) - as
a set of gödel numbers fromN, and given also any code for 〈Lµ,∈〉 in the sense
above, call it rµ say, one may by simple arithmetical operations on rµ and the
given theory, construct a code for 〈Lµ+1,∈〉.

Definition 2.1 (i) The Σn-Theory of 〈Lα,∈〉) will be abbreviated as T n
α ; the com-

plete theory will be denoted Tα.
(ii) For Li m(λ), the Liminf theory at λ is T̂λ =d f liminfα→λTα.

We shall define two total recursive functions l , g , on which the construction
will depend. The first of these will depend on the following lemma whose proof
is deferred to Section 4.

Lemma 2.4 (H-Limit Lemma) For limit λ ≤ Σ the Σ2 theory of 〈Lλ,∈〉, T 2
λ

, is r.e.
in T̂λ. Moreover an index for this r.e. reduction is the same for all such λ.

Lemma 2.5 There is a total recursive function l , so that if λ≤Σ is any limit ordi-
nal, and for any e, if (i) for all α < λ, Tα = W Hα+1

e and (ii) for all limit µ < λ we

have W
Hµ

e =N, then Tλ =W Hλ+1

l (e) .

Proof: Our assumptions in (i) and (ii) allow us to conclude that

liminf
α→λ

W Hα
e = liminf

α→λ
W Hα+1

e = T̂λ.
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Let a recursive (1-1) ḡ be chosen (using e) with the property that ḡ−1“Hα+1 =
W Hα

e (for all α). The above equations translate then to:

ḡ−1“Hλ = liminf
α→λ

ḡ−1“Hα = liminf
α→λ

ḡ−1“Hα+1 = T̂λ.

(The middle equation holding because in turn Hα = liminfβ→α Hβ for Li m(α),
α < λ.) However T 2

λ
is uniformly r.e. in T̂λ (by Lemma 2.4 and independently

of λ). This implies that Tλ ≤1 (Hλ)(ω) (still uniformly in λ). However there is a
recursive and total G1 witnessing that (Hβ)(ω) = G−1

1 “Hβ+1 for all β. Using this
latter equation with β = λ and putting it with the above, we can effectively find
an index l = l (e) with Tλ =W Hλ+1

l (e) . Q.E.D.

The second function g will depend on:

Lemma 2.6 There is a recursive (1-1) function G2 so that for Succ(α), Tα is (1-1)
reducible to (Tα−1)(ω) thus with: Tα =G−1

2 “(Tα−1)(ω).

This will also be proven in Section 4.

Lemma 2.7 There is a total recursive function g , so that if α< Σ is any successor
ordinal, and for any e, if Tα−1 =W Hα

e , then Tα =W Hα+1
g (e) .

Proof: Let G1 be the fixed recursive functions from above so that for any α<
Σ H (ω)

α =G−1
1 “Hα+1. For any e let Z (e) =W Hα

e . Z (e) is thus a possible candidate
for Tα−1, depending on the choice of e. Now we have Tα ≤1 (Tα−1)(ω), via the
fixed function G2 of Lemma 2.6. Thus Tα =G−1

2 “(Tα−1)(ω).
Let He be a fixed function depending on e which witnesses that Z (e)(ω) ≤1

H (ω)
α . Hence Z (e)(ω) = H−1

e “H (ω)
α . Let Ge be the (1-1) function He ◦G2. Then in

case Z (e) = Tα−1, we shall have that Tα =G−1
e “H (ω)

α . Finally let g (e) be an index
so that W Hα+1

g (e) = (G1 ◦Ge )−1“Hα+1. Again if Z (e) = Tα−1, then Tα =W Hα+1
g (e) .

Q.E.D. Lemma 2.7

Lemma 2.8 There is an index e0 and thus a (1-1) recursive function GL so that for
all α<Σ: (i) W Hα+1

e0
= Tα; (ii) Tα =G−1

L “Hα+2.

Proof: We proceed to define f (e,n) a partial function recursive in an arbitrary X .
The indices g (e), l (e) use the functions g ,k, l from the lemmas above.
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f (e,n) = 1 ifp(Ṫp0 = 0q)q ∉ X ∧n ∈ k−1“X ;
or if τ0 ∈ X ∧ {l (e)}X (n) ↓;
or if neither L0 nor ¬L0 is in X ;
or ifτ0 ∉ X ∧ (L0 ∈ X ∨¬L0 ∈ X )∧ {g (e)}X (n) ↓ .

In all other cases f (e,n) ↑.

By the Recursion Theorem there is e0 so that for any X , {e0}X (n) = f (e0,n).

Claim: ∀α<ΣW Hα+1
e0

= Tα. For Li m(α) we have liminfβ→αW
Hβ

e = T̂α.
Proof: By induction on α, including additionally the claim that for Li m(α)

that W Hα
e0

=N. For α= 0 this is trivial. If true for β where α= β+1, then let X =
Hα+1. Then τ0 ∉ X ∧ (L0 ∈ X ∨¬L0 ∈ X ) and thus W Hα+1

e0
= dom({g (e0)}X ) = Tα as

required. If now true for β<α where Lim(α) then we have neither L0 nor ¬L0 is

in X = Hα, and thus W Hα
e0

=N. By induction, for Li m(β), β<αwe have W
Hβ

e0
=N

and thence
liminf
β→α

W
Hβ

e = liminf
β→α

W
Hβ+1

e = T̂α.

Still with Li m(α), if X = Hα+1, as τ0 ∈ X , W Hα+1
e0

= dom({l (e0)}X ) = Tα, the
latter equality by our fulfillment of the conditions to apply Lemma 2.5.

Q.E.D. Claim.
The Claim proves (i) of course, and (ii) then is immediate. Q.E.D. Lemma 2.8

We shall make use of the following corollary to the proof of Lemma 2.4 (also
proven in Section 4):

Corollary 2.1 (Wellordering Lemma) (cf. [8]) There is a single recursive function
G :N×N−→N, so that for any limit ordinal β, if we set

wβ = {≺ u, v Â∈N | ∃i ∈NG(i ,≺ u, v Â) ∈ Hβ}

then wβ codes a well ordering ofN of type β.

Proof of Theorem 1.1.
Let f0 be from Lemma 2.2 (i), and G the function just mentioned in the

Corollary 2.1. For a subset A ⊆ N×N, let (A)1 =df {m | ∃n〈n,m〉 ∈ A}. Let
β=ω.k + l , γ=ω.k ′+ l ′ for some k ≤ k ′. Suppose we assumed Hγ ⊆ Hβ. Then by
Lemma 2.1 (ii) we must have l = l ′. However we also have that (G−1“ f −1

0 “Hγ)1 ⊆
(G−1“ f −1

0 “Hβ)1 (if l > 0), and (G−1“Hγ)1 ⊆ (G−1“Hβ)1 (if l = 0). Either alternative
implies, again using the notation of the last remark, that wω.k ′ is a wellorder of
type ω.k ′ contained in wω.k a wellorder of type ω.k. Thus k = k ′. Thus β = γ.
This completes the theorem.
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Q.E.D. Theorem 1.1

(Moreover this last proof is also the basis of the “non-wellfounded” version
mentioned in [24], if, for example, we tookβ an ordinal and c likewise an ordinal
in the illfounded part of the ordering, (with largest limit ordinals less than them
of β′ and c ′ respectively then we’d have that wβ′ would contain wc ′ as a suborder
- but this is also absurd, as wc ′ is illfounded).

We now turn to our claims that the whole sequence up to a stage is recover-
able from that stage: Lemma 1.1(i). We first consider limit ordinals λ.

Lemma 2.9 Let λ<Σ be a limit ordinal. Then 〈Hα |α<λ〉 is uniformly definable
over Lλ. Moreover a code for this sequence can be found uniformly arithmetically
in Hλ.

