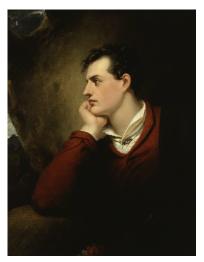
Ada Lovelace and the Logic of the Analytical Engine



Philip Welch, School of Mathematics.

Annabella Milbanke 1792-1860

George Byron 1788-1824

Byron leaving England

George Cruickshank 1816

Augusta Ada Byron 1815-1852

Ada Byron, Age 17

Charles Babbage 1791-1871

Difference Engine No. 1 (portion) 1832

William King, Earl of Ockham, later Lord Lovelace 1805-1893

Byron in Abyssinian dress

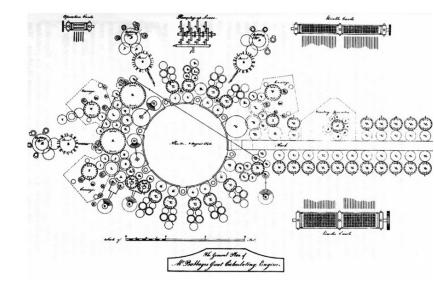
Ashley Combe, Somerset

" 'Mathematics' should be written on my jaw"

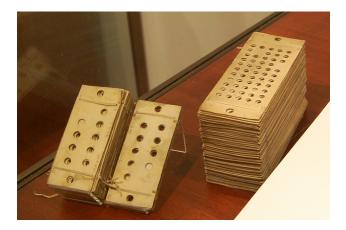
as Lady King, (Age 20) by Margaret Carpenter, 1835

after a sketch by A.E. Chalon 1838. (Age 23)

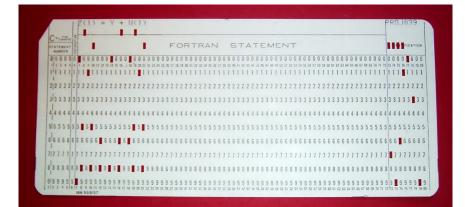
J.R. Jacquard 1752-1834

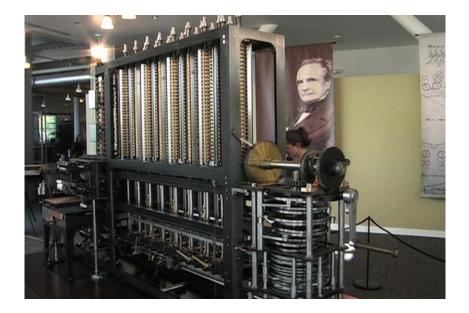


A Jacquard Loom



The Analytical Engine




Punched Cards: Operator & Variable

Lovelace: "The bounds of arithmetic were outstepped the moment of applying the cards had occured"

And 150 years later ...

Luigi Federico Menabrea, 1805-1893

& later Prime Minister of Italy

Menabrea's article - 1842

• He describes the Analytical Engine in great detail - not the would be physical construction, but the methodology of the computations.

• He gives three examples of calculations. We'll look at that for a simple (2×2) simultaneous equation with unknowns *x* and *y*:

$$mx + ny = d$$

$$m'x + n'y = d'$$

This will have solution:

