
Discrete Transfinite Computation

P. D. Welch
School of Mathematics, University of Bristol, England.

Abstract

We describe various computational models based initially, but not exclusively, on
that of the Turing machine, that are generalized to allow for transfinitely many com-
putational steps. Variants of such machines are considered that have longer tapes than
the standard model, or that work on ordinals rather than numbers. We outline the
connections between such models and the older theories of recursion in higher types,
generalized recursion theory, and recursion on ordinals such as α-recursion. We con-
clude that, in particular, polynomial time computation on ω-strings is well modelled
by several convergent conceptions.

1 Introduction

There has been a resurgence of interest in models of infinitary computation in the
last decade. I say resurgence because there has been for 50 years or more models of
computation that deal with sets of integers, or objects of even higher type, in gener-
alized recursion theory. Such a theory was initiated by Kleene’s generalization of his
equational calculus for ordinary recursion theory [16]-[19]. Whilst that was indeed
a generalized recursion theory some commentators remarked that it was possible to
view, for example, what came to be called Kleene recursion, as having a machine-like
model. The difference here was that the machine would have a countable memory,
a countable tape or tapes, but an ability to manipulate that countable memory in fi-
nite time, or equivalently in one step. Thus a query about a set of integers r say, say
coded as an element of Cantor space, as to whether r was an element of an oracle set
A ⊆ 2N, could be considered a single computational operation. Moreover r could be
moved from a tape to a storage or otherwise manipulated or altered in infinitely many
places at once by one step of some procedure. This is what Addison and Spector called
the “ℵ0-mind” (see[30], p.405; further Kreisel spoke of a generalized Church’s thesis).
We thus had essentially a generalization of the original Turing machine model. It
should be noted however (in contradistinction to the transfinite models of more recent
years) that the computations would all be represented by wellfounded computation
trees when convergent, and would otherwise be deemed non-convergent: an infinitely
long linear sequence of computations represents failure. By declaring that countably
many operations on a set of integers could be done in “finite time” or all at once and
so count as one step, one simply sidesteps the difficulty of thinking of infinitely many
steps of a successful computation that is yet to be continued.

Thus in the past mathematicians have been more inclined to consider wellfounded
computation but applied to infinite objects, rather than considering transfinite com-
putations containing paths of transfinite order type. Examples of the former: Kleene

1

recursion as HYP-recursion, or the Blum-Shub-Smale (BSS, [3]) machines acting with
real inputs (or indeed other mathematical objects taken from a ring with suitable func-
tions). One could almost say that a hallmark of the generalizations of recursion theory
to “higher”, or “generalized” recursion theory has been that it has considered only
wellfounded computation albeit with infinitary objects of higher types. Sacks’s E-
recursion [32] again considers essentially the same paradigm of building up functions
applied now to sets in general: a non-convergent computation is exemplified by an
infinite path in a computation tree, thus rendering the tree ill-founded.

However what if we were nevertheless to think also of transfinite stages of com-
putation? There is a natural reaction to this: we feel that “computation” is so tied up
with our notions of finitary algorithm, indeed effective algorithm, that it is too hetero-
dox to consider transfinitely numbered steps as ‘computation.’ However why should
this be? We are probably constrained to think of well defined computations as shying
away from anything that smells of a supertask: the quandaries arising from Thomson’s
Lamp [36] seem to have used up a surprising lot of space and ink, for what is after all
a simple definitional problem. So supertasks have been banished from computational
study.

However transfinite recursion or procedures are not at all alien, if not common
in the everyday experience of the mathematician - there are after all, few Π1

1-complete
sets occuring as ‘natural’ mathematical objects - but the early canonical example arises
in the Cantor-Bendixson process. Here with a simple decreasing chain of sets Xα ⊇
Xα+1 and intersections at limits: Xλ = ∩α<λXα , one has a monotone process. Again
the monotonicity phenomenon occurs centrally in Kleene’s recursion theory of higher
types, and we feel safer with a monotone process than a non-monotone or discontinu-
ous one.

Notwithstanding these qualms, the current chapter reviews the recent descriptions
of various machine models, including that of Turing’s original machine itself, which
can be given a defined behaviour at limit stages of time, enabling them to compute
through recursive ordinals and beyond. This behaviour, apart from a few very elemen-
tary models, is signified by being non-monotonic, or quasi-inductive.

We shall see that the various models link into several areas of modern logic: besides
recursion theory, set theory and the study of subsystems of second order analysis play
a role. Questions arise concerning the strengths of models that operate at the level one
type above that of the integers. This may be one of ordinal types: how long a well
ordered sequence of steps must a machine undertake in order to deliver its output? Or
it may be of possible output: if a machine produces real numbers, which ordinals can
be coded as output reals? And so on and so forth.

1.1 Computation in the limit

To start at the beginning, steps towards transfinite considerations, or at least that of
considering what might have occurred on a tape at a finite stage, come immediately
after considering the halting problem. The universal Turing machine can be designed
to print out on an infinite output tape the code numbers e of programmes Pe that will
halt on input e: thus Pe (e) ↓ . This Σ0

1 set, as is well known, is complete: any other Σ0
1

is (ordinary) Turing reducible to it.
Putnam [29] (and Gold [10]) went a step further.

Definition 1 ([29]) P is a trial and error predicate if and only if there is a general re-

2

cursive function f such that for every x1, . . . , xn:

P(x1, . . . , xn) ≡ limy→∞ f (x1, . . . , xn , y) = 1
¬P(x1, . . . , xn) ≡ limy→∞ f (x1, . . . , xn , y) = 0.

Running such a precedure on a Turing machine allows us to print out a ∆0
2 set A’s

characteristic function on the output tape. In order to do this we are forced to allow
the machine to change its mind about n ∈ A and so repeatedly substitute a 0 for a 1 or
vice versa in the n’th cell of the output tape. However, and this is the point, at most
finitely many changes are to be made to that particular cell’s value. It is this feature
of not knowing at any finite given time whether further alterations are to made, that
makes this a transition from a computable set to a non-computable one.

By a recursive division of the working area up into infinitely many infinite pieces,
one can arrange for the correct computation of all ?m ∈ A? to be done on the one
machine, and the correct values placed on the output tape.

However this is as far as one can go if one imposes the (very obvious, practical)
rule that a cell’s value can only be altered finitely often. In order to get a Σ0

2 set’s
characteristic function written to the output tape, then in general one cannot guarantee
that a cell’s value is changed finitely often. Then immediately one is in the hazardous
arena of supertasks.

Nevertheless let us play the mathematicians’ game of generalizing for general-
ization’s sake: let us by fiat declare a cell’s value that has switched infinitely often
0→ 1→ 0 to be 0 at “time ω”. With this lim inf declaration one has, mathematically
at least, written down the Σ0

2-set on the output tape, again at time ω.
Following this through we may contemplate continuing the computation at times

ω + 1,ω + 2, . . . ,ω + ω Let 〈Ci (α) | i ∈ ω,α ∈ On〉 denote the contents of cell
Ci at time α in On. Let l (α) ∈ ω represent the cell number being observed at time α.
Similarly let q(α) denote the state of the machine/program at time α. We merely need
to specify (i) the read/write head position l (λ) and (ii) the next state q(λ) for limit
times λ (whilst l (α + 1) and q(α + 1) are obtained by just following the usual rules
for head movement and state change according to the standard Turing transition table.
(Note that the stock of programmes has not changed, hence q(α) names one of the
finitely many states of the usual transition table; we are merely enlarging the possible
behaviour.)

Input:
Scratch:
Output:

1

0

1

1

1

0

R/W

0

0

0

1

0

0

1

1

1

0

1

1

0

0

0

0

0

1

0

0

0

· · ·

· · ·

· · ·

Figure 1: A 3-tape Infinite Time Turing Machine

We intend that control of the program at a limit time λ, be placed at the beginning
of the outermost loop, or subroutine call, that was called unboundedly often below λ.
We thus set:

3

q(λ) = Liminfα<λ q(α).

For limit λ we set Ci (λ) by:

Ci (λ) = k if ∃α < λ∀β < λ(α < β −→ Ci (β) = k) for k ∈ {0,1};
= 0 otherwise.

The R/W head we place according to the above, also using a modified Liminf rule:

l (λ) = Liminf∗〈l (α) | α < λ〉

This is not exactly the arrangement that Hamkins and Lewis specified in [11] but
it is inessentially different from it (HL specified a special limit state qλ which the
machine entered into automatically at limit stages, and the head was always set back
to the start of the tape. They specified (which we shall keep here) that the machine be
a three tape machine.

