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Abstract

We elucidate the complexity of strategies for X3 (also called Gs,) games
played on polish spaces of the form “X. From previous work ([9]) it had
been known that strong comprehension principles of the form I13 were suffi-
cient, but II3 were not, to establish these amounts of determinacy. We charac-
terise the first ordinal [y where such strategies are to be found in the con-
structible hierarchy for trees T C <“X for X = 2 or IN (thus for Cantor or
Baire space) in Lg, as the first ordinal where L. admits certain kinds of end
extensions. Secondly we give a conjecture for it to be characterised as a cer-
tain closure ordinal for a class of monotone inductive operators.!

1 Introduction

The work in the paper [9] was motivated by trying to see how the Eg—theory of
arithmetical quasi-inductive definitions fits in with other subsystems of second
order number theory. What had been left open was a more precise discussion of
the location of strategies for Zg—games. We continue that discussion here.

To give this research a context we mention the results previously known in this
area. The attempt to prove the determinacy of two person perfect inormation
games (and the consequences of the existence of such winning strategies) has a
long and fruitful history, starting with work of Banach and Mazur and continuing
to the present.

In the next section we extract from [9] a criterion for where exactly the strate-
gies appear in the constructible L, hierarchy. Whilst we had this result for some
while, the characterisation is somewhat unusual in that it is expressed in terms of
the potential for such L, to have ill-founded elelmentary end extensions, and is not
so perspicaceous. Whilst waiting to discover something more standard we studied
the work of Martin on non-monotone inductive definitions [5]. In that paper he
concentrated on the inductive operators that were strictly in the complement of a
Spector pointclass (these are defined in [7]). Now Spector pointclasses (such as Z(f,
and within the hierarchy of projective sets: II1, 33 - and assuming Projective
Determinacy, X3, and H%nﬂ etc.) are very well behaved, comparatively well-
understood and enjoy many amenable properties that pointclasses in the comple-

1. We should like to warmly thank the Isaac Newton Institute for a Visiting Research Fellowship during the
2012 Syntax and Semantics Workshop which partially supported the writing of this paper.



2 Section 2

mentary class do not. The theory of I'-monotone inductive definitions is thus
smooth for I" a Spector pointclass. Martin’s paper is remarkable for documenting
properties of these co-Spector class operators. His work there is then applied to the
present scenario where here we have the relevant pointclasses as DX as the
Spector pointclass, and its complimentary, or dual, class is (using the fact that %9-
games are determined) is the non-Spector pointclass OII3. The characterisation
from Section 2 together with Martin’s theorems allow us to conclude that the
ordinal (3 is in fact precisely the closure ordinal of DII3-non-monotone inductive
definitions. (This sounds almost as if it could be trivially defining something in
terms of itself, but it is not.)

We assume the reader has familiarity both with the constructible hierarchy of
Godel - for which see Devlin [3]. For the basic notions of descriptive set theory
including the elementary theory of Gale-Stewart games, see Moschovakis [7]. Our
notation is standard. Some of the results here relate to sub-systems of second order
number, or analysis, and the basic theory of this is exposited in Simpson’s mono-
graph [8]. For models of admissible set theory, also called ‘‘Kripke-Platek set
theory’” see Barwise [1].

We first extract from our earlier paper a criterion for the constructible rank of
I19 games’ strategies. (Note that we take our games as defined in L and using con-
structible game trees; the existence of a winning strategy for a particular X9
(indeed arithemtic or Borel) game is a Z% assertion about the countable tree 1" and
the payoff set. As T' € L the truth of such an assertion has the same truth value in
the universe of sets or in L. We thus expect to find such strategies in L (since
Davis in [2] proved such strategies exist in the universe V' of sets). But where are
they?