$$x = \frac{dn' - d'n}{n'm - nm'}$$
; $y = \frac{d'm - dm'}{mn' - m'n'}$

Columns on which are inscribed the primitive data		the	ds of oper- ons		Statement of results		
	Number of the operations	No. of the Operation- cards	Nature of each operation	Columns acted on by each operation	Columns that receive the result of each operation	Indication of change of value on any column	
${}^{1}\mathbf{V}_{0}=m$	1	1	×	${}^{1}V_{0} \times {}^{1}V_{4} =$	${}^{1}V_{6}$	$ \left\{ \begin{array}{c} {}^{1}V_{0} = {}^{1}V_{0} \\ {}^{1}V_{4} = {}^{1}V_{4} \end{array} \right\} $	${}^{1}V_{6} = mn'$
${}^{1}\mathbf{V}_{1}=n$	2	"	×	${}^{1}V_{3} \times {}^{1}V_{1} =$	$^{1}V_{7}$	$\left\{\begin{array}{c}{}^{1}V_{3} = {}^{1}V_{3} \\ {}^{1}V_{1} = {}^{1}V_{1}\end{array}\right\}$	$^{1}V_{7} = m'n$
${}^{1}\mathbf{V}_{2} = d$	3	"	×	${}^{1}V_{2} \times {}^{1}V_{4} =$	$^{1}\mathrm{V}_{8}$	$\begin{cases} {}^{1}V_{2} = {}^{1}V_{2} \\ {}^{1}V_{4} = {}^{0}V_{4} \end{cases}$	$^{1}V_{8} = dn'$
$^{1}V_{3} = m'$	4	"	×	${}^{1}V_{5} \times {}^{1}V_{1} =$	$^{1}V_{9}$	$\left\{\begin{array}{c}{}^{1}V_{5} = {}^{1}V_{5} \\ {}^{1}V_{1} = {}^{0}V_{1}\end{array}\right\}$	${}^{1}V_{9} = d'n$
${}^1\mathrm{V}_4=n'$	5	"	×	${}^{1}V_{0} \times {}^{1}V_{5} =$	$^{1}V_{10}\ \ldots \ldots$	$\left\{\begin{array}{c} {}^{1}V_{0} = {}^{0}V_{0} \\ {}^{1}V_{5} = {}^{0}V_{5} \end{array}\right\}$	$^{1}\mathrm{V}_{10}=d^{\prime}m$
${}^{1}\mathrm{V}_{5}=d'$	6	"	×	$^1\mathrm{V}_2\times {}^1\mathrm{V}_3 =$	${}^{1}V_{11}$	$\left\{\begin{array}{c}{}^{1}V_{2} = {}^{0}V_{2} \\ {}^{1}V_{3} = {}^{0}V_{3}\end{array}\right\}$	$^{1}\mathrm{V}_{11}=dm'$
	7	2	-	${}^{1}V_{6} - {}^{1}V_{7} =$	$^{1}V_{12}$	$\begin{cases} {}^{1}V_{6} = {}^{0}V_{6} \\ {}^{1}V_{7} = {}^{0}V_{7} \end{cases}$	$^{1}\mathrm{V}_{12}=mn^{\prime}-m^{\prime}n$
	8	"	-	${}^{1}V_{8} - {}^{1}V_{9} =$	$^{1}V_{13}$	$\begin{cases} {}^{1}V_{8} = {}^{0}V_{8} \\ {}^{1}V_{9} = {}^{0}V_{9} \end{cases}$	$^{1}\mathrm{V}_{13}=dn'-d'n$
	9	"	-	$^{1}V_{10}-^{1}V_{11}= \\$	$^{1}V_{14}$	$\left\{ \begin{array}{c} {}^{1}\mathrm{V}_{10} = {}^{0}\mathrm{V}_{10} \\ {}^{1}\mathrm{V}_{11} = {}^{0}\mathrm{V}_{11} \end{array} \right\}$	$^{1}\mathrm{V}_{14}=d^{\prime}m-dm^{\prime}$
	10	3	÷	$^{1}\mathrm{V}_{13}\div ^{1}\mathrm{V}_{12}=$	$^{1}V_{15}$		${}^1\mathrm{V}_{15}=\frac{dn'-d'n}{mn'-m'n}=x$
	11	"	÷	$^{1}\mathrm{V}_{14}\div ^{1}\mathrm{V}_{12}=$	$^{1}V_{16}$	$ \left\{ \begin{array}{c} {}^{1}V_{14} = {}^{0}V_{14} \\ {}^{1}V_{12} = {}^{0}V_{12} \end{array} \right\} $	${}^1\mathrm{V}_{16}=\frac{d'm-dm'}{mn'-m'n}=y$
1	2	3	4	5	6	7	8

Bernoulli Numbers

• These are a sequence of fractions $B_1, B_3, B_5, \dots, B_{2n+1}, \dots$ They crop up again and again in analysis and number theory. There are many ways to define them.