Input then can consist of a set of integers, suitably coded as an element of 2N on
〈C3i〉i and output likewise is such an element on 〈C3i+2〉i . Thus there is little difference
in a machine with an oracle Z ⊆ ω and one acting on input Z coded onto the input
tape. However we immediately see the possibility of higher type computation: we
may have some Z ⊆ 2N and then we add a query state which asks if, say, the scratch
tape 〈C3i+1〉i’s contents is or is not an element ofZ.

We have thus completely specified the ITTM’s behaviour. The scene is thus set to
ask what such machines are capable of. We defer discussion of this until Section 2,
whilst we outline the rest of this chapter here.

In one sense we have here a logician’s plaything: the Turing model has been taken
over and redesigned with a heavy-handed liminf rule of behaviour. This liminf oper-
ation at limit stages is almost tantamount to an infinitary logical rule, and most of the
behaviour the machine exhibits is traceable to this rule. But then of course it has to
be, what else is there? Nevertheless this model and those that have been studied sub-
sequently have a number of connections or aspects with other areas of logic. Firstly,
with weak subsystems of analysis: it is immediately clear that the behaviour of such
machines is dependent on what ordinals are available. A machine may now halt at
some transfinite stage, or may enter an infinitely repeating loop; but any theory that
seeks to describe such machines fully is a theory which implies the existence of suf-
ficiently long wellorderings along which such a machine can run (or be simulated as
running). We may thus ask “What (sub-) system of analysis is needed in which to
discuss such a machine”? We shall see that machine variants may require longer or
shorter wellorderings, thus their theory can be discussed within different subsystems.

Secondly, we can ask how the computable functions/sets of such a model fit in
with the earlier theories of generalized recursion theory of the 1960’s and 70’s. For
example there is naturally associated with ITTM’s a so-called Spector Class of sets.
Such classes arise canonically in the generalized recursion theories of that era through
notions of definability.

Once one model has been defined it is very tempting to define variants. One such
is the Infinite Time Register Machine (ITRM’s - due to Koepke [23]) which essentially
does for Shepherdson-Sturgis machines what HL does for Turing machines. Whilst at
the finite level these two models are equal in power, their infinitary versions differ con-

4

siderably, the ITTM’s being much stronger. The ITRM model is discussed in Section
3.

Just as for ordinary recursion on ω the TM model with a putative tape in order type
ω length is used, so when considering notions of α-recursion theory for admissible or-
dinals α, it is possible to think of tapes also unfettered by having finite initial segments:
we may consider machines with tapes of order type α and think of computing along α
witb such machines. What is the relation to this kind of computation and α-recursion
theory?

One can contemplate even machines with an On-length tape. It turns out (Koepke
[22]) that this delivers a rather nice presentation of Gödel’s constructible hierarchy.
Finally discussed here is the notion of a Blum-Shub-Smale machine ([3] acting trans-
finitely. With some continuity requirement imposed on register contents for limit times,
we see that functions such as exponentiation ex which are not BSS computable, be-
come naturally IBBS computable. Moreover there is a nice equivalence between their
decidable reals, and those produced by the Safe Set Recursion (“SSR”) of Beckmann,
Buss, and S. Friedman, which can be thought of as generalizing to transfinite sets no-
tions of polynomial time computable functions on integers. Briefly put, a polynomial
time algorithm usingω as an input string, should be halting by some timeωn for some
finite n. The IBBS computable reals are then identical to the SSR-computable reals.
The background second order theory needed to run IBBS machines lies intermediate
between WKL0 and ATR0.

The relation of ITTM’s to Kleene recursion is discussed in Section 2.

2 What ITTM’s can achieve.

Hamkins and Lewis in [11] explore at length the properties of ITTM’s: they demon-
strate the natural notion of a universal such machine, and hence an Sn

m-theorem and
the Recursion Theorems. A number of questions immediately spring to mind:

Q. What is the halting set H = {e ∈ ω | Pe (0)↓}?

Here 〈Pe〉e enumerates the usual Turing machine programs/transition tables (and
we use Pe (x) ↓ y to denote that the e’th program on input x ∈ N or in 2N halts
with output y. (If we are unconcerned about the y we omit reference to it.) An ITTM
computation such as this can now halt in ω or more many steps. But how long should
we wait to see if Pe (0) ↓or not? This is behind the following definitions.

Definition 2 (i) We write ‘Pe (n)↓α y’ if Pe (n)↓ y in exactly α steps. We call α clock-
able if ∃e∃n ∈ ω∃y Pe (n)↓α y.

(ii) A real y ∈ 2N is writable if there are n,e ∈ ω with Pe (n)↓ y; an ordinal β is
called writable, if β has a writable code y.

We may consider a triple s(α) = 〈l (α),q(α),〈Ci (α)i〉〉 as a snapshot of a machine
at time α, which contains all the relevant information at that moment. A computation
is then given by a wellordered sequence of snapshots. There are two possible out-
comes: there is some time α at which the computation halts, or else there must be
some stage α0 at which the computation enters the beginning of a loop, and from then
on throughout the ordinals it must iterate through this loop. It is easy either by ele-
mentary arguments or simply by Löwenheim-Skolem, to see that such an α0 must be

5

a countable ordinal, and moreover that the periodicity of the cycling loop is likewise
countable.

The property of being a ‘well-ordered sequence of snapshots in the computation
Pe (x)’ is Π1

1 as a relation of e and x. Hence ‘Pe (x)↓ y’ is ∆1
2:

∃w(w codes a halting computation of Pe (x), with y written on the output tape at
the final stage) ⇐⇒
∀w(w codes a computation of Pe (x) that is either halting or performs a repeating

infinite loop −→ w codes a halting computation with y on the output tape.)

Likewise Pe (x) ↑ is also ∆1
2. By the above discussion then it is immediate that the

clockable and writable ordinals are all countable. Let λ =df sup{α | α is writable}; let
γ =df sup{α | α is clockable}. Hamkins-Lewis showed that λ ≤ γ.

Q2 Is λ = γ?

Definition 3 (i) x∇ = {e|Pe (x)↓} (The halting set on integers).
(ii) XH = {(e, y) |PX

e (y)↓} (The halting set on reals relativised to X ⊆ 2N).

This yields the halting sets, both for computations on integers and secondly on
reals where by the latter we include the instruction for the ITTM to query whether the
current scratch tape’s contents considered as a real, is in X .

Definition 4 (i) R(x) is an ITTM-semi-decidable predicate if there is an index e so
that:

∀x(R(x) ↔ Pe (x)↓1)

(ii) A predicate R is ITTM-decidable if both R and ¬R are ITTM-semi-decidable.

Q3 What are the ITTM-(semi-)decidable sets of integers, or reals? What is x∇?

The last question seems somewhat impenetrable without a characterisation of the
halting behaviour of ITTM’s - and one version of that problem is Question 2. To
analyse decidability one route might be through a version of Kleene’s Normal Form
Theorem in the context of ITTM’s. However there is an obvious type difference: a suc-
cessful halting computation of an ordinary Turing machine in a finite amount of time
can be coded as a finite sequence of finite ordinary-TM-snapshots, and thus through
the usual coding devices, by an integer. This is essentially the heart of Kleene’s T-
predicate argument. Thus for standard TM’s Kleene demonstrated that given an index
e we may effectively find an index e′ so that for any n: Pe (n) ↓−→ Pe′ (n) ↓M where
M ∈ N is a code for the whole computation sequence of Pe (n).

However this is too simple here: Pe (0) ↓may halt at some transfinite time β ≥
ω. Hence the halting computation is only codable by an infinite sequence of infinite
ITTM-snapshots S say, of some order type τ. In order for there to be a chance of
having another index e′ with Pe′ (n) ↓ y where y codes such a sequence S, one has to
know at the very least that there is an e0 so that Pe0 (n) halts with output a code for τ.
In other words that τ be writable. Thus we need an affirmative answer to Q2 at the
very least.

6

Interestingly the key to answering halting behaviour is not to aim straight for an
analysis of halting per se, but at another phenomenon that is peculiarly significant to
ITTM’s. There can be computations Pe (x) that whilst they have not formally halted,
nevertheless from some point in time onwards, leave their output tapes alone, and just
churn around for ever perhaps doodling or making entries on their scratch tape. The
output has however stabilized. We formally define this as follows:

Definition 5 (i) Suppose for the computation Pe (x) the machine does not halt then we
write Pe (x) ↑ ; if eventually the output tape does have a stable value y ∈ 2N then we
write: Pe (x)↑ y and we say that y is eventually x-writable.

