
THE JOURNAL OF SYMBOLIC LOGIC

Volume 00, Number 0, XXX 0000

HYPERMACHINES

SY-DAVID FRIEDMAN,
P. D. WELCH

Abstract. The Infinite Time Turing Machine model [8] of Hamkins and Kidder is, in an essential sense,
a “Σ2-machine” in that it uses a Σ2 Liminf Rule to determine cell values at limit stages of time. We give a
generalisation of these machines with an appropriate Σn rule. Such machines either halt or enter an infinite
loop by stage ζ(n) =df µζ(n)[∃Σ(n) > ζ(n) Lζ(n) ≺Σn LΣ(n)], again generalising precisely the
ITTM case.

The collection of such machines taken together, computes precisely those reals of the least model of analysis.

§1. Introduction. The Infinite Time Turing Machine (ITTM) model described in [8]
is an attractive model of transfinite time computation based on the standard Turing ma-
chine with an infinite one way tape, and a finite transition table or instruction set. The
latter specifies how the machine behaves at successor steps as is usual, and one needs
really only to specify precisely how such a machine behaves at limit steps in time to
give a complete description. The model in [8] resets the read/write head position on the
first cell (or rather triplet of first cells on each of three parallel tapes for input, output,
and scratch work) and assigns 0/1 values to a cell contents by means of a limsup rule:
the value at time λ is the limsup of the previous values. The use of limsup as opposed to
liminf is immaterial in terms of computational functionality, and we tend to use liminf
(as in this paper). The basic properties of these machines were explored in [8]; in [14]
the halting problem and correspondingly, the decidable, and semi-decidable sets of inte-
gers were characterised. The companion structure to this notion of computation turned
out to be the least level of the Gödel L-hierarchy, Lζ , which has a proper Σ2-elementary
end extension. The decidable sets of integers are those ∆1-definable (without param-
eters) over 〈Lζ ,∈〉. (In the terminology of an earlier age, the ITTM decidable sets of
integers are the “abstract 1-section” of the admissible set 〈Lζ ,∈〉, and thus, by a the-
orem of Sacks [13], form the 1-section of some type-2 functional G: 1-sc(G). It is
therefore possible to view this form of computation as a particular example of higher
type recursion in the manner of generalised recursion theory).

With hindsight this is perhaps not unsurprising: either of the rules mentioned exhibits
the essential Σ2-nature of the machines: e.g. under liminf , the value of a cell at a limit

The first author would like to thank the FWF (Austrian Science Fund) for its generous support through
Grant # P19375-N18. The second author would similarly like to acknowledge the generous support of the
Templeton Foundation and the EPSRC of the UK (for Grant No. EP/G020841/1), and the Kurt Gödel Re-
search Centre, Vienna for its hospitality.

c© 0000, Association for Symbolic Logic
0022-4812/00/0000-0000/$00.00

1

2 SY-DAVID FRIEDMAN, P. D. WELCH

time λ is 1 if and only if “∃β < λ∀γ ∈ (β, λ)[. . . .]”. It is therefore apparent that if
Lζ ≺Σ2 LΣ, then thinking of the machines running inside L (which we may, as their
construction and operation is absolute to L), we should have that the machine has either
halted or is entering an infinite loop at time ζ.

This naturally leads to the question: “Is there a notion of computation, presumably
based on a Σ3 style rule, that has as corresponding companion structure the level of the
L-hierarchy at the least ζ(3) with some Σ(3) > ζ(3) and Lζ(3) ≺Σ3 LΣ(3)?” Such a
notion would then have its “Σ3-ITTM-decidable sets” as those of the abstract 1-section
of 〈Lζ(3),∈〉, i.e. those that are ∆1(〈Lζ(3),∈〉), and would then presumably either be
halted or be entering an infinite loop by time ζ(3).

It is the purpose of this note to provide such a notion. We further indicate how to
generalise this to give a positive answer to the question for larger n with Σn-limit rules.
We only assume some familiarity with [8], with the basic facts of the constructible
hierarchy Lα and the Jensen version, the Jα-hierarchy (see [2], [5] or Jensen’s original
paper [9]). We let On denote the class of ordinals. For H any class of ordinals we let
H∗ be the class of limit points of H . We remark that all of these arguments could be
formulated within second-order number theory.

In a concluding section we mention some open problems, but also connections with
other notions of quasi-induction in the literature, and with determinacy questions.

§2. The Σ3-Machine construction. The Σ3-machine has four tapes: besides the
three parallel tapes of [8] for input, scratch and output, there is an additional parallel
rule tape that the Read/Write head surveys, and reads and writes to, just as for the other
three. (This is a convenience only: we could imagine the rule tape as being absorbed
as a simple infinite recursive subtape of the official scratch tape, and stipulations about
the rule tape which we are about to formulate could be made in terms of some priorly
fixed recursive function F : ω2 −→ ω2 applied to the scratch tape cells 〈C3i+1 | i <
ω〉.) A computation is defined much as before: if Pe(x) is the e’th program acting
on input x, the successor stages are governed by the program instructions just as for a
standard Turing machine. If we enumerate the cells’ values (for all the tapes) at time ν
by 〈Ci(ν) | i < ω〉 then at limit stages λ the value of Ci(λ) is given by a generalised
limit rule controlled dynamically by the rule tape. (This is not the only method one
can envisage for developing a new limit rule: one could by exterior fiat describe a rule
in an absolute manner independent of which computation is being run - as is the case
for n = 2. However this would result in a somewhat arbitrary action for programs not
computing universal computations. The reader might be forgiven for thinking after
a first reading of our limit rule below, that such a prior absolute limit rule that assigns
to each (relevant) ordinal a mode for computing the limit values at that step, as being
simpler to comprehend. However the only way we have thought of this as possible,
is one that would have a rather arbitrary action on computations that were not of the
universal nature, that is those that ended up halting before stage Σ(n). Even for the
non-halting computations, there would not be any good relationship between the limit
rule modes for those ordinal stages in a computation of Pe(0) and for those on a real
input x, Pe(x) say, where Σ(n, x) could be far greater than Σ(n, 0). In short we see no
way around the difficulty. That is not to say that there are no simpler methods: we have
used one that works. In its defense, whereas the usual liminf rule of the ITTM’s, is one
that uses a very stable principal of continuity, namely, look at all ordinals α less than

HYPERMACHINES 3

some limit λ, we seem to need to step up to some higher order notion of computational
stability, which looks at points of ‘computational closure’ in a fashion. After one is
used to it, this seems not so unnatural; moreover using it we reach higher ordinals. We
therefore prefer the dynamic approach to be given below.)

Before describing this action we make some preliminary definitions.

DEFINITION 1. An ordinal α is called good if ωα = α. We write α ∈ G for αgood
or α = 1.

REMARK 1. α is good iff it is a multiple of ωω; if γ ∈ On, we write γ+ for the least
limit of good ordinals greater than γ. This is γ + ωω · ω.

Instead of taking liminf ’s over all ordinals ν < λ for Lim(λ) in order to determine
Ci(λ) we do this for a restricted set of ordinals below λ which correctly reflect certain
patterns of occurrence on the rule tape. These ordinals we shall call 1-correct in λ. This
we shall define in a moment, but we state the limit rule now:

DEFINITION 2. Given a Turing machine program Pe(y) with input y, Ci(ν) is de-
fined as follows:

If ν = ν̄ + 1 then Ci(ν) is determined by the usual program action from −→Ci(ν̄).
If ν = λ a limit, then

Ci(λ) =df lim inf
ν→λ

{Ci(ν) | ν 1-correct in λ}.