• We can define them through a power series

$$\frac{x}{e^{x}-1} = 1 - \frac{x}{2} + B_1 \frac{x^2}{2!} + B_3 \frac{x^4}{4!} + B_5 \frac{x^6}{6!} + \cdots$$

Or *explicitly*:

$$B_{2m+1} = \sum_{k=0}^{m} \sum_{\nu=0}^{k} (-1)^{\nu} \binom{k}{\nu} \frac{\nu^{m}}{k+1}.$$

Lovelace chose:

$$B_{2m+1} = -\sum_{k=0}^{m-1} \binom{2m+1}{2k+1} \frac{B_{2k+1}}{2m-2k+1}.$$

Her choice looks like:

$$B_{2m+1} = a_1 B_1 + a_3 B_3 + \dots + a_{2m-1} B_{2m-1}$$

Rearranging:

Rearranging:

$$B_3 = a_1 B_1 B_5 = d_1 B_1 + d_3 B_3 B_7 = e_1 B_1 + e_3 B_3 + e_5 B_5$$

• So her programme to compute B_7 proceeds by computing first B_1 , then B_3 from B_1 ; then B_5 from B_3 and B_1 etc.

• This is known as a *course-of-values recursion* because it requires the complete course of *all* the previous values to get the next one.

• An *(ordinary) recursion* would just have defined B_3 in terms of B_1 , and B_5 in terms of B_3 , B_7 in terms of B_5 , that is using *only* the most immediate previous value *etc.*