(ii) R(x) is an eventually ITTM-semi-decidable predicate if there is an index e so
that:

∀x(R(x) ↔ Pe (x)↑ 1)

(iii) A predicate R is eventually ITTM-decidable if both R and ¬R are eventually
ITTM-semi-decidable.

This proliferation of notions is not gratuitous: it turns out that answering Q2 on
clockables vis à vis writables, depends on successfully analysing stabilization patterns
of individual cells Ci during the course of the computation Pe (n). The moral is that
stabilization is anterior to halting. The following lemma illustrates the point.

Theorem 1 (The λ, ζ, Σ-Theorem) (Welch cf. [38], [41]) (i) Any ITTM computation
Pe (x) which halts, does so by time λx , the latter being defined as the supremum of the
x-writable ordinals.
(ii) Any computation Pe (x) with eventually stable output tape, will stabilize before the
time ζ x defined as the supremum of the eventually x-writable ordinals.
(iii) Moreover ζ x is the least ordinal so that there exists Σx > ζ x with the property
that

Lζx [x] ≺Σ2 LΣx [x];

(iv) Then λx is also characterised as the least ordinal satisfying:

Lλx [x] ≺Σ1 Lζx [x].

If we unpack the contents here, answers to our questions are given by (iii) and (iv).
Let us take x = ∅ so that we may consider the unrelativised case. Our machine-
theoretic structure and operations are highly absolute and it is clear that running the
machine inside the constructible hierarchy of Lα’s yields the same snapshot sequence
as considering running the machine in V . If Pe (n) ↓then this is a Σ1-statement (in the
language of set theory). As halting is merely a very special case of stabilization, then
we have that

Pe (n) ↓↔ (Pe (n) ↓)Lζ ↔ (Pe (n) ↓)Lλ

(the latter because Lλ ≺Σ1 Lζ). Hence the computation must halt before λ. Hence
the answer to Q2 is affirmative: every halting time (of an integer computation) is a
writable ordinal. One quickly sees that a set of integers is ITTM-decidable if and only
if it is an element of Lλ . It is ITTM-semi-decidable if and only if it is Σ1(Lλ).

Since the limit rules for ITTM’s are intrinsically of a Σ2-nature, with hindsight it
is perhaps not surprising that this would feature in the (ζ,Σ) pair arising as they do:
after all the snapshot of the universal ITTM at time ζ is going to be coded into the

7

Σ2-Theory of this Lζ . The universality of the machine is then apparent in the fact that
by stage ζ it will have “constructed” all the constructible sets in Lζ .

As a corollary one obtains then:

Theorem 2 (Normal Form Theorem)(Welch) (a) For any ITTM computable function
ϕe we can effectively find another ITTM computable function ϕe′ so that on any input
x from 2N if ϕe (x) ↓ then ϕe′ (x) ↓ y ∈ 2N, where y codes a wellordered computation
sequence for ϕe (x).
(b) There is a universal predicate T1 which satisfies ∀e∀x:

Pe (x)↓ z ↔ ∃y ∈ 2N[T1(e, x, y) ∧ Last(y) = z].

Moreover as a corollary (to Theorem 1):

Corollary 1 (i) x∇ ≡1 Σ1-Th(〈Lλx [x],∈, x〉) - the latter the Σ1-theory of the structure.
(ii) Let x∞ =df {e | ∃yPe (x) ↑ y} be the set of x-stable indices, of those program

numbers whose output tapes eventually stabilize. Then

x∞ ≡1 Σ2-Th(〈Lζx [x],∈, x〉).

The conclusions are that the Σ1-Theory of Lλ is recursively isomorphic to the
ITTM-jump 0∇. One should compare this with Kleene’s O being recursively isomor-
phic to the hyperjump, or again the Σ1-Theory of Lωck

1
. The second part of the Corol-

lary gives the analogous results for the index set of the eventually stable programs:
here we characterise 0∞ as the Σ2-Theory of Lζ . The relativisations to inputs x are
immediate.

One should remark that extensions of Kleene’s O from the ? case to the ITTM case
are straightforward: we can define O+ by adding in to O those indices of Turing pro-
grams that now halt at some transfinite time. After all, we are keeping the programs the
same for both classes of machines, so we can keep the same formalism and definitions
(literally) but just widen the class of what we consider computations. Similarly we can
expand O+ to O∞ by adding in those indices of eventually stabilising programs. This
is done in detail in [20]. We thus have:

O

Lωck
1

≈
O+

Lλ
≈
O∞

Lζ
.

2.1 Comparisons with Kleene recursion

We have alluded to Kleene recursion in the introduction. His theory of recursion in
higher types ([16],[17],[18], [19]) was an equational calculus, a generalization of that
for the Gödel-Herbrand generalized recursive functions. In this theory numbers were
objects of type 0, whilst a function f : Nm −→ N is an object of type 1; and F :
N

l × (2N)m −→ N one of type 2 etc. The e’th procedure (whether thought of as
the e’th program of the kind of machine as outlined in the introduction, or else as
e’th equation system in his calculus) then allowed a computation with inputs ~n,~x with
oracle I to be presented in the form {e}(~n,~x,I). The oracle I was usually taken to
include an oracle for existential quantification E where, for x ∈ 2N:

8

0 if ∃nx(n) = 0
E (x) =

1 otherwise.

The reason for this was, although for any oracle I the class of relations semi-
decidable in I was closed under ∀N quantification, when semi-decidable additionally
in E it becomes closed under ∃N quantification. The Kleene semi-decidable sets then
would include the arithmetic sets in N × 2N (or further products thereof). (Ensuring
computations be relative to E also guarantees that we have the Ordinal Comparison
Theorem.)

The decidable relations turn out to be the hyperarithmetic ones, and the semi-
decidable are those Kleene-reducible to WO, the latter being a complete Π1

1 set of
reals. Thus:

Theorem 3 (Kleene) The hyperarithmetic relations R(~n, ~x) ⊆ Nk × (NN)l for any
k, l ∈ N, are precisely those computable in E.

The Π1
1 relations are precisely those semi-computable in E.

Then a reducibility ordering comes from:

Definition 6 Kleene reducibility: Let A,B ⊆ R; we say that A is Kleene-semi-
computable in B iff there is an index e and y ∈ R so that

∀x ∈ R(x ∈ A←→ {e}(x, y,B,E) ↓ 1)).

A is Kleene computable in B, written, A ≤K B, iff both A and its complement are
Kleene-semi-computable in B.

The presence of the real y deserves some explanation. We want to think of the
degree structure as being between sets of reals; the set y throws in a countable amount
of information to the computation, and we are thus thinking of two sets of reals A =K B
as being of the same complexity up to this countable amount of data. It implies that
each Kleene degree contains continuum many sets of reals, but moreover is closed
under continuous pre-images - it thus forms also a union of Wadge degrees.

We thus shall have that besides ∅,R the bottommost Kleene degree contains pre-
cisely all the Borel sets, whilst the degree of WO contains all co-analytic sets. As one
sees the notion is very tied up with hyperarithmeticity.

If we have a transitive reducibility notion ≤ on sets of integers x say, together with
a concomitant jump operator x −→ x′ then an ordinal assignment x −→ τx ∈ On is
said to be a Spector criterion if we have:

x ≤ y −→ (x′ ≤ y ←→ τx < τy). (∗)

As an example if we take here hyperdegree x ≤h y (abbreviating “x is hyperarith-
metic in y”) and the hyperjump operation, x −→ xh where xh is a complete Π1,x

1 set
of integers, then the assignment x −→ ωx

1 ck (where the latter is the least ordinal not
(ordinary) Turing recursive in x) satisfies the Spector Criterion (∗) above. For sets of
reals B we may extend this notation and let ωB,x

1 ck be the ordinal height α of the least
model of KP set theory (so the least admissible set) of the form Lα[x,B] |= KP.

With this we may express A ≤K B as follows:

9

Lemma 1 A ≤K B iff there are Σ1-formulae in L∈, Ẋ ϕ1(Ẋ ,v0,v1), ϕ2(Ẋ ,v0,v1), and
there is y ∈ R, so that

∀x ∈ R(x ∈ A ⇐⇒ L
ω

B,y,x
1

[B, y, x] |= ϕ1[B, y, x]
⇐⇒ L

ω
B,y,x
1

[B, y, x] |= ¬ϕ2[B, y, x]).

