
G��-games and generalized computation

P.D. Welch
School of Mathematics, University of Bristol,

Bristol, BS8 1TW,
&

Isaac Newton Institute for Mathematical Sciences,
20 Clarkson Road, Cambridge CB3 0EH, United Kingdom

September 14 2016

Abstract

We show the equivalence between the existence of winning strategies for G�� (also called
Σ
) games in Cantor or Baire space, and the existence of functions generalized-recursive in a

higher type-2 functional.
We show, inter alia, that the set of indices of convergent recursions in this sense is a com-

plete ⅁⅁Σ
 set: as paraphrase, the listing of those games at this level that are won by player I

essentially has the same information as the ‘halting problem’ for this notion of recursion.
Moreover the strategies for the first player in such games are generalised recursive. We

thereby establish the ordinal length ofmonotone⅁⅁Σ
-inductive operators, and characterise the

first ordinal where such strategies are to be found in the constructible hierarchy. In summary:
Theorem (a) The following sets are recursively isomorphic.
(i)The complete ittm-semi-recursive-in-eJ set, HeJ;
(ii) the Σ-theory of (L� , P), where � is the closure ordinal of ⅁⅁Σ

-monotone inductions;
(iii) the complete ⅁⅁Σ

 set of integers.
(b)The ittm-recursive-in-eJ sets of integers are precisely those of L� .

1 Introduction

The attempt1to prove the determinacy of two person perfect information games (and the conse-
quences of the existence of such winning strategies) has a long and fruitful history, starting with
work of Banach and Mazur and continuing to the present. The work in the paper [25] was initially
motivated by trying to see how the Π

-theory of arithmetical quasi-inductive definitions fits in with
other subsystems of second order number theory, in particular with the determinacy of Σ

-sets.
There it was shown, inter alia, that AQI’s - which were known to be formally equivalent with the
most basic form of generalized computation to be introduced below - are not strong enough to
compute strategies for Σ

-games. What had been left open was a more precise discussion of the
location of those strategies. We continue that discussion here. To give this research a context we
shall also mention the results previously known in this area.

1Work on this paper was partially done whilst the author was a Simons Foundation Fellow at the Isaac Newton
Institute for Mathematical Sciences in the programme ‘Mathematical, Foundational and Computational Aspects of the
Higher Infinite’ (supported by EPSRC Grant Number EP/K032208/1), to both of which the author is very grateful.

1

The argument in [26] explicitly extracts what was undeclared in the proof, a criterion for where
exactly the strategies appear in the Gödel constructible L� hierarchy. Whilst we have had this result
for some while, the characterisation is somewhat unusual in that it is expressed in terms of the
potential for such L� to have certain kinds of ill-founded elementary end extensions, and is not
so perspicuous. We had conjectured that certain kinds of illfounded-computation trees (defined by
Lubarsky [16]) should also characterize this ordinal.This we have verified, but now see that there is a
bigger picture that connects the generalized recursion theory of the late 50’s and early 60’s of Kleene
(v.[12]) of higher types with the determinacy of games at this level. To be clearer the connection
is between the existence of winning strategies and the generalization of Kleene which is associated
with a transfinite computational model of the so-called infinite time Turing machines of Hamkins
and Kidder [7]. Kleene in [12] developed an equational calculus, itself evolving out of his analysis of
the Gödel-Herbrand General Recursive Functions (on integers) from the 1930’s, but now enlarged
for dealing with recursion in objects of finite type. (The set of natural numbers we denote by ! and
they are of type 0; f ∶ a → ! is of type k+ if a is of type k.) A particular type-2 functional was that
derived from the ordinary jump oJ, where

xoJ(e ,m) = { if {e}(m, x)↓ (meaning is defined, and has a defined value or converges)
 otherwise.

Here m is a string of integers, and x a function x ∶ ! → ! (thus an object of type 1) and e the
index number of an ordinarily recursive function of type-1 objects.

The reader should note the use of the downarrow in {e}(m, x)↓ to mean just what it says: the
expression is defined, and for which we use convergence as a synonym. Similarly {e}(m, x)↑ will
mean the expression is undefined with synonym of divergence. Functions of type greater than 1 are
conventionally called ‘functionals’, but we may occasionally let this slip.

Then oJ can be considered as a functional on type-2 objects and we could write the above
oJ(e , n, x) = /. Using coding of vectors of functions we ultimately think of this as oJ as hav-
ing domain ! ˆ k! ˆ l(!!) for some k, l P !.

He then developed (see Hinman [10] Ch. VI) a theory of generalised recursion in type-2 (and
higher) functionals; in this theory a designation such as ‘{e}I’ refers to the e’th function recursive in
the type-2 functional I. During a computation of, say, {e}I(n, y) oracle steps are allowed whereby
the result of a query (f ,m, x) is directly asked of I, and an integer result, I(f ,m, x), is returned.
(Of course even tomake the request the values of each of the infinitely many values of the functions
x have to already have been calculated; thus such a recursion can be represented by tree, which if
convergent is well founded, but is potentially infinitely branching at any node.) In this formalism
the index set

HoJ(e)↔{e}oJ(e)↓

is a complete semi-recursive (in oJ) set of integers, andKleene showed that this is in turn a complete
Π

 set of integers. Further he showed that the oJ-recursive sets of integers, i.e. those sets R for which

R(n)↔{e}oJ(n)↓ ∧ ¬R(n)↔{e}oJ(n)↓

for some index e, are precisely the hyperarithmetic ones.

2

Recall that a set X Ď ! (!!) is said to be in⅁⅁Γ for some (adequate) pointclass Γ on the integers
(Baire space), if there is a set Y Ď !ˆ!! (!!ˆ!!) so that X = {x ∣Player I has a winning strategy
in G(Yx ,<! !)} where Yx = {y ∣ ⟨x , y⟩ P Y}. Roughly speaking, if one has a recursive listing of
the Γ sets of reals A,A, . . . ,An , . . . , (say from some universal Γ set), then a complete ⅁⅁Γ set of
integers gives those n for which I has a winning strategy in G(An; <!!).

We have the following theorem connecting this with determinacy of open games:

Theorem 1.1 (Moschovakis [19], Svenonius [22])The complete ⅁⅁Σ
 set of integers is a completeΠ

 set
of integers.

Hence by Kleene’s results just alluded to:

Corollary 1.2 The complete ⅁⅁Σ
 set of integers is recursively isomorphic to H J , a complete J-semi-

decidable set of integers.

Moreover:

Theorem 1.3 (Blass [2]) Any Σ
 -game for which the open player, that is I, has a winning strategy has

a hyperarithmetic winning strategy.

Corollary 1.4 Any Σ
 -game for which player I has a winning strategy has a J-recursive strategy.

We seek to raise these ideas to the level of Σ
 . Wemay take our games as using initially recursive

game trees; the existence of a winning strategy for a particular Σ
 (indeed arithmetic or Borel) game

is a Σ
 assertion about the countable tree T and the payoff set. As T is in the Gödel universe L of

constructible sets, the truth of such an assertion has the same truth value in the universe of sets
or in L by the Levy-Shoenfield AbsolutenessTheorem. We thus expect to find such strategies in L
(since Davis in [4] proved such strategies exist in the universe V of sets). But where are they?

Kleene gave his account of recursion in objects of finite type which we have alluded to above in
[12],[15]. In order to give further weight to his definition he then showed it was extensionally equiv-
alent to an alternative given by a Turing machine model enhanced with oracle calls to a higher
type functional, see [13],[14]; this was just as for the case of ordinary Turing computation. Many
different concepts of computation on numbers turned out to be equivalent. By showing that the
equational model had the same functions as a Turing machine model he was the reproducing the
same conceptual move as Turing had made. (However the Turing machine model is capable of
more actions than the standard Turing machine.) In the first paper [13] he showed how any Tur-
ing machine computation of finite type could be achieved on the generalized recursive equational
approach. The second paper [14] showed the reverse. In both directions a convergent, (so defined)
computation could be represented, not as a finite tree of computations as for ordinary recursion,
but now as a well-founded but in general infinite tree of computations of function values - which
in general required calculating infinite objects, such as all values f (n) for a function f ∶NÐ→N, at
some level in the tree before submitting that completely calculated function itself as an argument
to a function of higher type at the level above. The well founded tree of either functional calcu-
lations, or of Turing machine computational calls, depending on the representation, witnessed a
successfully defined or convergent computation.

3

Our account here is motivated in spirit by that latter approach. Instead of using an equational
calculus we shall couch ourmodel not just in terms of the Kleenean Turingmachine, but in terms of
infinite time Turing machines-(ittm’s) computations now recursive in a certain operator eJ in place
of oJ. Indeed there is already a version of this kind of computation in the literature. In [16] Lubarsky
defines the notion of a ‘feedback’-ittmmachine,M, where aHamkins-Kidder ittmhas the additional
capability of calling upon a sub-computation handled by another such machineM′.Mmay pass
an index and an element of Cantor space toM′ as a parameter. The information passed back (if
any) is as to whether the computation with the given index acting on the given parameter halts or
not (which it may do after a transfinite number of steps, in contradistinction to the standard Turing
machine - this being the essence of ittm’s). This is thus in the spirit of the jump oJ given above.
A convergent, or defined feedback-ittm computation can then be conceived as a wellfounded tree
of sub-computations. A divergent computation (“freezing” in Lubarsky’s terminology) is one which
descends down an ill-founded path.

Rather than define recursions involving what would be the generalization of oJ above to halt-
ing ittm-computations, we use an eventual jump operator eJ. The ittm’s have an arguably more
fundamental dichotomous behaviour than ‘halting’ or ‘non-halting’: either they eventually have
some fixed output on their designated output tape (or cell, or cells) or they do not. That is, without
formally entering a halting state the Read/Write head may be meandering up and down the tape,
perhaps fiddling with the Scratch or Input tape, but leaving the output alone, in some fixed loop
without formally halting. This ‘eventual’ or ‘settled’ behaviour with fixed output fits in with the Σ
definable liminf rules of its operation. We thus define:

⟨x⟩eJ(e ,m) = { if {e}(m, x)↓ i.e. has fixed ouput
 otherwise.

Here {e} is now an index of a standard ittm-computable function, say given by some usual
(meaning completely ordinaryTuring) finite programme Pe(m, x). We then consider ittm-computations
recursive in eJ, for which we would now use the notation {e}eJ to denote the e’th such function
recursive in eJ. Here a query instruction or state is again included as part of the machine’s language
and the program can then receive 1/0 values back to the functional query ?eJ(e′, n, y)? For this
notion we find a level of the L hierarchy L� to provide an analogy with the above.

Theorem 1.5 The complete ⅁⅁Σ
 set of integers is recursively isomorphic to HeJ, the complete eJ-semi-

decidable set of integers where:
HeJ(e)↔{e}eJ(e)↓.

Thus to paraphrase, the listing of those games that arewonby I essentially has the same informa-
tion as the ‘halting problem’ for this notion of recursion. We feel this is interesting as it demonstrates
that two, prima facie very different, notions are in fact intimately connected. We should venture to
also suggest thatThis is perhaps arguably the first occasion of such a result that give employs ittms
in classical descriptive set theory: there is a wealth of ideas in papers (such as [11], [3] to pick two),
for using ittm’s to extend constructions from the “computable” to the “ittm-computable”. Classes of
sets of integers or reals defined by ittm’s yield examples of Spector classes etc. and fit into the global
picture given by such ideas, but, perhaps disappointingly, have not had until now any application

4

back to the ‘classical’ theory. However we regard the last theorem as indeed an application of ittm
ideas in the classical arena, in this case to Σ

-determinacy.
Define � as the supremum of the convergence times of eJ-recursive computations. Corre-

sponding to the result on Π
 we have as another such application:

Theorem 1.6 The complete ⅁⅁Σ
 set of integers is a complete ΣL�

 truth set.

(Recall that the complete Π
 set is also the Σ

L
!ck

 truth set.) Moreover

Theorem 1.7 Any Σ
-game for which the player I has a winning strategy, has an eJ-recursive winning

strategy.

Corresponding to the result on hyperarithmetic strategies we have:

Corollary 1.8 Any Σ
-game for which player I has a winning strategy has a winning strategy in L� .

Whilst the ittm’s with both their halting and eventually settled behaviour at type 1 have been
well-studied in recent years in their own right, it is true to say that they have not connected in any
substantial way with ‘classical’ descriptive set theoretical practice. However we regard the three
theorems above as satisfyingly establishing such a connection.

We assume the reader has familiarity both with the constructible hierarchy of Gödel - for which
see Devlin [5]- and the basic notions of descriptive set theory including the elementary theory of
Gale-Stewart games, seeMoschovakis [20]. Our notation is standard. Some of the results here relate
to sub-systems of second order number theory, or analysis, and the basic theory of this is exposited
in Simpson’s monograph [21]. For models of admissible set theory, also called “Kripke-Platek set
theory” or “KP”, see Barwise [1]. By “KPI” we mean the theory KP augmented by the axiom that
every set is an element of some admissible set, and by “KPI” the theory Gandy-Jensen,GJ, of rudi-
mentary closure, plus again every set is an element of some admissible set. (Thus transitive models
of the latter theory are rudimentary closed unions of admissible sets, and so in a L-hierarchy, are
simply those L� with � a limit of admissibles.) For an ordinal �, the next admissible greater than
� is denoted �+; the next limit of admissibles greater than � we shall denote �˚. We extend this
notation to transitive structuresM = L�[X] for some set X (usually X Ď !) inM. We writeM+ or
even L�+[X] where now this is the least transitive admissible set with M as an element. (There is
a danger of ambiguity here between the two notions of �+, but we always think of the + as giving
the next admissible in the relativised L-hierarchy that is being discussed. Similarly M˚ = L�˚[X]
is the least transitive model which is a union of admissible sets, containing M as an element.

In the language of generalized recursion theory, the pointclass ⅁⅁Σ
 of sets of integers cannot

be the 1-envelope of a normal type-2 function, by results of Harrington, Kechris, and Simpson (see
[9]). (A “1-envelope of a normal type-2 function” is the set of relations on ! recursive in that func-
tion.) What we are showing here is that the complete set of integers in ⅁⅁Σ

 is however (recursively
isomorphic to) the complete set which is ittm-semi-recursive in eJ - the eventual jump type-2 func-
tional. It is the “ittm-1-envelope” of eJ. Section 3 contains some facts related to ittm-computations,
and an exposition, and sets the scene with some basic results of our ittm-recursions-in-eJ.

5

We answer a further question of Lubarsky concerning Freezing-ITTM’s at Corollary 4.13.

Acknowledgements: We should like to warmly thank Bob Lubarsky for illuminating explanations
of his paper [16], discussions on the conjecture mentioned in the second paragraph, and helpful
comments on an earlier draft of this paper.

2 Strategies and non-wellfounded models

In Section 2.1 we define infinite depth nestings, and certain closure ordinals, stating some further
results connecting them, to be proved later. In Section 2.2 we repeat the extraction from our earlier
paper [26] of a criterion for the constructible rank of Σ

 games’ strategies.