As a shorthand notation we shall write this as: Ci(λ) = lim inf∗ν→λ Ci(ν).

To put this limit case in another way:
Ci(λ) = 1⇐⇒ ∃ν0 < λ∀ν ∈ (ν0, λ)[ν 1-correct in λ −→ Ci(ν) = 1].
Ci(λ) = 0 Otherwise.

To make sense of this we need to define “1-correct in λ”. We shall give a descriptive
indication of this (proper definitions and full definitions will be given below). Very
broadly, a computation may work with information that has appeared on the scratch
tape (or perhaps on a recursive sub-tape of the scratch tape), thought of as a real x say,
and may also at some stage produce certain further information about x. Below λ there
may be stages, some sort of stable point, at which the computation has said all it is going
to say about x (before stage λ). We might then define a stable point (below λ) as some
α, where any relevant scratch tape real x, if it appears before stage α, also has that all
information about x has also appeared before stage α: that is, nothing new is said about
such x in the interval (α, λ). Such points are those then of stable informational content.
A first approximation to our new lim inf∗ rule is that we could take liminf’s along these
points of stable content. In fact we do something slightly more refined, and also more
generous in terms of points: we shall take liminf’s along those points α where α sees
the same stable points (in the above sense) below it, that λ sees are below α. Such an α
will be called “1-correct in λ.”

We use the following notation: for y ∈ 2N let 1 a y ∈ ω2 be defined by: 1 a
y(k + 1) = y(k) and 1a y(0) = 1. Then 1a y is the sequence y prefixed by a ‘1’.
Let n ∗ y ∈ ω2 be similarly y prefixed by n zeroes. We assume the rule tape values are
listed as: 〈Ri(ν) | i < ω〉 =df 〈C4i(ν) | i < ω〉. We abbreviate 〈Ri(ν) | i < ω〉 by
R(ν) etc. In the following λ will always denote a limit ordinal.

4 SY-DAVID FRIEDMAN, P. D. WELCH

DEFINITION 3. S1
λ (the 1-stable in λ ordinals) Set:

α ∈ S1
λ ⇐⇒ α ∈ G ∩ λ∧

∀x ∈ ω2∀ν < α∀n∀β < λ[(1ax = R(ν) ∧R(β) = n ∗ 1ax) −→ ∃β′ < α(R(β) =
R(β′))].

Thus: any pattern of the form n ∗ 1 a x (where 1 a x itself occurred before α)
which occurs before λ must also have occurred before α. The following may be easily
established.
• S1

λ ∩ α ⊆ S1
α.

• If α ∈ S1
λ then S1

λ ∩ α = S1
α.

• S1
λ ⊆ λ and is closed below λ.

DEFINITION 4. E1
λ (the 1-correct in λ ordinals)

If λ /∈ G∗ then E1
λ = λ;

If λ ∈ G∗ then E1
λ =df {α < λ |S1

λ ∩ α = S1
α}.

We also note:
• α ∈ S1

λ −→ α ∈ E1
λ; if λ ∈ G∗ then E1

λ ⊆ G;
• E1

λ is closed and unbounded in λ.
(Proof of this latter remark: closure is clear; assume λ ∈ G∗ but the unboundedness

failed. Then α0 = maxS1
λ < λ. Thus on a tail of α ∈ λ there is a least β(α) ∈ S1

α\S1
λ.

Such a β(α) is greater than α0. However if α′ > α is least with β(α) /∈ S1
α′ (and such

must exist as β(α) /∈ S1
λ), one can see that max(S1

α′) = α0. Thus α′ ∈ E1
λ.)

Notice that this definition means that for ordinals λ /∈ G∗, the modified liminf∗ rule
is just the previous standard liminf rule. It is only for the limits of good ordinals (the
ones we are principally interested in) that the rule may be different. This gives some
substance to our previously described motivation that we take liminf ’s at limits of good
ordinals by considering only those earlier stages which are “correctly reflecting of stable
informational content.” This finishes the description of the general Σ3-ITTM acting for
a general program Pe. We next perform the more difficult task of demonstrating that
there is a program that first commences a loop at stage ζ(3).

§3. The Σ3-Theory Program. We now describe an algorithm programmable as
some Pe on a Σ3-ITTM-machine, and demonstrate that it first enters an infinite loop
at the lexicographically least pair (ζ(3),Σ(3)) where Σ(3) > ζ(3)∧ Lζ(3) ≺Σ3 LΣ(3).
During its run it will produce codes l(α) for levels of the hierarchy 〈Jα,∈〉 for α < Σ(3)
in parallel with their complete theories. The reader may have noticed the similarity be-
tween the above definitions of 1-stability to those obtained in the L-hierarchy. This of
course is no accident. We now define the L-counterparts to the above definitions. We
recall also that in the definition of the Jensen J-hierarchy, that On∩Jα = ω · α (and
thus J1 = HF = Lω), and that Lα = Jα if and only if α is good. We let the language
of set theory be L∈̇ and we assume for any 0 < n ≤ ω that we have a recursive enumer-
ation of the following Σn-formulae of that language 〈ϕni (v0, v1) | i < ω〉 with the two
variables displayed. For α ≤ β Jα ≺Σn Jβ has its usual meaning: given ϕni (v0, v1)
and x1 ∈ Jα, if Jβ |= ∃v0ϕ

n
i (v0, x1,) then Jα |= ∃v0ϕ

n
i (v0, x1,).

DEFINITION 5. Ŝnλ (the Σn-stable in λ ordinals) We set:

α ∈ Ŝnλ ⇐⇒ α < λ ∧ Jα ≺Σn Jλ.

HYPERMACHINES 5

• “α ∈ Ŝnλ” is uniformly ΠJλ
n -definable. For any δ, Ŝ1

δ ⊆ (G∗)∗.
• Ŝnλ is a closed subset of λ.
We remark the following: suppose β0 is the least ordinal so that Lβ0 |= ZF−. Then

every ordinal β < β0 satisfies Jβ |=“V = HC” (that is, every set is hereditarily
countable). Moreover for such β if γ < β is Σ1-definable in Jβ by some parameter-free
formula, then since there is a ∆Jβ

1 definable map (in the parameter γ) of ω onto γ, every
ordinal γ′ ≤ γ is also so definable. This ensures that ifX ≺Σ1 Jβ thenX∩ω ·β ∈ ω ·β
+1. Moreover, if γ < β is additionally closed under the Gödel pairing function then
standard methods show there is a uniform parameter-free map ω · γ ↔ Jγ which is also
∆Jγ

1 . In particular any finite tuple ~x from Jγ is enumerated by some ordinal ξ < γ
under this map. It follows that for such γ, an X as above containing γ, also contains Jγ
as a subset.

For β < β0 arguments from [6] can be used to establish that for each n > 0 Jβ has a
uniform parameter-free Σn-Skolem function hnβ(v0, v1). (In general this fails for levels

Jγ and n > 1.) The function hnβ is itself ΣJβn -definable without parameters, with (as an
inspection of the argument of [6] shows) the same definition uniformly for any β < β0.
The Skolem function uniformises the ΣJβn relations: given an x ∈ Jβ if there is a y ∈ Jβ
such that Jβ |= ϕni [x, y], then hnβ [i, x] is a witness such that Jβ |= ϕni [x, hnβ [i, x]]. These
Skolem functions readily yield Σn-Skolem hulls: if A ⊆ Jβ then hnβ“ω × [A]<ω is the
smallest Σn-elementary submodel of Jβ containing A and is thus the Σn-Skolem hull
of A in Jβ .