Proof: From above we have a wellorder, <λ from the relation wλ, of order
type λ that is uniformly ΣLλ

2 . That is, there is a Σ2 definition of a binary relation,
that works over any limit λ<Σ to define wλ(n,m), a wellordering of that length.
Consequently we may define a code for the iteration of our revision sequence
along this ordering:

Hλ(k,m) ↔〈Lλ,∈〉 |= “ ∃ f ∃n[n ∈ Field(wλ)∧Fun( f )∧dom( f ) = {p | wλ(p,n)}∧
∧∀u(

(u is <λ-least −→ f (u) =∅) ∧
(u a <λ-successor of v −→ f (u) = {pσq | 〈N,+,×, . . . , f (v)〉 |=σ) ∧
(u a <λ-limit−→ f (u) = liminfv<λu f (v)) ∧
∧k ∈ f (m)].”

The relation Hλ(k,m) codes 〈Hα |α<λ〉: ifα<λ and m is such that |m|<λ
=

α then Hα = {k | Hλ(k,m)}. Due to the uniformity in the definition of wλ the
(ΣLλ

4 ) definition of Hλ is independent of λ.
For the last sentence of the lemma: since T 2

λ
is r.e. in Hλ, and Hλ is arith-

metical in T 2
λ

, we have that Hλ is then arithmetical in Hλ, again all uniformly.
Q.E.D. Lemma 2.9

Thus for such λ we have a way not only of defining simply a wellorder of
type λ from Hλ, but we have a single method for recovering the whole prior se-
quence 〈Hγ | γ < λ〉 from knowledge of Hλ. We now marry the above Lemma
with Lemma 2.2.

Proof of Lemma 1.1 (i) for the H sets:
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For β a limit the last lemma shows us how to decode the whole sequence up
to β from Hβ in a way that is uniform for all such limits β < Σ. We have also
seen in Lemma 2.2 that if β= λ+k where λ is the largest limit ordinal less than
β how to recover k, and the sets Hλ+k ′ for k ′ < k. Since from Hλ we may define
〈Hα |α<λ〉, we may recover a code for this sequence in a recursive way from Hβ.
Finally we may glue together this code with those of the finitely many sets Hλ+k ′

for k ′ < k, (taking care to do this in a way that only depends on k) to get a code
for 〈Hα |α<β〉 arithmetically from Hβ. Q.E.D. Lemma 1.1 (i) for the H-sets.

3 The Fieldian Fγ sets and determinateness hierarchies

In this section we consider how the above needs modifying to obtain the same
results for the Fieldian hierarchy. In the second part we see how to define deter-
minateness path hierarchies.

3.1 The F -hierarchy

The point of the definition of our Fβ, is that it encapsulates the semantic values
of the sentences A at stages in Field’s construction prior to β: if β = δ+1 then
Fβ encapsulates the semantic values of all |A|δ,Ω at the end of the δ’th round
through an inspection to see if it contains 〈> −→ Aq,1〉 or 〈pA −→ ⊥q,1〉; or if
Lim(β) then the values of those > −→ A etc. that stabilize. Given then Fβ we
have the complete distribution of semantic values needed to proceed to calu-
lating the β’th round of a fixed point. This fixed point is built up in a stan-
dard fashion for a three valued Strong Kleene logic. Thus, for example, the first
stage builds up semantic values |Tr(pAq)|β,1 equalling 1,0, 1

2 depending on the
set Fβ alone. (Field resets all values |Tr(pAq)|β,0 to 1

2 at the start of each ma-
jor stage.) Thus |Tr(pA −→ Bq)|β,1 equals 1,0, 1

2 depending on whether 〈pA −→
Bq,1〉, 〈pA −→ Bq,0〉 or neither is in Fβ. Consequently any arithmetic statement
Φ0 true in the structure 〈N,Fβ〉 is then, apart from some inessential syntactic
coding, a true arithmetic statement Φ in the basic values |Tr(pA −→ Bq)|β,1; i.e.
|Tr(Φ)|β,2 = 1 and hence |Tr(Φ)|β = 1. (This corresponds, when building up the
first minimal Strong Kleene fixed point over arithmetic, to having the extensions
of Tr initially empty, and then all basic arithmetic truths (in the Tr-free part of
the language are then immediately placed into the extension of Tr at the very
next stage, and so end up in the fixed point.) In short, it suffices to consider the
sequence of sets Fβ when thinking how the ultimate truths in the model are built
up, and we shall not always distinguish Φ0 from the coresponding implicit Φ in
the above.
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We let 〈τι | ι ≤ Σ〉 enumerate in ascending order ADM∗, the closed and un-
bounded sequence of admissible ordinals together with their limit points, below
Σ. We set τ0 = 0, and thus τ1 =ωck

1 . It can be shown that τζ = ζ and τΣ =Σ. Note:
not every limit of admissible ordinals is admissible.

Essentially we want to rerun the argument for the H-sets but for the F -sets:
the difference is that at each stage instead of using definable sets of the previous
level to go one level up in the L hierarchy, from Lα to Lα+1 when going from Hα

to Hα+1, we take a whole admissible jump up: from Lτα to Lτα+1 when going from
Fα to Fα+1.

Just as we did for the H sets we make some simple observations about suc-
cessor steps.

Lemma 3.1 (i) There is an effective procedure for testing Fβ to determine if β is a
multiple of ω.
(ii) For ω> n > 0there is a sentence τn so that

∀β[τn ∈ Fβ↔∃λ(Lim(λ)∧ (β=λ+n))].

Proof: (i) Let K be the Curry sentence equivalent to T (pKq) −→⊥. Then
Lim(β) ↔|K |β = 1

2 ↔〈T (pKq) −→⊥,1〉,〈T (pKq) −→⊥,0〉 ∉ Fβ.
For (ii): |K |λ+n alternates value between 0 and 1 for 0 < n <ω; suppose n > 0.

n = 1 ↔〈(K ∧¬K ) −→⊥,1〉 ∈ Fλ+n . So we may take τ1 to be (K ∧¬K ) −→⊥.
n = 2 ↔〈>−→ τ1,1〉 ∈ Fλ+n .
n = 3 ↔〈>−→ (>−→ τ1),1〉 ∈ Fλ+n and so forth adding “>−→” for each ex-

tra increase in n. Q.E.D.

Above we have indicated how the Fβ sets fit into Field’s description of his
model, and indeed the sets encapsulate everything we get to know about the
model and the set of ultimate truths, which we shall denote Fζ = F∆0 , and we
obtain that ‖A‖ equals 1,0, 1

2 depending on whether 〈> −→ A,1〉, 〈A −→⊥,1〉 or
neither, is in Fζ.

In the context of the F -hierarchy, Fα+1 is a complete Π1,Fα
1 set of integers,

essentially by a result of Kripke (cf. [22] Prop. 2.5) and because of this we can
recursively recover the complete Σ1-Theory of 〈Lτα+1 [Fα],∈,Fα〉 from Fα+1 (cf.
[22] Prop. 2.6). The method of recovering this theory does not depend on α. We
shall use the notation that jK (F ) = G where G is the set of ordered pairs 〈A, i 〉
of sentences that come True (for i = 1) (or False for i = 0) in the minimal Strong
Kleene fixed point over the starting value distribution coded into F . Hence for
each α : jK (Fα) can be read off from Fα+1: 〈A,1〉 ∈ jK (Fα) ↔〈>−→ Aq,1〉 ∈ Fα+1

(and similarly for 〈A,0〉 m.m.). It is this ‘Strong Kleene jump’ that produces for

20



us Field’s hierarchy.2

Of course Fα+1 gives us the complete Σ2 theory of 〈Lτα+1 [Fα],∈,Fα〉 as well: it
is recursive in the Turing jump of Fα+1: F ′

α+1. In our terminology from above, we
thus have that T 2

τα+1
≤1 F ′

α+1 in a uniform fashion. This is stated as (i) of the next
Lemma which is proven as part of Lemma 2.2 from [22]. (Note in [22] Fι here is
called essentially Cι there.)