2.1 Closure ordinals and nestings

Definition 2.1 A pair of ordinals (�, �) is a Σ-extendible pair if L� ăΣ L� and moreover � is the
least such with this property. We say � is Σ-extendible if there exists � with (�, �) a Σ-extendible
pair. By relativisation, a pair of ordinals (�, �) is an x-Σ-extendible pair, and � is x-Σ-extendible,
if L�[x] ăΣ L�[x].

Indeed our ideas and arguments relativise normally to real parameters x P N; and it is usual
to set (�(x), Σ(x)) to be the least, that is lexicographically least, x-Σ-extendible pair.

Definition 2.2 For m ≥ an m-depth Σ-nesting of an ordinal � is a sequence (�n ,�n)n<m so that
(i) if m = then � < � < �;
(ii) if < n + < m then �n ≤ �n+ < � < �n+ < �n ;
(iii) if k < m then L�k ăΣ L�k .

We shall want to consider non-standard admissible models (M , E) of KP together with some
other properties. We let WFP(M) be the wellfounded part of the model. By the so-called ‘Trun-
cation Lemma’ it is well known (v. [1]) that this well founded part must also be an admissible
set. Usually for us the model will also be a countable one of “V = L”. Let M be such and let
� = On∩WFP(M). By the above � is thus an ‘admissible ordinal’, i.e. L� will also be a KP model.
An ‘!-depth’ nesting cannot exist by the wellfoundedness of the ordinals. However an ill founded
model M when viewed from the outside may have infinite descending chains of ‘M-ordinals’ in its
ill founded part. These considerations motivate the following definition.

Definition 2.3 An infinite depth Σ-nesting of � based on M is a sequence (�n , sn)n<! with :
(i) �n ≤ �n+ < � Ă sn+ Ă sn ; (ii) sn P OnM ; (iii) (L�n ăΣ Lsn)M .

Thus the sn form an infinite descending E-chain (where, as above, E is the membership relation
of the ill founded model) through the illfounded part of the model M. In [25] we devised a game
whereby one player produced an!-model of a theory and the other player tried to find such infinite
descending chains through M’s ordinals. In this paper we shall switch the roles of the players, and
have Player II produce the model and Player I attempt to find the chain. (This is just to orientate
the game as then Σ

 .)

6

In order for there to exist a non-standard model with an infinite depth nesting (of the ordinal
of its wellfounded part) then the wellfounded part will already be a relatively long countable initial
segment of L (it is easy to see that if � = supn �n then already L� ⊧ Σ-Separation).

Example 2.4 (i) Let � be least so that L� ⊧ Σ-Separation, and let (M , E) be an admissible non-
wellfounded end extension of L� with L� as its wellfounded part. Then there is an infinite depth nesting
of � based on M.

(ii) By refining considerations of the last example, let be least such that there is > with
L ăΣ L ⊧ KP. Then again there is an infinite depth nesting of based on some illfounded end
extension M of L .

Both of the above can be established by standard Barwise Compactness arguments. (We give
the main idea for (i): by Barwise Compactness there is an ill founded end-extension (M , E) of L� ;
then by overspill considerations, if � P S� =df {� < � ∣ L� ăΣ L�}, then � has arbitrarily large
Σ-end extensions L� for � < � - namely any L� with � P S� . So L� must have an ill-founded
Σ-end extension (Lt)M . Now just repeat the argument, choosing a larger � > � with an ill
founded Σ-end-extension, (Lt)M for a tEt. Continue in this fashion to get an infinite nesting.
And as a sketch for (ii): by the assumed leastness of and so for , it is easy to argue that the
Σ-skolem hull of ∅ in L is all of L . This implies that the Σ-theory of L , T

 , is the same
as that of L . Now note that sentences of the language are divided into two disjoint kinds F ∪ U :
those of F that attain a certain truth value at some � < and retain that fixed truth value at all
L�′ for �′ P (�,]; and those � P U that are unstable, and cofinally in alternate their truth
value. Argue (by appealing to Σ-elementarity) that if � P F and � has the same fixed truth value in
(�� ,] then it will have that same truth value for � P (�� ,]. Note that F (and U) are definable
over L and hence are elements of the admissible set L . Another appeal to Σ-elementarity shows
that for � P U , every � P U is similarly ‘unstable’ in L , changing its truth value unboundedly in
. Now use admissibility to argue that there is least < so that every element of U has changed
truth value unboundedly in . By the stability of the ‘fixed’ set F, we then have that LăΣL . But
in fact, admissibility guarantees that there are arbitrarily large such < . However now we are in
the situation of (i), where for a non-wellfounded end-extension of L we can build an !-nesting
around .)

However both these � and we shall see are greater than the ordinal � defined from this
notion of nesting as follows.

Definition 2.5 Let � be the least ordinal � so that L� has an admissible end-extension (M , E) based
on which there exists an infinite depth Σ-nesting of �.

Definition 2.6 Let � be the least ordinal so that for any game G(A, T) with A P Σ
 , T P L� a

game tree, then there is a winning strategy for a player definable over L� .

The following then pins down the location of winning strategies for games at this level played
in, e.g. recursive trees.

Theorem 2.7 � = �. Moreover, any Σ
-game for a tree T with a strategy for Player I has such a

strategy an element of L� . Any Π

-game for such a tree has a strategy which is definable over L� .

7

Definition 2.8 Let � be the closure ordinal of monotone ⅁⅁Σ
-operators.

This ordinal will be less than �.

Theorem 2.9 (a) The following sets are recursively isomorphic.
(i)The complete ittm-semi-recursive-in-eJ set, HeJ;
(ii) the Σ-theory of (L� , P);
(iii) the complete ⅁⅁Σ

 set of integers.
(b)The ittm-recursive-in-eJ sets of integers are precisely those of L� .

Definition 2.10 Let � be the supremum of convergence ordinals of well-founded computations, aris-
ing from infinite time Turing machine computations on integers which are ittm-recursive (in a gener-
alized sense of Kleene et al.) in the Type-2 eventual jump functional eJ.

Theorem 2.11 � = �.

Remark: (i)The proof reveals more about the L-least strategies for Σ
-games: those for player

I in fact can be found within a strictly bounded initial segment of �: they will occur in L� .
(ii)The existence of all the above ordinals and �-models of the above theories can be proven in

the subsystem of analysis Π
-CA, but not in ∆

-CA (or even some strengthenings of the latter).
See [25].

2.2 The location of strategies for Σ
-games

Proof: ofTheorem 2.7 We look at the construction of the proof ofTheorem 5 of [25] in particular
that of Lemma 3. There we used an assumption that there is a triple of ordinals < < with
(a) L ăΣ L and (b) L ăΣ L and (c) was the second admissible ordinal beyond . One
assumed that I did not have a winning strategy in G(A;T). The Lemma 3 there ran as follows:

Lemma 2.12 Let B Ď A Ď ⌈T⌉ with B P Π
. If (G(A;T) is not a win for I)L , then there is a

quasi-strategy T˚ P L for II with the following properties:
(i) ⌈T˚⌉ ∩ B = ∅
(ii) (G(A;T˚) is not a win for I)L .

The format of the lemma’s proof involved showing that the ΣL
 notion of ‘goodness’ embodied

in (i) and (ii) held for∅. To do this involved defining goodness in general. We first define T ′ as II’s
non-losing quasi-strategy for G(A;T) (the set of positions p P T so that I does not have a winning
strategy in G(A;Tp)); this is Π definable over L as the latter is a model KPI. In particular if we
use the notation:

Definition 2.13 S =df {� < ∣ L� ăΣ L},

Definition 2.14 For n ≤ !, let Tn
� denote the Σn-theory of L� ,

8

then “ p P T ′ ” is Π
L�
 , where � =df min S/�L(T). More generally we define:

A p P T ′ is good if there is a quasi-strategy T˚ for II in T ′p so that the following hold:
(i) ⌈T˚⌉ ∩ B = ∅;
(ii) G(A;T˚) is not a win for I.
Here T ′p is the subtree of T ′ below the node p. The point of requiring that the pair (,) have

the Σ-reflecting property of (a) above is that the classH of good p’s of L is the same as that of L ,
and so is a set in L as it is thus definable over L by a Σ({T ′}) definition. The overall argument
is a proof by contradiction, where we assume that ∅ is in fact not good, and proceed to construct a
strategy � for Player I in the gameG(A;T ′), which is definable over L , and is apparently winning
in L . (The requirement (c) that be a couple of admissibles beyond was only to allow for the
strategy � to be seen to be truly winning by going to the next admissible set, and verifying that there
are no winning runs of play for II.) The contradiction arises since T ′ - which was defined as the
subtree of T of II’s non-losing positions - is concluded still to be the same subtree of non-losing
positions in L . Being a non-losing position, p say, for II is a Π property of p. This carries up
from L to L as L ăΣ L , and this is the reason for the requirement (b): we want T ′ to survive
beyond L for our argument to work. (This idea is important for the arguments in Section 4, so
let us refer to it as ‘the survival argument’.) There is then no winning strategy for I in G(A;T ′)
definable over L , contradicting the reasoning that � is such.

This proves the Lemma: L sees there is T˚ a subtree of T ′ witnessing that ∅ is good. The
existence of such a subtree is a Σ({T ′})-sentence, and then again this reflects down to L . We
thus have such a T˚ in L .

TheTheorem is proven by repeated applications of the Lemma, by using the argument for each
Π

 set An in turn where A = ⋃n An, and refining the trees using this procession from a tree to a
subtree T˚. We thus repeat the argument with T˚ replacingT . Because T˚ P L we have the same
constellation of this triple of ordinals i above the constructible rank of T˚, and can do this.

However we can get away with less. The definition of the subtree of non-losing positions of II
now this time in the new T˚ can be considered as taking place Π over L� where � is the least
element of S with T˚ P L� . To get our contradiction we actually use that L� ăΣ L ; we do not
need that L ăΣ L . Notice that our argument that T˚exists is non-constructive: we simply say
that the Σ-sentence of its existence reflects to L : we do not have any control over its constructible
rank below . Moreover any sufficiently large ′ greater than would do for the upper ordinal,
as long as it is a couple of admissibles larger than . Thus we could apply the Lemma repeatedly for
different Bn if we have a guarantee that whenever a T˚

n -like subtree is defined there exists a �n P S
and a suitable upper ordinal n > with T˚

n P L�n ăΣ Ln . Of course if there are arbitrarily
large �n below with this extendibility property, then this is tantamount to L ăΣ L′ for some
suitable ′, and this shows why our original constellation of i provides a sufficient condition.

Actually as the final paragraph of theTheorem 5 there shows, we are doing slightly more than
this: we are, each time, applying the Lemma infinitely often to each possible subtree of T˚ below
some node p of it which is of length , to define our strategy � applied to moves of length . We
then move on to the next Π

 set. Although we are applying the Lemma infinitely many times for
each such p, and thus infinitely many new Σ-sentences, or trees, have to be instantiated, we had
that L is a Σ-admissible set, and as the class of such p is just a set of L , Σ-admissibility works
for us to find a bound for the ranks of the witnessing trees, as some � < . We thus can claim that
our final � is an element of L even after !-many iterations of this process.

9

(� ≥ �)We argue for this. Let (M , E) be a non-standard model of KP with an infinite nest-
ing (�n , sn) about � as described. Note that S� must be unbounded in � (so that L� ⊧ Σ-
Separation), and each �n is a limit point of S� . We do not assume that � is Σ-admissible (which
in fact it is not as the proof shows). Let T P L� be a game tree. By omitting finitely much of the
outer nesting we assume T P L� . We assume that Player I has no winning strategy for G(A;T) in
L� (for otherwise we are done). Note that in M we have that Ls also has no winning strategy for
this game (otherwise the existence of such would reflect into L� . We show that II has a winning
strategy definable over L� . Let A = ⋃An with each An P Π

. For n = we apply the argument
of the Lemma using the pair (�, s) in the role of (,) from before, with (�, s) in the role of
(�,) described above, i.e. we use only that T P L� and that L� ăΣ Ls .

The Lemma then asserts the existence of a quasi-strategy for II definable using the pair (�, s):
T∗(∅). By Σ-reflection the L-least such lies in L� , and we shall assume that T∗(∅) refers to it.

Claim: For any pair (�n , sn) for n ≥ the same tree T˚(∅) would have resulted using this pair.
Proof: Note that we can define such a tree like T∗(∅) using such pairs, since for all of them

we have that (�, s) ⊃ (�, s) ⊃ (�m , sm) for m > . As T∗(∅) P L� and satisfies a Σ defining
condition there, and since we also have � P S�m , it thus satisfies the same Σ condition in L�m .

Q.E.D. Claim

For any position p P T with lh(p) = , let �(p)be some arbitrary but fixed move in T ′(∅),
this latter tree is defined to be (T˚(∅))′, II’s non-losing quasi-strategy for the gameG(A, T∗(∅)) as
defined in L� . The relation “p P T ′(∅)” is ΠL�

 ({T
∗(∅)}) or equivalently ΠL�

 ({T
∗(∅)}), or in-

deedΠL�
 ({T

∗(∅)})where � is least in S� above�L(T
∗(∅)). Hence “y = T ′(∅)”P ∆L�

 ({T
∗(∅)})

and thus T ′(∅) also lies in L� . For definiteness we let �(p) be the numerically least move.
For any play, p say, of length 2 consistent with the above definition of � so far, we apply the

lemma again with B = A replacing B = A andwith (T∗(∅))p replacing T . We use the nested pair
(�, s) to define quasi-strategies for II, call them T∗(p), one for each of the countably many p.
These are each definable in a Σ way over L� , in the parameter (T∗(∅))p . This argument uses that
(T∗(∅))p P L� ăΣ Ls . Let T

′(p) P L� be II’s non-losing quasi-strategy forG(A, T∗(p)), this
time with “y = T ′(p)”P ∆L�

 ({T
∗(p)}). (Again these will satisfy the same definitions over L�m

for any m ≥ .) Note that we may assume that the countably many trees T ′(p) appear boundedly
below � (using the Σ-admissibility of �). Again for p P T∗(p) any position of length 3, let �(p)
be some arbitrary but fixed move in T ′(p). Now we consider appropriate moves p of length 4,
and reapply the lemma with B = A and (T∗(p))p . Continuing in this way we obtain a strategy

� for II, so that � ↾ [,k+)!, for k < !, is defined by a length k-recursion that is Σ
L�k
 ({T}).

As the argument continuesmore andmore of the strategy � is defined using successive (�m , sm)
to justify the existence of the relevant trees in L�m . Knowing that the trees are there for the asking,
we see that � can actually be defined by a Σ-recursion over L� in the parameter T in precisely the
manner given above (the Σ-inadmissibility of � notwithstanding).

If x is any play consistent with � , then for every n, by the defining properties of T∗(pn) given
by the relevant application of the lemma, x P ⌈T∗(x ↾ n)⌉ Ď ¬An. Hence x ∉ A, and � is a winning
strategy for II as required. Thus � ≥ � is demonstrated.