For such β < β0 this has the ready consequence, for example, that if γ0 = sup Ŝnβ <
β then the Σn-Skolem hull of {γ0} in Jβ is all of Jβ . (For, as remarked above, every
γ < γ0 must be in the Σ1-Skolem hull of {γ0}, and hence hnβ“ω × {γ0} is a transitive
Σn-elementary submodel of Jβ of the form Jδ ≺Σn Jβ ; as γ0 ∈ Jδ then we conclude
δ = β.) In particular if γ0 = 0 (because Jβ has no proper Σn-elementary submodels)
hnβ is then a partial ΣJβn -definable function of ω onto Jβ , a fact we shall use in the
sequel. More particularly still we shall use this if β < Σ(n) where (ζ(n),Σ(n)) are the
lexicographically least pair (ζ ′,Σ′) so that ζ ′ < Σ′ and Lζ′ ≺Σn LΣ′ .

We particularise the discussion now to n = 3. Our machine will be a “theory ma-
chine” writing out now the Σ3-theory of levels of the Jα-hierarchy, for α < Σ(3), just
as the “Σ2-Theory Machine” of [7] did, as a standard ITTM.

We shall assume that our scratch tape is divided recursively into infinite sub–tapes
D0, D1, We set aside the first cell on the D0 tape as a “flag cell” - and designate it
“F ”.

We shall describe a process that, inter alia, allows a code, l(α) for 〈Jα,∈〉, written out
as a characteristic function of a subset of ω, to be uniformly obtainable from S(α′) =df

〈Ci(α′) | i < ω〉, the snapshot at stage α′, where α′ =df ω
3 · (α+ 1).

To do this we need some further nomenclature. We let L∈̇,ṗ be the language aug-
mented by an extra constant symbol ṗ and again assume a recursive enumeration of the
Σn-sentences of this language. We use these enumerations in the following definitions.

DEFINITION 6. For α ∈ On, n ≤ ω (i) let Tnα ⊆ L∈̇ be the Σn-Th(〈Jα,∈〉);
(ii) for p ∈ Jα we let Tnα (p) ⊆ L∈̇,ṗ be the theory Σn-Th(〈Jα,∈, p〉).

6 SY-DAVID FRIEDMAN, P. D. WELCH

As the base case for an induction, we shall assume that for the least α0 ∈ G (i.e.
α0 = 1), our program has written Tωα0

on D3 and a code l(α0) for 〈J1,∈〉 on D2 by
stage ω3 · (α0 + 1) = ω3 · 2.

We shall now describe the process that at the point in time ω3 ·(α+1): (I) has written
a code l(α) for Jα to D2 using (II) the complete Σω-theory Tωα which has been written
on D3. The above is the base case for the least good ordinal α0. In the sequel we may
refer to stages of the process. Each single stage may require infinitely many machine
steps (each of the latter takes a single unit of ‘time’). We do not wish to give all the
details of the machine steps, but shall try and describe the stages that are translatable
into steps, and shall endeavour to apply these two words in this way. However note that
for λ good it will only take λ steps to perform λ stages, so at such points the numerations
have caught up.

Suppose inductively that for α ∈ G we have derived (I) and (II) on the tape. We use
the following notation:

ᾱ = sup(Ŝ1
α); α′ = α′(α) is the largest α′ ≤ α with α′ ∈ G∗.

• Between α and α+(= α + ωω · ω), the next limit of good ordinals after α, the
machine behaves as follows:

(A) (i) It computes a code for ᾱ and writes this to D1. We make the proviso that if
at any time the value on D1 is changed, whilst that value is being written, then before
a cell on D1 is written to, it is first preceded by a ‘wipe clean’ action that resets that
cell value first to zero, before overwriting the new value. (Note that this simply has the
effect that any cell that contains a ‘1’, which is destined to stay having a ‘1’ after the
new value of ᾱ is written, is ‘flashed’ 1→ 0→ 1.) The point of this wipe-clean process
is only that after an ω-sequence of such changes, the D1 tape will contain only 0’s. We
also, for convenience’s sake, represent the ordinal ‘0’ as ‘1000 · · · ’ (or some such) to
distinguish it from the ‘empty’ tape ‘0000 · · · ’.

Given Tωα , and l(α), as Ŝ1
α is ΠJα

1 definable, it takes only finitely many steps to
determine whether the value on D1 needs to be changed, and if so, only ω + ω steps to
identify ᾱ and write out a code for it.

(ii) From Tωα it looks for α′ = α′(α) ∈ G∗, and sets

F = 0 if α′ ∈ Ŝ1
α;

= 1 otherwise.

This takes only < ω steps.
Note for (iii) and (iv) to come, that given any set x ∈ Jα and any n ≤ ω, Tnα (x) ≤T

Tωα since Tnα (x) is the set of Σn-sentences true of fα(k) for some k, where fα : ω � Jα
is a canonical onto map defined from Tωα and fα(k) = x. As our induction proceeds
for all ordinals β < Σ(3) we may assume that fβ is always a ΣJβ3 parameter-free map
(uniformly defined for all β). We set f̄α = fα ∩ (ω × ω2).

(iii) From ᾱ (which was identified at (i)) and using Tωα , it computes Tωᾱ and writes
it to D0 (once ᾱ is identifed, in the manner just remarked, we may easily find the
recursive function for the reduction Tωᾱ ≤T Tωα ; this takes ω many steps).

(iv) We also require that T 1
α(ᾱ) be written out to D4. Again a further ω steps, given

Tωα and ᾱ.
(v) From l(α) and Tωα (on D3) it can assemble a code for l(α + 1) and replace l(α)

with this on D2 (ω · 2 steps).

HYPERMACHINES 7

(vi) Using l(α+ 1) it writes the Σω-theory Tωα+1 to D3. (ω2 steps).
(vii) On our rule tape, we may successively list
(a)f̄α(0) (if defined), is written in ω steps to R. That done, we then successively

list all those n ∗ 1a f̄α(0), for which Jα |= ϕ1
n[f̄α(0)/ṗ] (where ϕ1

n is our prior fixed
recursive enumeration of the Σ1-sentences of L∈̇,ṗ). Note that after this has been done
(which takes ω2 many steps) each cell Ri of R has value 0, as R fills up with zero’s
from the left, because T 1

f̄α(0)
is infinite. We return to (a) looking in turn at those of

f̄α(1), f̄α(2), . . . f̄α(k), . . . etc. which are defined, in a similar fashion.
This process will take care of our rule requirements. Note that it takes ω3 steps, and

this in fact is the totality of all steps taken at this stage, which is now finished.
We now have l(α+1) and Tωα+1 correctly written out and are at step ω3·(α+1)+ω3 =

ω3 · (α+ 2). So now the machine may return to (A). To help summarise, we produce in
the next ω3 steps:

α+ 1 ' sup(S1
α+1) on D1 ;

α′(α+ 1)(= α′(α)), setting F appropriately;
Tω
α+1

on D0 ;
T 1
α+1(α+ 1) on D4 ;
l(α+ 2) on D2 ;
Tωα+2 on D3 ;
1 ∗ x and listings of T 1

α+1(x) on R as above, for all x ∈ω 2 ∩ Jα+1 in turn.

This fully describes the “successor” stage action relating the transitions from Jα to
Jα+1 to Jα+2. Note that after the last stage the time clock is at ω3 · (α+ 3). Moreover
that every cell on the R tape has unboundedly often in this time contained a 0 (and thus
actually contains only 0’s at this time by the lim inf∗ rule, which at this simple stage
devolves into taking simple lim inf’s).