Lemma 3.2 For ι<Σ (i) T 2
τι+1

≤1 F ′
ι+1 uniformly in ι.

(ii) Lim(ι)∧Lτι |=Σ1-Separation −→ T 2
τι
≤1 Fι, uniformly in ι.

For the limit case, in [22] Lemma 2.2, this stronger reduction in (ii) of T 2
τλ

≤1

Fλ was shown only uniformly for those λ with Lτλ |= Σ1-Separation: this was
sufficient for our arguments at that time. However we had missed the uniformity
over all λ < Σ that can be obtained from the F -Limit Lemma 3.3 below. This
gives us then for any limit λ that we have T 2

τλ
is uniformly r.e. in Fλ, (so a weaker

condition, but a weaker conclusion) and this is just as we had for the H-sets. We
shall need the uniformity to get the ‘uniform recoverability’ property.

The limit level procedures are in the essential mathematical respects the
same: liminf’s are taken, and the Limit Lemmata and Wellordering Lemma have
the following unchanged form (and proofs).

Lemma 3.3 (F -Limit Lemma) For a limit λ ≤ Σ the Σ2 theory of 〈Lτλ ,∈〉, T 2
τλ

, is
r.e. in Fλ. Moreover an index for this r.e. reduction is uniform in λ.

Hence T 2
τλ

is Σ1(〈N,Fλ〉). Just as for the H-hierarchy we shall have (Section
4):

Corollary 3.1 (Wellordering Lemma) (cf. [8]) There is a single recursive function
GF :N×N−→N, so that for any limit ordinal β<λ, if we set

wβ = {≺ u, v Â∈N | ∃i ∈NG(i ,≺ u, v Â) ∈ Fβ}

then wβ codes a well ordering ofN of type β.

Lemma 3.4 (i) There is a (1-1) total recursive function f0F so that for any limit λ
and any n <ω, then Fλ = f −1

0F “Fλ+n+1.
(ii) Moreover the sequence 〈Fλ+k | 0 ≤ k < n〉 is uniformly recursive in Fλ+n for

any such λ and n ∈N.

2The reader may notice that in [22] we used the slightly different sets Cα rather than Fα; there
Cα contained only pairs of the form 〈> −→ Aq,1〉, 〈pA −→ ⊥q,1〉; so an effective subset of what
we are calling Fα here; but clearly this does not alters the results.
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Proof: Similar to Lemma 2.2 and left to the reader. Q.E.D. Lemma 3.4.

Proof of Theorem 1.2(Non-decreasing)

Employ the same argument as for the H sets, using the functions F from
Lemma 3.4 and GF from Lemma 3.1. Q.E.D. Theorem 1.2

Proof of Lemma 1.1

This will follow from the next Lemma.

Lemma 3.5 Letγ<Σ. Then 〈Fα |α< γ〉 is uniformly definable over Lτγ . Moreover
a code for this sequence can be found uniformly arithmetically in Fγ.

Proof: One should first note that ADM∗∩τγ is uniformly ∆
Lτγ
1 and its order

type is of course γ≤ τγ.

By Lemma 4.1, uniformly in γ, there is a Σ
Lτγ
2 definable partial map gτγ of a

subset of ω onto Lτγ . We thus again have a wellorder, <τγ from the relation wτγ ,

of order type γ that is uniformly Σ
Lτγ
2 . That is, there is a Σ2 definition of a binary

relation, that over any γ < Σ, defines wτγ(n,m), a wellordering of that length.
Consequently we may define a code for the iteration of our revision sequence
along this ordering:

(1) Fγ(k,m) ↔∃ f ∃n[n ∈ Field(wτγ)∧Fun( f )∧dom( f ) = {m | wτγ(m,n)}∧
∀u(

(u is <τγ-least −→ f (u) =∅) ∧
(u a <τγ-successor of v −→ f (u) = jK (F f (v))) ∧
(u a w <τγ-limit−→ f (u) = liminfv<τγu f (v)) ∧
∧k ∈ f (m))].

In the above we have used the function “ jK (F ) = G” which proceeds from
a set of semantic values to its “Fieldian jump”. If γ is a limit, this function is

total on such semantic sets and is moreover ∆
Lτγ
1 definable. (To determine G

from F one needs only to go to the least transitive admissible set containing F ,
and the values of G are Σ1-definable over it; any F we have is in some Lτδ and
then jK (F ) is uniformly definable over Lτδ+1 .) However even if γ is, say λ+k +1
with λ the largest limit below γ, one may apply the same function jK to the sets

Fλ,Fλ+1 = jK (Fλ), . . . ,Fλ+k = jK (Fλ+k−1), and again this is ∆
Lτγ
1 definable. The

length of the domain of any such function f as above can thus be any γ′ < γ.
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The relation Fγ(k,m)×wτγ codes 〈Fα | α < γ〉: if α < γ and m is such that
|m|<τγ

= α then Fα = {k | Fγ(k,m)}. Due to the uniformity in the definition of

wτγ , and of jK , the (Σ
Lτγ
4 ) definition of Fγ is independent of γ. Fγ(k,m)×wτγ is

thus, uniformly, arithmetical in T 2
τγ

.

The last sentence of the lemma follows since T 2
τγ

is uniformly r.e. in Fγ if γ
is any limit, and is uniformly recursive in F ′

γ for γ any successor; since we can
effectively tell from Fγ under which case this falls, this completes the lemma.

Q.E.D. Lemma 3.5 and so 1.1 (ii) for the F -sets.

3.2 Determinateness hierarchies

We address the problem of the length of possible determinateness path hierar-
chies as outlined in Field’s book [5], cf. also [6] where this is also discussed.

We use the above analysis to derive the ‘stabilizing’ formulae P≺ and P¹ that
we have discussed in [25] and appear in the lemmata above.
Proof of Lemma 1.2: We have seen there is a single arithmetical formula Φ that
defines over any 〈N,Fβ〉 (β < Σ) a wellorder of type β together with the associ-
ated previous F -sets 〈Fα |α<β〉. In particular it means that many things that we
might express in a first order way about the sequence 〈Fγ | γ < β〉, for example
whether a particular sentence A is stably 0, is then translatable into a standard
two valued arithmetic statement in the language of arithmetic augmented by
a symbol for Fβ, that is, or is not, true in 〈N,Fβ〉. We exploit this to prove the
Lemma.

Let X (x) be: “∀α∃β > α|x|β 6= |x|α” which expresses that x has an unsta-
ble semantic value. Let ÃX (v0) be the arithmetical equivalent of this using this
translation, effected in such a way so that {pBq | 〈N,Fβ〉 |= ÃX (pBq)} is the set of
sentences unstable below β.

Recall that Fβ is the set of ordered pairs 〈pAq, j 〉 with A a conditional, and
j < 2 indicating whether |A|β,0 = j . Hence, still for such A, we have, for an atomic
clause,

“〈pAq,1〉 ∈ Fβ” ↔|pAq|β,0 = 1 ↔|Tr(pAq)|β,1 = 1

and similarly,

“〈pAq,0〉 ∈ Fβ” ↔|pAq|β,0 = 0 ↔|Tr(pAq)|β,1 = 0

with |Tr(pAq)|β,1 = 1
2 otherwise.

Hence our two-valued arithmetic statement Ã X about Fβ becomes in turn
a similar two valued statement, call it AX , in the language L +, about the truth
sets of conditionals Tr(pAq) at stage β,1. And this holds for any arithmetical ÃY

of this form.
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Note that ‖AX (x)‖ = 0 ↔ ρ(x) ↓. Note also that if β = δ+ 1 then trivially
〈N,Fβ〉 |= ¬ÃX (n) for any sentence with code n. However if Lim(β) then
〈N,Fβ〉 |= ÃX (n) is possible if n is unstable below β. In that case |AX (n)|β,Ω =
|T −→ AX (n)|β+1 = 1. We may thus conclude that

‖x‖ = 1\2 ↔ ρ(x) ↑↔‖T −→ AX (x)‖ = 1\2 ↔‖AX (x)‖ = 1\2.