10

(� ≤ �): suppose � > �. Then, since the existence of a winning strategy for a player in any
particular ⅁⅁Σ

 game would be part of the theory T
�
= T

� where � is least with L� ăΣ L� , and
since moreover that the existence of a stage � over which all such games have strategies, amounts
also to an existential statement, we have that � < �. But this is an immediate contradiction: since
there are Σ truths that are instantiated cofinally in � (by the definition of �), find such a P T

�

with � < � < �, where � is the least ordinal � with L� ⊧“KP + ” (also noting that � is a
limit if admissibles). Let ∆ be the theory KP + +“V = L”. Now consider the game where II must
produce a set of Gödel numbers for the complete Σ-theory of an !-model of the theory ∆+ “There
is no transitive set model of ∆”. I attempts to find an ill founded P-chain in II’s model. This is a Σ

-
game, but now II has as a winning strategy � simply to play a code for L� . Hence as � < � such
a strategy and so such a code for L� can be found inside L� ; but again, this contradicts Tarski.
Contradiction. Hence � ≤ �. Q.E.D.Theorem 2.7

Remark 2.15 Wemake some definitions from the (� ≥ �) part of the last proof for later use. We
have our starting treeT , and the tree of non-losing positions for II, T ′. We shall call these the trees of
depth 0. Then for any p P T ′ we argued that pwas good, and, since∅was good, we could define the
tree T˚ (∅) - the L-least tree witnessing this fact, and thence we had T ′ (∅) = (T˚(∅))′ the tree of
non-losing positions for II in G(A, T∗(∅)). We give the trees T∗(∅), (T˚(∅))′ depth 1. Then for
any position p P T with lh(p) = , we let �(p) be the numerically leastmove in (T˚(∅))′. We call
any play, p say, of length 2 consistentwith this definition of � so far, relevant (of length 2).Wewished
to apply the lemma again with B = A replacing B = A and with (T∗(∅))p replacing T . We shall
call a tree of the form (T∗(∅))p or ((T∗(∅))p)′ (the latter the tree of non-losing moves for II in
G(A; (T∗(∅))p)) relevant trees of depth 1. We then used (�, s) to define the T∗(p) (one tree for
each relevant p) and thence the trees T ′(p) to be II’s non-losing quasi-strategy forG(A, T∗(p)).
We give trees of the form T∗(p), T ′(p) depth 2. For p P T∗(p) any position of length 3, �(p)
was the numerically least move in T ′(p). Again we call such p = p⌢�(p) relevant, and the
corresponding trees (T∗(p))p and (T∗(p))p)′ relevant trees of depth 2. T∗(p), T ′(p) will
be of depth 3. And so forth.

Definition 2.16 LetTk denote the set of trees, and relevant trees, of depth k, as just defined for k < !.

We return now to considering the complexity of ⅁⅁Σ
 .

Theorem 2.17 Let � be least with T
� = T

�

(thus � = min S�).
(i) T

� is a complete ⅁⅁Σ
 set of integers.

(ii) Hence the reals of L� are all ⅁⅁Σ
 sets of integers.

Proof: The argument is really close to that of the Corollary 2 of [25]. Indeed there we showed that
the T

�
(which occurred cofinally in L� - see (� ≤ �) above) were ⅁⅁Σ

 sets. Some details of
this are repeated. First remark that (ii) is immediate given (i) since all the other reals in L� are all
recursive in T

� and ⅁⅁Σ
 , being a Spector class (v. [20]), is closed under recursive substitution. We

define a game G˚
' for Σ-sentences '.

Rules for II.
In this game II’s moves in x must be a set of Gödel numbers for the complete Σ-theory of an
!-model of KP+V = L + (¬' ∧Det(Σ

)).

11

Everything else remains the same mutatis mutandis: I’s Rules remain the same and his task is
to find an infinite descending chain through the ordinals of II’s model. Note that if ' P T

� , I now
has a winning strategy: for if II obeys her rules, and lists an x which codes an !-model M of this
theory, then M is not wellfounded, and has WFP(M) ∩ On < �(') where �(') is defined as the
least � such that ' P T

�+. However I playing (just as II did in the main Theorem 4) can find a
descending chain and win. For we have WFP(M) ∩ On < � and so the argument goes through,
as there are no infinite depth nestings there. On the other hand if ' ∉ T

� , II may just play a code
for the true wellfounded L�+ with �+ the least admissible above � + , and so win. This shows that
T
� is a ⅁⅁Σ

 set of integers.

Now suppose a P ⅁⅁Σ
 . Then we have some Σ

 set A Ď ! ˆ !! with n P a←→ I has a winning
strategy to play into An = {y P !! ∣ (n, y) P A}. Then a is ΣL�

 (since all Σ
-games that are a win

for I have a winning strategy an element of L� , and thence by Σ-elementarity, the L-least such is
actually an element of L� - and we merely have to search through L� for it) and thus is recursive
in T

� . Hence T
� is a complete ⅁⅁Σ

 set of integers. Q.E.D.Theorem 2.17 and 2.9(a) (ii)↔(iii).

In summary: we defined above � as the least � with T
� = T

�
. Hence L� ăΣ L� but for no

smaller � is L� ăΣ L� . Since the statement “There is a winning strategy for Player I in G(A, T)”
is equivalent in KPI to a Σ-assertion, if true in L� it is true in L� . In short for those Σ

-games
that are wins for I on trees T P L� , there are strategies for such also within L� itself. For those
that are wins for Player II, when not found in L� , these may be defined over L� . This somewhat
asymmetrical picture reflects the earlier theorems cited above. The theorems of the next section
harmonise perfectly with this.

Remark: (i) Since ⅁⅁Σ
 is a Spector class, one will have a ⅁⅁Σ

-prewellordering of T

� as a ⅁⅁Σ

set of integers, of maximal length, here �.
Wewrite down one on T = T

� . Abbreviate Γ = ⅁⅁Σ

 and Γ̌ = ⅁⅁Π

 . We need to provide relations
≤Γ and ≤Γ̌ in Γ and Γ̌ respectively, so that the following hold:

T(y)Ô⇒ @x{[T(x) ∧ �(x) ≤ �(y)]⇐⇒ x ≤Γ y⇐⇒ x ≤Γ̌ y}.

For the relation x ≤Γ y, we define the game where II produces a modelMII of T(y)∧(¬T(x)∨
�(x)≰�(y)) and I tries to demonstrate that it is illfounded. Assume then T(y). If T(x) ∧ �(x) ≤
�(y) then Either (¬T(x))M II

and thus MII is illfounded with WFP(MII) ∩On < �(x) and hence
I can win as in this region there are no !-nested sequences. Or: (�(x)≰�(y))M II

. Thus (�(x) >
�(y))M II

and again this implies WFP(MII) ∩On < �(x) with I winning.
Conversely suppose x ≤Γ y. Since T(y) is assumed, if ¬T(x), then II can play a wellfounded

model with (y ∧ ¬x)M II
and win. If �(x) > �(y) then again the same can be done. This proves the

first equivalence above. The second is similar, with now I producing a model MI of T(x)∧ �(x) ≤
�(y) and II finding descending chains. We leave the details to the reader.

(ii) One may also write out directly the theories T
� for � < � in a ⅁⅁Π

 form. This should not
be surprising: a ⅁⅁Σ

 norm as above should have ‘good’ ∆(⅁⅁Σ
) initial segments.

(iii) For any set A P ⅁⅁Π
/⅁⅁Σ there will be n P A so that the winning strategy witnessing this is

definable over L� but not an element thereof. (Otherwise an admissibility and Σ-reflection argu-

12

ment shows that there is a level L� with � < � containing strategies for both A and its complement.
But that would make A P ∆(⅁⅁Σ

) - a contradiction.)

Corollary 2.18 � = �.

Proof: Since ⅁⅁Σ
 is a Spector class, and we see that a complete ⅁⅁Σ

 set has a ⅁⅁Σ
 -norm of length

�, standard reasoning shows that there is a ⅁⅁Σ
-monotone operator whose closure ordinal is �.

Hence � = �. Q.E.D.
Results ofMartin in [17] show that for a co-Spector class, Γ̌ say, the closure ordinal of monotone

Γ̌-operators, o(Γ̌-mon) =df sup{o(Φ) ∣ Φ P Γ̌, Φ monotone}, is non-projectible, that is Lo(Γ̌-mon) ⊧
Σ-Sep . Moreover o(Γ) < o(Γ̌-mon).

He shows:

Theorem 2.19 (Theorem D [17]) Let Γ be a Spector pointclass. (i) Suppose that for every X Ď !, and
every Γ̌(X) monotone Φ, that Φ∞ P Γ̌(X), then o(Γ̌-mon) is non-projectible, that is S

o(Γ̌-mon) is

unbounded in o(Γ̌-mon).
(ii) (from the proof of his Lemma D.1) o(Γ-mon) P S

o(Γ̌-mon).

(He shows too that for Spector classes such as ⅁⅁Σ
 , the supposition of (i) is fulfilled.) If we take

Γ as ⅁⅁Σ
 and let � be the closure ordinal of Γ̌-mon. operators, then in this context we have an

upper bound for �:

Lemma 2.20 � < � ≤ �.

Proof: By (ii) of the last theorem, � P S� . But for no �
′ > � do we have L� ăΣ L�′ (as there

are games with winning strategies (for II) in L�+ for which there are none in L�).
Q.E.D.

Question: Is � = �?

3 Recursion in eJ

3.1 Kleene Recursion in higher types

We take some notation and discussion from Hinman [10]. There was developed the basic theory
of higher type recursion based on an equational calculus defined by Kleene and refined by him and
Gandy in the 1960’s. The basic intuition was to define recursions using not just recursive functions
on integers but also allowing recursive schemes using ‘computable’ functions f ∶ !ˆ !!Ð→! (and
similarly for domains which are product spaces of this type). A basic result in this area is that the
functions recursive in E (defined below) are precisely those recursive in oJ, the ‘ordinary Turing
jump’, where we set

oJ(e ,m, x) = { if {e}oJ(m, x)↓
 otherwise.

13

(We shall follow mostly Hinman in using boldface notation, early or mid-alphabet roman for
integers, but end alphabet roman for elements of !!, to indicate an (unspecified) number of vari-
ables of the given type in an appropriate product space k!ˆ l(!!) - which he abbreviates as k,l!.)
Then E (often written 2E) and E1 are the functionals:

E(x) = { if Dn(x(n) =)
 otherwise. E1(x) = {

 if Dy@n(x(ȳ(n)) =);
 otherwise.

For a fixed type-2 functional I of the kind above (thus any function I ∶ k! ˆ l(!!)Ð→! such
as, but certainly not confined to, E, E1 or oJ) an inductive definition of a set, Ω(I), consisting of
equational clauses can be built up in !-steps. This defines the class of those functions {e}I that are
recursive in I. Of course such include partial functions, since a descending chain of subcomputation
calls in the tree of computations represents divergence. Just as the clauses of the induction and the
set Ω(I) are an expansion of those clauses and functions of type-1 recursion (which were also due
to Kleene), and yielding an inductive set Ω, as intimated in the introduction, we shall also wish to
expand the notion of ‘computation’ further along another axis.

Our notation for computation will be modelled on that of the transfinite machine model, the
‘infinite time Turing machine’ introduced by Hamkins and Kidder [7]. The signifying feature of
such ITTM’s is the transfinite number of stages that they are allowed to run their standard finite
Turing program, on their one-way infinite tape.The behaviour at limit stages is defined by a ‘liminf ’
rule for the cell values of or , and a replacing of the read/write head back at the start of the tape,
and finally a special ‘limit state’ qL is entered into.

Actually the formalism is quite robust: one may change details of these arrangements without
altering the computational power. In [7] a 3-tape arrangement (for Input, Scratch Work, and Out-
put) is considered. The paper [8] shows this can be reduced to one tape (if the alphabet has more
than two symbols!). One can change the limit behaviour so that instead of a liminf value being de-
clared for each cell’s value, it simply becomes blank - for ambiguity - if it has changed value cofinally
in the limit stage (Theorem 1 of [23]). Similarly the special state qL is unnecessary: one may define
the “next instruction” at a limit stage to be the instruction, or transition table entry, whose number
is the liminf of the previous instruction numbers - this has the machine entering the outermost
subroutine that was called cofinally in the stage. Likewise the Read/Write head may be placed at
the cell numbered according to the liminf values of the cells visited prior to that limit stage (unless
that liminf is now infinite, in which case we do return the head to the starting cell). All of these
variants make no difference to the functions computed.

We shall review the following facts related to such machines.

3.2 Infinite Time Turing Machine computation

As we have intimated, an ITTMmay or may not produce some fixed output irrespective of whether
it has formally halted or not. We are interested in the most generality (and the full capabilities of
computation of the machines). The contents of the output tapes of machines that have formally
halted form a proper subclass of all possible outputs. We thus regard these and the partial functions
so computed as merely a special case of all partial functions computable by this model.

Nevertheless on a given fixed input (some x P ! may be written to a designated portion of the
tape, the ‘input tape’) any ITTM machine will eventually start to cycle - and by the starting point

14

of that cycling, designated �(x), if the output settles down, then it will have done so by an ordinal
less than �(x).

This last feature is in fact quite fundamental for the study of ITTMs. And so we may regard a
machine Pe(x) in this context as having come to a conclusion - the contents of the output tape -
but has not formally reached a halting state in the usual sense.

Definition 3.1 We shall say that a computation Pe(x) is defined or convergent with output y (and
write Pe(x)↓y) if it has eventually a fixed output y written on the output portion of the tape. We shall
say in this case that “y is (eventually)-ittm-recursive in x”. If it does not have settled output, we shall
write Pe(x)↑.

This enshrines our taking (eventually) fixed or settled output as the criterion of a successful
computation. Given a set A Ď ! ∪ !, this can be used as an oracle during a computation on an
ITTM in a familiar way: ?Is the integer on (or is the whole of) the current output tape contents an
element of A? and receive a / answer for “Yes”/“No”. We identify elements of ! as coded up in
!2 in some fixed way, and so may consider such A as subsets of !. But further: since having A
respond with one / at a time can be repeated, by using an !-sequence of queries/responses, we
could equally as well allow A to return an element f P ! as a response (we have no shortage of
time). We could then allow as functionals also A ∶ !Ð→!. However for themoment we shall only
consider functionals into !. Some examples follow.

Definition 3.2 (The eventual jump eJ)
(i)Wewrite {e}(m, x)↓ if the e’th ittm-computable function with inputm, x has an eventually settled
value.
(ii) We then define eJ by:

⟨x⟩eJ(e ,m) = { if {e}(m, x) ↓ ;
 otherwise (for which we write {e}(m, x)↑).

The next definition gives the restriction of the functional eJ to formally halting computations.

Definition 3.3 (The infinite time jump iJ)
We define iJ by:

⟨x⟩iJ(e ,m) = { if {e}(m, x)↓ and the computation formally enters a halting state ;
 otherwise.

These are both total functionals. We shall be interested in functions which are generalised-Kleene
recursive in a functionals I but primarily the simplest of these for us: the eventual jump. But first
we summarise some facts about ordinary ittm’s.

Fact 1 [7] shows:
(i) that Π

-predicates are decidable: given a code x P N there’s an ittm that will decide whether
x P WO or not;
(ii) there’s a program number e so that Pe(x) will halt with a code for (L�, P) if x P WO∧∣∣x∣∣ = �.