Back to ITTM-semidecidability:

The notion of semi-decidability comes in two forms.

Definition 7 (i) A set of integers x is semi-decidable in a set y if and only if:

∃e∀n ∈ x
[
Py
e (n)↓ 1←→ n ∈ x

]
(ii) A set of integers x is decidable in a set y if and only if both x and its complement
is semi-decidable in y. We write x ≤∞ y for the reducibility ordering.
(iii) A set of integers x is eventually-(semi)-decidable in a set y if and only if the above
holds with ↑ replacing↓. For this reducibility ordering we write x ≤∞ y.

We then get the analogue of the Spector criterion using x∇ as the jump operator:

Lemma 2 (i) The assignment x� λx satisfies the Spector Criterion:
x ≤∞ y −→ (x∇ ≤∞ y ↔ λx < λy).

(ii) Similarly for the assignment x� ζ x :
x ≤∞ y −→ (x∞ ≤∞ y ↔ ζ x < ζ y)

One can treat the above as confirmation that the ITTM degrees and jump operation
are more akin to hyperarithmetic degrees and the hyperjump, than to the (standard)
Turing degrees and Turing jump. Indeed they are intermediate between hyperdergees
and ∆1

2-degrees.
To see this, we define a notion of degree using definability and Turing-invariant

functions on reals (by the latter we mean a function f : R −→ ω1 such that x ≤T y −→

f (x) ≤ f (y)). Now assume that f is Σ1-definable over (HC,∈) without parameters,
by a formula in L∈̇ .

Definition 8 Let f be as described; let Φ be a class of formulae of L∈̇ . Then Γ= Γf ,Φ

is the pointclass of sets of reals A so that A ∈ Γ if and only if there is ϕ ∈ Φ with:

∀x ∈ R(x ∈ A↔ L f (x)[x] |= ϕ[x]).

With the function f (x) = ωx
1 ck and Φ as the class of Σ1-formulae we have that Γf ,Φ

coincides with the Π1
1-sets of reals (by the Spector-Gandy Theorem). Replacing f with

the function g(x) = λx then yields the (lightface) ITTM-semi-decidable sets. Lemma
1 is then the relativisation of Kleene recursion which yields the relation A ≤K B.

We now make the obvious definition:

Definition 9 A set of reals A is semi-decidable in a set of reals B if and only if:

∃e∀x ∈ 2N
[
PB
e (x) ↓ 1↔ x ∈ A

]
(ii) A set of reals A is decidable in a set of reals B if and only if both A and its comple-
ment is semi-decidable in B.
(iii) If in the above we replace ↓ everywhere by ↑ then we obtain the notion in (i) of A
is eventually decidable in B and in (ii) of A is eventually semi-decidable in B.

10

Then the following reducibility generalizes that of Kleene recursion.

Definition 10
(i) A ≤∞ B iff for some e ∈ ω, for some y ∈ 2N : A is decidable in (y,B).
(ii) A ≤∞ B iff for some e ∈ ω, for some y ∈ 2N : A is eventually decidable in (y,B).

Again a real parameter has been included here in order to have degrees closed
under continuous pre-images. We should expect that these reducibilities are dependent
on the ambient set theory, just as they are for Kleene degrees: under V = L there are
many incomparable degrees below that of the complete semi-decidable degree, and
under sufficient determinacy there will be no intermediate degrees between the latter
and 0, and overall the degrees will be wellordered. Now we get the promised analogy
lifting Lemma 1, again generalizing in two ways depending on the reducibility.

Lemma 3
(i) A ≤∞B iff there are Σ1-formulae in L∈, Ẋ ϕ1(Ẋ ,v0,v1), ϕ2(Ẋ ,v0,v1), and y ∈ R, so
that

∀x ∈ R(x ∈ A ⇐⇒ LζB,y,x [B, y, x] |= ϕ1[B, y, x]
⇐⇒ LζB,y,x [B, y, x] |= ¬ϕ2[B, y, x]).

(ii) A ≤∞B iff there are Σ2-formulae in L∈, Ẋ ϕ1(Ẋ ,v0,v1), ϕ2(Ẋ ,v0,v1), and y ∈ R,
so that

∀x ∈ R(x ∈ A ⇐⇒ LζB,y,x [B, y, x] |= ϕ1[B, y, x]
⇐⇒ LζB,y,x [B, y, x] |= ¬ϕ2[B, y, x]).

We have not formally defined all the terms here: λB,y,x is the supremum of the
ordinals written by Turing programs acting transfinitely with oracles for B, y. The
ordinal ζB,y,x is the least that is not ITTM-(B, x, y)-eventually-semi-decidable. There
is a corresponding λ-ζ-Σ-theorem and thus we have also that this ζ is least such that
LζB,y,x [B, y, x] has a proper Σ2-elementary end-extension in the L[B, y, x] hierarchy.

2.2 Degree theory and complexity of ITTM computations

Corollary 1 shows that the ITTM-jump of a set of integers x is essentially a mastercode,
or a Σ1-truth set if you will, namely that of Lλx [x]. The analogy here then is with Ox ,
the hyperjump of x, which is a complete Π1,x

1 set of integers, as being also recursively
isomorphic to Σ1-(Th(Lωx

1,ck
[x]) . This again indicates that the degree analogy here

should be pursued with hyperdegrees rather than Turing degrees. It is possible to iterate
the jump hierachy through the =∞ - degrees, and one finds that, inside L, the first ζ-
iterations form a linearly ordered hierachy with least upper bounds at limit stages. We
emphasise this as being inside L since one can show that there is no least upper upper
bound to {0∇n | n < ω}, but rather continuum many minimal upper bounds. (see [37]).
We don’t itemize these results here but refer the reader instead to [38].

A more general but basic open question is:
Q If D = {dn : n < ω} is a countable set of =∞-degrees, does D have a minimal

upper bound?
The background to this question is varied: for hyperdegrees this is also an open

question. Under Projective Determinacy a positive answer is known for ∆1
2n-degrees,

but for ∆1
2n+1-degrees this is open, even under PD. Minimal infinite time ∞-degrees

can be shown to exist by similar methods, using perfect set forcing, to those of Sacks
for minimal hyperdegrees (again see [37]).

11

One can also ask at this point about the nature of Post’s problem for semi-decidable
sets of integers. By the hyperdegree analogy one does not expect there to be incompa-
rable such sets below 0∇ and indeed this turns out to be the case ([12]).

2.3 Truth and arithmetical quasi-inductive sets

It is possible to relate ITTM’s closely to an earlier notion due to Burgess [4] of arith-
metical quasi-inductive definitions. We first make a general definition:

Definition 11 Let Φ : P (N) → P (N) be a Γ-operator, that is “n ∈ Φ(X)” is a
Γ-relation. We define the Γ-quasi-inductive operator using iterates of Φ as:

Φ0(X) = X ; Φα+1(X) = Φ(Φα (X));
Φλ (X) = lim infα→λ Φα (X) =df ∪α<λ ∩λ>β>α Φβ (X).
We set the stability set to be ΦOn(X).

By the nature of the lim inf operation at limits, it is easy to see that the operation
of an ITTM is an example of a recursive quasi-inductive operator on N. Recall that
a set of integers B say is inductive if it is (1-1) reducible to the least fixed point of a
monotone Π1

1-operator. Burgess defined such a B to be arithmetically quasi-inductive
if it was (1-1) reducible to the stability set ΦOn(∅).

In order to prove that an AQI halts, or reaches a stability point, one needs to know
that one has sufficiently long wellorderings, and a certain amount of second order
number theory is needed to prove that such ordinals exist. For the case of the ITTM’s
we know which ordinals we need: Σx for a computation involving integers and the
input real x. We then adopt this idea of a ‘repeat pair’ of ordinals for a quasi-inductive
operator Φ: the least pair (ζ,Σ) = (ζ (Φ, x),Σ(Φ, x)) with Φζ (x) = ΦΣ (x) = ΦOn(x).

Definition 12 AQI is the sentence: “For every arithmetic operator Φ, for every x ⊆
N, there is a wellordering W with a repeat pair (ζ (Φ, x),Σ(Φ, x)) in Field(W)”. If an
arithmetic operator Φ acting on x has a repeat pair, we say that Φ converges (with
input x).