And

ρ(x) ↓↔‖T −→ AX (x)‖ = 0 ↔‖AX (x)‖ = 0.

Now letΨ¹(x, y) be:
X (x)∨ [¬X (x)∧¬X (y)∧ if αx ,αy are least so that

∀β≥αx∀γ≥αy
(|x|β = |x|αx ∧|y |γ = |y |αy

)
then αx ≤αy ].

Let ÃΨ¹(v0, v1) be the translation of Ψ¹(x, y) and let P¹(x, y) ≡ AΨ¹(x, y)
be the corresponding L + formula. We check that P¹ is as demanded by the
Lemma.

Claim:
‖P¹(pAq,pBq)‖ = 1 iff ρ(A) ↓,ρ(B) ↓ ∧ρ(A) ≤ ρ(B)

= 0 iff ρ(A) ↓,ρ(B) ↓ ∧ρ(A) > ρ(B)
= 1

2 otherwise.
Proof of Claim: Note that the first line is straightforward:

‖P¹(x, y)‖ = 1 ↔‖AΨ¹(x, y)‖ = 1 ↔‖AX (x)‖ = ‖AX (y)‖ = 0∧ρ(x) ≤ ρ(y).
Suppose ‖P¹(x, y)‖ = 0. Then x is stable since otherwise ‖x‖ = 1

2 ↔‖AX (x)‖ = 1
2 .

Then for arbitrarily large γ ∈ (ρ(x),ζ) we have that, if Ãα(y) is the translate of “αy

exists” then 〈N,Fγ〉 |= Ãα(y). (Consider for example any successor γ = δ+ 1,
then α(y) is defined below γ and is ≤ δ - it may only be δ itself if y changed
semantic value unboundedly in δwith Lim(δ).) If 〈N,Fγ〉 |= Ãα(y) and alsoαy as
defined over 〈N,Fγ〉 were greater than or equal to ρ(x) we should have 〈N,Fγ〉 |=
ÃΨ¹(x, y). But ‖AΨ¹(x, y)‖ is supposed to be 0, i.e. to have a zero value on a final
segment below ζ. So for such γ we always must have αy < ρ(x). But that implies
ρ(y) ↓ ∧ρ(y) < ρ(x).

The converse is straightforward. And hence ‖P¹(x, y)‖ = 1
2 in the remaining

cases. The definition of P≺(x, y) is done analogously. QED Lemma 1.2.

Proof of Lemma 1.3 It suffices to show that ζ0 =df ot(≺) = ζ. Note first that ζ0 ≤ ζ
since by definition of ∆0 = ζ it is the least acceptable point, i.e. any sentence
that is going to stabilize will do so by stage ζ. We show that ζ0 ≥ ζ.

For β ∈ On let S1
β
=df {α | Lα ≺Σ1 Lβ}. It is a standard fact, and easily seen, that

if α≤β is a limit point of S1
β

then Lα |=Σ1-Separation.
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By the reflection property that defines ζ as the least such that there is Σ > ζ

with Lζ ≺Σ2 LΣ, one may show that S =df S1
ζ

is unbounded in ζ and has order type
ζ. (This is essentially because Lζ |= Σ2-Replacement.) Hence, letting S∗ be the
set of limit points of S, S∗ also has order type ζ+1 (as ζ ∈ S∗). And so for ξ ∈ S∗,
Lξ |=Σ1-Separation.

Since we have a canonical Σ
Lζ
2 definable partial function gζ;ω−→ ζ which is

onto, for anyα< ζ if nα is such that gζ(nα) =α, the statementΦα: “nα ∈ dom(g )”
is part of the Σ2-theory of Lζ, which itself is true in some Lρ(α) onwards. By
Lemma 3.2(ii), for ξ ∈ S∗ the Σ2-theory of Lξ is uniformly recursive in Fξ, (Lξ
being a model of Σ1-Separation). So let G be (1-1) and recursive witnessing that
T 2
ξ
≤1 Fξ for any such ξ.
We thus have that:

Claim T 2
ζ
=⋃

ξ∈S∗∩ζT 2
ξ
=⋃

ξ∈S∗∩ζG−1“Fξ.

Proof: The second equality expresses simply the remarks above about G re-
lating the relevant theories. The first equality is valid since Σ2 sentences are ab-
solute upwards from Lξto Lζ for any ξ ∈ S: suppose ϕ ≡ ∃u∀vψ(u, v) a Σ2 sen-
tence, and that Lξ |= ∃u∀vψ(u, v). Then let u0 ∈ Lξ be such that Lξ |= ∀vψ(u0, v).
Now we have a Π1 formula about u0 and such is upwards absolute as Lξ ≺Σ1

Lζ, and so is true in Lζ. This ensures that T 2
ζ
⊇ ⋃

ξ∈S∗∩ζT 2
ξ

. Conversely if for
some Σ2ϕ ≡ ∃u∀vψ(u, v), Lζ |= ϕ then again there will be some ξ ∈ S∗∩ ζ with
Lξ |= ϕ: one simply has to find a sufficiently large ξ ∈ S∗ with u0 ∈ Lξ where
Lζ |= ∀vψ(u0, v). Q.E.D. Claim

With this, given the definition of Φα above, we see that it is true in Lξ(α) up-
wards where ξ(α) is the least element of S∗ greater thanα. Let then Bα be G(Φα).
Then any sentence Bα has stabilized by stage ξ(α) at the latest (and ‖Bα‖ = 1)).
Hence the order type of ≺ is no less than that of {α|α ∈ S∗}. But the latter we have
remarked has order type ζ. This concludes the Lemma. Q.E.D. Lemma 1.3

The argument of the above proof shows that, in contrast to Theorem 1.2, we
can regard Fζ as a simple union, but only along a select subset of ζ:

Corollary 3.2 Fζ =⋃
ξ∈S∗∩ζFξ.

Proof: We may imagine running the Fieldian construction inside LΣ. Since
the operations involved are highly absolute, we shall have k ∈ Fα⇔ Lζ |=“k ∈ Fα”.
As these are Σ2 sentences, the Claim of the last proof yields this result. Q.E.D.

Proof of Lemma 1.4
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Let Q(v0, v1) be a formula of L +. Define n ≺Q m if ‖Q(n,m)‖ = 1. Suppose
≺Q is a prewellorder and for a contradiction that ot(≺Q ) > ∆0. Let m0 ∈N have
rank ∆0 = ζ in ≺Q . Define ≺β to be the relation: n ≺β m if |Q(n,m)|β = 1. It is
by assumption bivalent whether for any other n ∈N, that Q(n,m0) holds. Hence
we have that for ζ < β, for any n ∈N, n ≺β m0 ↔ n ≺Q m0. Then for β ∈ (ζ,Σ)
“ζ = rk≺β

(m0)” holds (where rk≺β
is the ranking function on (the wellfounded

part of) ≺β). Hence ζ isΠ1-definable in LΣ from Q,m0:
z = ζ↔∀τ > z(“if τ= τι and ≺ι,rk≺ι

are defined over Lτι then z = rk≺ι
(m0)”).

But Lζ ≺Σ2 LΣ so ζ is not Σ2-definable from integers in LΣ. This is a contradic-
tion.

QED Lemma 1.4.

Lemma 3.6 If C0 ∈ Field(¹) then it is a bivalent matter for any sentence B ,whether
B ¹C0.

Proof:
B ¹C0 implies ‖“¬∃σB∃ρ[σB > ρ = ρ(C0)∧|P¹(B ,C0)|σB 6= 1]”‖ = 1 whilst
B 6 ¹C0 implies ‖“¬∃σB∃ρ[σB > ρ = ρ(C0) ∧|P¹(B ,C0)|σB 6= 1]”‖ = 0.
Using our translations outlined above, the statement within quotes in the

last two lines, has an arithmetical translate about the 〈N,Fβ〉. For example, “ρ =
ρ(C0)” can be written out using the ‘stability’ formula X (v0) and corresponding
ÃX (v0); this can be used again in conjunction with “|P¹(B ,C0)|ξ 6= 1” which itself
can also be written out as a fact about the Gödel numbers of P¹, B , and C0, coded
into Fβ, for any β≥ ξ. Q.E.D.