We have the following definitions:

15

● For z P N, the set of ittm-writable-in-z reals is the setWz Ď N where
Wz = {x P N ∣ DePe(z) halts with output x};

● The set of ittm-eventually-writable-in-z reals is the set
EWz = {x P N ∣ De(Pe(z) has x written on its output tape from some point in time onwards)}.

Fact 2 [24] shows:
(i) Let (� , Σ) be the lexicographically least pair of ordinals so that L� ăΣ LΣ. Let � be the least
ordinal with L� ăΣ L� . Then (The “�-�-Σ-Theorem”), L� ∩ N =W , L� ∩ N = EW . As is easily
seen all three ordinals are limits of Σ-admissibles, whilst � is Σ- but not Σ-admissible, and Σ
is not admissible at all. These definitions and Theorem relativize uniformly for any z Ď ! to give
�(z), Σ(z), . . . etc.
(ii) (a) Any computation Pe(n) that halts (in the usual sense) does so by a time � < �.

(b) Any computation Pe(n) that eventually has a fixed output tape, does so by a time � < � .
(c) Both � and � are the suprema of such fully “halting” times and “eventual fixed output” times

over varying e , n P ! respectively.
(iii) T

� ≡ h, and T
� ≡ h̃ where h = {e ∣ Pe(e) reaches a halting state} and h̃ = {e∣Pe(e) has fixed

output}. Similarly for x Ď ! we set x̃ to be hx =df {e∣Px
e (e) has fixed output}, and it too is (1-1)

equivalent to T
�(x)[x] the Σ-theory of L�(x)[x].

(iv) It is a consequent of (iii) that a universal machine (on integer input) has snapshots of its be-
haviour which, when first entering a final loop at stage � , will repeat with the same snapshot at time
Σ; moreover (1-1) in those snapshots at stage � or Σ is the theory T

� .
(v) Recursion, and Snm-Theoremsmay be proved in the standard manner ([7]); there are appropri-
ate versions of the Kleene Normal FormTheorems ([24]).

3.3 More on extendibility

As Fact 2 (i) above shows, the relation of “L� has a Σ-extension to LΣ” is fundamental to this no-
tion. In this case we say that “� is Σ-extendible” (or just “extendible”).

Fact 2 (contd.)
(vi) There is moreover a theory programme that continually writes codes for L� and their Σ!-
theories, T!� , and hence their Σ-theories, T

�, in an ittm-computable fashion successively for any
� < Σ (and then at stage Σ reverts to writing the code and theories for L� , and thereafter the same
for ordinals � P [� , Σ] forever in a loop). For Lim(�) we write T̂� =df Liminf�→� T

�, by which
we mean Liminf as sets of integers: T̂� = ⋃�<�⋂�≤<� T

 . Then for limit � < Σ there is a uniform

index e P ! that shows thatW T̂�
e = T

�, i.e. T
� is r.e. in T̂� uniformly in �. (See Lemma 2.5 of [27].)

Moreover for those � with L� ⊧ Σ-Sep, T
� = T̂�.

(vii) For the lexicographically least extendible pair (� , Σ), whilst (Church-Kleene) !
T
�

 < Σ, it is the
case that �(T

�) > Σ.

We make some further definitions concerning extendibility.

16

Definition 3.4 (The Σ-extendibility tree) We let (T ,ă) be the natural tree on such pairs under in-
clusion: as follows: if (� ′, Σ′), (� , Σ) are any two countable Σ-extendible pairs, then set (� , Σ) ă

(� ′, Σ′) iff � ′ ≤ � < Σ < Σ′.

● If we had allowed the inequality Σ ≤ Σ′ rather than a strict inequalitiy in the last definition we
could have defined a larger strict partial order ă′, and a larger tree (T ′,ă′); however this would
not have been wellfounded: if LΣ ⊧ Σ-Sep then it is easy to see that (T ′↾Σ + ,ă′) is illfounded.

Lemma 3.5 Let � be least such that L� ⊧ Σ-Sep. ; let� bemaximal so that (T ′↾�,ă′) is wellfounded
(where Field (T ′↾�) =df {(� , Σ) extendible ∣ Σ < �}). Then � = �.

Proof: (≤): Suppose � > �. Then (T ′↾�,ă′) is illfounded. So there is an infinite sequence of
extendible pairs (�n , Σn) with (�n+, Σn+) Ă (�n , Σn). By wellfoundedness of the ordinals there is
somem so that for all n > m all Σn are equal to a fixed Σ, whilst �n < �n+. Let �˚ = supn �n. Then
we have for n > m L�n ăΣ L�n+ ăΣ L�˚ . Then �˚ is not Σ-projectible, and hence L�˚ ⊧ Σ-Sep.
But �˚ < �. Contradiction.

(≥) ∶ L� ⊧ Σ-Sep. Then S� is unbounded in �. Let �i < �i+ be a cofinal sequence, for i < !.
Then ⟨(�i , �) ∣ i < !⟩ is a ă′-descending sequence in T ′↾� + . So � ≤ �. Q.E.D.

For E a class of ordinals, let E˚ denote the class of its limit points.

Definition 3.6 (i) We classify Σ-extendible ordinals as follows. Define by recursion on < � P On
the class E� the class of �(-Σ)-extendible ordinals:

E = {� ∣ � is Σ-extendible};
E�+ = {�� ∣ �� P (E�)˚ ∩ E};
E� = ⋂�<� E� ∩ E.

Here we decorate the variable � with the prefix indicating its minimum level of extendibility.
We shall let �Σ indicate that for some �� , (�� ,�Σ) is an �-extendible pair. Note that for any the
least element of E� greater than is always an element of E�/E�+, i.e. is �-extendible but not
� + -extendible.

3.4 Generalized recursive functions and the lengths of computations

Wedefine here in this subsection the notion of ittm-generalized recursive functions (we shallmostly
drop the prefix ‘ittm’ henceforth), in particular those generalised recursive in some functional I. We
then analyse the tree of subcomputations to define the notion of evaluated length of the linearised
evaluated computation corresponding to some PI

e(m, x). This serves to introduce some concepts
needed to think about computation trees and ittm-recursion in eJ. We shall need to consider the
lengths of computations in subtrees, and indeed the relationship between the length of a linearised
evaluated computation and Σ-extendability in the levels of the L hierarchy in which the recursion
is conceived of as running.

Definition 3.7 The length of a computation PI
e(m, x) in a type-2 oracle I is the least� (when defined)

so that the snapshot at � is the repeat of some earlier snapshot � < �, and so that the snapshot at
� recurs unboundedly in On.

17

A ‘snapshot’ is the !-sequence consisting of the current read/write head position, transition
state number, and the sequence of cell values at time . The snapshots up to the length of a cal-
culation have all the relevant information then in the calculation: everything thereafter is mere
repetition (� will be undefined if PI

e(m, x) is divergent, that is, has an ill-founded computation
tree). Another description of the length of the computation PI

e(m, x) is as the “top level” length of
the computation, which however disregards the lengths (and the snapshots) of the subcomputation
calls below it. We now describe a computation recursive in the type-2 functional eJ. We think of
this as a representation in terms of underlying ITTM’s. PeJ

e (m, x) will represent the e’th program
in the usual format with appeal to oracle calls possible. We are thus considering computation of a
partial function {e}eJ ∶ k!ˆ l(!)→ !. Such a computation may conventionally halt, or may go
on for ever through the ordinals.The computation of PeJ

e (m, x) proceeds in the usual ittm-fashion,
working as a TM at successor ordinals and taking lim inf’s of cell values etc. at limit ordinals. At
time � an oracle query may be initiated. We shall conventionally fix that the real being queried is
that infinite string on the even numbered cells of the scratch type. If this string is (f , y, y . . . ,)
then the query is ?Does PeJ

f (y) have eventually settled output tape?, and at stage �+ receives a /
value corresponding to “Yes/No” respectively. We thus regard eJ as the “eventual jump” and intend
the following:

eJ = {⟨⟨ f , y⟩, i⟩ ∶ (i = and PeJ
f (y)has settled output) or

(i = and PeJ
f (y)does not have settled output) }

This is formally defined as follows via an inductive operator ∆. Just as the Kleene equational calcu-
lus can be seen to build up in an inductive fashion a set of indices Ω[I] for successful computations
recursive in I (see Hinman [10], pp. 259-261), so we can define the graph of eJ as the fixed point of
a monotone operator ∆ = ∆eJ on ! ˆ !<! ˆ (!!)<! ˆ .

We set ∆(X) =:

{⟨⟨e ,m, x⟩, i⟩∣ PX
e (m, x) is an ittm-computation making only oracle calls

⟨⟨e′,m′, x′⟩, i′⟩ P X , with i = / if the resulting output is eventually settled or not}.

Let ∆ = ∅; ∆�+ = ∆(∆�); ∆<� = ⋃�<� ∆� & ∆� = ∆(∆<�) in the usual way. Then the least
fixed point of ∆ is the functional eJ.

Definition 3.8 (The {e}’th function generalised recursive in eJ) With eJ as just defined:
{e}eJ(m, x) isdefined or convergent if ⟨e ,m, x⟩ P dom(eJ); inwhich casewewrite {e}eJ(m, x) ↓,

and the value of {e}eJ(m, x) is eJ(e ,m, x).
Otherwise it is undefined or divergent (and we write {e}eJ(m, x) ↑).

Thus defined, continuing the discussion above, the { f }eJ’th function on input y say, has the
opportunity to make similar oracle calls, and we shall thus have a tree representation of calls made.
We wish to represent the overall order of how such calls are made, and indeed the ordinal times
of the various parts of the computation as it proceeds. Overall we have a ‘depth first’ mode of
evaluation of the computation tree - also called a tree of subcomputations. We therefore make the
following conventions. During the calculation of {e}eJ(m, x) (the topmost node � at Level , in

18

our computation tree T = T(e,m, x)) let us suppose the first oracle query concerning { f}eJ(y)
is made at stage �. The tree T will then have a node � below �, labelled with ⟨ f, n, y⟩ and
explicitly allow the computation { f}eJ(n,y) to be performed at this Level . The ‘time’ for this
computation, of course starts at t = - although each stage is also thought of as one more step
in the overall computation of the computation immediately above: namely {e}eJ(m, x). Suppose
{ f}eJ(n, y) makes no further oracle calls and the length of { f}eJ(n, y) is �. Control and
the correct / bit is then passed back up to Level 0, and the master computation proceeds.

We deem that � +� steps have occurred so far towards the final evaluated length, or linearised
length, of the calculation H = H(e ,m, x), of what will be {e}eJ(m, x).

However if { f}eJ(n, y) has made an oracle query, let us suppose the first such was
?{ f}eJ(n, y)?, then a new node � is placed below � labelled with ⟨ f, n, y⟩ (the label is also
part of T). If this piece of computation at � takes � steps without oracle calls to cycle before con-
trol and the result is passed back up to �, (i.e. the length of { f}eJ(n, y) is �) then those �
steps will have to be part of the overall evaluated length of calculation for {e}eJ(m, x), (as they
would be for the evaluated length of { f}eJ(n, y)’s calculation) - although those � steps would
only have counted for 1 step as a simple oracle-call in the unevaluated length of { f}eJ(n, y)’s
calculation. If the {e}eJ(m, x) converges then we shall have its computation tree T = T(e ,m, x)
a finite path tree (with potentially infinite branching) and some countable rank. T will be labelled
with nodes {��}�<�(T) that are visited by the computation in increasing order (with backtracking
up the tree of the kind indicated). Thus �� is first visited only after all �� have been visited for � < �.
The �’th oracle call to Level k will generate a node placed to the right of those so far at Level k
(and thus to the right of those with lesser indices � < � at that level). The tree will thus have a
linear leftmost branch, before any branching occurs. Further, we may think of H = H(e ,m, x) as
the linear length of the computation, were the tree T(e ,m, x) considered instead as representing a
linear computation with the nodes �� visited in increasing index order.

Assuming {e}eJ(m, x) convergent, we may define by recursion a function H(f�, n�, y�) for
 ≤ � < �(T), giving that evaluated length of the calculation at node �� taking into account the
computations at nodes below it. Suppose the oracle queries made by {e}eJ(m, x) at Level 0 were
{ f� j}eJ(n� j , y� j) for j < �, and they were made at increasing times � j for j < � in {e}eJ(m, x). For
later use we also define the snapshot at Level 0 at time by s().Now let � i (and for later use, si)
be defined by:

� = �; s = x
� j+ = � j+ − � j; s j+ = s(� j)
�� = �� − sup{�k ∣ k < �}; s� = s(sup{�k ∣ k < �});

then the evaluated length of the calculation is the wellordered ordinal sum:

H(e ,m, x) = { ∑
�
j=(� j +H(f� j , n� j , y� j)) if � > ;

Σ(x) otherwise.
of course assuming by induction that the evaluated lengths of the computations H(f� j , y� j) have
been similarly defined.

We call the master computation {e}eJ(m, x) together with all the subcomputations of the tree
explicitly performed the evaluated computation (as opposed to the top level computation with sim-
ple -step queries).

19

● It is possible, and easy, to design an index f P !, so that { f }eJ() is a convergent computa-
tion, which has an unevaluated length of just Σ but has evaluated length H (f , ,∅) > Σ. Hence
for performing a computation together with all its subcomputations as a tree, and seeing how the
evaluated computation relates to extendibility in the L hierarchy, this has to be done in suitably
large admissible sets.

Lemma 3.9 Suppose {e}eJ(m, x) is convergent with computation tree T P M, and with x P M,
where M is a transitive admissible set. Let � = OnM . Suppose for every node �� in T that the compu-
tation at the node { f�}eJ(n�, y�) has length � < � (this includes the length of {e}eJ(m, x), being at
�, is some < �). Then H(e ,m, x) < �.

Proof: The required ordinal sum can be performed by an induction on the rank of the nodes in the
tree, setting = rank(��), for those � with �� a terminal point of a path leading downwards from
�. This can be effected inside the admissible set M. Q.E.D.

Better (recalling the notation x̃ from Fact 2 (iii) above):

Lemma 3.10 Suppose {e}eJ(m, x) is convergent with computation tree T P M, and with x P M,
where M is a transitive admissible set, closed under the function x ↣ x̃. Let � = OnM . Then
H(e ,m, x) < �.

Proof: This is similar to the above, and where we now use the si . By induction on rk(T) = � < �.
Note first that the closure ofM under the function x ↣ x̃ ensures that for all y P M, that Σ(y) < �.
Suppose true for all such trees of convergent computations { f }eJ(n, y) of smaller rank than �,
for y P M . Suppose {e}eJ(x) makes queries at times ⟨�i ∣ i < �⟩ to nodes at Level 1. Note that
� < � as TP M. Suppose the calls are to the subtrees ⟨Ti ∣ i < �⟩ with (fi , yi) passed down at
time �i . Now notice that � < Σ(x) (because the computation prior to � is (equivalent to) an
ordinary ittm computation, which of course loops at time Σ(x).) Notice in the above notation that
� j+ < Σ(s j) (as the time to the next query, if it exists, is always less than the least s j-extendible by
the same reasoning). Similarly �� < Σ(s�). By assumption on M, all such Σ(s j) are less than �.
Consequently if H(fi , yi) = �i < �, the whole length of the computation is bounded:

H(e ,m, x) =
<�
∑
i=
� i + �i ≤

<�
∑
i=

Σ(si) + �i < �.