At limit stages λ ∈ (α, α+) the lim inf∗ rule is to be used. As λ /∈ G∗, the rule
is again merely the former ITTM rule of straight lim inf . This thus has the following
effects at this stage:

(1) On D1: as β −→ λ β̄ is eventually constant, with eventual value λ̄ < λ say, with
λ̄ = sup Ŝ1

λ. This implies that F is eventually constant, but moreover:
(2) On D0 : we have Tω

λ̄
;

(3) OnD4: we have T 1
λ(λ̄) (as both these are the simple union of earlier Σ1-theories.)

(4) On D3, D2: we have the lim inf∗β→λ T
ω
β ; and lim inf∗β→λ l(β).

(5) On R: every cell is again zero, due to the unbounded setting of all cells to zero
during listings and the lim inf rule.
• If D1 is not empty, this is because λ̄ < λ. (This will always happen if λ /∈ G∗.)

In this case there is a ΣJλ1 ({λ̄}) map uniform in λ and the parameter λ̄, gλ : ω � Jλ
(meaning uniform for those λ with λ̄ < λ - note λ̄ = 0 is included as a possibility).
Using D4 this allows us to compute a code l(λ) for 〈Jλ,∈〉 to be written to D2 in ω
many steps. From l(λ) we may compute Tωλ and write this to D3 (this takes ω2 time).
Rather superfluously at this stage we run the Rule tape writing algorithm solely in order
to keep the enumeration of steps in line.

8 SY-DAVID FRIEDMAN, P. D. WELCH

We are now at time ω3 · (λ + 1). The machine then returns to (A) and continues as
before. We now consider what to do when we arrive at a λ ∈ G∗.

DEFINITION 7. For λ ∈ G∗ let Ê1
λ =df {α < λ | Ŝ1

α = Ŝ1
λ ∩ α}.

The point of listing Σ1-theories of the form 〈Jγ ,∈, x〉 on the Rule tape R is precisely
to establish (6) below. This will have the consequence that if γ ∈ G ∩ λ then γ is 1-
correct in λ in the sense of computation if and only if γ is similarly ‘Σ1-correct’ about
which ordinals are Σ1-stables in the set-theoretic context; this implies:

γ̄ < γ ∈ G ∩ E1
λ −→ (Jγ̄ ≺Σ1 Jγ ↔ Jγ̄ ≺Σ1 Jλ).

We thus show:

(6) λ ∈ G −→ Ŝ1
λ = S1

λ. Hence λ ∈ G∗ −→ Ê1
λ ∩G = E1

λ ∩G.

Proof: We show by induction on α < λ that Ŝ1
λ ∩ α = S1

λ ∩ α. Suppose this shown
for α. Let γ = min((Ŝ1

λ ∪ S1
λ)\α). Suppose γ ∈ Ŝ1

λ. Then Jγ ≺Σ1 Jλ and γ is highly
closed, indeed admissible. However by our rule tape construction we have continually
for any β < λ, listed T 1

β (p) for any p ∈ Jβ of the form p = x ∈ ω2. But any Σ1

sentence ϕn[x] with x ∈ ω2 ∩ Jγ in this theory, is also in such a theory T 1
δ (x) for a

δ ∈ G ∩ γ, as Jγ ≺Σ1 Jλ. Thus n ∗ 1ax appears on R before time γ. Hence γ ∈ S1
λ.

Now suppose γ ∈ S1
λ. Then γ ∈ G. We should like to have Jγ ≺Σ1 Jλ. Note that

it suffices to require Σ1 elementarity for formulae ϕn(ξ/v0) for ordinals ξ < γ, and
moreover as there is a real xξ ∈ ω2 ∩ Jξ+1 coding ξ, it thus suffices to consider this
for formulae ϕn(x/v0) with x ∈ ω2 ∩ Jγ . By our construction for any 1 ∗ x listed
on the rule tape by stage γ, as γ ∈ S1

λ then T 1
λ(x) is recursive in 〈R(ν)|ν < γ〉. (If

1 ∗ x = R(ν0 + ω) then it is 〈R(ν0 + ω · k) | k < ω〉 that lists T 1
λ(x). Of course if

x ∈ Jγ so is any n ∗ x for any n, and so the latter will also be listed at some point: but
that is why we restrict our initial listing of any such x as prefixed by a ‘1’, and their
theories by 0’s.) Running the machine inside Jγ this would make T 1

λ(x) Σ1-definable
over Jγ for any x ∈ ω2 ∩ Jγ . Hence T 1

λ(x) = T 1
γ (x) for all such x. This suffices to

imply that Jγ ≺Σ1 Jλ. QED (6)

Suppose now λ equals α+. Note thatE1
λ even in this case is simply a tail ofG∩λ. As

β −→ λ λ̄ will settle down in value below λ, from some point on. (Recall that λ̄ = λ
would imply that λ is in fact strongly admissible, and thus cannot be of the form α+.)
The lim inf∗ rule now comes into play in full, but we still have (1)-(5) holding just as
for a limit which is a non-limit of good ordinals, as above, and the actions are the same.
One point to note is:
• If β = α+ + 1 then F must then by the end of the operations at stage β be set to 1:

this is because α+ /∈ Ŝ1
β (an element of any Ŝ1

δ is always in (G∗)∗).
However for a general λ ∈ G∗ λ̄ may equal λ. Our Flag F is designed to alert the

machine when we are at such a point:

(7) (λ ∈ (G∗)∗ ∧ F (λ) = 0)←→ λ̄ = λ.

Proof: (←) Suppose λ̄ = sup Ŝ1
λ = λ. Then for unboundedly many β < λ we have

β ∈ Ŝ1
λ and thus λ ∈ (G∗)∗. Further for β ∈ Ŝ1

λ, we have that the Flag F at stage β+ 1

HYPERMACHINES 9

is set to 0, as β = (β + 1)′ ∧ β ∈ Ŝ1
β+1. This value of 0 persists for any of the steps

η ∈ (β+ω3, β+ωω]. Thus at the next good ordinal β+ωω the Flag is zero. Moreover
β + ωω ∈ E1

λ.
However by step β+ + ω3 F has been set to 1 (see the last bullet point above). But

β+ /∈ Ŝ1
δ

for any δ ∈ (β+, β+ + ωω]. Hence the Flag stays set at 1 in this interval
(and beyond). But both β + ωω and β+ + ωω are in G and are 1-correct in λ. This
happens for unboundedly many β < λ. Hence because of these alternating values,
lim inf∗ν→λ F (ν) = 0.

(→) Suppose λ̄ < λ. Let γ be the least element of G∗ greater than λ̄. Then F is at
stage γ + 1 set to value 1. It will only be 0 at any stage δ > γ if λ̄ < δ′ ∈ Ŝ1

δ . But such
a δ is not in E1

λ! Hence {ν ∈ (λ̄, λ)|F (ν) = 0} ∩ E1
λ = ∅. Hence F (λ) = 1 by the

lim inf∗ rule. QED (7)

(8) If λ ∈ G and λ̄ < λ then Tω
λ̄

is on D0(λ).

Proof: By induction on λ̄ < β ≤ λ, for β ∈ E1
λ show that Tω

λ̄
is on D0(β), noting

that β̄ = λ̄ for such β. QED(8)

(9) ∀λ < Σ(3)(a code for l(λ) can be extracted from S(λ))

Proof: We’ve seen how to do this using T 1
λ(λ̄) which is on D4, when λ̄ < λ (by

using the method of an onto map explained just after (5)). So assume λ̄=λ (and a
fortiori λ ∈ (G∗)∗). Then the Flag F (λ) = 0 (see (7)) and hence the machine knows
this fact. We show first how to determine T 3

λ from D3(λ) = lim inf∗α→λ T
ω
α which is

written on D3.
Suppose ϕ ≡ ∃uψ(u) is Σ3 with ψ ∈ Π2 in L∈̇. We use the following equivalence.