$$B_3 = a_1 B_1$$

 $B_5 = d'_3 B_3$
 $B_7 = e'_5 B_5$

Lovelace's programme to compute Bernoulli Numbers

Dagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 of seq.) Data Data Data Data Data Data Data Da																						
			Variables receiving results.	Indication of	Statement of Results.																	
						$^{1}V_{1}$				${}^{0}V_{5}$					${}^{0}V_{10}$	⁰ V ₁₁	${}^{0}V_{12}$	⁰ V ₁₃	${}^{1}V_{21}$	${}^{1}V_{22}$		${}^{1}V_{24}$
		Variables				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
81 P81	166	rationected		change in the value on any		•	0	0	•	0	0	0	0	0	0	0	0	0	B_1 in a	B ₃ in a	B ₅ in a	
	1.1	upon.		Value on any Variable.		0	0	0	•	0	0	•	0	0	0	0	0	0	decimal	decimal	decimal	0
				vaneure.		1	2	-4	•	0	0	0	0	0	0	0	0	0	fraction.	fraction.	fraction.	0
						1	2	n				n							B_1	B_3	B_5	B_7
-	-			(ш							
1		${}^{1}v_{2} \times {}^{1}v_{3}$	${}^{1}\mathbf{v}_{4}, {}^{1}\mathbf{v}_{5}, {}^{1}\mathbf{v}_{6}$	$\int {}^{1}\mathbf{v}_{2} = {}^{1}\mathbf{v}_{2}$	=2n		2	n	2n	2n	2n											
	1 ^	• v ₂ ו v ₃		$1^{1}v_{3}=1^{1}v_{3}$	=2n			~	211	211	211											
				$({}^{1}\mathbf{v}_{4} = {}^{2}\mathbf{v}_{4})$																		
2	-	${}^{1}V_{4} - {}^{1}V_{1}$	V_4	$\{ {}^{1}\mathbf{v}_{1} = {}^{1}\mathbf{v}_{1} \}$	=2n-1	1			2n-1													
3		${}^{1}V_{5}+{}^{1}V_{1}$	2	$\int {}^{1}\mathbf{v}_{5} = {}^{2}\mathbf{v}_{5}$	=2n+1	1																
3	+	V5+V1	$2V_{5}$	$\int {}^{1}\mathbf{v}_{1} = {}^{1}\mathbf{v}_{1}$		1		***		2n+1												
			$({}^{3}\mathbf{v}_{5}={}^{0}\mathbf{v}_{5})$																			
4	÷	$^{2}V_{4}$ ÷ $^{2}V_{5}$	$^{1}V_{11}$		$=\frac{2n-1}{2n+1}$				0	0						$=\frac{2n-1}{2n+1}$						
				$\int {}^{3}\mathbf{v}_{4} = {}^{0}\mathbf{v}_{4} \int$																		
	5 ÷ 1		2	$\begin{bmatrix} {}^{1}\mathbf{v}_{11} = {}^{2}\mathbf{v}_{11} \end{bmatrix}$	$=\frac{1}{2} \cdot \frac{2n-1}{2n+1}$											1 2n-1						
5		${}^{1}V_{11} \div {}^{1}V_{2}$	v_{11}	$1 v_{2} v_{2} v_{2}$	$=\frac{1}{2} \cdot \frac{1}{2n+1}$		2	***								$=\frac{1}{2} \cdot \frac{2n-1}{2n+1}$						
				$\left({}^{2}\mathbf{v}_{11} = {}^{0}\mathbf{v}_{11} \right)$																		
6	-	${}^{0}\mathbf{V}_{13} - {}^{2}\mathbf{V}_{11}$	1V12		$=-\frac{1}{2} \cdot \frac{2n-1}{2n+1}$											0		$=-\frac{1}{2}\cdot\frac{2n-1}{2n+1}=A_0$				
-		• • • • • • •		${}^{0}\mathbf{v}_{13}={}^{1}\mathbf{v}_{13}$														a 2017 x -				
				$\int {}^{1}\mathbf{v}_{2} = {}^{1}\mathbf{v}_{3}$																		
7	-	${}^{1}V_{3} - {}^{1}V_{1}$	${}^{1}V_{10}$	$1 v_{3=2} v_{2}$	=n-1(=3)	1		n							n							