Q.E.D.

Definition 3.11 (i) The level of the computation {e}eJ(m, x) at time � < H(e ,m, x), denoted
Λ(e , (m, x),�), is the level of the node �� at which control is based at time �, where:
(ii) the level of a node �� is the length of the path in the tree from � to ��.
(iii) By Level n we accordingly mean the set of nodes in the tree with level n.

Thus for a convergent computation, at any time the level is a finite number (‘depth’ would have
been an equally good choice of word). A divergent computation is one inwhichT(e ,m, x) becomes
illfounded (with a rightmost path of order type then !).

20

Lemma 3.12 The computation {e}eJ(x) converges if and only if there exists some x-Σ-extendible
pair (� , Σ) so that Λ(e , x , �) = .

Proof: Suppose {e}eJ(x) converges. If {e}eJ(x) enters a halting state conventionally then the
conclusion is trivial as then for all sufficiently large x-Σ-extendible pairs (� , Σ), the machine has
halted at Level 0. If otherwise, then the computation {e}eJ(x) will loop forever through the ordi-
nals. But, using the definition of the lim inf behaviour at limit stages, it is easy to argue that there is
a cub subset C Ď ! of points �,� with the snapshots of the computation at these times identical,
and with Λ(e , x ,�) = Λ(e , x ,�) = . Now find a pair (� , Σ′) both in C, with L�[x] ăΣ LΣ′[x].
Now minimise Σ′ to a Σ > � with L�[x] ăΣ LΣ[x], thus (� , Σ) is as required.

Conversely: suppose that (� , Σ) is some x-Σ-extendible pair satisfying the right hand side. By
Σ-extendibility, Λ(e , x , Σ) is also . By the lim inf rule the snapshot of the computation {e}eJ(x)
- which we can envisage running inside LΣ[x] - at time � is ΣL�[x]

 (x). Again by Σ-extendibility, it
is the same at time Σ. Notice that any cell of the tape, Ci say, that changes its value even once in the
interval (� , Σ), will, by Σ-reflection, do so unboundedly in both � and Σ. Consequently we have
final looping behaviour in the interval [� , Σ]. Hence we have our criterion for a fixed output and
eJ-convergence. Q.E.D.

Lemma 3.13 Suppose we have a 2-nesting � < � < Σ < Σ. Suppose at time � of the evaluated
computation of {e}eJ(m) either {e}eJ(m) or a subcomputation thereof is not yet convergent and is
at Level k of its computation tree. Then at time � it is not yet convergent and control is at a level ≥
k + .

Proof: By Σ-reflection and the lim inf rule, {e}eJ(m) is still running, and control is still at depth k
at Σ. This mean the snapshots at � and Σ are identical. Suppose k = .Thus {e}eJ(m) has its first
overall loop at (�, Σ), and the computation is convergent, and is then effectively over. Suppose
for a contradiction that control is at level 0 also at � (and again also at Σ). So again {e}eJ(m) has
looping snapshots at (�, Σ). However this is a Σ-fact about {e}eJ(m) that LΣ sees: “There exists
a 2-extendible pair (� , Σ) with {e}eJ(m) having identical snaphots at level 0 at (� , Σ).” But then
there is such a pair � < Σ < � and {e}eJ(m)’s computation is again convergent at Σ contrary to the
supposition on �.

The argument for k ≥ is very similar: if lim inf�→� Λ(e ,m,�) = Λ(e ,m, �) = k, then
lim inf�→Σ Λ (e ,m,�) = k also. Again, if it entered the interval (�, Σ) at this same level k it
would loop there, and by the same reflection argument applied repeatedly would do so not just
once but unboundedly below � at the same level k. But after each successful loop at level k, control
passes up to level k − . However then lim inf�→� Λ(e ,m,�) ≤ k − . Contradiction! Q.E.D.

Lemma 3.14 (Boundedness Lemma for computations recursive in eJ) Let � be the least infinitely
nested ordinal in some ill-founded model M withWFP(M) = L� . Let � be least with L� ăΣ L� .
Then any computation {e}eJ(m) which is not convergent by time � is divergent.

Proof: Let � < ⋯ < �n < ⋯�⋯ Ă sn Ă ⋯ Ă s witness the infinite nesting at � in M. By the
definition of� no {e}eJ(m) is convergent first at a time� P [�,�) as this would be a Σ-fact true
in L� ; but then by Σ-reflection, it is true in L� . However if {e}eJ(m) is not divergent before �,
it will be by �: the previous lemma shows that Λ(e ,m, �n) < Λ(e ,m, �n+) holds inM. But these

21

level facts are absolute to V , as they are grounded just on the part of the evaluated computation
tree being built in L� as time goes towards � (and are not dependent on oracle information from
eJM which perforce will differ in its later parts from the true eJ); so {e}eJ(m)’s computation tree
T(e ,m) will have an illfounded branch at time �. Q.E.D.

The above then shows that the initial segment L� of the L-hierarchy contains all the informa-
tion concerning looping or convergence of computations of the form PeJ

e (m). A computation may
then continue through the wellfounded part of the computation tree for the times � < � but if so,
it will be divergent. Relativisations to real inputs x are then straightforward by defining �(x) as
the least such that there is an infinite nesting based at that ordinal in the L[x] hierarchy etc.

Lemma 3.15 Let x Ď !. Then T
Σ(x)(x) =df Σ-Th(LΣ(x)[x]) is eJ-recursive in x.

Proof: There is an index e so that running Pe(x) asks in turn if ?n P T
Σ(x)(x)? for each n, and will

receive a / answer from the oracle eJ. Consequently Pe may compute this theory on its output
tape, and then halt. Q.E.D.

Remark: T
Σ(x)(x) ≡ x̃ (by Fact 2 (iii) above).

Lemma 3.16 Let x Ď !. Then a code for LΣ(x)[x] is eJ-recursive in x.

Proof: There is a standard ittm program that on input x̃ will halt after writing as output a code for
LΣ(x)[x]. Thus, by the last remark and lemma, a code for LΣ(x)[x] is also eJ-recursive in x.Q.E.D.

Further:

Fact 3.17 ● (i) For any e , x, the first repeating snapshot s(e , x) of Pe(x) is eJ-computable in x, as
is a code for L�[x], L�[x] and L�˚

[x] where �, � are the ordinal stages of appearance of the first

repeating snapshot s(e , x), and �˚
 is the least � > � which is a limit of s(e , x)-admissibles.

● (ii) We may thus have subroutines that ask for, and compute, such objects during the computa-
tion of some { f }eJ(y) say. Since satisfaction is also ittm-computable, we may query simply whether
?L�˚

[x] ⊧ �? and receive an answer.

Usual methods prove:

Theorem 3.18 (The eJ-Recursion theorem) If F(e ,m, x) is generalized-recursive in eJ, there is e P

! so that
{e}eJ(m, x) = F(e,m, x).

One may show:

Theorem 3.19 The functional E is generalized-recursive in eJ, and iJ, and the latter two are mutually
generalized-recursive in each other.

22

Proof: We sketch the least obvious direction. To compute eJ(e ,m, x) using iJ, it suffices to ittm-
compute the successive theories of the L�[x]-hierarchy using a standard ittm-computation (one of
our ‘Basic Computations’ listed just below), and for each successive theory produced, run a sub-
computation, recursive in iJ that asks the iJ-decidable question as to whether computing in turn
from that theory, will result in another level, L�[x] say, of the hierarchy with the same Σ theory.
If the answer is positive then we have that L�[x] is Σ-extendible and thus from its theory we can
by inspection answer whether eJ(e ,m, x) has a settled output; if the answer is negative, we return
to the main calculation and compute the next theory in the hierarchy. The procedure terminates
since at some point we shall indeed reach the least � with L�[x] Σ-extendible. and at this point
we shall have our / answer. (The crucial fact that we can reach the least Σ(x)-extendible � is just
the relativized version of Fact 2 (i) above.) Q.E.D.

We collect together some of the above Facts and results, in order to abbreviate our descriptions
of algorithms. This will help to have a library of basic algorithms which we shall simply quote as
being ‘recursive in eJ’ without further justification.

Definition 3.20 (Basic Computations-BC) (i) Any standard ittm-computation Pe(n, x) is Basic.
(ii) If a code y for an � ordinal is given, then the computations that compute: for any x (a code

for) L�[x] and the satisfaction relation for L�[x] are both Basic (in x , y). (These computations show
those objects are eJ-recursive, if � is).

The following are all eJ-recursive, and Basic:
(iii)The function x ↣ x̃;
(iv)The function that computes x ↣ Σ(x), the larger of the next extendible pair in x;
(v) The function that computes x ↣ Σ(x)+.

Stronger ordinals than simply Σ(x)+ can be eJ-recursive:

Lemma 3.21 There is a (Turing) recursive sequence of indices ⟨ei ∣ < i < !⟩ so that for any � < !
with a code x P N, {ei}eJ(x) computes a code for the next i-extendible i� > �.

Proof: For i = this has been done using Basic Computations. Suppose ei has been defined, and
we describe the programme {ei+}eJ. Assume without loss of generality that � = , x = const.
Then {ei}eJ() computes a code for the least i-extendible, � ∶= i� say. By a basic computation let
a slice of the scratch tape R be designated to hold T

�
; R ∶= T

�
. A code for �,W� say, is recursive

in T
�
. Now compute {ei}eJ(W�). This yields the next i-extendible � = i�. Now, using Basic

Computations, write successively to R the theories T
�
, T
�+, . . . , T

�+� , . . . for � < �. We note that

at limit stages � ≤ �, R will contain “liminf ” theories T̂� = Liminf�→� T
� (by the usual automatic

ittm liminf process) but that T
� is uniformly r.e. in T̂�. (For the latter see Fact 2(vi). It is easy to

argue that T̂� ⊇ T
�, and that if sup S� = � then we have equality, it is the bounded case of S� in

� that requires argument.) And again a code W� for � is then recursive in T
�. The point of this

exercise of writing theories to R is to ensure continuability of the computation, and that we do not
start to loop too early. (Another way to put this is to say that it ensures sufficient ‘universality’,)
The writing out of all levels of the theories to R is a precautionary step: in general we do not have
T̂i+� = lim inf i�→i+� T̂i� . However T̂i+� is what we shall need to calculate i+� .

23

Set R ∶= T̂� ; by the comments just made T
�
is r.e. in R and R P L�+; now compute {ei}eJ(W�)

and repeat this process. As there is no means for the machine to halt, there is a least looping pair
of ordinals for this overall process so far, (� , Σ) say. Let (i+� , i+Σ) be the least i + -extendible
pair. We claim that this is the pair (� , Σ). Suppose � < i+� . By the repetition of the contents of R
in the loop points, we have T̂� = T̂Σ in the above algorithm, hence T

� = T

Σ, and thus L� ăΣ LΣ.

But then � is an extendible limit of i-extendibles, as � is a limit point of this looping process. This
contradicts the minimality of i+� . Hence � equals the latter, and Σ = i+Σ follows.

Hence wemay compute T̂i+� , as the eventually fixed output bymeans of the above looping pro-
cedure. It is thus recursive in eJ. We let {ei+1}eJ be the programme of the procedure just described
followed by the basic computation that finds a codeWi+� for i+� by a method uniformly r.e. in the
now eJ-recursive T̂i+� .

Finally note that the continuing description of the programme {ei+}eJ from {ei+1}eJ merely
repeats the above but altering only a few indices. We may thus determine a recursive function
i ↦ ei+. Q.E.D.

Entirely similar is:

Lemma 3.22 There is a recursive sequence of indices ⟨e′i ∣ i < !⟩ so that {e′i}eJ(x) writes a code for
iΣ(x), the least Σ-extension of L i�[x].

4 The determinacy results

We shall assume a certain amount of familiarity of working with ittm’s and shortcuts amounting to
certain subroutines, so as not to overload the reader with details.

Theorem 4.1 For any Σ
 game G(A;T), (with T recursive) if player I has a winning strategy, then

there is such a strategy recursive in eJ; if player II has a winning strategy, then there is such a strategy
definable over L� .

Outline of the proof of 4.1
Idea: We suppose A = ⋃n Bn with each Bn P Π

, with an initial game tree T . For expository
purposes we shall assume that T = <!! - relativisations will be straightforward. We shall provide
an outline of a procedure which is recursive in eJ and which will either provide a strategy for I in
G(A;T) (if such exists) or else will diverge in the attempt to find a strategy for II. We wish to apply
the main Lemma 3 of [25] for the successive Bn. The control of the procedure will be at different
Levels of the initial finite path tree of the computation. At Level 0 will be the main process, but also
the procedure for finding witnesses and strategies involved in the arguments for the Main Lemma
applied with B = B. We first search for a level in the L-hierarchy whose code is eJ-recursive and
for which we can define a non-losing subtree T ′ Ď T , for which all p P T ′ have witnesses T̂p to p’s
goodness in the sense of (i) and (ii) stated at Def. 2.14 above. In fact we shall search for pairs of levels
in the L-hierarchy, in the sequel, between which we have absoluteness of our non-losing subtrees.
After having found such, this data will be encoded as a real (these routine details, the reader will
be pleased to learn, we omit) and a subroutine call made to a process at the lower Level 1 which
will attempt to find the right witnesses etc. to apply the Lemma for B = B. We now search for a
further level of the L-hierarchy which again has the right witnesses to goodness to all the possible

24

relevant subtrees associated with positions p of length . As we search for such an L�, wemay find
that some of our original witnesses to goodness at Level 0 no longer work in our new L�, or even
more simply that our T ′ from Level 0 now has nodes p which have become winning for I in this
L�. We accordingly keep testing the data handed down to see if any of it has become ‘faulty’ in this
respect. If so, then we throw away everything we have done at Level 1, pass control back up to Level
0 together with the ordinal height of the current L� we reached. We then go back to searching for
an L�′ which is ‘good’ in all of these previous respects at Level 0 for a new T ′, which we then shall
pass down to Level 1 for another attempt.

Eventually we shall reach a stage where we have a sufficiently large model where all the data and
our witnessing subtrees work at both levels 0 and 1. Accordingly again all this data is passed down
to the subroutine at Level 2 for assessing potential subtrees for application in the Lemma 2.12 to be
applied for B = B. Proceeding in this fashion, testing as we go the validity of our data trees en route
and passing back up to the Level of the tree that has failed if so, we find we work at fluctuating, but
increasing depths - that is at lower Levels n with increasing n. However if II has a winning strategy
then there will be an infinite path descending through all the Levels and hence the computation will
diverge. One point will be to remark that if I has a winning strategy then this process will discover
it: this requires us checking that we don’t come up against a ‘wall’ in the ordinals� so that we cannot
find a code for an ordering of a longer order type - because our computation has stabilized, or in
other words is in a loop, and we are stuck below the length of that loop without having proceeded
enough to discover the strategy.

Hence if there is no such wall, and G(A;T) has a winning strategy for II only definable over
L� , then we can theoretically keep computing ordinals up to �.

Our task now is to achieve a balance between giving enough of these details that the reader is
convinced, and without causing the eye to glaze over with overwhelming (and unnecessary)minu-
tiae.