(10) Assume λ̄=λ. ϕ ∈ T 3
λ ←→ ∃n ∈ ω[∃γ0∀γ > γ0(γ ∈ Ŝ1

λ−→ Jγ |= σn)]
where σn is the following sentence: “∃β[(β ∈ Ŝ2

γ∪{0}∧∃k(k = h2
γ(n, β)∧ψ(k)))]”.

Proof of (10): (→). Suppose ϕ ∈ T 3
λ and is of the form illustrated, with some x ∈ Jλ

witnessing Jλ |= ψ[x]. Then for some β ∈ Ŝ2
λ ∪ {0}, x = h2

λ(n, β). Choose γ ∈ Ŝ1
λ

sufficiently large with x ∈ Jγ |= x = h2
γ(n, β). This is possible by our assumption on

λ. However for any γ′ ≥ γ with γ′ ∈ S1
λ we also have that x = h2

γ′(n, β) and β ∈ Ŝ2
γ′ .

Moreover (ψ[x])Jλ is Π2 and so goes down to such γ′: (ψ[x])Jγ′ . Hence the right hand
side holds.

(←): Suppose the RHS holds for some n, but the LHS failed for a contradiction. Then
we first claim that Ŝ2

λ must be bounded in λ: for if it were unbounded then we could
always take a γ on the RHS to be from Ŝ2

λ. However then the Π2 statement ψ[k] about
k, included in σn, would go up to λ and the LHS would hold. Hence sup(Ŝ2

λ)= β0 < λ.
Now there are unboundedly many γ < λ with γ ∈ Ŝ1

λ, γ > β0, Ŝ
2
γ = Ŝ2

λ ∩ γ, and
with Jγ |= σn. For such a γ, let β = βγ be the least ordinal witnessing the existential
quantifier of the quoted statement σn. By what we may call the “2-correctness” of γ,
β ∈ Ŝ2

λ ∪ {0}. If for some such γ satisfying these clauses, we had βγ < β0, we should
have that “k = h2

γ(n, βγ) ∧ ψ(k))” which is true in Jγ , would be absolute to Jβ0 . But

10 SY-DAVID FRIEDMAN, P. D. WELCH

β0 ∈ Ŝ2
λ ∪ {0} so it is also true in Jλ thus verifying ψ. On the other hand if for all such

γ satisfying the clauses we had βγ = β0, then h2
γ(n, βγ) has constant value some k for

all such γ on a tail of Ŝ1
λ. Moreover as (ψ[k])Jγ in all sufficiently large γ ∈ Ŝ1

λ and as
ψ ∈ Π2, we conclude (ψ[k])Jλ , another contradiction. QED(10)

(11) There is a (1-1) recursive F : N −→ N so that for any λ < Σ(3), if λ̄ = λ then

ϕ ∈ T 3
λ ←→ ∃n ∈ ωF (≺ n, pϕq �) ∈ D0(λ).

Hence for such λ, T 3
λ is unformly r.e. in S(λ) = −→Ci(λ).

Proof: Assume λ̄ = λ , then we recast (10) as:
ϕ ∈ T 3

λ ←→ ∃n ∈ ω[∃γ0∀γ > γ0(γ ∈ E1
λ−→ σn ∈ D0(γ))]

(→) This follows from (6) and (10).
(←) As S1

λ is unbounded in λ, and is contained in E1
λ this follows from the argument

of (10).
From this our liminf∗ rule then shows D0(λ) has the correct information. QED (11)

For λ < Σ(3) we shall thus be able, by the comments on Skolem hulls etc. after Def-
inition 5, to use a ΣJλ3 map h of ω onto Jλ (which by the above is at worst uniformly r.e
in S(λ) in the case that λ̄ = λ) to define a code l(λ) for Jλ: if h(k) is defined, we may
form the equivalence class of k′ such that h(k) = h(k′), and define the binary relation
kEm ⇐⇒ h(k) ∈ h(m). This yields a code l(λ) for 〈Jλ,∈〉 which may be written to
D2 in, say a further ω steps. QED(9)

The above process lasts for as long as differing Σ3 theories are produced for the dif-
ferent levels λ < Σ(3). However, (ζ(3),Σ(3)) is also the lexicographic least pair (π, χ)
of ordinals with T 3

π = T 3
χ . (Assume for a contradiction that (π, χ) <lex (ζ(3),Σ(3))

have the same Σ3-theories. Firstly if χ < Σ(3), using the onto Σ3 function h, we have
that the Σ3 sentences σn,m ≡“h(n) < h(m) ∈ On” are in T 3

χ and yield a wellorder of
type χ (as hχ is onto χ). But it is impossible that such σn,m are all in T 3

π as the latter
there yield a wellorder only of type π! Hence we must have χ = Σ(3)∧π < ζ(3). But
clearly T 3

Σ(3) = T 3
ζ(3), and the same argument shows that the sentences σn,m in T 3

ζ(3)

are in T 3
π for the same contradiction.)

Hence the machine before stage Σ(3) produces different theories, and at stage Σ(3)
produces only T 3

ζ(3) and then l(ζ(3)) on D2, and so commences to cycle.

REMARK 2. Since it is (reasonably) clear that any machine with this limit rule will
either halt before ζ(3) or enter a loop at this point (by considering such machines as
running inside LΣ(3)) we thus have a complete description of the semi-decidable, de-
cidable predicates, halting problem and so on, just as the calculation determining the
role of the ordinals (ζ(2),Σ(2)) did for the original ITTM model. (See [15] for a some-
what cleaner development of this Σ2-theory.) For example, the halting problem set
will be recursively isomorphic to the Σ1 truth set of 〈Lλ(3),∈〉 where λ(3) is least such
that Lλ(3) ≺Σ1 Lζ(3). The other assertions concerning abstract 1-sections etc. from the
Introduction then also follow.

HYPERMACHINES 11

§4. Σn-Machines. We now consider machines related to levels of the L-hierarchy
at the least ζ(n) with some Σ(n) > ζ(n) and Lζ(n) ≺Σn LΣ(n) for larger n < ω.

In developing the next level, Σ4-machines, which halt or loop by ζ(4), we accord-
ingly make use of the appropriate notions E2

λ, Ê
2
λ, S2

λ, Ŝ3
λ, Ŝ4

λ, etc. We assume now
the rule tape R is recursively split into two infinite pieces, Q,R. (We keep the letter
R as we intend to expand on what the machine of the last Section does.) There is no
difference between what is written to the R tape in the current machine and that of the
last section; we use R to define S1

λ and E1
λ just as before. The Q-part will be used to

define S2
λ etc. We further recursively splitQ into 2×ω2 many infinite piecesQ(i, k,m)

with i < 2, k,m ∈ ω. As before Q(β, i, k,m) will denote that piece viewed at time β.
We adopt the notation that αi =df supSiα for i = 1, 2.

DEFINITION 8. α ∈ S2
λ ⇐⇒ α = α1 ∧ α ∈ S1

λ∧
∀x ∈ ω2∀ν < α∀n

[
(1ax = R(ν) ∧ ∃β′ ∈ E1

λQ(β′, i, k,m) = 1ax) −→
−→ ∃β′ ∈ E1

α(Q(β′, i, k,m) = 1ax)
]
.