3.3 Ineffable Liars

Corresponding to his determinateness predicates Field defines generalised liar
sentences Qξ as ¬Dξ(Tr(Qξ)) by the usual diagonalising processes. As he shows
on the initial segment of this hierarchy that he defines in [5], this satisfies the
following:

‖Dσ(Qξ)‖ = 0 for σ> ξ, and
‖Dσ(Qξ)‖ = 1

2 for σ≤ ξ.

We shall generalise this here as follows. Define as above for any sentence C :

DC (A) ≡∀B [P≺(B ,C ) → (∀y(y = pDB (A)q→ Tr(y)))].
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To summarise, the order type of ¹ is precisely ζ, so that we have notations for
ordinals ξ < ζ using sentences C which stabilize in semantic value at the point
ρ(C ) = ξ. We then iterate D ‘along’ the prewellordering ¹ to reach DC . We may
then define liar sentences QC as ¬DC (Tr(QC )). Again these are still sentences of
the language L + and they obey the above equations:

‖DC (QB )‖ = 0 if ‖P≺(B ,C )‖ = 1 and
‖DC (QB )‖ = 1

2 if ‖P¹(C ,B)‖ = 1.

as the formulae on the right reflect precisely the facts thatρ(B) < ρ(C ) andρ(C ) ≤
ρ(B). Just as the L + sentence DC (A) makes sense so again does the generalised
liar diagonal sentence QC whether or not C ∈ Field(¹). These QC for C ∉ Field(¹)
as promised in the introduction we shall furnish examples of diagonalised sen-
tences, the ineffable liars, whose defectiveness is not encompassed by any DB

for B genuinely in Field(¹).

Proposition 3.1 There are sentences C ∈L + so that for any determinateness pred-
icate DB with B ∈ Field(¹) ‖DB (QC )‖ = 1

2 . Thus the defectiveness of QC is not
measured by any such determinateness predicate definable within the L + lan-
guage.

Proof: We recall the fact that for the first two acceptable points in the models’
construction ζ,Σ (in Field’s notation more sensibly ∆0,∆1) we have that Lζ ≺Σ2

LΣ (“ Lζ is a Σ2-elementary substructure of LΣ” where Lα is the α’th level of the
Gödel constructible hierarchy.) Further, asN ∈ Lω+1 and the successive levels of
Field’s construction are performed using very absolute processes, we may con-
sider running the construction ‘inside of’ the L-hierarchy. The ordinals ζ,Σ are
highly closed, and in fact ζ is highly admissible. We set ADM+ = ADM∩ADM∗

to be the class of admissible limits of admissible ordinals, We may define pred-
icates in the language of set theory that give us the range of semantic values
of sentences along Field’s iteration. So that, if τ ∈ ADM+ then (|A|γ = i )Lτ ↔
|A|γ = i , that is the construction is absolute to Lτ. The discussion of evalua-
tions on p. 254 of [5] indicates what happens for small ordinal iterations of D : if
α<σ then Dα(Qσ) cycles through the values 1

2 followed by anα-sequence of 0’s,
and then a tail of 1’s making a σ-sequence altogether, before looping around
again. Dσ(Qσ) will cycle through 1

2 , and then a σ-sequence of 0’s before re-
peating; finally Dσ+1(Qσ) will be an initial 1

2 at stage 0, but thereafter always
0. Hence ‖Dσ+1(Qσ)‖ = 0, and thus the ‘defectiveness’ of Qσ is affirmed by this
sentence. Essentially the same picture is intended for these extended operators,
where now α,σ etc. are replaced by sentences B ,C , · · · as notations.
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(1) There are ordinals Σ> γ> ξ> ζ and a sentence C with γ ∈ ADM+ and
Lγ |=“ρ(C ) = ξ.”

Proof: If not, then the following is true in LΣ:

y = ζ↔ y ∈ ADM+∧Ly |=“∀ξ∃C (ρ(C ) = ξ)”∧
∧∀y ′ ∈ ADM+(y ′ > y −→ Ly ′ |=“∀C (ρ(C ) ↓−→ ρ(C ) ≤ y)).”

Being in ADM+ is a ∆1 notion, as are the satisfaction relations involving
Ly ,Ly ′ . We note that ζ ∈ ADM+, The second conjunct holds since rk(¹) = ζ,
and all B ∈ Field(¹) have stabilized by stage ζ. The last conjunct is our hypoth-
esis. However this would imply that ζ is Π1 definable (by the above definition)
without using any other parameters in LΣ). But it is not: only sets in Lζ can be
Σ2 definable without parameters in LΣ (since Lζ ≺Σ2 LΣ). It particular ζ itself is
not so definable. Q.E.D.(1)

Let C be as guaranteed in (1). Let ζ̄ < ζ be arbitrary. Then we have (as a re-
statement, and weakening, of the above):

(2) LΣ |=“∃γ ∈ ADM+(Lγ |= ρ(C ) > ζ̄) .”

By Σ1-elementarity then:

(3) Lζ |=“∃γ ∈ ADM+(Lγ |= ρ(C ) > ζ̄) ”.

But ζ̄ was arbitrarily large below ζ, thus, in fact:

(4) Lζ |=“∀ζ̄∃γ> ζ̄(γ ∈ ADM+∧Lγ |= ρ(C ) > ζ̄) ”.

The claim is that, staying with this C , that it satisfies the proposition. Pick
any B ∈ Field(¹). It suffices to show that

(5) ∀τ̄< ζ∃τ> τ̄(τ< ζ∧|DB (QC )|τ 6= 0).

Proof (5): Taking τ̄ any ordinal greater than ρ(B), then by (3) (with τ̄ as ζ̄
there) there is γ ∈ ADM+ with Lγ |= ρ(C ) > ρ(B). By choice, γ is an admissible
limit of admissibles, so γ iterations of the Fieldian construction can be effected
inside Lγ. But then inside Lγ we see the usual picture of the cycling semantic val-
ues of 1

2 , 0,0, , . . . (for ρ(B) steps) and 1’s for ρ(C )−ρ(B) steps, then repeating this
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pattern. Consequently, with τ= γwe see |DB (QC )|τ 6= 0. Q.E.D.(5) & Proposition.

In fact we can say a little more about such a C : (4) is a Π2 sentence about
C , true in Lζ and so goes up to be true in LΣ. So for such a C , it attains arbi-
trarily large ¹-ranks, but locally in varying Lγ, and then only intermittently, as
the construction proceeds. One may call such a C sporadic. The non-stabilizing
sentences in Field’s model are of two kinds: those that exhibit a periodic be-
haviour with some fixed period ξ< ζ, (and for every ξ< ζ there will be such) and
the sporadics like C , which have no periodic behaviour at all below Σ: if we want
to assign a ‘period’ to C it has to be Σ itself (for which note that ot (Σ\ζ) =Σ).

There is an entirely analogous result for the Herzberger sequence: in essence
this is only a notational variant of the above. This is done in detail in [13]. Thus
the defectiveness and determinateness hierarchy phenomena can be replicated
in a Herzberger sequence. (This shows that they may be effectively decoupled
from any notion of conditional operator such as Field’s −→.)

4 Proof of the Limit Lemmata

In this section we prove the H- and F -Limit Lemmata. We have alluded to var-
ious set-theoretical facts about the L-hierarchy that are needed to prove these.
We have to establish these here. For those familiar with the Gödel L-hierarchy,
at least the statements of these facts should be understandable and indeed the
proofs use only somewhat elementary concepts.