In general: given a tree S in a model M, used in a game G(Ā, S), and without a strategy for
player I in M, then we shall denote the subtree of non-losing positions for II in M by S′M (or just
S′). For R P P (N), �˚(R)will denote the sup of the first !many R-admissibles beyond � . By �(R)
we shall mean the least extendible in the L�[R] hierarchy, then Σ(R) is to be the least ordinal with
L�(R)[R] ăΣ LΣ(R)[R].

We note that if L�[R] has no proper Σ-substructures, then T
�[R] =df Σ-Th(L�[R]) - in the

language of set theory with a predicate symbol for R - is not in L�[R]; by the usual arguments of
constructibility theory moreover, a wellorder of type � is (ordinarily) recursive in T

�[R]. We shall
let the notation �M vary over structures of the form L�Σ(T)[T]. Almost always T will be simple
and this will be a merely a level of the L-hierarchy: L�Σ, where �Σ denotes the right hand end of an
�-extendible pair � , Σ with � P E�.

[Commentary is provided in square brackets following a sign.]
As a warm-up we prove the following lemma using just Basic Computations.

Lemma 4.2 There is a computation that on input codes for T ,⟨Bn⟩ will halt either with a winning
strategy for I, or else with an encoded T ′ - the set of non-losing positions for II inG(A;T)-membership
of which is absolute between some L�[T] and LΣ+[T].

25

Proof: (0): We commence with cutting up (standard Turing) recursive infinite disjoint slices of the
scratch tape to be reserved as ‘registers’ for the reals coding ⟨Bn⟩, T , T ′,Σ˚,. . . , (and more such will
be needed at lower Levels, as data is passed down in the argument that follows, but we shall not
mention these, rather leave it to the reader to do the preparatory mental scissor work).

● Set: T ′ ∶= T .
(1) ● Compute: M ∶= L(Σ(T′))˚[T ′], and set � ∶= (Σ(T ′))˚.

Query ?T ′M = ∅?
If T ′M = ∅ then (I has a winning strategy in G(A;T))M , and this may be found in M and printed
out on the output tape; then STOP. Otherwise CONTINUE.

[As M is a model of KPI such a winning strategy is winning in V .]

● ? Is T ′M = T ′?
(2) ● If NO then T ′ ⊃ T ′M and then some winning strategies are newly available to I in M that are
for some p P T ′/T ′M . Set T ′ ∶= T ′M ; GOTO (1).

[Note that the new T ′ is a proper subtree of the old.]

● If YES, then we may STOP with a suitable T ′ encoded in its register.

[Of course in order to obtainM , Σ˚ etc. , this officially requires a call to a subcomputation at
the next level down, but the above is just a schematic description of the process, and so we suppress
that level of detail. The point is that the T ′ are a decreasing sequence of sets. Hence keeping track of
these T ′ at the top level suffices for the procedure to continue: we don’t need to keep track of, e.g. ,
the ordinals heights of the structures M, and the concomitant worries about the liminf action at
limit stages. Thus the above can be all effected using Basic Computations (and variants thereon).]

Claim 1 Either the program halts with a winning strategy for I in G(A;T) or, at some point strictly
before the next -extendible above (Σ(T))˚ the answer to the query ?Is T ′M = T ′? is affirmative.
Proof: Note first that the computation uses only BC’s and each of these only require a compu-
tation of length the next extendible pair at most. Suppose (�, Σ) is any extendible pair that is
a limit of such, above (Σ(T))˚ (thus � is -extendible). We imagine the computation as being
performed as a Π-recursion in the parameter T in LΣ .Then suppose, for a contradiction, that by
the �’th turn through the cycle, we have not had an affirmative answer. In the �’th turn through
the cycle (for � < Σ) let T ′ be denoted by T ′� . Then the T ′� , as remarked, are strictly decreasing.
Now by an easy reflection argument, one sees that on a tail of � < �, the T ′� must be the same. [If
“@�D�′ > �Dp (p P T ′�′/T ′�′+)” holds in L� it will also hold in LΣ . But if p P T ′�′/T ′�′+ the �′ for
which that happens is ∆-definable in LΣ from p; but that implies �′ < �. This contradicts the
quoted formula.] So an affirmative answer must have occurred. Q.E.D. Claim 1 and Lemma.

We shall use ideas from this as building blocks to form a programme based on the argument of
the proof ofTheorem 2.7 surveyed above.

26

Proof ofTheorem 4.1:
It may be at first helpful to take an overview of a typical situation, or stage, that occurs in the

computation. Figure 1 illustrates a -nesting diagram. The picture consists of a number of square
hooks, the two ends of each ofwhich represents the twoordinals of a Σ-extendible pair (for example
� and �). is the leftmost ordinal. There are two ‘simple’, that is unnested, hooks at the left,
emanating from the ordinal � , at approximately two and five o’clock respectively. Between them are
two further -nested hooks - the upper one annotated with a P and a Q. Horizontally and at the
right is a -nested pair. All of the hooks emanate from � to indicate that L� is a Σ-substructure
of each LΣ where Σ is the right hand end of any hook. Hence in particular L� ăΣ LΣ. As the
L-hierarchy grows beyond L� eventually a -extendible pair is reached (for example that below the
line at 4 o’clock). Beyond its end, however the Σ-elementarity collapses, and all that is left is, say
the Σ- elementarity back to � .

Σ
. . .

R

P

T , T ′
P Q

�

P
�

Q

�

Σ� � � Σ

Figure 1: In this diagram T ′ is stable up to (but not beyond) Σ.

First recall the definition of the relevant tree sets (Def.2.16 and the remark preceding it.) T ′

is assumed in this picture to be stable up to Σ which is the right hand end of a -extendible pair
beginning with � P E. (Similarly iΣ which is the right hand end of an i-extendible pair beginning
with i� P E i , for i = , .)

Because T ′ is assumed stable beyond the end of any -extendible interval shown (beyond Σ
excepted) we can by the ‘survival argument’ reason that the elements of T are defined in every
model L� with � the length of a hook in this picture, as follows. There are no winning strategies for
I for anyT ′p for any p P T appearing in the interval beyond the branchpoint � up to Σ (but suchmay
appear in LΣ+). Because T ′ is this long-lived, at positions labelled P (including P) we can have all
the definitions of the relevant trees (T̂p)′, T˚(∅)p and ((T˚(∅))p)′ ofT all locally instantiated,
and themselves are stable up to the end of the extendible loop, or ‘hook’, below which they occur. In
other words at any -nesting above � but below Σ, all the ((T˚(∅))p)′ as illustrated at P, survive
to the end of the outermost nesting at �, and so in particular, beyond the top of its inner nesting. We
thus may conclude that at a position such as Q, all the relevant trees T˚(p)p , (T˚(p)p)′ ofT

occur below the inner -extendible � (not notated) that starts the inner nesting loop. The analysis
at the -nesting is similar: since T ′ survives beyond Σ, the T trees can be found at locations P;
as theT trees, (T̂p)′, T˚(∅)p and ((T˚(∅))p)′, survive beyond Σ, theT trees can be found at
locations Q. If we had assumed that T ′ survived beyond Σ then we could have obtained a shift,
with theT trees obtainable at R, theT trees at P and then gone on to find theT trees at Q.

The algorithmwhich we develop searches through levels of L for stabilising trees. If it sees T ′ as
stable, it calls a subroutine (‘makes an eJ-call’) that looks for stability of the treesT defined from

27

T ′. It keeps checking that the tree T ′ is unchanged; if not, this call is finished and we revert to the
top level searching for another place where T ′ stabilises. If it and T are apparently stable, then
a further, lower, eJ-call is made to look for stability of T - all the while checking that all of the
previous T ′,T remain stable. This is also illustrated by the diagram: for example, the trees of T

as defined at P are in fact stable for all simple extendible pairs (�, �) with � P (�, �) where � is
the supremum of the L-ranks of the trees as defined byT at P. (Note that by the Σ-admissibility
of � such a bound � < � exists.) Thus for all such simple extendible pairs below � at locations
such asQ the definitions ofT are (temporarily) fulfilled, but without necessarily surviving beyond
the end of the inner pair or hook. In order to show that the ordinal heights of the L�’s considered
continue to increase, so that we do actually reach -nestings say, where T ′ survives strictly beyond
ordinals such as Σ, we keep writing down the Σ-theories of the various levels of L so generated
in the manner of Lemma 3.21. Note that if we approach a � then T ′ is stable (by the argument of
Lemma 4.2) from some point on, up to � and so Σ: hence there are plenty of -nestings below �

where we have the concomitant stability in long intervals of the localT, andT, and then we can
start looking for the trees of a potentialT.

In the following we let “@˚� < Σ'(�)” abbreviate “For all sufficiently large � < Σ'(�)”. We
shall say “T ′ is stable up to kΣ” to mean “T ′ = T ′LOn∩M ” for all sufficiently large structuresM = M
with On ∩M < kΣ. This can be equivalently written as “(DU@˚k−Σ[U = (T ′)Lk− Σ])Lk Σ” as kΣ is
a limit of points of the form k−Σ. Of course, this is in turn no different from saying “ DU@˚Σ <
kΣ(U = T ′LΣ)” holds in LkΣ, but the point of stating it as above is to emphasise that we shall be
calculating long and longer structures of the form M with On ∩ M < kΣ in our algorithm, and
testing for instability of T ′ between each one and the next.

For < l < k we shall say “Tl is stable up to kΣ” to mean there is aTl in LkΣ

(Tl =Tl LOn∩M)Lk Σ

for all sufficiently large structures M = M with On ∩M < kΣ, which, as we have indicated above,
is taken by a convention to be a shorthand affirming that all the constituent trees of Tl are stable
per their definitions up to kΣ. Again this is equivalent to saying that (Tl = Tl Lk− Σ)Lk Σ for all
sufficiently large k−Σ < kΣ.

In the following definition of the algorithm we shall employ the following principle which en-
capsulates the (generalisation of) Figure 1:

Suppose T ′ is stable up to some n+Σ, then
for all sufficiently large nΣ < n+Σ(T is stable up to nΣ &
for all sufficiently large n−Σ < nΣ(T is stable up to n−Σ & . . .
⋮

for all sufficiently large Σ < Σ,Tn− is stable up to Σ &
for all sufficiently large Σ < Σ,Tn exists)⋯)”.
Less perspicuously but more formally we state this as:

Lemma 4.3 Suppose T ′is stable up to some n+Σ, then Ln+Σ ⊧

28

“@˚ nΣ [T exists ∧
@˚ n−Σ[T exists ∧T = (T)Ln− Σ∧
@˚ n−Σ[T exists ∧T = (T)Ln−Σ ∧
⋮ ⋮

@˚ n−kΣ[Tk+ exists ∧Tk = (Tk)Ln−k Σ ∧
⋮ ⋮

@˚ Σ [Tn exists ∧Tn− = (Tn−)L Σ]L Σ]LΣ ⋯]LnΣ ”.

Proof: Formally by induction on n, but the basis of the argumentation is that of the proof of Lemma
4.2; the reader may convince themselves of a representative case, say with n = as in Fig.1. Q.E.D.

Note 4.4 The Lemma is really the formal counterpart of the description that precedes it. Note that
the hypothesis here is fulfilled whenever n+Σ approaches some n+Σ: for sufficiently large n+Σ
below n+Σ, T ′ will be stable even beyond n+Σ. Also, by the usual Σ-reflection arguments, the
above principles are equivalent to those obtained by replacing any string “< lΣ” by “< l�”.

We now outline somewhat more rigorously the algorithm at the various levels of computation
in the oracle calls of amaster computation which runs at level Λ = . We proceed by describing the
actions of the programmes being called, which the reader may reformulate as official queries to the
eJ-functional as oracle. At the end of the description we justify the claim that this is a bona fide
eJ-recursion of the form {e}eJ(⟨k, ⟨Bn⟩, T ,W⟩). In the sequel W is intended to be a subset of !
coding a well ordering; if the well ordering is of length � then it is intended to be the L-least well
ordering of this length, and we indicate this by writingW� .

(0) Λ = .
●The master program {e}eJ(⟨, ⟨Bn⟩, T ,W�⟩) initiates a query as to whether, with input the

ordinalW� the main programme converges, that is loops; this can be simply formulated as:

Q ? Is the recursion {e}eJ(⟨, ⟨Bn⟩, T ,W�⟩) defined as or ?

[At startup this query has � = !.]

The expanded calculation is viewed as taking place at levels or lower. If it receives an affir-
mative answer then (by making some BC’s) it calculates the length of the loop of the computation
(regarding halting as a special case of eventually stable output). Thus, whether or not the answer is
/ an ordinal length �′ say of that loop is calculated by making eJ oracle calls.

● It then writes out to a registerR the successive theories T
� for � < �′, and finally the L-least

subsetW�′ P WO as a code for �′ is calculated. With this newW�′ it then RETURNS TO (0).
[If no answer toQ is received this is because of course {e}eJ(⟨, ⟨Bn⟩, T ,W�⟩) is divergent.

In which case so is the master programme.]

The programme continues as follows:

29

(1) Λ = .
●The recursion computes successively lengthening structures M = LΣ[T ′]withW� P M until

T ′ is seen to stabilize between one such structure M and the next, M. (That is (T ′)M = (T ′)M .)
As the programme computes structures M of increasing length it writes out the theories T

� for
� < On(M) to a registerR.

[This we saw done effectively by a machine in the proof of Lemma 4.2, with T ′ so stabilizing
before the next -extendible. This process involved oracle queries to the next lower Level Λ = , but
again we suppress these details.]

● If a point is reachedwith T ′ stabilized at some structure M, the programme asks the following
- when suitably formulated - oracle query of eJ. The sub-computation answering the query we view
as enacted at Λ = . We suppose that it is the computation {e}eJ(x), where x = ⟨, ⟨Bn⟩n ,T, M⟩
(suitably coded), whose action is described below starting at (2).

Q ∶ ? DefiningT from the current T ′ inT, do all the trees inT become eventually settled ?

[Recall thatT is merely {T ′} and that the trees ofT are of the form:
a) T̂p (=df the current M-least witness to the goodness of p P T ′) and
b) (T̂p)′ (=df its tree of non-losing positions for II); as well as (where T˚(∅) is set to T̂∅):
c) T˚(∅)p and ((T˚(∅))p)′ for relevant p.
As indicated above, we adopt the convention, that “Tl becomes eventually settled ” or “Tl is

stable up to ordinal �” to be a shorthand affirming that all the constituent trees of the familyTl are
stable per their definitions evaluated in L� for all sufficiently large � < �.

Note also, as in our discussion above, that since T ′ has survived intact from one M structure
to the next M say, we can deploy the ‘survival argument’ of Lemma 2.12; this means that M sees
that all p P T ′ are good, and this is a sufficient criterion for the definition ofT over M to instan-
tiate all the needed trees, which then exist in M (indeed (T)M Ď (L�)

M). Hence the query is
therefore immediately meaningful.]

(2) Λ =
{e}eJ(x) answers the query by first taking from x the current data, and on seeing the initial flag
, computes successive models M, and keeps a register, R, of the successive theories T

�, of in-
creasing ordinal height � < On(M) as above, or in the style of the proof of Lemma 3.21. These
operations are using our BC’s.