DEFINITION 9. E2
λ (the 2-correct in λ ordinals)

E2
λ = {α ∈ E1

λ | α1,2 (=df supS2
α1

) ∈ S2
λ} if λ1 = λ;

= E1
λ otherwise.

Our definitions imply:

REMARK 3. S2
β ⊆ E2

β ; β = β1 −→ S1
β ∩ E2

β is closed and cofinal in β.

We now adopt as our Limit Rule:

Ci(λ) = 1⇐⇒ ∃ν0 < λ∀ν ∈ (ν0, λ)[ν 2-correct at λ −→ Ci(ν) = 1];
= 0 otherwise.

The above then completes the description of the Σ4-machine architecture. We turn
now to a program that computes theories and codes for all levels of the constructible
hierarchy below Σ(4).

Σ4-theory machine description. Let 〈ϕn(v0)〉 effectively enumerate all formulae
and 〈ψn(v0)〉 all Σ1 formulae in the free variable v0. We continue to use the notation:
ᾱ =df sup Ŝ1

α; and further adopt α2 =df sup Ŝ2
α. (Later we shall see that for the

machine description to be specified we shall have α1 = ᾱ and α2 = α2 i.e. with the
notions of computable stability coinciding with set theoretical Σn-stability.) As in the
previous section we have set fα : ω � Jα to be a canonical onto map defined from Tωα .
As our induction proceeds for all ordinals β < Σ(4) we may assume that fβ is always
a ΣJβ4 parameter-free map (uniformly defined for all β). Again set f̄α = fα ∩ (ω× ω2).
To specify the operation we simply augment the previous Σ3-theory machine with an
extra task at (6).

Let α ∈ G and let β > α be least with β ∈ G. Then at stage β we shall now
additionally require:

(6) Let β be as above and as already defined, with β
2

= sup Ŝ2
β̄

. Then the com-
plete theories of Jβ̄ and Jβ̄2 are written in the following way at stage β: if y =
f̄β̄(k) is the k’th real in Jβ (resp. Jβ̄2 where in this case y = f̄

β
2(k)) and Jβ̄ |=

ϕn[y] (resp. Jβ̄2 |= ϕn[y]) then it is required that 1 a y is on the the second rule

12 SY-DAVID FRIEDMAN, P. D. WELCH

Q(β, 0, k, n)(Q(β, 1, k, n) resp .) tape segment at stage β; otherwiseQ(β, 0, k, n)(0) =
0 (Q(β, 1, k, n)(0) = 0 resp.).

Starting from a code l(α) for Jα the machine writes codes for Jγ for γ ∈ [α, β)
writing, just as in the last section, (i) - (vii). We further ensure:

(viii) Using Tωγ which is written onD0 and, Tωγ̄2 (which is recursive Tωγ), we may
compute values of f̄γ̄(k) and f̄γ̄2(k)) and write out the theories in the real parameters
f̄γ̄(k) = y and f̄γ̄2(k) = y. Thus we setQ(γ, 0, k,m) = 1a f̄γ̄(k) iff Jγ̄ |= ϕm[f̄γ̄(k)]
and similarly Q(γ, 1, k,m) = 1a f̄γ̄2(k) iff Jγ̄2 |= ϕm[f̄γ̄2(k)]. Mirroring the writing
of T 1

β (β̄) before on D1, we use an additional piece of scratch tape D5 and record here
T 2
γ̄ (γ2). This can also be obtained from Tωγ on D0. All this can be done in < ω2 many

steps. Recall that the previous R-writing process (vii) required ω3 many steps. So by
dovetailing this process with that of (vii) we can still stick to the same ordinal arithmetic
and have both R- and Q- writing done in ω3 steps.

Recall that (ii) ensures that the machine may start with a 0 on F at stage α but will
change it to a 1 as soon as it sees γ′ = α′ /∈ Ŝ1

γ .

(6′) λ ∈ G −→ Ŝ1
λ = S1

λ. (Thus λ̄ = λ1.) Hence λ ∈ G∗ −→ E1
λ ∩G = Ê1

λ ∩G.

(7′) (λ ∈ (G∗)∗ ∧ F (λ) = 0)←→ sup Ŝ1
λ = λ).

We additionally have here the new:

(6′′) β̄ = β −→ (α ∈ S2
β ←→ α ∈ Ŝ2

β). Thus β2 = β2.

For (6′) note that the Σ4-theory machine extends the action of the Σ3-theory machine,
with Ŝ1

λ, S
1
λ, defined from before, so there is nothing to prove.

For (7′): (←) The argument is the same but here the only difference is that we are
taking a lim inf∗ along E2

λ: there are unboundedly many τ ∈ E2
λ taking each of the

values 0 and 1. For (→) if we assume, using (6’), λ̄ < λ then in this case E2
λ = E1

λ so
the previous reasoning holds.

Proof of (6′′): suppose α ∈ S2
β . Suppose Jβ |= ϕn[y] with ϕ expressing a Σ2

property about y where y ∈ Jα, then we want Jα |= ϕn[y]. However ‘Jβ |= ϕn[y]’ is
equivalent to Jδ modelling the truth of ϕn[y] for some sufficiently large δ ∈ E1

β . Further
this is recorded on the Q(δ, 0, k, n) part of the second rule tape at a sufficiently large
stage δ ∈ E1

β with y ∈ Jδ̄ and y = f̄δ̄(k). (Note that δ̄ ∈ S1
β). Then α ∈ S2

β guarantees
that this Σ2 property about y has been recorded as holding for some sufficiently large
δ0 ∈ E1

α by Q(δ0, 0, k, n), and thus ϕn[y] holds in Jδ0 with δ0 ∈ S1
α. By upwards Π1

elementarity then, ϕn[y] holds in Jα. We conclude that α ∈ Ŝ2
β . For the converse one

may imagine the machine running in Jβ and then apply Σ2-elementarity. QED

We have the following addition to (8). Here we have harmlessly assumed that k0 has
been chosen so that f

β
(k0) = 0 for any β.

(8′) For any λ, if λ̄ = λ and λ2 < λ then Tωλ2 is recursive in Q(λ, 1, k0, n).

HYPERMACHINES 13

Proof (8′): Recall that on the 〈1, k, n〉 parts of the Q-tape were recorded the com-
plete theories Tω

β̄2(y) in real parameters y = f̄β̄2(k). S(λ) is given by the liminf∗ taken
over 2-correct ordinals β < λ. Suppose λ2 < λ. Then for β ∈ E2

λ\λ2 by definition
we have that β̄2 = supS2

β̄
= λ2, and in particular as β tends to λ through E2

λ, even-
tually β̄2 = λ2. Hence the pure part of the theory Tωλ2 is eventually constant on the tape.

(9′) ∀λ < Σ(4)(a code for l(λ) can be extracted from S(λ)).

Proof: Using (7′) the Flag F tells the machine if λ̄ = λ. If λ̄ < λ the construction
of a code l(λ) is just as for the Σ3-theory machine. So assume λ̄ = λ. Suppose
λ2 = sup Ŝ

2

λ < λ. Just as in the proof of (8′) as β tends to λ through E2
λ, eventually

β̄2 = λ2. Consequently at stages for a tail of β ∈ E2
λ, on D5 we have either the theory

T 2
β̄

(λ2) itself, or a liminf of such theories T 2
β̄

(λ2) for an increasing chain of β̄. However

such β̄ are in Ŝ1
λ. By the upwards persistence of Σ2 theories, these liminf’s are simple

unions and hence at stage λ D5 contains T 2
λ(λ2).