									_													
8		$^{1}v_{2}+^{0}v_{7}$	1V7	$\int {}^{1}\mathbf{v}_{2} = {}^{1}\mathbf{v}_{2}$	=2+U=2		2					2										
ľ	17	· v ₂ +· v ₇	••7	$^{0}V_{7}=^{1}V_{7}$	=2+0=2		-					<u>،</u>										
				$(1 v_{6}=1 v_{6})$																		
9	÷	$^{1}V_{6} \div ^{1}V_{7}$	${}^{3}V_{11}$	${}^{0}\mathbf{v}_{11}={}^{3}\mathbf{v}_{11}$	$=\frac{2n}{2}=A_1$						2n	2				$\frac{2n}{2} = A_1$						
					-											-						
10		${}^{1}\mathbf{v}_{12} \times {}^{3}\mathbf{v}_{11}$	1	$\int {}^{1}\mathbf{v}_{21} = {}^{1}\mathbf{v}_{21}$	$=B_1 \cdot \frac{2n}{2} = B_1 A_1$											$\frac{2n}{2} = A_1$	$B_1 \cdot \frac{2n}{2} = B_1 A_1$		B_1			
10	×	V ₁₂ ×°V ₁₁	· V ₁₂	$^{3}\mathbf{v}_{11}=^{3}\mathbf{v}_{11}$	$=B_1 \cdot \cdot \cdot \cdot \cdot \cdot = B_1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot = B_1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot = B_1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot = B_1 \cdot = B_1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot = B_1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot = B_1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot = B_1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot = B_1 \cdot \cdot \cdot \cdot \cdot \cdot = B_1 \cdot \cdot \cdot \cdot : A_1 \cdot \cdot \cdot : A_1 \cdot : A$		***	***								·2·=·41	$B_{1} \cdot \gamma_{2} = B_{1} \cdot A_{1}$		D1			
				$\left({}^{1}\mathbf{v}_{12} = {}^{0}\mathbf{v}_{12} \right)$																		
11	+	$^{1}V_{12}+^{1}V_{13}$	${}^{2}V_{12}$		$=-\frac{1}{2}\cdot\frac{2n-1}{2n+1}+B_1\cdot\frac{2n}{2}$												0	$\left\{-\frac{1}{2}\cdot\frac{2n-1}{2n+1}+B_1\cdot\frac{2n}{2}\right\}$				
				$\int {}^{1}\mathbf{v}_{13} = {}^{2}\mathbf{v}_{13} \int$																		
		1 1		$\int {}^{1}\mathbf{v}_{10} = {}^{2}\mathbf{v}_{10}$		1																
12	-	${}^{1}\mathbf{v}_{10} - {}^{1}\mathbf{v}_{1}$	v_{10}	$1^{1}\mathbf{v}_{1}=1^{1}\mathbf{v}_{1}$	=n-2=2	1									n-2							
-								_	-		-											
13	rll - I	${}^{1}V_{6} - {}^{1}V_{1}$	$2V_6$	$\{ {}^{1}\mathbf{v}_{6} = {}^{2}\mathbf{v}_{6} \}$	=2n-1	1					2n-1											
			••	$\int {}^{1}\mathbf{v}_{1} = {}^{1}\mathbf{v}_{1} \int$				- 1			*						1					
				$\int {}^{1}\mathbf{v}_{1} = {}^{1}\mathbf{v}_{1}$													1					
14	+	${}^{1}V_{1} - {}^{1}V_{7}$	${}^{2}V_{7}$	$1_{V_7=2V_7}$	=2+1=3	1						3					1					
	IR I																1					
	Ш.І	a a	h	$\int {}^{2} v_{6} = {}^{2} v_{6}$	2n - 1			1					2n - 1				1				I	

Diagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 et seq.)

15	4	$^{2}v_{6}$ $\div^{2}v_{7}$ $^{1}v_{8}$	$ \begin{cases} {}^{2}\mathbf{V}_{6} \\ {}^{2}\mathbf{V}_{7} \end{cases} $	$=^{2} \mathbf{v}_{6}$ $=^{2} \mathbf{v}_{7}$	$ \left. \right\} = \frac{2n-1}{3} \\ \left. \right\} = \frac{2n}{2} \cdot \frac{2n-1}{3} $						2n - 1	3	$\frac{2n-1}{3}$							
16	ļ	$= {}^{2}\mathbf{V}_{6} \div {}^{2}\mathbf{V}_{7} = {}^{1}\mathbf{V}_{8}$ $= {}^{2}\mathbf{V}_{6} - {}^{1}\mathbf{V}_{1} = {}^{4}\mathbf{V}_{11}$ $= {}^{2}\mathbf{V}_{6} - {}^{1}\mathbf{V}_{1} = {}^{3}\mathbf{V}_{6}$ $= {}^{1}\mathbf{V}_{1} + {}^{2}\mathbf{V}_{7} = {}^{3}\mathbf{V}_{6}$ $= {}^{3}\mathbf{V}_{6} \div {}^{3}\mathbf{V}_{7} = {}^{1}\mathbf{V}_{9}$ $= {}^{3}\mathbf{V}_{6} \div {}^{4}\mathbf{V}_{1} = {}^{5}\mathbf{V}_{1}.$	$\begin{cases} {}^{1}V_{8} \\ {}^{3}V_{11} \end{cases}$	$={}^{0}V_{8}$ $={}^{4}V_{11}$	$= \frac{2n}{2} \cdot \frac{2n-1}{3}$							3		0			$\tfrac{2n}{2} \cdot \tfrac{2n-1}{3}$			
17	[-	$^{2}v_{6}^{-1}v_{1}^{3}v_{6}$	$ \begin{cases} {}^{2}\mathbf{v}_{6} \\ {}^{1}\mathbf{v}_{1} \end{cases} $	$={}^{3}V_{6}$ $={}^{1}V_{1}$	=2n-2	ı.					2n-2									
18 (]+	$+^{1}v_{1}+^{2}v_{7}$ $^{3}v_{7}$	$ \begin{cases} {}^{2}\mathbf{V}_{7} \\ {}^{1}\mathbf{V}_{1} \end{cases} $	$={}^{3}\mathbf{v}_{7}$ $={}^{1}\mathbf{v}_{1}$	=3+1=4	ı.						4								
19	-	$+^{3}v_{6}+^{3}v_{7}$ $^{1}v_{9}$	$\begin{cases} {}^{3}V_{6} \\ {}^{3}V_{7} \end{cases}$	$=^{3}\mathbf{v}_{6}$ $=^{3}\mathbf{v}_{7}$ $=^{0}\mathbf{v}_{9}$ $=^{5}\mathbf{v}_{11}$	$=\frac{2n-2}{4}$						2n-2	4		$\frac{2n-2}{4}$		$\begin{pmatrix} \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} \\ =A_2 \end{pmatrix}$				
			1 4 V	$=^{0} V_{9}$ $=^{5} V_{11}$	$= \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{4} = A_3$									0						
21	>	${}^{1}\mathbf{v}_{22} \times {}^{5}\mathbf{v}_{11} {}^{6}\mathbf{v}_{11}$	$\begin{cases} {}^{1}\mathbf{V}_{22} \\ {}^{0}\mathbf{V}_{12} \end{cases}$	$=^{1} V_{22}$ $=^{0} V_{12}$	$= B_3 \cdot \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} = B_3 \cdot A_3$											٥	$B_{3}A_{3}$		 B_3	
22	+	$+ {}^{3}\mathbf{v}_{12} + {}^{2}\mathbf{v}_{13} {}^{3}\mathbf{v}_{13}$	$\begin{cases} {}^{3}\mathbf{v}_{12} \\ {}^{2}\mathbf{v}_{13} \end{cases}$	$=^{0} V_{12}$ $=^{3} V_{13}$	$=A_0+B_1A_2+B_3A_3$												0	${A_3+B_2A_2+B_3A_3}$		
23	-	$+ {}^{3}\mathbf{v}_{12} + {}^{2}\mathbf{v}_{13} {}^{3}\mathbf{v}_{13}$ $- {}^{2}\mathbf{v}_{10} + {}^{1}\mathbf{v}_{1} {}^{3}\mathbf{v}_{10}$	$\begin{cases} {}^{3}\mathbf{v}_{10} \\ {}^{-1}\mathbf{v}_{1} \end{cases}$	$=^{3} V_{10}$ $=^{1} V_{1}$	$ \begin{vmatrix} = B_3 \cdot \frac{2n}{3} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} = B_3 \cdot A_3 \\ = A_0 + B_1 A_2 + B_3 \cdot A_3 \\ = n - 3 = 1 \end{vmatrix} $	1									n-3					
							Here 1	ollows	a repeti	tion of	Operati	ons th	irteen 1	to twen	ty-thre	e.				
24	+	$+^{4}\mathbf{v}_{12}+^{0}\mathbf{v}_{24}^{-1}\mathbf{v}_{24}$	$\begin{cases} {}^{4}\mathbf{v}_{12} \\ {}^{0}\mathbf{v}_{24} \end{cases}$	$=^{0} V_{12}$ $=^{1} V_{24}$	$=B_7$														 	 B7
25	+	$+^{1}$ v ₁ $+^{1}$ v ₃ 1 v ₃	$\int_{-1}^{-1} \mathbf{V}$	$_{1}=^{1}V_{1}$ $_{3}=^{1}V_{3}$ $_{6}=^{0}V_{6}$	=n+1=4+1=5															
L					by a Variable-card.															

Was the Analytical Engine just a larger Difference Engine?

• The Difference Engine, although it had the same arithmetical operations as the Analytical Engine, was *logically* on a lower plane.

Was the Analytical Engine just a larger Difference Engine?