Definition 1. Let an m-depth Yo-nesting of an ordinal o be a sequence ((p, 0r)
with (i) Forn <m: ¢, < (i1 <a<opy1<opn, (i) L¢, <5, Lo,

We shall want to consider non-standard admissible models (M, E) of KP

together with some other properties. We let WFP (M) be the wellfounded part
of the model. By the so-called ‘Truncation Lemma’ it is well known that this well
founded part must also be an admissible set. Usually the model will also be a
countable one of ““V = L. Let M be such and let « = On N WFP(M). By the
above « is thus an ‘admissible ordinal’ and L, will also be a KP model. An ‘w-
depth’ nesting cannot exist be the wellfoundedness of the ordinals. However an ill
founded model M when viewed from the outside may have infinite descending
chains of ‘M-ordinals’ in its ill founded part. These considerations motivate the
following definition.



Theorem 1.

Definition 2. An infinite depth Yo-nesting of « based on M is a sequence ((p, Sn)
with, forn <w:

(i) Cn < Cn1 <@ C Spt1 C 8 ; (i) 8n, € O0M; (i) (L¢, <, Ls, ) ™.

Thus the s, form an infinite descending E-chain through the illfounded part of
the model M. In [9] we devised a game whereby one player produced an w-model
of a theory and the other player tried to find such infinite descending chains
through M’s ordinals. In this paper we shall switch the roles of the players, and
have Player /I produce the model and Player [ attempt to find the chain. The game
is then ©9. We shall assume the reader has a copy of this paper to hand and shall
refer to it throughout for definitions and notation.

In order for there to exist a non-standard model with an infinite depth nesting
(of the ordinal of its wellfounded part) then the wellfounded part will already be a
relatively long countable initial segment of L (it is easy to see that if ¢ = supy, (,
then already L. F X1-Separation).

Example 1. (i) Let § be least so that Ls E Xo-Separation, and let (M, F) be an
admissible non-wellfounded end extension of Ls with Ls as its wellfounded part.
Then there is an infinite depth nesting of ¢ based on M.

(ii) By refining considerations of the last example, let o be least such that there
is v1 > 7o with L., <x, L, F KP. Then again there is an infinite depth nesting of
1 based on some illfounded end extension M of L.,.

Both of the above can be established by standard Barwise Compactness argu-
ments. However both these J and o we shall see are greater than the ordinal Sy
defined from this notion of nesting as follows.

Definition 3. Let 3 be the least ordinal (3 so that Lg has an admissible end-exten-
sion (M, E) based on which which there exists an infinite depth >9-nesting of [.

Definition 4. Let 7o be the least ordinal so that for any game G(A,T) with A €
¥, T e L., a game tree, then there is a winning strategy for a player definable
over L.

Theorem 2. Yo = (9. Moreover, any Y3-game for a tree T, with a strategy for
Player I, has such a strategy an element of L g, Any Hg—game for such a tree has a
strategy which may not be an element of Lg,, but it is definable over Lg,,

Remark: The proof reveals more about the strategies for Eg—games: they in fact
appear within a bounded initial segment of (3.
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Proof: We look at the construction of the proof of Theorem 5 of [9] in partic-
ular that of Lemma 3. There we used an assumption that there is a triple of ordinals
Yo < 71 < 2 with (a) L, <s, L+, and (b) L, <s, L, and (c) 72 was the second
admissible ordinal beyond ;. One assumed that I did not have a winning strategy
in G(A; T). The Lemma 3 there ran as follows:

Lemma 1. Let BC A C [T with B €113, If (G(A;T) is not a win for 1)L, then
there is a quasi-strategy 1™ € L., for Il with the following properties:

(i) [T*INB=2;

(ii) (G(A;T*) is not a win for I)Lm-

The format of the lemma’s proof involved showing that the 25”" notion
of ‘goodness’ embodied in (i) and (ii) held for &. To do this involved defining
goodness in general. We first define 7" as II’s nonlosing quasi-strategy for (G(A;
T'); this is X1 definable over L. as the latter is a model KPL; in particular if we use
the notation

Definition 5. 52 =4 {0 < v| Ls <5, L}
then 7" € HlLCO , where (o =qrmin ST \ pr(T’). More generally we define:

p € T' good if there is a quasi-strategy 7™ for II in TIQ so that the following
hold:

() [T*]NB=a;

(ii) G(A; T*) is not a win for 1.