We may simulate an AQI with starting set x ⊆ N as an ITTM with input x. Since
we know how long such a machine takes to halt or loop, this gives the length of or-
dering needed to determine the extent of the AQI. Given the characterisation from the
(relativized) λ-ζ-Σ-Theorem one arrives at the fact that

Theorem 4 The theoriesΠ1
3-CA0, ∆1

3-CA0+AQI, and ∆1
3-CA0 are in strictly descend-

ing order of strength, meaning that each theory proves the existence of a β-model of
the next.

What was engaging Burgess was an analysis of a theory of truth due to Herzberger
[15]. The latter had defined a Revision Sequence which was essentially a quasi-
inductive operator, just a bit beyond the arithmetic as follows.

H0 = ∅:
Hα+1 = {pσq : 〈N,+,× , · · · ,Hα〉 |= σ} ; with Hα interpreting T ;
Hλ = ∪α<λ ∩λ>β>α Hβ .
Burgess then defined the AQI sets as above and calculated that the ordinals (ζ,Σ)

formed exactly the repeat pair needed for AQI’s or for the Herzberger revision se-
quence. This was much earlier than the invention of ITTM’s and was unknown to
workers in the latter area around 2000, until Benedikt Löwe pointed out ([27]) the

12

similarity between the Herzberger revision sequence formalism and that of the ma-
chines. It can be easily seen that any Herzberger sequence with starting distribution
of truth values x say, can be mimicked on an ITTM with input x. Thus this is one
way of seeing that Herzberger sequences must have a stability pair lexicographically
no later than (ζ,Σ). Burgess had shown that H-sequences then loop at no earlier pair
of points. More recently Field [7] has used a revision theoretic definition with a Π1

1-
quasi-inductive operator to define a variant theory of truth. For all three formalisms,
Fields, Burgess’s AQI, and ITTM’s, although differing considerably in theory, the op-
erators are all essentially equivalent as is shown in [40], since they produce recursively
isomorphic stable sets. The moral to be drawn from this is that in essence the strength
of the liminf rule is at play here, and seems to swamp all else.

3 Variant ITTM models

Several questions readily occur once one has formulated the ITTM model. Were any
features chosen crucial to the resulting class of computable functions? Do variant
machines produce different classes? Is it necessary to have three tapes in the machine?
The answer for the latter question is both yes and no. First the affirmative part: it
was shown in [14] the class of functions f : N −→ N remains the same if 3 tapes are
replaced by 1, but not the class of functions f : 2N −→ 2N. The difficulty is somewhat
arcane: one may simulate a 3-tape machine on a 1-tape machine, but to finally produce
the output on the single tape and halt, some device is needed to tell the machine when
to finish compacting the result down on the single tape, and they show that this cannot
be coded on a 1-tape machine. On the other hand [39] shows that if one adopts an
alphabet of three symbols this can be done and the class of functions f : 2N −→ 2N is
then the same. One may also consider a B for ‘Blank’ as the third symbol, and change
the liminf rule so that if cell Ci has varied cofinally in a limit ordinal λ, then Ci (λ) is
set to be blank (thus nodding towards ambiguity of the cell value). With this alphabet
and liminf rule a 1-tape machine computes the same classes as a 3-tape machine, and
these are both the same as computed by the original ITTM.

What of the liminf rule itself? We have just mentioned a variant in the last para-
graph. Our original liminf rule is essentially of a Σ2 nature: a value of 1 is in a cell
Ci (µ) at limit time µ if there is an α < µ such that for all β ∈ (α, β) Ci (β) = 1.
Running a machine inside Lµ one sees that the snapshot s(µ) is a predicate that is Σ2-
definable over Lµ . It was observed in [38] that the liminf rule is complete for all other
rules Σ2-definable over limit levels Lµ in that for any other such rule the stability set
obtained for the universal machine (on 0 input) with such a rule is (1-1) Σ2-definable
over Lζ and thus is (1-1) in the Σ2-truth set for Lζ . However the latter is recursively
isomorphic to the stability set for the universal ITTM by Corollary 1 and hence the
standard stability set subsumes that of another machine with a different Σ2-rule. Given
the Σ2 nature of the limit rule, with hindsight one sees that it is obvious that with
(ζ ′,Σ′) defined to be the lexicographically least pair with Lζ′ ≺Σ2 LΣ′ , then we must
have that the universal ITTM enters a loop at ζ ′. That it cannot enter earlier of course
is the λ-ζ-Σ-Theorem, but a vivid way to see that this is the case is afforded by the
construction in [9] which demonstrated that there was a non-halting ITTM program
producing on its output tape continually sets of integers that coded levels Lα of the
constructible hierarchy for ever larger α below Σ; at stage Σ it would perforce pro-
duce the code for Lζ and then forever cycle round this loop producing codes for levels

13

α ∈ [ζ,Σ).
More complex rules lead to more complex machines. These were dubbed ‘hy-

permachines’ in [8], where a machine was defined with a Σ3-limit rule, and this was
shown to be able to compute codes for Lα for α < Σ(3), where now ζ (3) < Σ(3) was
the lexicographically least pair with Lζ (3) ≺Σ3 LΣ(3) . The stability set was now that
from the snapshot at stage ζ (3) and was (1-1) to the Σ3-truth set for this level of L.
Inductively then one defines Σ4,Σ5, . . . ,Σn , . . . limit rules with the analogous proper-
ties. I think it has to be said though that the definitions become increasingly complex
and even for n = 3, mirror more the structure of L in these regions with its own ‘stable
ordinals’ rather than anything machine-inspired. With these constructions one can then
‘compute’ any real that is in Lτ where τ = supn ζ (n).

3.1 Longer tapes

generalizations of the ITTM machine are possible in different directions. One can
consider machines with tapes not of cells of order type ω but of longer types. Some
modifications are needed: what do we do if the program asks the R/W head to move
one step leftwards when hovering over a cell Cλ for λ a limit ordinal? There are some
inessentially different choices to be made which we do not catalogue here, but assume
some fixed choices have been made.

We consider first the extreme possibility that the tape is of length On, that is of the
class of all ordinals. We now have the possibility that arbitrary sets may be computed
by such machines. Independently Dawson and Koepke came up with this concept.
There are some caveats: how do we know that we can ‘code’ sets by transfinite strings
of 0,1’s at all? Dawson ([6]) formulated an Axiom of Computability that said every
set could appear coded on the output tape of such a machine at some stage whilst it
was running; thus for any set z there would be a program number e with Pe (not nec-
essarily halting) with a code for z appearing on its output tape. He then argued that
the class of such sets is a model of ZFC, and by studying the two dimensional grid of
snapshots produced a Löwenheim-Skolem type argument to justify that the Axiom of
Computability implied the Generalized Continuum Hypothesis. That the class of com-
putable sets satisfied AC falls out of the assumption that sets can be coded by strings
and such can be ordered. Since this machine’s operations are again very absolute,
it may be run inside L, thus demonstrating that ‘computable sets’ are nothing other
than the constructible sets. Koepke in [21] and later with Koerwien in [22] consid-
ered instead halting computations starting with an On-length tape marked with finitely
many 1’s in certain ordinal positions (n, ξ1, . . . , ξn), and asked for a computation as to
whether (ϕn (ξ1, . . . ξn−1))Lξn was true. Thus the machine was capable of computing
a truth predicate for L. This leads to:

Theorem 5 (Koepke [21]) A set x ⊆ On is On-ITTM-computable from a finite set of
ordinal parameters if and only if it is a member of the constructible hierarchy.

One might well ask whether the computational approach to L might lead to some
new proofs, or at least new information, on some of the deeper fine structural and com-
binatorial properties of L. However this hope turned out to be seemingly thwarted by
the Σ2-nature of the limit rule. Fine structural arguments are very sensitive to defin-
ability issues, and in constructions such as that for Jensen’s � principle, say, we need
to know when or how ordinals are singularised for any n including n = 1 and the

14

limit rule works against this. Moreover alternatives such as the Silver Machine model
which was specifically designed to by-pass Jensen’s fine structural analysis of L, make
heavy use of a Finiteness Property that everything appearing at a successor stage can
be defined from the previous stages and a finite set of parameters; just does not seem
to work for On-ITTM’s.