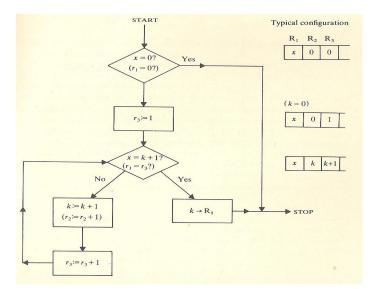
• The Difference Engine, although it had the same arithmetical operations as the Analytical Engine, was *logically* on a lower plane.

The DE could perform the following *operations*:

- ► The arithmetical operations +, ×, are operations.
- Any sequence of operations is an operation.
- *(Iteration)* Any finite iteration of an operation is an operation.

Was the Analytical Engine just a larger Difference Engine?

• The Difference Engine, although it had the same arithmetical operations as the Analytical Engine, was *logically* on a lower plane.


The DE could perform the following *operations*:

- ► The arithmetical operations +, ×, are operations.
- Any sequence of operations is an operation.
- *(Iteration)* Any finite iteration of an operation is an operation.

(Today we should say that the DE could compute any *primitively recursive* function.) But the Analytical Engine additionally had:

► *Conditional iteration* If *P* is an operation and *T* is a test on register contents, then the result of iterating *P* until *T* succeeds is an operation.

Flowchart for a Shepherdson-Sturgis-Minsky Register Machine

Was the Analytical Engine 'Universal'?

• A *universal* computer is one equipped with a *universal program* that is one that could theoretically emulate the action of every other program. Turing, defining the term, proved that his 'machines' were universal.

• What Babbage and Lovelace lacked, was a *coding method*, a way of coding up program instructions by numbers, which a universal machine could decode and then simulate.

• Kurt Gödel (1930) gave a way of coding alphabets, then words, then sentences for use in his famous Incompleteness Theorems. Turing then used this idea to code up programs (1936). Using this a Shep.-S-M Register machine only needs a half dozen Registers to be a fully universal machine.

Was the Analytical Engine 'Universal'?

• A *universal* computer is one equipped with a *universal program* that is one that could theoretically emulate the action of every other program. Turing, defining the term, proved that his 'machines' were universal.

• What Babbage and Lovelace lacked, was a *coding method*, a way of coding up program instructions by numbers, which a universal machine could decode and then simulate.

• Kurt Gödel (1930) gave a way of coding alphabets, then words, then sentences for use in his famous Incompleteness Theorems. Turing then used this idea to code up programs (1936). Using this a Shep.-S-M Register machine only needs a half dozen Registers to be a fully universal machine.

So the answer is "Yes": the Analytical Engine, using Turing and Gödel's ideas, can be seen to be universal.

Moreover as Turing showed, the programs could also be treated as data, and simple be stored inside the machine prior to operation.

Neither Babbage, nor Lovelace knew of universality, but both saw potentialities beyond the calculations they programmed.

Babbage's thesis:

"These two memoirs [Menabrea's and Lovelace's articles] furnish a complete demonstration - *that the whole of the development and operations of analysis are capable of being executed by machinery.*" (Babbage's italics.)

Do machines think? "Lovelace's Objection"

Lovelace:

"It is desirable to guard against the possibility of exaggerated ideas that might arise as to the powers of the Analytical Engine [which] has no pretensions whatever to *originate* anything. It can do whatever we *know how to order it* to perform but it has no power of *anticipating* any analytical relations or truths."

• This is discussed in a famous paper by Turing in the journal *Mind* on the possibility of machines having intelligent thought.

But again. . . .

Lovelace:

"Again it might act upon things other than *number*, ... Supposing for instance , that the fundamental relations of pitched sounds in the science of harmony and of musical composition were susceptible of such expression and adaptations, the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent."

The effect on computing machinery on pure mathematics

Lovelace again:

"It is however pretty evident, on general principles, that in devising for mathematical truths a new form in which to record and throw themselves out for actual use, views are likely to be induced, which should again react on the more theoretical phase of the subject"