Here T,; is the subtree of 7" below the node p. The point of requiring that the
pair (7o, 1) have the Yo reflecting property of (a) above, is that the class H of
good p’s of L., is the same as that of L., and so is a set in L., as it is thus defin-
able over L.,. The overall argument is a proof by contradiction, where we assume
that & is in fact not good, and proceeds to construct a strategy o for Player I in the
game G(A; T"), which is definable over L.,, and is apparently winning in L.,.
(The requirement (c) that 2 be a couple of admissibles beyond ;1 was only to
allow for the strategy o to be seen to be truly winning by going to the next admis-
sible set, and verifying that there are no winning runs of play for 71.) The contradic-
tion arises since 7" - which was defined as the subtree of T of II’s non-losing
positions - is concluded still to be the same subtree of non-losing positions in L,.
Being a non-losing position, p say, for IT is a II1 property of p. This carries up
from L., to L., as L., <%, L,,, and this is the reason for the requirement (b).
There is then no winning strategy for I in G(A; T") definable over L~,, contra-
dicting the reasoning that o is such.

This proves the Lemma: L., sees there is 7" a subtree of 7" witnessing that &
is good. The existence of such a subtree is a X»-sentence, and then again this
reflects down to L.,. We thus have such a 7™ in L.



The Theorem is proven by repeated applications of the Lemma, by using the
argument for each TI3 set B,, in turn where A = U,, Bn and refining the trees using
this procession from a tree to a subtree 7. We thus repeat the argument with 7™
replacing T'. Because T™ € L., we have the same constellation of this triple of
ordinals ~y; above the constructible rank of 7™, and can do this.

However we can get away with less. The definition of the subtree of non-losing
positions of I now this time in the new 7™ can be considered as taking place 1I;
over Ls, where dg is the least element of S%O with 7™ € Ls,. To get our contradic-
tion we actually use that Ls, <x, L, ; we do not need that L., <x, L,,. Notice
that our argument that 7™ exists is non-constructive: we simply say that the >2-sen-
tence of its existence reflects to L.,: we do not have any control over its con-
structible rank below 7. Moreover any sufficiently large ' greater than ~; would
do for the upper ordinal, as long as it is a couple of admissibles larger than ~;.
Thus we could apply the Lemma repeatedly for different B,, if we have a guarantee
that whenever a T, -like subtree is defined there exists a (, € S}m and a suitable
upper ordinal 7, > v with T}y € L¢, <5, L, . Of course if there are arbitrarily
large (, below ~p with this extendability property, then this is tantamount to
L., <x, L. for some suitable ', and this shows why our original constellation of
v; provides a sufficient condition.

Actually as the final paragraph of the Theorem 5 there shows, we are doing
slightly more than this: we are, each time, applying the Lemma infinitely often to
each possible subtree of of 7™ below some node p2 of it which is of length 2, to
define our strategy 7 applied to moves of length 4. We then move on to the next
119 set. Although we are applying the Lemma infinitely many times to each such
P2, and thus infinitely many new Jg-sentences, or trees, have to be instantiated, we
had that L., is a 2-admissible set, and as the class of such ps is just a set of L,
l9-admissibility works for us to find a bound for the ranks of the witnessing trees,
as some 0 < yp. We thus can claim that our final 7 is an element of L., even after
w-many iterations of this process.

(Bo > o) We argue for this. Let (M, E) be a non-standard model of KP with
an infinite nesting (Cy, s») about 3 as described. Note that S}, must be unbounded
in (o (so that Lg, F ¥1-Separation), and each ¢, is a limit point of Séo. We do not
assume that [y is Xe-admissible (which in fact it is not as the proof shows). Let
T € Lg, be a game tree. By omitting finitely much of the outer nesting we assume
T € L¢,. We assume that Player  has no winning strategy for G(A; T') in Lg, (for
otherwise we are done). Note that in M we have that L, also has no winning
strategy for this game (otherwise the existence of such would reflect into Lg,. We
show that 17 has a winning strategy definable over Lg,. Let A =|J B, with each
B,, € II9. For n = 0 we apply the argument of the Lemma using the pair ((y, 1) in
the role of (7o, 1) from before, with ((p, so) in the role of (dp, 2) described
above, i.e. we use only that 7' € L¢, and that L, <x, Ls,.
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The Lemma then asserts the existence of a quasi-strategy for /7 definable using
the pair (1, s1): T%(2@). By Xa-reflection the L-least such lies in L¢,, and we shall
assume that 77(9) refers to it.