If (Case 0): A structure M is reached that contains a strategy� for I inG(A;T)which iswinning
in M; then computation at this level HALTS and passes x′ = ⟨�⟩ back up to the programme at Λ =
which in turn will pass it up to Λ = ; the overall computation {e}eJ(⟨, ⟨Bn⟩, T ,W!⟩) is written
to then halt with this � as the final output. As literally stated this cannot happen since only a 0/1 bit
can be ‘passed back up’ as the result on an oracle query.

We assume that into the program index e is built a subroutine so that if during {e}eJ(x),
where x = ⟨, ⟨Bn⟩n ,T, M⟩ Case 0 arises, then a contingency is triggered that allows a repeated
cycle to repeat ! times to pass up each bit of the strategy in turn. This is a harmless piece of pro-
gramming which we do not detail. Similarly we shall speak below of subroutines passing back up

30

other ! sequences without remarking upon this again.
If (Case 1): T ′ changes from one structure M to the next (“T ′ becomes unstable”) then this call

to this subroutineHALTS andwith the currentT = {T ′M}, passes the current x′ = ⟨, ⟨Bn⟩n ,T, M⟩
back up to the programme at Λ = ; on receipt of x′ the programme computes the ordinal height
Σ = On(M) say and writes out the theories T

� for� < Σ toR; it then setsW =WΣ and RETURNS
TO (1) to restart there with x = ⟨, ⟨Bn⟩n ,T, WΣ⟩;

If (Case 2): By the end of an eventual loop in {e}eJ(x) at this level, the answer to Q is “No”
(or “”). Then this answer and x′ = ⟨⟩ and control are passed back up to the programme at Λ = .
This might happen in one of two kinds of ways:

Either: T ′ can remain stable but for every pair of successively calculated structures M, M we
have that (T)M ≠ (T)M .

Or: control passes to a lower level (via (Case 3) just about to be discussed) but at such a level
T

 (but notT) is seen to change, and this information to that effect is passed up to this calculation
at this level. This may happen repeatedly often until there is a loop.

If (Case 3): All S PT become stable between two successive M-structuresM,M. in the loop
calculated.

In Case 0, the main programme will halt with this � as output.
[note that as M is closed under admissibles, � is a w.s. for I in V .]

In Case 1, the programme continues to calculate successive models, re-starting from theWΣ passed
up in x′.
In Case 2, the programme, on receiving “No”, is so written that, using BC’s, at Level 1 it computes
the length of the loop just passed, call it Σ, and writes out the theories T

� for � < Σ toR; comput-
ing the code WΣ it then returning to (1) to continue calculating successive M models in a similar
fashion to the Case 1, with the first such in this series containing the ordinal codeWΣ.

[Note that: (A) By the former shrinking argument T ′ must become eventually settled un-
der the repeated calculation of longer M’s by the time of the next (or indeed any) larger element
� P E, or �� P E� (� ≥) for that matter. Hence the loop (1) Ð→(2) (Case 1) Ð→(1) (if it is
occurring) will be broken out of by the time the length of the models M approaches the next � .

(B) For Case 2: we cannot immediately deploy a shrinking argument on the trees to conclude
that we have stability of all trees inT by the next Σ-extendible, since the actual underlying trees
T̂p, T˚(∅)p may be changing. What has happened here is that we have written successively M’s
(and also written T

� for � < On(M) to R) for M with ordinal unbounded in the next Σ. So
R contains T

�
; so then the programme computes the length of this cycle Σ (and writes out the

relevant theories T
� for this length toR in order). It then continues as at (1).

We now see how this loop can be broken out of, and we enter (Case 3). Consider the part of
the diagram of Fig.1 with the nested -extendible interval ending in �. It may happen that there
are such configurations where a T ′ will not be stable beyond such a �. All we should then be able
to conclude is that the definitions of the trees inT will be fulfilled, but only at some such position
as Q above � (meaning that their L-ranks are there): we shall be unable to deduce that they are at
P below �. We need to ensure that our overall computation does not get stuck before �. This is

31

obviated by our programme computing (at level Λ =) the length of the loop just passed through
during the subcall to Λ = (see the last sentence of ‘In case 2’ just above); in the case under con-
sideration this length would be � P E. We ensure that we do not get stuck by the writing out of
the theories T

� in the manner of the argument of the proof of Lemma 3.21. The ordinal � is then
used as a basis for computing at (1) further successive M’s until T ′ restabilises.

Claim: Let � be the next element of E above �. Then the repetition of this looping behaviour
(1) Ð→(2) (Case 2, “Either”) Ð→(1) just described here in (B), will cease at some stage before � and
the process enters (Case 3).

Proof: Suppose otherwise and the loop (1)Ð→(2) (Case 2)Ð→(1) continuously occurs from some
point onwards in time up to � stages. But referring to Fig.1, the hook ending with �, is the length
of a -extendible loopwith both � and � limits of 1-nested hooks. In that figure T ′ is assumed to be
stable beyond � - which it will be once sufficiently close to � - as indeed T ′ is always stable below
any Σ-extendible. But then by the survival argument we can defineT at a place such as P with L-
rank some � < � . But in the interval (�, �) there will grow out hooks (�, �)with � < � < � < �

in which defining (T)L� yields the same trees as theT located at P. Consequently in the interval
(�, �), we shall break out of the behaviour (1)Ð→(2) (Case 2)Ð→(1).

Q.E.D.Claim

Thus we shall eventually end up in the last possibility, Case 3.]

(Case 3):The sub-computation nowmakes in turn a further query sub-computation whichwe view
as enacted at Λ = . We suppose that it is the computation {e0}eJ(x) where we collect the current
values

T
 = ⟨⟨T̂p ∣ p P T ′⟩, ⟨(T̂p)′ ∣ p P T ′⟩, ⟨T˚ (∅)p , (T

˚(∅)p)
′ ∣ p relevant ⟩⟩

and set:
x = ⟨, ⟨Bn⟩n ,T,T,M⟩;

and where the query is:

Q ∶ ? DefiningT from the currentT,T of x, do all the trees S inT become eventually settled ?

[Just as following Q, the stability of all the trees (T̂p)′ and (T˚(∅)p)′ from one model to
the next guarantees the existence of all the trees ofT by the survival argument.]

(3) Λ =
{e0}eJ(x) is programmed so that when it takes from x the current data, and sees the initial flag
, it will continue to compute successive models M, (which it can by Lemma 3.22) and write out
theories as before to a registerR, using Basic Comps, but now act as follows.

If (Case 0): A M contains a winning strategy � for I in G(A;T); then this sub-computation
HALTS and passes x′ = ⟨�⟩ back up to the programme at Λ = ;

32

If (Case 1): T ′ becomes unstable, then the subcomputation HALTS and passes the current x′ =
⟨, T , T ′,M⟩ back up to the programme at Λ = ;

If (Case 2): T ′ remains stable but some S P T does not at some stage between two successive
models M,M, then the subcomputationHALTS and the current x′ = ⟨, ⟨Bn⟩n , (T,T)M ,M⟩
with the current values of the data, and control, are passed back up to Λ = ;

If (Case 3): The answer to Q is “No” because we have entered a loop with always unsettledT.
Just as at (2)(Case 2) this may occur in two kinds of ways.

Either: T ′ and all S P T remain stable but between no two successive M-structures, M,M
is T stable. Or else, control passes to a lower level (via (Case 4)) but at that level T changes
and information to that effect is passed up to the current calculation at this level. This happens
repeatedly often until there is a loop.

If (Case 4):T becomes stable between two successive M-structures,M,M. Then the process
acts as shortly to be described below.

In Cases 0, (respectively) 1 the relevant information will be passed up in turn to the master
computation at Λ = (or at Λ = respectively) and will be acted on appropriately.

In Case 2, the sub-computation at Λ = restarts using BC’s, and computes structures M at (2),
having first written out theories T

� (� < On ∩ M) toR.
In Case 3, the sub-computation at Λ = having received the answer “No” is programmed to

use BC’s, to compute the length of the loop just passed, say to Σ (which at the very least is clearly
a limit of 2-extendibles), all the while writing down additional Σ-theories to register R; it then
RETURNS to (2) calculating successivemodels in the usual manner, with the first such in this series
containing the ordinal Σ.

[Note that: the comments on the loops at (A), (B) will hold here. Additionally:
(C) If the loop (2)Ð→(3) (Case 3)Ð→(2) occurs from some point on, then for sufficiently large

Σ below the next � , (and so also by Σ-reflection, below the corresponding Σ) there isT so that
for sufficiently large Σ < Σ(T = (T)LΣ)) and so we shall end up in Case 4 below. Here we
would prove:

Claim: Let � be the next element of E above some Σ. Then the repetition of this looping behaviour
(2) Ð→(3) (Case 3 “Either”) Ð→(2) just described here in (C), will cease at some stage before � and
the process will enter (Case 4).

]
The last possibility is:

If (Case 4): T becomes stable between two successive M-structures, M,M.

Again, the current sub-computation makes a query sub-computation which in turn we view as
enacted at Λ = . We suppose that it is the computation {e0}eJ(x) where we set

T
 = ⟨T̂(p)p , T̂(p)′p ∣ p P (T˚(∅)p)′⟩, ⟨T˚(p)p , (T˚(p)p)′ ∣ p relevant⟩

and
x = ⟨, ⟨Bn⟩n ,T,T,T,M⟩

33

and where the query is:

Q ∶ ? DefiningT from the currentT,T,T in x, doesT become eventually settled ?

We hope the reader will have seen the pattern emerging in this description of the programme
Pe .

We could easily enough have written down Qk+ which, given T, . . . ,Tk from an x would
have formulated definitions for T∗(p(k−)) =df T̂(p(k−))∅, relevant pk , and then asked if trees
T̂(pk)p (being the current M-least witness to the goodness of p P T∗(p(k−))pk)′) and T̂(pk)′p
(the latter’s subtree of non-losing positions for II), that is together the trees ofTk+, became even-
tually settled. The required definitions and stability questions are then entirely uniform in k. Hence
the instructions for the programme Pe on input an x coding some ⟨k + , ⟨Bn⟩n ,Ti (i ≤ k),M⟩
may be effectively written down in terms of k and the given tuple of data. It is enacted by consid-
ering successive M structures, and by writing down theories T

� as before. The number of Cases to
be considered at query Qk+ is k + : Cases (0)-(k) result in a HALT at that Level Λ = k + , with
an effectively determined x′ to be passed up to the Level Λ = k + above; whilst Case k + requires
returning to Λ = k+ and computing lengths of loops etc. The final Case k+ is the one of eventual
interest and triggers the query Qk+. Each Qk+ is officially a query of the form ? eJ((e, x)) = /?
about how the next subcomputation loops, and we calculate the relevant x from our data. The in-
structions that e codes include of course those for calculating those for the next query. However
we may argue as below, that these calculations may be assembled into, or considered as, one whole
calculation embodied in one 'eJ

e .

Note 4.5 At each level we have formulated the query Qk to be enacted at the next level k + as
asking if eventually in the recursion the trees ofTk become stable. We also analysed the case that
a loop occurred in which the trees were always changing from oneM-structure to the next and the
response to the query was negative. The alternative was phrased as (cf. the final Case 3 when k =
above) as the trees of Tk all being stable from one structure to the next. One might have asked:
‘where is the analysis that a loop occurred at level k + in which all the trees of Tk were stable
throughout (and thus the answer to Qk would have been “Yes”)?’ The following lemma shows that
this behaviour does not occur.

Lemma 4.6 For k < !, if T<k is stable to Σ and (� , Σ) is the length of a loop at Λ = k + resulting
from a call from Λ = k to answer the query Qk : ? IsTk eventually stable?, then the response is “No”.

Proof: For a contradiction assume that (� , Σ) is the lexicographically least Σ-extendible pair which
is a counterexample: thus for some least k < !T<k is stable to Σ, with (� , Σ) the length of a loop at
Λ = k + resulting from a call from Λ = k to answer the query Qk ? IsTk stable?, and for which the
answer is positive.Then for some � < � ,T<k is stable in (�, Σ). Note that Λ(e, �) = Λ(e, Σ) = k+.
But if the response is “yes“, then in the interval (�, �) the query Qk+ ? Is Tk+ stable? is activated
with a call to Λ = k + . So as Λ(e, �) = Limin f

�→�Λ(e,�) = k + this happens unboundedly in
� and thus � is a limit of points which are ends of loops where control is passed back up to Λ = k+
from Λ = k + . The same holds for Σ. Let (� ′, Σ′) Ă (�, Σ) be such a loop. By the behaviour of
{e} at this level, � ′ must be the limit of the heights of structures M and so at least in E. However

34

asTk is stable beyond Σ′ by supposition, there isT P L�′ withT = (Tk+)L�′ = (Tk+)LΣ′ by the
survival argument. But then (� ′, Σ′) is a lexicographically earlier pair than (� , Σ) for whichT<k+
is stable to Σ′, with (� ′, Σ′) the length of a loop at Λ = k + the result of a call from Λ = k + to
answer the query Qk+ ? IsTk+ stable? receiving a positive response. Contradiction!

Q.E.D.

Note 4.7 As the program runs there will eventually be subcomputation calls to arbitrary levels, as
it uses various trees for as long as they survive fulfilling their role. But only after� stages shall we be
certain that T ′ really does stabilize to its final value. Thereafter we shall have
Λ(e, (, T , ⟨Bn⟩,W!),�) ≥ . But only at� dowefirst have Liminf�→� Λ(e, (, T , ⟨Bn⟩,W!),�)
= ! and so divergence.

However the reader is entitled to ask: have we described a genuine programme for such oracle
machines? And secondly, what is the outcome? It may already be apparent that the claim that there
is an index number e for the above generalized ittm-recursion can be established readily from the
eJ-RecursionTheorem. One may argue as follows, somewhat schematically.

The action taking place at each level Λ = k can be considered as a resulting fromafinite sequence
of computation coded as a number fk(e) in the usual way which is an effective function of k and e.
We think of this piece of computation code as generating a function in the single variable y.

Let f(e) be the code of the actions of the main programme at (0) above, asking whether the
program {e}(x) with y = x = ⟨, ⟨Bn⟩n , T ,W!⟩) overall will loop, and which, if it receives an
answer, calculates the length of the loop, the writing of theories toR etc. , as specified at (0).

Then f(e) is the code of instructions performing the actions of the main programme at (1),
answering Q by searching through increasing M-structures for a stable T ′. With T = {T ′} sta-
bilized, the programme asks the oracle query Q: ? eJ(i , x) = /? about y = x = ⟨, ⟨Bn⟩n ,T, M⟩
with i = f(e) to be defined next.

Let fk+(e) be the code of the following blocks of computations:
(1) The actions to do to fulfill the query Qk , as an explicit computation. As indicated above

these can be listed effectively and the code of their formal instructions can be given as a function
of k - q(k +) say. This includes the actions to compute the increasing structures and what to do if
stability of any tree passed down subsequently fails. Also included are, if a stability point is reached
that requires a new query to a lower subcomputation, the actions to collect together the current
trees, to form part of a new coding real x.