However this does bring to the fore the question of shortening the tapes to some
admissible ordinal length α > ω say, and asking what are the relations between α-
ITTM’s and the α-recursion theory developed in the late 1960’s and early 70’s. The
definitions of that theory included that a set A ⊆ α which is Σ1(Lα) was called α-
recursively enumerable (α-r.e.). It was α-recursive if both it and its complement is
α-r.e. and thus is ∆1(Lα). A notion of relative α-recursion was defined but then
noticed to be intransitive; a stronger notion was defined and denoted by A ≤α B.

Koepke and Seyfferth in [24] define A is computable in B to mean that the charac-
teristic function of A can be computed by a machine in α many stages from an oracle
for B. This is exactly the relation that A ∈ ∆1(Lα[B]). This has the advantage that the
notion of α-computability and the associated α-computable enumerability (α-c.e.) tie
up exactly with the notions of α-recursiveness and α-r.e. They then reprove the Sacks-
Simpson theorem for solving Post’s problem: namely that there can be two α-c.e. sets
neither of which are mutually computable in their sense from the other.

However the relation “is computable in” again suffers from being an intransitive
one. Dawson defines the notion of α-sequential computation that requires the output to
the α-length tape be written in sequence without revisions. This gives him a transitive
notion of relative computability: a set is α-computable if and only if it is α-recursive,
and it is α-computably enumerable if and only if it is both α-r.e. and regular. Since
Sacks had shown ([31]) that any α-degree of α.-r.e. sets contains a regular set, he then
has that the structure of the α-degrees of the α-r.e. sets in the classical, former, sense,
is isomorphic to that of the α-degrees of the α-c.e. sets. This implies that theorems
of classical α-recursion theory about α-r.e. sets whose proofs rely on, or use regular
α-r.e. sets will carry over to his theory. This includes the Sacks-Simpson result alluded
to. The Shore Splitting Theorem ([34]) which states that any regular α-r.e. set A may
be split into two disjoint α-r.e. sets B0,B1 with A �α Bi , is less amenable to this kind
of argument but with some work the Shore Density theorem ([35]) that between any
two α-r.e. sets A <α B there lies a third α-r.e. C: A <α C <α B can be achieved. As
Sacks states in his book, the latter proof seems more bound up with the finer structure
of the constructible sets than the other α-recursion theory proofs. Dawson generalizes
this by lifting his notion of α-computation to that of a B-α-computation where now
B =df 〈JBα ,∈,B〉 is an admissible, acceptable, and sound structure for aB ⊆ α. These
assumptions make JBα sufficiently L-like to rework the Shore argument to obtain:

Theorem 6 (Dawson - The α-c.e. Density Theorem) Let B be as above. Let A,B be
twoB-α-c.e. sets, with A <B,α B. Then there is C alsoB-α-c.e, with A <B,α C <B,α
B.

4 Other Transfinite Machines

Once the step has been taken to investigate ITTM’s, one starts looking at other machine
models and sending them into the transfinite. We look here at Infinite Time Register
Machines (ITRM’s) both with integer and ordinal registers, and lastly comment on

15

Infinite Time Blum-Shub-Smale Machines (IBSSM’s).

4.1 Infinite time register machines (ITRM’s)

A (standard) register machine as devised by Shepherdson and Sturgis [33], or Minsky
[28], consists of finite number of natural number registers Ri for i < N , running under
a program consisting of a finite list of instructions ~I = I0, . . . , Iq . The latter consist
of zeroising, transferring of register contents one to another, or conditional jump to
an instruction number in the program, when comparing two registers. At time α we
shall list the N-vector of register contents as ~R(α). The next instruction the machine is
about to perform we shall denote by I (α). We adopt a liminf rule again. Thus the next
instruction to be performed at limit stage λ, is I (λ) =df lim infα→λ I (α). As discussed
before for ITTM’s, this can be seen to place control at the beginning of the outermost
loop, or subroutine, entered cofinally often before stage λ. We shall use a lim inf∗ rule
for register contents: if a register’s contents edges up to infinity at time λ it is reset to
0:

Ri (λ) =df lim inf
α→λ

Ri (α) if this is finite; otherwise we set Ri (λ) = 0.

Athough perhaps not apparent at this point, it is this ‘resetting to zero’ that gives
the ITRM its surprising strength: specifying that the machine, or program, crash with
no output if a register becomes unbounded results in a substantially smaller class of
computable functions. A function F : NN → N is then ITRM-computable if there is
an ITRM program P with P(~k) ↓ F (~k) for every ~k ∈ NN . In order to accommodate
computation from a set of integers Z ⊆ N say, we add an oracle query instruction
?k ∈ Z? and receive as 0/1 the answer to a register as a result.

These machines were defined by Koepke and investigated by him and co-workers
in [5], [23]. A clockable ordinal has the same meaning here as for ITTM’s, except
that here these ordinals for man initial segment of On. Defining a computable ordinal
as one which has real code whose characteristic function is ITRM-computable, they
show that the clockables ordinals coincide with the computable ordinals. To analyse
what they are capable of, first note as a crude upper bound that they could be easily
simulated on an ITTM. However ITRM’s can detect whether an oracle set Z ⊆ N codes
a wellfounded relation: a backtracking algorithm that searches for leftmost paths can
be programmed. Thus Π1

1-sets are ITRM-decidable.
It also turns out that, in contradistinction to the finite case, the strength of the

infinite version of register machines diverges from that of the Turing machine, but
moreover there is no universal ITRM. We outline the arguments for this.

Definition 13 (N-register halting set)

HN =df {〈e,r0, . . . ,rN−1〉 | Pe (r0, . . . ,rN−1) ↓}.

(There is an obvious generalization HZ
n for machines with oracle Z .)

Koepke and Miller show that if there is some instruction I′ and register contents
vector

−→
Ri such that the snapshot (I′,

−→
Ri) reoccurs in the course of computation at least

ωω times in order type, then the computation is in a loop and will go on for ever.

Theorem 7 (Koepke-Miller [23]) For any N the N-halting problem: ‘〈e,~r〉 ∈ HN ’ is
decidable by an ITRM. Similarly for any oracle Z, the (N, Z)-halting problem ‘〈e,~r〉 ∈
HZ

N ’ is decidable by a Z-ITRM with an oracle for Z.

16

The number of registers has to be increased to calculate HN for increasing N . The
corollary to this is that there can be no one single universal ITRM. We can get an exact
description of the strength of ITRM’s by assessing bounds on the ordinals needed to
see that a machine either halts or is looping. It is discussed in [26] and shown there
that if one has an ITRM with a single register then it has either halted or is in an infinite
loop by the second admissible ordinal ωck

2 . One cannot replace this with ω1 = ωck
1 :

if Liminfβ→ω1 R0(β) = p < ω then a Π2-reflection argument shows that the same
instruction number is used, and the value in the register is this p, on a set of ordinals
closed and unbounded in ω1. By the Koepke-Miller criterion mentioned above this
would indeed mean that the computation was looping. However it can be the case that
Liminfβ→ω1 R0(β) = ω and then this would have to be reset to 0: R0(ω1) = 0. Then
again Liminfβ→ω1+ω1 R0(β) may also be ω, but the instruction number could now
differ. However by ωck

2 the criterion will have already applied and the computation
if still running will be looping. One then shows by induction that each extra register
added to the architecture requires a further admissible ordinal in run time to guarantee
looping behaviour. One then thus arrives at the property that any ordinal below ωck

ω -
the first limit of admissibles, is clockable by such an ITRM, and thence that the halting
sets Hn can be computed by a large enough device. We can state this more formally:

Thus the assertion that that these machines either halt or exhibit looping behaviour
turns out to be equivalent to a well known subsystem of second order number theory,
namely,Π1

1-CA0. Let ITRMN be the assertion: “The N-register halting set HN exists.”
Further, let ITRM be the similar relativized statement that “For any Z ⊆ ω, for any
N < ω the N-register halting set HZ

N exists.” Then more precisely:

Theorem 8 (Koepke-Welch [26])
(i) Π1

1-CA0 ` ITRM. In particular:
KP+“there exist N + 1 admissible ordinals > ω” ` ITRMN .
(ii) ATR0 + ITRM ` Π1

1-CA0.
In particular there is a fixed k < ω so that for any N < ω

ATR0 + ITRMN ·k ` “ HJ(N,∅) exists.”

An analysis of Post’s problem in this context is effected in [13].