Claim: For any pair (Cn, sn) for n > 1 the same tree T*(&) would have
resulted using this pair.

Proof: Note that we can define such a tree like 7%(@) using such pairs, since
for all of them we have that (o, so) D (C1, 51) D (Cms Sm) for m > 1. As T*(@) €
L, and satisfies a X2 defining condition there, and since we also have (1 € Sém, it
thus satisfies the same X5 condition in L¢, .. Q.E.D. Claim

For any position p; € T with 1h(p;) = 1, let 7(p1) be some arbitrary but fixed
move in T’(&), this now II’s non-losing quasi-strategy for the game G(A, T*(2))

as defined in L¢,. The relation “‘p € T'(2)" is Hf“({T*(@)}) or equivalently

HfQ({T*(Q)}), or indeed II{*({T*(@)}) where & is least in S¢ above

pr(T*(2)). Hence “‘y =T'(2)” € AY{T*(@)}) and thus T"(2) also lies in
L¢,. For definiteness we let 7(p1) be the numerically least move.

For any play, p2 say, of length 2 consistent with the above definition of 7 so
far, we apply the lemma again with B = A; replacing B = Ag and with (T%(9)),,
replacing 7. We use the nested pair ({2, s2) to define quasi-strategies for 17, call
them T™(p2), one for each of the countably many p. These are each definable in a
Y9 way over L, in the parameter (7%(2)),,. This argument uses that (77(2)),, €
L¢, <5, L. Let T'(p2) € L¢, be II’s non-losing quasi-strategy for G(A, T*(p2)),

this time with “‘y =T"(p3)”” € A;Q({T*(pg)}). (Again these will satisfy the same
definitions as over L¢,, for any m > 2.) Note that we may assume that the count-
ably many trees T"(p2) appear boundedly below (s, (using the 3o-admissibility of
(2). Again for p3 € T*(p2) any position of length 3, let 7(p3) be some arbitrary but
fixed move in T"(p2). Now we consider appropriate moves py of length 4, and
reapply the lemma with B = Ay and (7%(p2))p,. Continuing in this way we obtain

r [1,2k+2)

a strategy 7 for /I, so that 7 w, for k <w, is defined by a length k-recur-

sion that is E;Ck({T}).

As the argument continues more and more of the strategy 7 is defined using
successive ((m, Sm) to justify the existence of the relevant trees in L, . Knowing
that the trees are there for the asking, we see that 7 can actually be defined by a >o-
recursion over L g, in the parameter 1" in precisely the manner given above.

If « is any play consistent with 7, then for every n, by the defining properties
of T*(pan) given by the relevant application of the lemma, = € [T*(x [ 2n)] C =
A, Hence x ¢ A,and 7 is a winning strategy for /T as required. Thus Gy > 7o is
demonstrated.



For [y < ~o: suppose then Gy > vo. Then the existence of such a vy would be
part of the ¥1-Theory of L g,, and thus 7o < & where & is least with Ti= Téo (and
thus Ly <x, Lg,). We may now run the argument of Theorem 4 with Player /7 con-
structing an w-model of T' + “‘There is no transitive set model of T’ where T is
the theory: KP + V' = L + 1) where v says: ““7o exists”. This defines a ¥9-game,
which I must win. For if the model that /I constructs is illfounded below (g, I,
who is trying to find a descending chain, will be able to detect one, because the
argument of Theorem 4’s proof depended precisely on there being no infinite
nested sequence based on the wellfounded part of /I’s model. But the wellfounded
part of the model /T is building cannot be larger than a.,. Contradiction. Hence

fo <. QE.D.