(2) “(x) ∶= (x) + ” [Increase the initial index of x by 1 - here to k + .]
(3)The query instruction: “?eJ(e , x) = /?”.

Let the two instructions (2) and (3) taken together have code t(e) PN.
(4) The post-query actions, on receipt of an answer (in the form of what to do if information

is received of a certain kind of tree from a lower subcomputation becoming unstable etc). Again
these are effective in k. Let these be coded as p(k +) say.

We thus may loosely represent the code fk+(e) operating at level Λ = k + = (x) as:

fk+(e) = q(k +)⌢t(e)⌢p(k +).

As the blocks of code fk are (ordinary) recursive functions of k and e,H(e , k, y) =df { fk(e)}(y)
is thus an eJ-generalised recursive function as is H′(e , y) = H(e , (y), y). By the eJ-Recursion

35

Theorem there is an index e, so that

{e}eJ(y) = H′(e, y).

Then our overall computation is: {e}eJ(x) where x = ⟨, ⟨Bn ∣ n < !⟩, T ,W!⟩.

We make a further observation on the flow of control during the recursion.

Lemma 4.8 Control passes at a stage from Λ = to Λ = only when T ′ becomes unstable; in par-
ticular when either (a) calculating at Λ = sees that T ′ is directly different from one M to the next
M; or (b) information has just been passed up from Λ = to Λ = that T ′ has changed, or lastly c)
control passes up to Λ = at some time � equal to the length of a loop, thus some Σ (including kΣ for
k ≥), and (T ′)L� ≠ (T ′)L�+ .

More generally: Control passes at a stage from Λ = k + to Λ = k + only when Tk becomes
unstable; in particular when either (a) calculating at Λ = k + sees thatTk is directly different from
one M to M; (b) information has just been passed up from Λ = k + to Λ = k + that Tk has
changed, or lastly c) control passes up to Λ = k + at some time � equal to the length of a loop, thus
some Σ (including k′Σ for k′ ≥) and (Tk)L� ≠ (Tk)L�+ .

Proof: We consider just the first part, as the second part is just a generalisation of it. Suppose � is
a time when control passes from Λ = to Λ = . Suppose the straightforward alternatives (a) and
(b) fail. By the construction then, control only so passes back to Λ = in (2) Case 2, when we have
loop of a computation, (� ′, Σ′) say, performed at Λ = in which, by Lemma 4.6, the trees ofT

were unstable. Control then passed back up at time � = Σ′. But had T ′ been stable beyond Σ′ to
Σ′ + we should have concluded thatT was stable in (� ′, Σ′) - by the survival argument. Thus
(T ′)L� ≠ (T ′)L�+ .

Q.E.D.

As for the outcome we have as a final claim:
Claim: For A = ⋃n Bn P Σ

 and T a recursive subtree of <!! as above, the recursion

{e}eJ (, ⟨Bn ∣ n < !⟩, T ,W!)

will either halt with a code for a strategy for I, if such exists, or else will diverge. In the latter case if it
diverges after � steps, then a strategy for II is definable over L� .
Proof: We first observe that the master programme can only halt when it produces a winning
strategy for I. We next observe that it cannot enter an eventual loop. Suppose otherwise for a
contradiction and that (� , Σ) was its first looping pair of ordinals. Then the level of computation
at times � and Σ is the same: Λ(�) = Λ(Σ) = . Thus as lim inf�→� Λ(e,�) = = Λ(e, �) we
have (by the specification of e) that control passed from Level 1 to 0 unboundedly in � , with each
such pass followed by a resulting computation of the length Σi of the loop just immediately finished
prior to that pass: thus there is a Σ-extendible pair (�i , Σi), the right end of which is the length of
the loop at Λ = , with �i < Σi < � . As this happens unboundedly in � let (�i , Σi) be the sequence
of such loops for i < � with supi<� Σi = � .

However, in turn, for each such loop (�i , Σi), for unboundedly many � < Σi control is at Λ =
because T ′ has just changed, or control has been passed back up to Level 1 at stage �, as at (2) Case

36

2 above, where � is the length of the loop just finished at Level 2. By the last lemma this also implies
that T ′ is unstable between L� and L�+. The conclusion is that T ′ is unstable unboundedly often
not just in (�i , Σi) but also in � . But the argument of Claim 1 of Lemma 4.2, shows that we must
have stability of T ′ by any Σ-extendible ordinal � . Contradiction.

So the recursion either halts or diverges. However divergence can only happen if there is an
infinitely descending chain of query calls Qk . And such has been designed only to happen when
we have complete stability of all of our definable trees necessary for the proof of the existence of a
definable winning strategy for II over L� - as our procedures mimic. Q.E.D.Theorem 4.1

Hence by the latter case of the last Claim, strategies for II in such games are in general not even
semi-recursive in eJ.

Corollary 4.9 There is a recursion {h}eJ that only diverges at �.

Proof: Let A = ⋃n<! Bn P Σ
 be such that G(A;T) is a win for II, but there is no winning strategy

in L� . Then the computation {e}eJ (, ⟨Bn ∣ n < !⟩, T ,W!) above can only diverge at � since a
winning strategy for II is definable over L� but no earlier. Q.E.D.

● An example of such a game, of the type above, is where II must construct an !-model of
“KP+Det(Σ

)”, and I as usual must find a descending chain of ordinals in II’s model. Then II has
an obvious winning strategy, but there cannot be one where II produces a model with wellfounded
part an ordinal smaller than �. We saw in the proof of the theorem above that the computation in
a game of this type continually constructs codes for the levels of the L-hierarchy unboundedly in
�, and hence is ultimately divergent. We thus have:

Corollary 4.10 There is an index f so that (i) { f }eJ(x) computes codes for levels for the L[x]-
hierarchy; (ii) { f }eJ() is divergent , but is not divergent at any stage before �, whilst computing
codes for levels L� for � unbounded in �. Q.E.D.

Corollary 4.11 � = � - that isTheorem 2.11 holds.

Proof: We have that � = �. By modifying the program of the last Corollary we can find proce-
dures { f }eJ() which halt cofinally in the admissible set L� , and hence with ranks of such com-
putations unbounded in �. Hence � ≥ �. By the Boundedness Lemma 3.14 � ≤ �. Q.E.D.

Lemma 4.12 Let b Ď ! be in L� . Then b is eJ-recursive. Q.E.D.

The following answers a question of Lubarsky:

Corollary 4.13 The reals appearing on the tapes of freezing-ittm-computations of [16] are precisely
those of L� ; similarly the supremumof the ranks of thewellfounded parts of freezing-ittm-computation
trees is �.

Proof: Freezing-ittms computations are, in the terms here, divergent iJ-computations. As eJ is
recursive in iJ (Theorem 3.19) we shall have that the iJ-recursive reals and the eJ-recursive reals
coincide. These will be the reals of L� . By the Boundedness Lemma 3.14 all such eJ-recursions

37

are divergent by �, whilst at the same time codes for levels of L for � < � appear at some stage
of { f }eJ’s computation. Hence the reals appearing on the divergent iJ-computations are those of
L� . Q.E.D.

Corollary 4.14 The complete semi-decidable-in-eJ set of integers

K = {(e ,m) P ! ˆ ! ∣ eJ(e ,m) = }

is recursively isomorphic to a complete ⅁⅁Σ
 set.

Proof: If {e}eJ(m) is convergent it must be so before �: its convergence is a Σ-fact true in L� . By
Σ-reflection, it is true in L� . Hence the Σ-fact of its convergence is mentioned in the Σ-Th(L�).
That is K ≤ Σ-Th(L�) ≡ S where S is a complete ⅁⅁Σ

 set. The latter (1-1) isomorphism holds by
Theorem 2.17. For the converse, we have that n P S if there is a certain strategy in L� for a certain
game which is winning for I. Such can be found by inspecting the various L� for � < �. And
Corollary 4.10 enables us to run a computation which is convergent if such can be found. Hence
S ≤ K. Q.E.D.

Proof ofTheorem 2.9
The last Corollary proves the (a) (i)←→ (iii) direction of theTheorem, and we have already estab-
lished (a)(ii)←→ (iii) (in the proof ofTheorem 2.17). This leaves (b). But this follows from the usual
characterisation of the semi-recursive and co-semi-recursive sets as being recursive, the admissi-
bility of L� , and that � = � is 2.18.

Q.E.D.Theorem 2.9
We may also recast the above arguments as showing:

Corollary 4.15 Both the theory T
� and K are ⅁⅁Σ

-inductive sets of integers.

Remark 4.16 The same considerations show that in fact the whole of dom(eJ) ∩ ! ˆ !! is ⅁⅁Σ
-

inductive.

The proofs of Theorems 2.7, 2.9, and 2.11 are now complete (and they cover the statements of
theTheorems 1.5-1.8 in Section 1 of the Introduction).

Some questions immediately come to mind.

Q.1 We defined !-nestings corresponding to a notion of Σ-extendability. What properties would
follow for a �n (n ≥) that is the least ordinal so that L�n has an illfounded end-extension in which
there was instantiated an !-nesting based on Σn-elementary extension?

One immediate possible answer occurs: in [6] a notion of ‘Σn-hypermachine’ is introduced.
The idea is to mimic precisely at the Σn-level the ittm-model which as we have seen is at the Σ-
level of definability. A ‘Σn-theory hypermachine’ is then imagined so that it will write out codes
for levels of the hierarchy up to the least Σ(n) where the latter is the least ordinal Σ so that there
is a �(n) with L�(n) ăΣn LΣ(n). At limit stages a Σn-definable rule is used, rather than lim inf. It

38

then commences to loop. If one defines a notion of n-ittm-recursion and the concomitant even-
tual jump eJn, then one can see that the analysis we have done here will show that the complete
semi-recursive-in-eJn set of integers will be Σn-definable over L�(n), and we shall find that all such
non-convergent programmes with integer input will be divergent by LΣ(n) etc.What we should like
however is something a little less purpose-built.

Q.2 Characterize the complete semi-recursive in eJn set of integers.

Q.3The work of Montalban-Shore [18] gives that strategies for n Boolean differences of Π
 sets oc-

cur in L between the first Σn+-admissible, and the first Σn+-non-projectible. (They use the result
here, or of [26], as the base case for n = .) Can one locate the strategies more nearly? Do these
locations relate to the notions of !-Σn-nestings? It is easy to see that for n ≥ , �n falls strictly
between the first Σn-admissible, and the first Σn-non-projectible.

Q.4 Can one develop an equational calculus form à la Kleene of recursion in iJ, eJ or other type-2
functionals, that corresponds back to this infinite time Turing machine form?

Presumably such a calculus would have to take into account the quasi-inductive definitional
nature of the limit stages, and would not be a (standard) induction to derive the class of equational
statements Ω[I] (as, say, inHinman). Whilst it sees very plausible that such could be done, it is hard
to see at the moment that there would be any advantage (mathematical, or conceptual) of doing so.

References
[1] K.J. Barwise. Admissible Sets and Structures. Perspectives in Mathematical Logic. Springer Verlag, 1975.

[2] A. Blass. Complexity of winning strategies. Discrete Mathematics, 3:295–300, 1972.

[3] S. Coskey and J.D. Hamkins. Infinite time decidable equivalence relation theory. Notre Dame Journal
for Formal Logic, 52(2):203–228, 2011.

[4] M. Davis. Infinite games of perfect information. Annals of Mathematical Studies, 52:85–101, 1964.

[5] K. Devlin. Constructibility. Perspectives in Mathematical Logic. Springer Verlag, Berlin, Heidelberg,
1984.

[6] S-D. Friedman and P. D. Welch. Hypermachines. Journal of Symbolic Logic, 76(2):620–636, June 2011.

[7] J.D. Hamkins and A. Lewis. Infinite time Turing machines. Journal of Symbolic Logic, 65(2):567–604,
2000.

[8] J.D. Hamkins, R. Miller, D. Seabold, and S. Warner. Infinite time computable model theory. In
S.B. Cooper et al., editor,New Computational Paradigms, pages 521 – 557. Springer-Verlag, Berlin, 2008.

[9] J.D. Hamkins and D. Seabold. Infinite time Turing machines with only one tape. Mathematical Logic
Quarterly, 47(2):271–287, 2001.

[10] L. Harrington andA. Kechris. On characterizing Spector classes. Journal of Symbolic Logic, 40(1):19–24,
March 1975.

[11] P. Hinman. Recursion-Theoretic Hierarchies. Ω Series in Mathematical Logic. Springer, Berlin, 1978.

39

[12] S. C. Kleene. Recursive quantifiers and functionals of finite type I. Transactions of the American Math-
ematical Society, 91:1–52, 1959.

[13] S. C. Kleene. Turing-machine computable functionals of finite type I. In Proceedings 1960 Conference
on Logic, Methodology and Philosopy of Science, pages 38–45. Stanford University Press, 1962.

[14] S. C. Kleene. Turing-machine computable functionals of finite type II. Proceedings of the LondonMath-
ematical Society, 12:245–258, 1962.

[15] S. C. Kleene. Recursive quantifiers and functionals of finite type II. Transactions of the American
Mathematical Society, 108:106–142, 1963.

[16] R. Lubarsky. Well founded iterations of infinite time turing machines. In R-D Schindler, editor,Ways
of ProofTheory. Ontos, 2010.

[17] D.A. Martin. Π
-monotone inductive definitions. In D.A. Martin A.S. Kechris and Y.N. Moschovakis,

editors, Cabal Seminar 77-79, volume 839 of Lecture Notes in Mathematics, pages 215–234. Springer,
Berlin, New York, 1980.

[18] A. Montalbán and R. Shore. The limits of determinacy in second order number theory. Proceedings of
the London Mathematical Society (3), 104(2):223–252, 2012.

[19] Y.N. Moschovakis. The game quantifier. Proceedings of the American Mathematical Society, 31:245–250,
1971.

[20] Y.N. Moschovakis. Descriptive Set theory. Studies in Logic series. North-Holland, Amsterdam, 1980.

[21] S. Simpson. Subsystems of second order arithmetic. Perspectives in Mathematical Logic. Springer, Jan-
uary 1999.

[22] L. Svenonius. On the denumerable models of theories with extra predicates. InTheTheory of Models,
pages 376–389. North-Holland Publishing Co., Amsterdam, 1965.

[23] P.D. Welch. Post’s and other problems in higher type supertasks. In B. Löwe, B. Piwinger, and T. Räsch,
editors, Classical and New Paradigms of Computation and their Complexity hierarchies, Papers of the
Conference Foundations of the Formal Sciences III, volume 23 of Trends in logic, pages 223–237. Kluwer,
Oct 2004.

[24] P.D. Welch. Characteristics of discrete transfinite Turing machine models: halting times, stabilization
times, and normal form theorems. Theoretical Computer Science, 410:426–442, January 2009.

[25] P.D.Welch. Weak systems of analysis, determinacy and arithmetical quasi-inductive definitions. Journal
of Symbolic Logic, September 2011.

[26] P.D. Welch. G��-games. Preprint Series NI-12050, Isaac Newton Institute, Cambridge, July 2012.

[27] P.D. Welch. Some observations on truth hierarchies. Review of Symbolic Logic, 7(1):1–30, March 2014.

40