For those familiar with the Jensen J-hierarchy we make some comments
now: Because the H-hierarchy is about iterated definability it is convenient to
eschew the J-hierarchy and use the Lα since these are also created by iterated
definability, and their ordinal height grows in step with the Hα (the ordinals
heights of the Jα grow in multiples ofω: On∩Jα =ω.α). However the well known
lack of closure of the Lα under even the most basic set theoretical constructs
such as ordered pair, makes for difficulties. In particular we essentially justify in
these lemmata the existence of uniform Σ2-skolem functions for limit levels Lλ.
Such skolem functions do not exist in general even for the Jα-hierarchy, and for
the Lα hierarchy are usually not defined. One has to justify the existence of such
functions even using the Jα’s. The arguments here are in essence, modifications
of those for the Jα’s run in [8].

Usually the existence of such functions is problematic for even moderate
sized λ, and in general uniform versions do not exist. However, as mentioned in
the first section, since we work below the ordinalβ0, it turns out that we are suffi-
ciently low down in the L-hierarchy, so that all is well. This will cause some diffi-
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culties for us, but one thing works in our favour which is that we need only prove
the existence of skolem functions, and our results, for limit λ and the structures
〈Lλ,∈〉.

4.1 Proof of the H-Limit Lemma 2.4

Throughout this proof λ will denote a limit ordinal less than Σ. For such λ we
have a function hλ which is Σ1-skolem function for Lλ. These are defined as
follows.

Let 〈ϕn | n <ω〉 be a recursive enumeration of all Σ1 formulae in L∈̇ with say
ϕn =ϕn(v0, v1, . . . , vmn ) with free variables amongst those displayed. Let α ∈ On.

hα(n,〈x1, . . . , xmn 〉) = y ⇐⇒ Lα |=ϕn[y , x1, . . . , xmn ]∧∀z <Lα y¬ϕn[z, x1, . . . , xmn ]

= ↑ (meaning undefined) otherwise.

We treat the right hand side as a definition of the left.
Moreover for any limit λ, the definition of hλ, it turns out, is itself Σ1 and

one can establish that it has the same definition over any Lλ′ for any limit λ′.
The existence of such uniform Σ1-skolem functions for Lλ, λ a limit, is justified
in the same way as over every level of the J-hierarchy (as introduced in [14], and
exposited in [3]; the arguments for the Jα-hierarchy work here too). By con-
sidering only limit levels each Lλ is closed under finite iterations of the pairing
function as we have mentioned. Hence if x1, . . . , xmn ∈ Lλ so is 〈x1, . . . , xmn 〉 and
the above then makes sense. The right hand side is defined using <α, a wellorder
of Lα defined in a canonical fashion, but again for successor α this may only be
defined over some later level, such as Lα+5. For limit λ however, all is well, and
the wellorder <λ is then ∆1 over Lλ. We thus shall have:

∀~x = x1, . . . , xmn :
∃x0Lλ |=ϕn[x0, x1, . . . , xmn ] −→ Lλ |=ϕn[hλ(n,〈x1, . . . , xmn 〉), x1, . . . , xmn ].

Moreover the definition of Σ1-satisfaction again can be shown to be a uni-
formly Σ1-definable relation of m-tuples and (codes of) Σ1-formulae over any
limit Lλ. Thus for any X ⊆ Lλ the range of hλ on ω× [X ]<ω is a Σ1-elementary
substructure of 〈Lλ,∈〉, and in fact is the least Σ1-skolem hull of X in 〈Lλ,∈〉.

For any ordinal α we may further define the set of ordinals β with 〈Lβ,∈
〉 ≺Σ1 〈Lα,∈〉; this is the set of ordinals Σ1-stable in α, which we shall write as S1

α.
This notation means that any formulaϕn and any x0,x1, . . . , xmn ∈ Lβ if 〈Lα,∈〉 |=
ϕn[x0,x1, . . . , xmn ] then 〈Lβ,∈〉 |= ϕn[x0,x1, . . . , xmn ]. Notice that β Σ1-stable in α
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implies that β = 0 or is a limit ordinal (consider the Σ1 formula “∃y(∀z ∈ y(z =
γ∨ z ∈ γ))” which shows that β cannot be γ+1).

“α ∈ S1
λ

” is a Π1-predicate when defined over Lλ; again uniformly for any λ
(the uniformity uses the underlying uniformity of the Σ1-skolem function). One
should note that α ∈ S1

λ
−→ α ∈ S1

γ for any γ ∈ (α,λ] by the upwards persistence
of Σ1 properties from 〈Lα,∈〉 to 〈Lλ,∈〉.

We now re-run the argument from Lemma 1 [8], but now for the L-hierarchy.
Let ϕ≡∃xψ(x) be Σ2 and where ψ is taken asΠ1.

Claim 〈Lλ,∈〉 |=ϕ⇐⇒∃i [for all sufficiently large α<λ:

〈Lα,∈〉 |= “∃β ∈ S1
α((β 6= 0∧Lβ |=ϕ)∨ (hα(i ,〈β〉) ↓ ∧ψ(hα(i ,〈β〉))” ].

Note that the right hand side here is of the form that for some i theΣ2-theory
of Lα eventually from some point on contains the sentence within quotation
marks; this latter sentence we shall call σϕ(i ). As ϕ is an arbitrary Σ2 sentence,
this yields the Lemma, since we may express this as ϕ ∈ T 2

λ
↔∃ipσϕ(i )q ∈ T̂ 2

λ
.

Proof of Claim: (=⇒) Suppose the left hand side holds. Suppose S1
λ

were
unbounded in λ; then for some β ∈ S1

λ
we should have 〈Lβ,∈〉 |=ϕ and thus ∀α ∈

[β,λ] we should have 〈Lα,∈〉 |= ϕ by the above mentioned upwards persistence
property. Hence the right hand side holds. Otherwise let β= maxS1

λ
(which may

be 0). We may consider, H , the Σ1-skolem hull of {β} in 〈Lλ,∈〉. In this region of
the L hierarchy, for every level: Lγ |=“every set is countable”, and consequently
there is in Lβ+1 a function f :ω−→β which is onto. Moreover the <L-least such
f is ∆1-definable from β. Consequently β+1 ⊆ H (and so Lβ+1 ⊆ H). The same
argument shows that γ ∈ H −→ γ ⊆ H (−→ Lγ ⊆ H). Thus H is transitive, and
hence is Lγ for some γ≤ λ. But notice that were γ< λ then γ ∈ S1

λ
. But γ> β so

this is a contradiction. Thus H = Lλ. Hence every x ∈ Lλ is of the form h(n,β).
But the equation x = h(n,β) being Σ1 will hold for all sufficiently large α< λ. If
n has been chosen so that the Π1 ψ(hα(i ,〈β〉)) holds in λ it will also again hold
for all sufficiently large α < λ, as the Π1 statement persists downwards. We are
thus done.

(⇐=) Suppose the left hand side fails. Then note that S1
λ

is bounded in λ: for
otherwise we could apply the right hand side to an α in S1

λ
. However then if the

first disjunct held for some β ∈ S1
α ⊆ S1

λ
we should have Lλ |= ϕ, contradicting

our assumption. If the second disjunct held then we have the same conclusion
since α was chosen in S1

λ
. Hence we may set β = maxS1

λ
. This definition of β

ensures that there are arbitrarily large α < λ with S1
α ⊆ β+ 1∩ S1

λ
. But this lat-

ter inclusion shows that again the first disjunct cannot be true for all sufficiently
large α, else 〈Lλ,∈〉 |= ϕ. So the second disjunct must hold instead. Choose i ,
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and then for any α large enough take βα so that hα(i ,〈βα〉) ↓ ∧ψ(hα(i ,〈βα〉) for
some βα ∈ S1

α. If βα were less than β for such an α we’d have hα(i ,〈βα〉) ↓−→
hβ(i ,〈βα〉) = hα(i ,〈βα〉)∧Lβ |=“hβ(i ,〈βα〉) ↓”, and moreover ψ(hβ(i ,〈βα〉) would
be downwards absolute from Lα to Lβ also. Hence 〈Lβ,∈〉 |=ϕ and asβ ∈ S1

λ
, we’d

have 〈Lλ,∈〉 |= ϕ - a contradiction. Hence βα is always equal to β: but as this is
the case for unboundedly many α< λ we should also have Lα |=“ψ(x)” for such
αwhere x = hα(i ,〈β〉). But this again means 〈Lλ,∈〉 |=ϕ - our final contradiction.