4.2 Ordinal register machines ORM’s

We mention finally here the notion studied by Koepke and Siders of Ordinal Reg-
ister Machines (ORM’s, [25]): essentially these are the devices above but extended
to have ordinal valued registers. Platek (in private correspondence) indicated that he
had originally considered his equational calculus on recursive ordinals as being imple-
mentable on some kind of ordinal register machine. Siders also had been thinking of
such machines and in a series of papers with Koepke considered the unbounded ordi-
nal model. The resetting Liminf∗ rule is abandoned, and natural Liminf’s are taken.
Now ordinal arithmetic can be performed. Remarkably given the paucity of resources
apparently available one has the similar theorem to that of the On-ITTM:

Theorem 9 (Koepke-Siders [25]) A set x ⊆ On is ORM-computable from a finite set
of ordinals parameters if and only if it is a member of the constructible hierarchy.

17

They implement an algorithm that computes the truth predicate T ⊆ On for L and
which is ORM-computable on a 12 register machine (even remarking that this can be
reduced to 4!). From T a class of sets S can be computed which is a model of their
theory SO, which is indeed the constructible hierarchy.

5 Infinite Time Blum-Shub-Smale machines IBSSM

Lastly we consider the possible transfinite versions of the Blum-Shub-Smale machines.
These can be viewed as having registers R1, . . . ,RN containing now euclidean reals
r1, . . . ,rn ∈ R. There is a finite program or flow-chart with instructions divided into
function nodes or conditional branching nodes. We shall assume that function nodes
have the possibility of applying a rational function computation of the registers (we
test each time that we are not dividing by zero). So far this accords with the finite BSS
version. We now make the, rather stringent, condition that at a limit stage λ if any
register Ri does not converge to a limit in the usual sense, then the whole computation
is deemed to have crashed and so be undefined. The value of Rι (λ) is then set to be
the ordinary limit of the contents of Ri (α) as α → λ. It has been noted that a BSS
machine cannot calculate the functions ex , sin x etc., but an IBSSM can, indeed in ω
many steps (by simply calculating increasingly long initial segments of the appropriate
power series).

Koepke and Seyfferth [24] have investigated such machines with continuous limits.
To simulate other sorts of machines on an IBSSM requires some ingenuity: a register
that is perhaps simulating a register of one of the ITRM’s discussed earlier, may have
some contents x, that tends to infinity and be then reset. Here then it is better to
calculate with 1

x in order to ensure a continuous limit of 0. Else if the register is
simulating the contents of the scratch tape of an ITTM, then perhaps at successor
stages continual division by 2 ensures again a continuous limit at the next limit ordinal
of time. They show that a machine with n nodes in its flow diagram can halt on rational
number input at ordinal times without any limit below ωn+1. Thus any such machine
will halt, crash or be looping by time ωω .

The question is naturally what is the computational power of such machines?
Clearly, by absoluteness considerations, on rational input such a machine can be run in-
side the constructible hierarchy, and indeed from what they showed on ordinal lengths
of computations, inside Lωω . They then naturally ask whether any real in Lωω can be
produced by an IBSSM machine?

We can answer this affirmatively below. However at the same time we combine
this with yet another characterisation. It is possible to give another characterisation
of the sets in Lωω by using the notions of Safe Recursive Set Functions (SRSF) of
Beckmann, Buss and S. Friedman [1]. They are generalizing the notion of safe recur-
sion of Bellantoni and Cook ([2]) used to define polynomial time computations. Here
variables are divided into two types safe and normal. In the notation f (~a/~b) recursion
is only allowed on the safe variables in ~b. This allows for the definition by recursion
of addition and multiplication but crucially not exponentiation. One of the aims of [1]
is to have a notion of set recursion that corresponds to ‘polynomial time’. On input
an ω-string in 2N for example, one wants a computation that halts in polynomial time
from ω - the length of the input. Hence the calculation should halt by some ωn for an
n < ω. They have:

18

Theorem 10 ([1]) Let f be any SRSF. Then there is a ordinal polynomial qf in
variables ~α so that

rk (f (~a/~b)) ≤ maxi rk (ai) + qf (~rk (a)).

Thus the typing of the variables ensures that the ranks of sets computed as outputs
from an application of an SRSFunction are polynomially bounded in the ranks of the
input. Using an adaptation of Arai, such functions on finite strings correspond to
polynomial time functions in the ordinary sense. For ω-strings we have that such
computations halt by a time polynomial in ω. As mentioned by Schindler, it is natural
to define ‘polynomial time’ for ITTM’s to be those calculations that halt by stage ωω ,
and a polynomial time ITTM function to be one that, for some N < ω, terminates on
all inputs by time ωN . We thus have:

Theorem 11 The following classes of functions of the form F : (2N)k → 2N are
extensionally equivalent:

(I) Those functions computed by a continuous IBSSM machine;
(II) Those functions that are polynomial time ITTM;
(III) Those functions that are safe recursive set functions.

Proof: We take k = 1. We just sketch the ideas and the reader may fill in the details.
By Koepke-Seyfferth for any IBSSM computable function there is N < ω so that the
function is computable in less than ωN steps. We may thus consider that computation
to be performed inside LωN [x] and so potentially simulable in polynomial time (inωM

steps, for some M) by an ITTM. However this can be realised: a code for any Lα[x]
for α ≤ ωN , x ∈ 2N, and its theory, may be computable by an ITTM (uniformly in the
input x) by time ωN+3 by the argument of Lemma 2 of [9] (Friedman-Welch). Since
we have the theory, we have the digits of the final halting IBSSM-output (or otherwise
the fact that it is looping or has crashed respectively, since these are also part of the
set theoretical truths of LωN [x]). Thus (II) ⊇ (I). If F is in the class (II), then for
some N < ω, F (x) is computable within LωN [x] and by setting up the definition of
the ITTM program P computing F we may define some α such that the output of that
program P on x (i.e. F (x)) is the α’th element of 2N in LωN [x] uniformly in x.
However the set LωN [x] is SRSF-recursive from ω∪ {x} (again uniformly in x) as is a
code for α. This yields the conclusion that we may find uniformly the output of P(x)
using the code for α, again as the output of an SRSF-recursive-in-x function. This
renders (II) ⊆ (III).

Finally if F is in (III), (and we shall assume that the variable x is in a safe variable
place - but actually the case where there are normal and safe variables is handled no
differently here) then there is (cf. [1], 3.5) a finite N and a Σ1-formula ϕ(v0,v1) so that
F (x) = z iff LωN [x] |= ϕ[x, z] (using here that TC(x) = ω and thus rk(x) = ω).
Indeed we may assume that z is named by the canonical Σ1-skolem function h for, say,
LωN +ω[x] as h(i,n) for some n < ω. Putting this together we have some Σ1 ψ(v0)
(in L ẋ, ∈̇) so that F (x)(k) = z(k) = 1 iff LωN +ω[x] |= ψ[k]. In short to be able to
determine such F (x) by an IBSSM it suffices to be able to compute the Σ1-truth sets
for Lα[x] for all α < ωω by IBSSM’s. There are a variety of ways one could do this,
but it is well known that calculating the α’th iterates of the Turing jump relativised to
x for α < ωω would suffice. To simplify notation we shall let x also denote the set
of integers in the infinite fractional expansion of the real x. So fix a k < ω, to see

19

that we may calculate x (β)′ for β < ωk . One first constructs a counter to be used in
general iterative processes, using registers C0, . . .Ck−1 say, whose contents represent
the integer coefficients in the Cantor normal form of β < ωk where we are at the
β’th stage in the process. (The counter of course must conform to the requirement
that registers are continuous at limits λ ≤ ωk . This can be devised using reciprocals
and repeated division by 2 rather than incrementation by 1 each time.) We assume
this has been done so that in particular that C0 = C1 = · · · = Ck−1 = 0 occurs first
at stage ωk . We then code the characteristic function of {m ∈ ω | m ∈ W x (β)′

m } as
1/0’s in the digits at the s’th-places after the decimal point of R1 where s is of the
form pk+m .p

n0+1
0 . · · · .pnk−1+1

k−1 where p0 = 2,p1 = 3, etc., enumerates the primes, and
n j the exponent of ω j in the Cantor Normal form of ωβ . For limit stages λ < ωk ,
continuity of the register contents automatically ensures that this real in R1 also codes
the disjoint union of the x (β)′ for β < λ, and at stage ωk we have the whole sequence
of jumps encoded as required. Q.E.D.