Let T3 denote the ¥, theory of Ls. Recall that a set X C N (NY) is said to be
in OT for some adequate pointclass I if there is a set Y C N x NN (NN x NN) g0
that X = {x | Player I has a winning strategy in G(Y,, “NN)} where Y, = {y| (z,
y)eY}.

Theorem 3. Let & be least with T: = Tglo.

(i) Tisa complete OXY set of integers.

(ii) Hence for any o < a, T2 is a O3 set of integers and the reals of L are all
DX set of integers.

Proof of Theorem 3. The argument is really close to that of the Corollary 2 of
[9]. Indeed there we showed that the Toé1 , were DE% sets. Some details of this are
repeated. First remark that we need only show that 72 is OX.9 since the other T} for
o < @ are all recursive in 72 and DX, being a Spector class, is closed under recur-
sive substitution. For the same reason each real a € Ly is DX.3 as a set of integers.

We define a game G*.

Rules for I1.

In this game /I’s moves in  must be a set of Godel numbers for the complete >1-
theory of an w-model of KP +V = L + Det(2%9) + .

Everything else remains the same mutatis mutandis: I’s Rules remain the same
and his task is to find an infinite descending chain through the ordinals of II's
model. Note that if ¢ € T2, I now has a winning strategy: for if IT obeys her rules,
and z codes an w-model M of this theory, then M is not wellfounded, and has
WFP(M) N On < p(¢) where p(¢) is defined as the least p such that ¢ € T, ;.
However I playing (just as /I did in the main Theorem 4) can find a descending
chain and win. For we have WFP(M) N On < [y and so the argument goes
through, as there are no infinite depth nestings there. On the other hand if ¢ ¢ T! »
I1 may just play a code for the true wellfounded L gt with 37 the least admissible

above [+ 1, and so win. This shows that T2 is a complete ©X set of integers.
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Now suppose a € OX9. Then we have some 9 set A C w X “w with n € @ ——
I has a winning strategy to play into A, = {y € “w | (a, y) € A}. Then a is LT,
and thus is recursive in 72. Hence T3 is a complete X9 set of integers. Q.E.D.

In conclusion: we saw above that & was the least o with 7. = Téo. Phrased in
other terms, by elementary constructible hierarchy considerations, this is saying
that & is the minimum of Séo. Hence Ly <y, Lg, but for no smaller J is
L5 <y, Lg,. Since the statement ‘‘There is a winning strategy for Player I in G(A,
T)* is equivalent in KPI to a ¥1-assertion, if true in Lg, it is true in L. In short
for those £.9-games that are wins for I on trees T’ € Ly, there are strategies for such
also within Lg itself. For those that are wins for Player /I these may be defined
over Lg, at the end of the interval [&, B) or else may be found also in Lg. This
somewhat asymmetrical picture reflects the earlier theorems cited above. The the-
orems of the next section harmonise perfectly with this.

Remark: (i) Since OXY is a Spector class, one will have a DEg—prewellorder—
ings of T2 as a ©X set of integers, of maximal length, here &.

We write down one on T'= T2. Abbreviate I' = 0X9 and I = DII3. We need to
provide relations <r and <y in I' and I" respectively, so that the following hold:

T(y) = Vz{[T(z) A p(z) < p(y)| &=z <ry <=1 <py}.

For the relation x <r y, we define the game where /I produces a model M 1T of
T(y) A (=T(z) V p(x)£p(y)) and I tries to demonstrate that it is wellfounded.
Assume then T(y). If T(z) A p(z) < p(y) then either (=T(x))™"" and thus M’
is illfounded with WFP(M'!) N On < p(x) and hence I can win as in this region
there are no w-nested sequences. Or: (p(x)ﬁp(y))MH. Thus (p(z) > p(y))M"
and again this implies WFP(M 1) N On < p(x) with I winning.