Q.E.D. Claim and Lemma 2.4.

4.2 Proof of the existence of uniformly definable wellorderings

Lemma 4.1 For any limit λ<Σ there is a partial function g :ω� Lλ that is onto
which is itself Σ2 definable over Lλ (without parameters), and in a way that is
independent λ.

Proof: We assume a recursive enumeration 〈ψn(v0) | n <ω〉 of allΠ1 formulae of
the one free variable v0. Define

f ′(n) = 〈m,β〉⇐⇒ the following hold in Lλ :
(i) β ∈ S1

λ
;

(ii) ∃x(x = hλ(m,β)) (thus hλ(m,β) is defined);
(iii) ψn[x];
(iv) ∀β′ <β∀m′ <ω∀x ′(x ′ = hλ(m′,β′) −→¬ψn[x ′]);
(v) ∀m′ < m∀x ′(x ′ 6= hλ(m′,β))∨∃x(x = hλ(m′,β)∧¬ψn[x ′]).
All of the above statements are Boolean combinations of Σ1 and Π1 state-

ments about their various parameters: (i) and (iii) are Π1 about β and x respec-
tively; (ii) is Σ1. (iv) is vacuous if β = 0 but otherwise it holds in Lλ if and only
if “∀m′ < ω∀x ′(x ′ = hβ(m′,β′) −→ ¬ψn[x ′])” holds in Lβ. Hence over Lλ, it is
a Σ1 statement about β. (v) Is a finite quantifier in front of a statement saying
that either hλ(m′,β) is undefined, or else it is defined but ψ is false of it. It is
thus equivalent to a finite conjunction of disjunctions of Π1 and Σ1 statements.
f ′ :ω−→ Lλ and is Σ2 definable over Lλ without reference to any parameters.

Now set f (n) = hλ(m,β) where f ′(n) = 〈m,β〉. Let H be theΣ1-skolem hull of
ran( f ). Then H can be realised as the set of all objects of the form
hλ(i ,〈 f (n1), . . . , f (nk )〉. Using a recursive coding of tuples from N with N, if n
codes 〈i ,n1, . . . ,nk〉, we may set g (n) = hλ(i ,〈 f (n1), . . . , f (nk )〉); g is thus a par-
tial map from ω onto H . Again g is Σ2 definable over Lλ without parameters
(from the underlying f ′). Being a Σ1 skolem hull, H is in fact a Σ1-elementary
substructure of Lλ. We claim it is more:

Claim H is a Σ2-elementary substructure of Lλ.
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Proof of Claim: Let g from above have the Σ2 defining formula
g (n) = x ↔〈Lλ,∈〉 |= ∃uΦ(u,n, x) whereΦ isΠ1.

Let, for simplicity, 〈Lλ,∈〉 |= ∃vψ(v , g (n))) be a Σ2 statement about the sin-
gle parameter g (n) from H (the argument with further parameters in ψ is only
notationally longer). We need to show that 〈H ,∈〉 |= ∃vψ(v , g (n)). Pick z so that
〈Lλ,∈〉 |=ψ(z, g (n))) and u so that 〈Lλ,∈〉 |=Φ(u,n, x).

Thus 〈Lλ,∈〉 |=Φ(u,n, x)∧ψ(z, x).
The latter can be rewritten as a Π1 formula about 〈u, z, x〉; it is thus of the

form ψk (v0/〈u, z, x〉) where ψk is from our original list. As Lλ = hλ“ω× S1
λ

, so
there is f ′(k) = (m,β) satisfying (i)-(v) above, with hλ(m,β) = 〈u′, z ′, x ′〉 so that
ψk (v0/〈u′, z ′, x ′〉), but now with 〈u′, z ′, x ′〉 ∈ ran( f ) ⊆ H . But this means

〈Hλ,∈〉 |=Φ(u′,n, x ′)∧ψ(z ′, x ′)
and thus, as g (n) = x = x ′

〈Hλ,∈〉 |= ∃vψ(v , g (n))),
and so we are done. Q.E.D. Claim

However by our definition of Σ the only Σ2-elementary substructure of Lλ is Lλ
itself. In other words H = Lλ and g is our required partial onto map needed to
fulfill the Lemma. Q.E.D. Lemma

Proof of Corollary 2.1. This is the main part of the proof of the last lemma: g is
a partial map from ω onto λ which has a ΣLλ

2 definition. In that definition, no
individual property of λ was used; hence it is independent of λ. Thus such a
wellorder wλ for the Corollary is recursive in T 2

λ
which is in turn r.e. in T̂ 2

λ
, by

Lemma 2.4. Finally the latter is r.e. in Hλ and hence is ΣHλ

1 . From this a G as in
the Corollary is easily defined. Q.E.D.

This process holds together for as long as new Σ2-theories of Lα’s are pro-
duced. However when we reach Σ, then Σ2-Th(〈LΣ,∈〉 equals Σ2-Th(〈Lζ,∈〉 (be-
cause Lζ ≺Σ2 LΣ) and it cannot construct a code rΣ for LΣ from it, and the process
breaks down. But that of course is the underlying reason that the Herzberger re-
vision process cycles back at HΣ to Hζ.

Proof of Lemma 3.3 (F -Limit Lemma I) For a limit λ the Σ2 theory of 〈Lτλ ,∈〉, T 2
τλ

,
is r.e. in Fλ. Moreover an index for this r.e. reduction is uniform in λ.

This follows from the fact that Fλ is the liminfα−→λFα. Consequently just as
T 2
λ

could be found by the argument of the proof of Lemma 2.4’s Claim from Hλ,
in an r.e. fashion, T 2

τλ
can be similarly obtained from Fλ. Again no particular

properties of λ are used. Q.E.D. Lemma 3.3

33



Hence T 2
τλ

is Σ1(〈N,Fλ〉).

Proof of Corollary 3.1 (F -Wellordering Lemma) (cf. [8])
Again this corollary follows just as from existence of the function G in Corol-

lary 2.1. Q.E.D.

Proof of Lemma 2.6

Lemma 2.6 There is a recursive (1-1) function G2 so that for Succ(α), Tα is (1-1)
in (Tα−1)(ω) with: Tα =G−1

2 “(Tα−1)(ω).
Proof:
(1) A code rα−1 for 〈Lα−1,∈〉 is uniformly definable from Tα−1. In fact for some
fixed N <ω, it is uniformly recursive in T N+1

α−1 .
Proof (1)

Proof: For Lim(β) we saw that by Lemma 4.1 there is a uniform Σ
Lβ
2 defin-

able map fβ : ω� Lβ for β < Σ which is essentially, modulo some pairing, the

uniform Σ
Lβ
2 -skolem fumction which we have at these levels. We then set:

〈n0,n1〉 ∈ rβ↔
↔ 〈Lβ,∈〉 |= f (n0) ∈ f (n1)∧∀n < n0∀m < n1[n ∈ dom( f ) −→ f (n) 6= f (n0)∧

m ∈ dom( f ) −→ f (m) 6= f (n1)].
We thus are singling out a least element to name f (n0) etc. This is Σ2 ∧Π2

definable over Lβ and so recursive in T 3
β

(uniformly in such limit β) we have
an arithmetic copy or code of Lβ. We can run the above argument if we have a
function fβ+k uniformly definable in (β and k) over Lβ+k such that fβ+k : ω�
Lβ+k .