6 Conclusions

The avenues of generalization of the Turing machine model into the transfinite which
we have surveyed, give rise to differing perspectives and a wealth of connections.
Higher type recursion theory, to which the models mostly nearly approximate, to a
lesser or greater extent, was a product of Kleene’s generalization of the notion of an
equational calculus approach to recursive functions. Here discussed are machines more
on the Turing side of the balance. Some of the other generalizations of recursion the-
ory, say to meta-recursion theory, as advocated by Kreisel and elucidated by Sacks
and his school, and which later became ordinal α-recursion theory, we have not re-
ally discussed here in great detail, but again their motivations came from the recursion
theoretic-side, rather than any ‘computational-model-theoretic’ direction. The models
discussed in this chapter thus fill a gap in our thinking.

Referring to the last section, we find that, rather like a Church’s thesis, we have
here an effective system for handling ω-strings in polynomial time, as formalized by
the SRSF’s, and a natural corresponding computational model of ITTM’s working
with calculations halting by time earlier than ωω . The model of computation with
the continuous limit IBSSM’s then also computes the same functions. Note that as-
sertions such as that “every continuous IBSSM halts, loops, or becomes discontinu-
ous” when formalized in second order arithmetic, are intermediate between ACA0 and
ATR0. There is much to be said for the IBSSM model over its finite version: we have
remarked that the infinite version calculates power series functions, such as sin, ex .
With a little work one sees also that if any differentiable function f : R −→ R is
IBSSM computable, then so is its derivative f ′.

On the other hand the class of sets that ITTM’s compute form a Spector class, and
so we can bring to bear general results about such classes on the ITTM semi-decidable,
and eventually semi-decidable classes; their strength we saw was very strong: between
Π1

2-CA0 and Π1
3-CA0. Finally the On-tape version of the ITTM, gives us a new pre-

sentation of the constructible hierarchy as laid out by an ordinary Turing program
progressing throughout On time.

20

References

[1] A. Beckmann, S. Buss, and S-D. Friedman. Safe recursive set functions. Centre
de Recerca Matematica Document Series, Barcelona, 2012.

[2] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the
poly-time functions. Computational Complexity, 2:97–110, 1992.

[3] L. Blum, M. Shub, and S. Smale. On a theory of computation and complex-
ity over the real numbers. Notices of the American Mathematics Society (N.S.),
21(1):1–46, 1989.

[4] J.P. Burgess. The truth is never simple. Journal of Symbolic Logic, 51(3):663–
681, 1986.

[5] M. Carl, T. Fischbach, P. Koepke, R. Miller, M. Nasfi, and G. Weckbecker. The
basic theory of infinite time register machines. Archive for Mathematical Logic,
49(2):249–273, 2010.

[6] B. Dawson. Ordinal time Turing computation. PhD thesis, Bristol, 2009.

[7] H. Field. A revenge-immune solution to the semantic paradoxes. Journal of
Philosophical Logic, 32(3):139–177, April 2003.

[8] S-D. Friedman and P. D. Welch. Hypermachines. Journal of Symbolic Logic,
76(2):620–636, June 2011.

[9] S-D. Friedman and P.D. Welch. Two observations concerning infinite time
Turing machines. In I. Dimitriou, editor, BIWOC 2007 Report, pages
44–47, Bonn, January 2007. Hausdorff Centre for Mathematics. Also at
http://www.logic.univie.ac.at/sdf/papers/joint.philip.ps.

[10] E. Gold. Limiting recursion. Journal of Symbolic Logic, 30(1):28–48, Mar 1965.

[11] J.D. Hamkins and A. Lewis. Infinite time Turing machines. Journal of Symbolic
Logic, 65(2):567–604, 2000.

[12] J.D. Hamkins and A. Lewis. Post’s problem for supertasks has both positive and
negative solutions. Archive for Mathematical Logic, 41:507–523, 2002.

[13] J.D. Hamkins and R. Miller. Post’s problem for ordinal register machines: an ex-
plicit approach. Annals of Pure and Applied Logic, 160(3):302–309, September
2009.

[14] J.D. Hamkins and D. Seabold. Infinite time Turing machines with only one tape.
Mathematical Logic Quarterly, 47(2):271–287, 2001.

[15] H.G. Herzberger. Notes on naive semantics. Journal of Philosophical Logic,
11:61–102, 1982.

[16] S. C. Kleene. Recursive quantifiers and functionals of finite type I. Transactions
of the American Mathematical Society, 91:1–52, 1959.

[17] S. C. Kleene. Turing-machine computable functionals of finite type I. In Proceed-
ings 1960 Conference on Logic, Methodology and Philosopy of Science, pages
38–45. Stanford University Press, 1962.

[18] S. C. Kleene. Turing-machine computable functionals of finite type II. Proceed-
ings of the London Mathematical Society, 12:245–258, 1962.

[19] S. C. Kleene. Recursive quantifiers and functionals of finite type II. Transactions
of the American Mathematical Society, 108:106–142, 1963.

21

[20] A. Klev. Magister thesis. ILLC Amsterdam, 2007.
[21] P. Koepke. Turing computation on ordinals. Bulletin of Symbolic Logic, 11:377–

397, 2005.
[22] P. Koepke and M. Koerwien. Ordinal computations. Mathematical Structures in

Computer Science, 16.5:867–884, October 2006.
[23] P. Koepke and R. Miller. An enhanced theory of infinite time register machines.

In A. Beckmann et al., editor, Logic and the Theory of Algorithms, volume 5028
of Springer Lecture Notes Computer Science, pages 306–315. Swansea, Springer,
2008.

[24] P. Koepke and B. Seyfferth. Ordinal machines and admissible recursion theory.
Annals of Pure and Applied Logic, 160(3):310–318, 2009.

[25] P. Koepke and R. Siders. Computing the recursive truth predicate on ordinal
register machines. In A. Beckmann et al., editor, Logical Approaches to Compu-
tational Barriers, Computer Science Report Series, page 21. Swansea, 2006.

[26] P. Koepke and P.D. Welch. A generalised dynamical system, infinite time register
machines, and Π1

1-CA0. In B. L editor, Proceedings of CiE 2011, Sofia, 2011.
[27] B. Löwe. Revision sequences and computers with an infinite amount of time.

Journal of Logic and Computation, 11:25–40, 2001.
[28] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
[29] H. Putnam. Trial and error predicates and the solution to a problem of Mostowski.

Journal of Symbolic Logic, 30:49–57, 1965.
[30] H. Rogers. Recursive Function Theory. Higher Mathematics. McGraw, 1967.
[31] G.E. Sacks. Post’s problem, admissible ordinals and regularity. Transactions of

the American Mathematical Society, 124:1–23, 1966.
[32] G.E. Sacks. Higher Recursion Theory. Perspectives in Mathematical Logic.

Springer Verlag, 1990.
[33] J. Shepherdson and H. Sturgis. Computability of recursive functionals. Journal

of the Association of Computing Machinery, 10:217–255, 1963.
[34] R. A. Shore. Splitting an α recursively enumerable set. Transactions of the

American Mathematical Society, 204:65–78, 1975.
[35] R. A. Shore. The recursively enumerable α-degrees are dense. Annals of Mathe-

matical Logic, 9:123–155, 1976.
[36] J. Thomson. Tasks and supertasks. Analysis, 15(1):1–13, 1954-55.
[37] P.D. Welch. Minimality arguments in the infinite time Turing degrees. In

S.B.Cooper and J.K.Truss, editors, Sets and Proofs: Proc. Logic Colloquium
1997, Leeds, volume 258 of London Mathematical Society Lecture Notes in
Mathematics. C.U.P., 1999.

[38] P.D. Welch. Eventually Infinite Time Turing degrees: infinite time decidable
reals. Journal of Symbolic Logic, 65(3):1193–1203, 2000.

[39] P.D. Welch. Post’s and other problems in higher type supertasks. In B. Löwe,
B. Piwinger, and T. Räsch, editors, Classical and New Paradigms of Computation
and their Complexity hierarchies, Papers of the Conference Foundations of the
Formal Sciences III, volume 23 of Trends in logic, pages 223–237. Kluwer, Oct
2004.

22

[40] P.D. Welch. Ultimate truth vis à vis stable truth. Review of Symbolic Logic,
1(1):126–142, June 2008.

[41] P.D. Welch. Characteristics of discrete transfinite Turing machine models: halt-
ing times, stabilization times, and normal form theorems. Theoretical Computer
Science, 410:426–442, January 2009.

23