Our assumption is that there is a ΣJλ2 ({λ2}) onto function f : ω −→ Jλ. Moreover
the machine does know that λ2 < λ: λ2 = λ if and only if for arbitrarily large δ ∈ E2

λ

we have both that Jδ̄ |=“maxS2
δ̄

= maxS1
δ̄

” and also its negation. Consequently
neither this sentence nor its negation is in lim inf∗β−→λ T

ω
β̄

on D0. Hence the machine
knows to construct a code for l(λ) with that theory T 2

λ(λ2).
If λ2 = λ then the direct generalisation of the argument of (10) one level up yields:

(10′) Assume λ2=λ.

ϕ ≡ ∃v0ψ(v0) ∈ T 4
λ ←→ ∃n ∈ ω[∃γ0∀γ > γ0(γ ∈ Ŝ2

λ −→ Jγ |= σn)]

where σn is the following sentence: “∃β[(β ∈ Ŝ3
γ∪{0}∧∃k(k = h3

γ(n, β)∧ψ(k)))]”.

And in turn now with some minor adjustments to some F0(≺ n, pϕq �) := pσnq for
the latter σn:

(11′) There is a (1-1) recursive F : N −→ N so that for any λ < Σ(4), if λ2 = λ
then

ϕ ∈ T 4
λ ←→ ∃n ∈ ωQ(λ, 1, k0, F0(≺ n, pϕq �))(0) = 1).

Hence for such λ, T 4
λ is unformly r.e. in S(λ) = −→Ci(λ).

Consequently in this case we may obtain the Σ4 theory of Jλ in a r.e. manner from
S(λ). Just as in the previous section this allows the machine to construct a code l(λ).
Hence as long as we are below Σ(4), we obtain new theories, and so codes l(α). QED

We hope that the reader, having seen how to obtain Σ3- and Σ4-machines will be
convinced as to how one can generalise the constructions to any Σn+2 by extending
the above. The definitions of the higher Snβ and Enβ should reflect those of E2

β and

14 SY-DAVID FRIEDMAN, P. D. WELCH

S2
β ; the Q-rule tape should be further subdivided to write down the corresponding the-

ories obtained from the last case, merely by raising complexities by 1. The specifica-
tions of the Σn+2-machine follow the same template. Additional slices of the work-
tape D6, D7, . . . Dn+3 will record theories up to those of the form Tnβn−2(βn) with

βn−2 =df supS
n−2

β etc. The proof of (10′) is generalisable over n verbatim. This
leads to appropriate statements and proofs of (9′) and (11′).

§5. Conclusions. Uniformization for ITTM semi-decidable sets
We make some observations concerning Uniformisation for the pointclasses definable

from both the original ITTM’s and the machines defined here. As a starting point:

DEFINITION 10. For n ≥ 2 and x ∈ 2N define (ζ(n, x),Σ(n, x)) as the lexico-
graphically least pair ζ̄, Σ̄ with Lζ̄ [x] ≺Σn LΣ̄[x]].

DEFINITION 11. Let Γn be the pointclass of Σ1-semidecidable sets of reals defined
by Σn-machines: that is, the class of those A ⊆ 2N so that there is some ϕe, a Σn-
machine definable partial function, with

A(x)↔ ϕe(x) halts with a 1 on the output tape.

This is equivalent to saying that there is some Σ1-ϕ so that

A(x)↔ LΣ(n,x)[x] |= ϕ[x].

These can be seen to be Spector pointclasses in the sense of [12].

THEOREM 1. Both Unif(Γn) and Scale(Γn) hold.

Proof: Let A ⊆ 2N × 2N be so (Σ1)-semidecidable. We wish to show that there is
A∗ ⊆ Awhich is Σn-machine semidecidable, and uniformizesA. Note that Σ(n, (w, z))
to is a limit of (w, z)-admissibles, and let Mw,z =df LΣ(n,w,z)[w, z]. Moreover for any
z ∈Mx,y we have:

(1) Mx,y |= ϕ(x, z)↔ LΣ(n,(x,y))[x, y] |= ϕ[x, z].

For the discussion of the Shoenfield tree we follow the exposition and notation of
[10], Ch.3.13. The Σ1 formula ϕ has a canonical Σ1

2 ‘translation’ ϕ̃ which by Shoen-
field’s argument has a tree representation. Since ϕ̃ ∈ Σ1

2 let us suppose ϕ̃(x, y) ↔
∃zP (x, 〈y, z〉) with P ∈ Π1

1. There is a tree T on (ω × ω2) × ω so that 〈x, y〉 ∈
A ↔ ∃zTx,(y,z) is wellfounded. There is then the corresponding Shoenfield tree T̂ on
ω3 ×On such that

(2) 〈x, y〉 ∈ A↔ ϕ̃(x, y)↔ ∃z∃g ∈ ωOn(〈x, y, z, g〉 ∈ [T̂]).

For T a tree on X × On we let T � γ be the restriction of the tree to ordinals in
the final coordinate less than γ. The definition of the tree T̂ above can be effected in
any transitive set model which is admissible, or the union of such: the definition of T̂
is uniformly ∆KP

1 or ∆KPI0
1 (where KPI0 is the theory asserting that the universe is a

limit of admissible sets). For α < α′ we have that T̂ � α is a subtree of T̂ � α′.
The following are equivalent (and in fact are provably equivalent in KPI0):

HYPERMACHINES 15

(3) ϕ(x, y)
(4) ϕ̃(x, y)
(5) ∃zT̂x,y,z is illfounded;
(6) ∃zT̂x,y,z � α is illfounded for some ordinal α.

For x so that there is some y with 〈x, y〉 ∈ A we wish to choose a canonical 〈yx, zx〉
uniformising P , with 〈x, yx〉 ∈ A, and do this in a manner so thatA∗(x, y) ≡ “〈x, y〉 ∈
A ∧ y = yx” is semidecidable. With y chosen so that 〈x, y〉 ∈ A, then in Mx,y ,
Tx,y is illfounded. Considering the projected tree T̂x we choose the least α so that
T̂x � α is illfounded, and take as (〈yx, zx〉, gx) the leftmost branch through T̂x � α.
This branch is chosen to be such that if (〈y, z〉, g) is any other branch, then for i least
so that (〈y(i), z(i)〉, g(i)) 6= (〈yx(i), zx(i)〉, gx(i)), then (〈yx(i), zx(i)〉, gx(i)) <lex

(〈y(i), z(i)〉, g(i)) with<lex the lexicographic ordering. Moreover knowing that T̂x � α
illfounded with α < On ∩Mx,y , this leftmost branch can be found by a Σ1-recursive
search within the next admissible set over Lα[x, y]. It is thus Σ1-definable withinMx,y .
Thus 〈x, 〈yx, zx〉〉 ∈ P , i.e. 〈x, yx〉 ∈ A as required.

We leave the reader to establish that the Scale Property can also be shown by using
this leftmost branch analysis of the Shoenfield tree for Σ1

2 sets, see for example [11] or
[12]. QED

Remark: It can be shown, for example, that uniformisation fails for the pointclass
of eventually semidecidable relations of reals defined on the original ITTM’s (these are
those relations A(x, y) that are defined by asking that for some machine on input (x, y)
the machine eventually, that is from some point on, has a 1 on the output tape. Such a
relation is defined by a Σ2 formula over LΣ(2,(x,y))[x, y]. Indeed pointclasses defined
over LΣ(2,(x,y))[x, y] by Π1 formulae, cannot be uniformised by Σ2 defined functions.