As is well known, for successor ordinals of the form β+k for 0 < k <ω, Lβ+k

is not a terribly suitable model for many of these arguments. For example, it
is not closed under Kuratowski pairs. In Devlin [3] often the assumption of β
being a limit is made, in order to simply define many of the known concepts of
L, such as the existence of a definable wellorder <β, definable over Lβ, and the
existence of Σ1-definable Σ1-skolem functions. However Boolos in [1] addresses
the problems of defining the necessary concepts uniformly for all β. He firstly
uses Quinean pairing rather that Kuratowski pairs, to define a notion of finite se-
quence that does not raise constructibility rank, so that for any x1, . . . , xn ∈ Lβ+k ,
〈〈x1, . . . , xn〉〉 ∈ Lβ+k . This pairing 〈〈· · · 〉〉 is moreover absolute when defined over
any Lα. He establishes:

(Ia) The notion of b being first order definable over c can be formalised as
“b fodoc”, and is absolute when defined over any Lα.
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(Ib) There is a sentence Close which is true in any transitive set, and implies
when true in a set t that it is sufficiently closed, so that if c ∈ t and b fodoc, then
b ∈ t .

(II) There is a sentence σ so that for any wellfounded model 〈R,E〉, it is a
model of σ iff ∃α≥ω(〈R,E〉 ∼= 〈Lα,∈〉).

(III) There is a binary predicate C (v0, v1) that defines over any Lα a wellorder-
ing <α of Lα with the usual property that α<β−→<α is end-extended by <β.

Let all the above definitions be uniformly ΣLα
N−1 for some sufficiently large

N . We may thus for any Lβ+k define a ΣN -skolem function h′
β+k with the prop-

erty that h′
β+k “ω×L<ω

β+k = Lβ+k . (Here L<ω
β+k denotes the finite sequences formed

using 〈〈· · · 〉〉.)
We do this in the most straightforward manner: define h′(i ,~q) '<β+k - least x

so thatϕi (x,~q), whereϕi enumerates the ΣN formulae. By doing this we ensure
that the skolem hull X = h′“ω×ω<ω is a model of Close and σ. The transitive
collapse of X is then by (II), some Lγ for a γ ≤ β+k. We claim that X = Lβ+k .

Note that β ∈ X as the largest limit ordinal is Π
Lβ+k

1 definable. As β is definably
collapsed toω over Lβ+1 by a Σ2-definable function, g say, we have that g is in X
and hence β+k ⊆ X . This suffices then.

By composing g and h′ with some (ordinary number) pairing we see then
that there is a function f : ω� Lβ+k . However f and h′

β+k need not be Σ2-
definable over Lβ+k , but they will be ΣN+1 over Lβ+k uniformly in β < Σ and
k <ω. Q.E.D. (1)

(2) Uniformly in α, we may find a code r for 〈Lα,∈〉 with r ≤1 (rα−1 ⊕Tα−1)(N+2).
Proof (2): This mimics the usual construction of Lα as Lα−1 together with the sets
first order definable over 〈Lα−1,∈〉. Note that since everything in Lα−1 is of the
form f (n) for some n, every element of Lα is definable by a parameter-free for-
mula of a single variable. We assume therefore a recursive assignment of gödel
numbers with pϕ(v0)q coding ϕ(v0) any formula of LST with just the single free
variable v0. We set T = Tα−1, s = rα−1. Define:

〈n0,0〉E〈n1, i 〉 =df (i = 0∧〈n0,n1〉 ∈ s)∨ (i = 1∧n1 = pϕ(v0)q∧pϕ(n0/v0)q ∈ T .
〈n0, i 〉 ≈ 〈n1, j 〉 =df (i = j = 0∧n0 = n1 ∈ Field(s))∨

∨[n0 ∈ Field(s)∧ j = 1∧n1 = pϕ(v0)q
∧∀m ∈Field(s)(〈m,n0〉 ∈ s ↔ pϕ(m/v0))q ∈ T )]∨

∨[i = j = 1∧n0 = pϕ0(v0)q∧n1 = pϕ1(v0)q∧
∧∀m ∈Field(s)(pϕ0(m/v0) ↔ϕ1(m/v0)q ∈ T )].

Then E and ≈ are (1-1) in (s ⊕T ). Let U = {[ω× 2]≈}, the set of ≈ equivalence
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classes, then
A= 〈U ,E〉 ∼= 〈Lα,∈〉.

In particular if Φ f defines the uniform Σ
Lα
N map f of a subset of ω onto the

whole structure Lα, we can replace E by a code r :

〈n0,n1〉 ∈ r ↔
〈ω×2,E ,≈〉 |=“〈n0,0〉,〈n1,0〉 are finite integers ∧ f (〈n0,0〉) ∈ f (〈n1,0〉)∧
∧∀〈n ,0〉 < 〈n0,0〉∀〈m ,0〉 < 〈n1,0〉 [〈n ,0〉 ∈ dom( f )∧〈m ,0〉 ∈ dom( f ) −→ −→

f (〈n ,0〉) f (〈n0,0〉)∧ f (〈m,0〉) f (〈n1,0〉))].”

Again we are using the same trick of taking ‘least representatives’. This is
ΣN+1 ∧ΠN+1 in E and ≈ and so the graph of r is (1-1) reducible to (s ⊕T )(N+2).

Q.E.D.(2)

Hence

(3) T k
α ≤1 (rα−1 ⊕Tα−1)(N+2+k).

By 1) we may absorb the rα−1 here. Then we have Tα ≤1 (Tα−1)(ω). Q.E.D.

5 Conclusions

Is there a simpler way of proving the non-decreasing nature of the H-sets?
(Probably if there was, this would work for the F -sets too.) In one sense the above
argument is indirect: it does not principally use the definition of the H-sets di-
rectly; but rather uses the Lγ-hierarchy of iterated definability. Possibly there is
a direct argument. It might at first sight seem odd that it is difficult to show that
the H-sets are non-decreasing with index, but that most simple ways of ensur-
ing this conclusion - by arguing that the stock of Σ1-sentences in the Hδ must
increase with index as new Σ1 facts become true - cannot be deployed. This
is because there are large stretches of ordinals [β,γ] ⊂ ζ where no new Σ1 sen-
tences become true in the Lδ for δ in the interval [β,γ]; this must happen by the
nature of the ordinals (ζ,Σ). Since we may run a mirror of the revision process
inside the L-hierarchy, and the membership in such internal H-sets and those
constructed externally, is absolute, there will a fortiori, during those stretches
[β,γ], be no new persisting Σ1 truths entering the H-sets. So, that relatively sim-
ple argument is ruled out: we must step up to Σ2 ‘facts’, and using the definable
Σ2 wellorderings seems then as good a way as any.
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In the above we have concentrated on the ground model for L as M =N,
the standard model of arithmetic. This is only for perspicuousness: almost any
other model would be substitutable here: if the model contains a copy of the
natural numbers, this is particularly easy. For models M = Vκ say, the set of
all sets of rank less than a fixed α (α not necessarily an cardinal) one may ef-
fect the above in at least two ways: either by assuming that the ground language
LM contains a constant cx for every x ∈ Vα, and then constructing an H- or
F -sequence over M . This would have length the corresponding ordinal ζ(M )
and would be least such that there is Σ(M ) with Lζ(M )(M ) ≺Σ2 LΣ(M )(M ). An-
other approach is to add to the Tr predicate a satisfaction predicate (as for ex-
ample Field indicates in his book for the F -model he builds, using “True-of”).
This would again have the same ordinals. For M = Vα then these approaches
yield uncountable ordinals ζ(M ) > α. However for M not of this form, as long
as we require that objects in M have names in the language LM and we may
form diagonalising functions etc. then the above is all possible. The ideas above
will suffice in these other contexts, by building the appropriate constructible hi-
erarchies over the chosen M . The notions of “recursive” and “r.e.” have to be
abandoned for other forms of uniform definability.
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