Conversely suppose x <r y. Since T'(y) is assumed, if =7'(x), then IT can play
a wellfounded model with (y A =)' and win. If p(z) > p(y) then again the
same can be done. This proves the first equivalence above. The second is similar,

with now I producing a model M’ of T'(x) A p(x) < p(y) and II finding
descending chains. We leave the details to the reader.

(ii) One may also write out directly the theories T! for o < @& in a OIIY form.
This should not be surprising: a ©X3 norm as above should have ‘good” A(DXY)
initial segments.



A non-monotone inductive closure ordinal 9

3 A non-monotone inductive closure ordinal

We consider here a very different possible characterisation of (. Let ®: P(w) —
P(w) be any map. We think of ® as an inductive definition by means of the fol-
lowing: we ‘iterate’ ® and define ®* C w as follows: assume ®7 is defined for § <
@, then @< = Us<a 5. Now set P = &< ®(P<*). Then P iterated in this
way is a progressive operator and for some countable ordinal v we shall have a
fixed point ®7 = &<, We shall write this v as o(®). We shall further write
for ®°(®),

Definition 6. ¢ is monotone if* AC B — ®(A) C d(B).

Then for monotone ® the ®°° defined above is the smallest fixed point of @,
i.e. the smallest set X with ®(X)=X.

Definition 7. If T is a pointclass of relations on P(w) X P(w) then
o(®-mon) =gssup {o(®) | P €', & monotone }.

Definition 8. For I' C PP (w) we define the pointclass dual to I' as the pointclass
{P(W)\X | X €T} and is denoted T.

Thus 31 = H%; i]% = H% etc. In the latter case it is E% that is an example of a
Spector pointclass. The latter is defined in [7]; we shall not need to go into the
defintions or properties of Spector classes that much, but note that a Spector class
of pointsets is closed under union, intersection, number quantification, contains E?,
is w-parametrized (which implies that it has a universal set), and importantly has
the prewellordering property.

Martin points out that it is not always the case that inductive definitions lead
from simple sets via iteration of an operator in a particular pointclass to a compli-
cated set: he shows that the fixed point > of a monotone 11} operator, in fact is
still a T3 set. It is a one line argument: suppose P is such, then the following is also
H%:

neP® VX (P(X)CX —neX) — VX(Em(med(X)vneX).

He wishes to study o(f—mon) for I" a Spector pointclass, and he takes I13 as the
typical example of such. For this paper however the Spector pointclass of iterest is

DY and we are interested in o(OX9-mon). As remarked above by Det(X9),

5) ) = DX\I/O = OIIY. The relevant ordinal for us will then be o =qs o(DHg—mon).
He shows:

Theorem 4. (Theorem D [5]) Let I be a Spector pointclass. Suppose that for every
X Cw, and every I'(X) monotone ®, that > € I'(X), then o(I'-mon) is non-

projectible, that is S;(f-mon) is unbounded in o(T-mon).
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It is remarked that it is unknown in general if o(I-mon) is admissible, but of
those of the kind in the theorem not only is L, .,y admissible, it is a model of
Y1-Separation (which is another way of saying that it is non-projectible). We
should like to apply the theorem for T' = DX9, and then we might conclude that 7
is non-projectible. The required supposition stated in the last theorem needed to

apply this, we obtain from the following of Martin’s theorems:

Theorem 5. (Theorem E [5]) Suppose U is closed under union, intersection,
recursive pre-images and existential number quantification and contains »9. Sup-
pose Det(I') holds, and that OT" has the prewellordering property. If ® is then or
monotone, then ®> € OT.

In fact we apply the theorem with I' = »9 itself. All the assumptions are met
(©%Y is a Spector class and thus has the prewellordering property). The theorem
then relativizes uniformly in any X C w, to conclude that such ®> € OIT%.

Corollary 1. my = o(2113-mon) is non-projectible.
Theorem 6. 7= .

Clearly @ < my < (3. By the last clause of Theorem 4, 571r0 is unbounded in mo;
and thus &=min S71r0- Thus the only question left is whether mg < 9 is conceivable.
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