This can be seen as follows: Let A be the class of x that are Cohen-generic over
LΣ(2,x). (Generic in the sense that they meet all dense sets in the model.) Let ϕ(v0) be
a Σ2 formula such that M(x) = LΣ(2,x)[x] |= ϕ[x]. Then also Lζ(2,x)[x] |= ϕ[x], but x
is Cohen-generic (for all definable dense sets) over Lζ(2,x). Let p be a Cohen condition
contained in x which forces that Lζ(2,x)[x] |= ϕ[x] and let x′ be x with exactly one
bit changed beyond the length of p. Then (Σ(2, x′), ζ(2, x′)) = (Σ(2, x), ζ(2, x)) so
since Lζ(2,x)[x′] |= ϕ[x′], so does LΣ(2,x)[x′] = M(x′). This proves that A contains
no Γ-singleton, where Γ is the pointclass defined using Σ2 formulae over M(x), and
therefore uniformisation fails for Γ.

A similar argument shows that uniformisation also fails for the dual pointclass, de-
fined using Π2 formulae. More generally, if we use Σn machines then the pointclass
defined using Π1 formulae overLΣ(n,z)[z] cannot be uniformised by the pointclasses us-
ing Σn or Πn formulae. This leaves open whether this pointclass could be uniformised
by Σn+1 formulae over this structure. In short, we seem to have only reasonable uni-
formisation for the classes Γn defined above.

The above shows that the notion of ITTM machine can be generalised in a satisfac-
tory way to allow for limit rules that correspond to Σn descriptions, and the resulting
notions of decidable, semidecidable, semirecursive and so on correspond to the appro-
priate levels of the constructible hierarchy, namely the first Σn-extendible ordinals ζ(n).
The contents of the output tape of the original ITTM running a standard program is an

16 SY-DAVID FRIEDMAN, P. D. WELCH

example of what Burgess ([1]) would call an arithmetical quasi-inductive (AQI) set.
(In fact the contents of an eventually stable output tape of a Hamkins-Kidder ITTM
is an example of a recursive quasi-inductive set - and indeed any AQI process can be
simulated on an ITTM, thus showing that AQI processes can all be reduced to recursive
ones). A number of questions could now be formulated:

Question 1 Can there be a perspicuous or sensible notion of n-quasi-inductive (where
n = 2 corresponds to AQI)?

In stating this we are of course conscious of the fact that the limit rules for hyperma-
chines we have proposed are explicitly designed to tie up with the L-hierarchy. Whether
there are pleasing notions at levels above n = 2 remains to be seen.

Question 2 Are there sensible notions of “machine” that transcend those of this
paper?

In the above one could think very speculatively of machines that go beyond the first
model of second-order number theory, or even have some form of in-built extra function
allowing them to go outside of L into say K the core model?

More concretely, arguments from [17] can be used to show that eventually stable out-
put tapes of ITTM’s are all a-Σ0

3 (but not a-Σ0
2) definable. Recent work of Montalban

and Shore implies that those of the Σn+1-machines are in a-(n-Σ0
3) (where (n-Σ0

3) rep-
resents the n-th level of the difference hierarchy on Σ0

3). Let Γn denote those classes
of sets A ⊆ R so that for some Σn-machine program P , some real parameter y, that
x ∈ A iff P (〈x, y〉) has a 1 on the first cell of its output tape at stage ζ(n, (x, y)). (Thus
Γ2 is a boldface pointclass corresponding to AQI sets of reals.) One can ask:

Question 3 How strong is Det(Γn)?

The second author has shown ([16]) that Det(Γ2) implies the existence of inner
models with a proper class of strong cardinals; and assuming Det(Γ3) that there are,
in the nomenclature of Feng and Jensen [3], type-2 premice.

Lastly we mention a direct application of the limit rules here to a define a class of
models generalising one constructed by H. Field in his attempt to define a theory of
truth with a conditional operator. The latter’s G-model in [4] is defined using an n = 2
quasi-induction (with an operator that is Π1

1-complete rather than arithmetic). By using
limit rules at higher levels one can obtain all the desired effects of his G-solutions he
requires, but with longer hierarchies of his ‘determinateness operators’. This yields a
family of G-models. We leave the interested reader to consult Field’s book.

REFERENCES

[1] J.P. BURGESS, The truth is never simple, this JOURNAL, vol. 51 (1986), no. 3, pp. 663–681.
[2] K. DEVLIN, Constructibility, Perspectives in Mathematical Logic, Springer Verlag, Berlin, Heidel-

berg, 1984.
[3] Q. FENG and R.B. JENSEN, Supercomplete extenders and type-1 mice, Annals of Pure and Applied

Logic, vol. 126 (2004), no. 1-3, pp. 1–73.
[4] H. FIELD, Saving truth from paradox, Oxford University Press, 2008.

HYPERMACHINES 17

[5] S. D. FRIEDMAN, Fine structure and class forcing, Series in Logic and its Applications, vol. 3, de
Gruyter, Berlin, New York, 2000.

[6] , Parameter free uniformisation, Proceedings of the American Mathematical Society, vol. 136
(2008), pp. 3327–3330.

[7] S. D. FRIEDMAN and P. D. WELCH, Two observations concerning infinite time Turing machines,
Biwoc 2007 report (Bonn) (I. Dimitriou, editor), Hausdorff Centre for Mathematics, January 2007, also at
http://www.logic.univie.ac.at/sdf/papers/joint.philip.ps, pp. 44–47.

[8] J.D. HAMKINS and A. LEWIS, Infinite time Turing machines, this JOURNAL, vol. 65 (2000), no. 2,
pp. 567–604.

[9] R. B. JENSEN, The fine structure of the constructible hierarchy, Annals of Mathematical Logic, vol. 4
(1972), pp. 229–308.

[10] A. KANAMORI, The higher infinite, Omega Series in Logic, Springer Verlag, New York, 1994.
[11] A. KECHRIS, Homogenous trees and projective scales, Cabal seminar 77-79: Proceedings of the

caltech-ucla logic seminar 1977-1979 (D.A. Martin A. Kechris and Y. Moschovakis, editors), Springer Lec-
ture Notes in Mathematics Series, vol. 839, Springer, Berlin, 1981, pp. 33–73.

[12] Y. N. MOSCHOVAKIS, Descriptive set theory, Studies in Logic series, North-Holland, Amsterdam,
1980.

[13] G.E. SACKS, The 1-section of a type-k object, Proceedings of the 1972 oslo symposium (Amster-
dam) (J.E. Fenstad and P.G. Hinman, editors), Studies in Logic, North-Holland, 1974, pp. 81–93.

[14] P.D. WELCH, Eventually Infinite Time Turing degrees: infinite time decidable reals, this JOURNAL,
vol. 65 (2000), no. 3, pp. 1193–1203.

[15] P.D. WELCH, Characteristics of discrete transfinite Turing machine models: halting times, stabiliza-
tion times, and normal form theorems, Theoretical Computer Science, vol. 410 (2009), pp. 426–442.

[16] , Determinacy in strong cardinal models, this JOURNAL, (submitted).
[17] , Weak systems of determinacy and arithmetical quasi-inductive definitions, this JOURNAL,

vol. arXiv: 0905.4412 (to appear).

KURT GÖDEL RESEARCH CENTER FOR MATHEMATICAL LOGIC,
WÄHRINGERSTRAßE 25,

1090 VIENNA,
AUSTRIA

E-mail: sdf@logic.univie.at.uk

SCHOOL OF MATHEMATICS,
UNIVERSITY OF BRISTOL,

BRISTOL,
BS8 1TW,

ENGLAND
E-mail: p.welch@bristol.ac.uk

